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Abstract

This paper analyzes coalition formation in a model of contests with
linear costs. Agents first form groups and then compete by investing
resources. Coalitions fight for prizes that are assumed to be subject to
rivalry, so their value is non-increasing in the size of the group. This
formulation encompasses as particular cases some models proposed in
the rent-seeking literature. We show that the formation of groups gen-
erates positive spillovers and analyze two classes of games of coalition
formation. A contest among individual agents is the only stable out-
come when individual defections leave the rest of the group intact.
More concentrated coalition structures, including the grand coalition,
are stable when groups collapse after a defection, provided that rivalry
is not too strong. Results in a sequential game of coalition formation
suggest that there exists a non-monotonic relationship between the
level of underlying rivalry and the level of social conflict.
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"If men were supplied with every thing in the same abundance,
justice and injustice would be equally unknown among mankind."

David Hume (1740), A Treatise of Human Nature.

1 Introduction

Conflict and confrontation have been constant phenomena in human soci-
eties. Nations engage in war over territories and resources. Social classes
struggle to obtain political power. Firms lobby for government support. In-
dividuals compete for social status. In all these contexts, agents often spend
staggering amounts of resources in order to prevail. Why they do not settle
peacefully instead?

Scarcity is the sire of conflict. States, social groups, firms and individ-
uals resort to confrontation because under universal peace territories and
political power must be shared, resources are overexploited, property rights
dilute. In other words, agents engage in costly clashes because some degree
of rivalry underlies their interactions. Conflict constitutes then the missing
link between scarcity and injustice in Hume’s argument: It grants exclusive
rights to the winners and allows them to avoid congestion, at the expense
of the losers.

But we also observe that groups form in many conflict situations. Mem-
bers agree not to fight each other, at least temporarily, so facing fewer rivals
is a reason to seek for allies. In addition, coalitions may enjoy a higher chance
of success than individual agents on their own because members pool their
efforts. On the other hand, a conflict of interests persists within the winning
group when the spoils of victory must be divided. Moreover, free-riding may
undermine the effectiveness of coalitions. How these opposite forces shape
the incentives to form groups?

The main objective of the present paper is to study the interplay between
rivalry and the incentives to break up peace and form coalitions in contests.
We study group formation in a model where players compete for a prize that
is subject to congestion. In a first stage, agents join in coalitions, and then
invest resources in a contest that determines the winning group. Because
the formation of the grand coalition is equivalent to universal peace, our
model can help us to predict both under which circumstances conflict will
erupt and what group structures we should expect to arise in that case.

We impose two mild conditions on the prizes these groups contest for:
They must depend upon the size of the coalition and not on the identity
of its members (Anonymity); and they must be non-increasing in that size
(Rivalry). These prizes can thus be considered as the reduced form of the
interaction that would take place within the group in case of victory. This
allows us to encompass as particular cases some models already proposed in
the literature and, most importantly, to analyze how the stability of coalition
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structures depends on the level of intra-group rivalry.
We first characterize the unique equilibrium of the contest game given a

coalition structure. As it is well known in the rent-seeking literature, when
prizes are purely private and the cost of investments is linear, agents who
value victory less tend to remain inactive (Ueda (2002) refers to this phenom-
enon as oligopolization). Therefore, bigger groups drop out of the contest
because their members fight for a smaller prize due to rivalry. Equilibrium
uniqueness allows us to derive the valuation (Bloch, 1997), a mapping which
associates to each coalition structure a vector of individual payoffs. The val-
uation depends upon the entire coalition structure because the number and
sizes of rivals have a direct impact on the outcome of the contest. In the sec-
ond step of our analysis, we study the properties of the valuation. We show
that coalition formation generates positive spillovers, that is, non-members
are better off whenever two groups merge. We also show that the valua-
tion satisfies some other properties proposed in the literature of endogenous
coalition formation.

Spillovers complicate considerably the analysis of group formation. Here
we will consider two families of models of coalition formation. First, we study
two simultaneous games of exclusive membership proposed by Hart and Kurz
(1983): In the δ game, players stick together if one member withdraws; in the
γ game, the coalition breaks apart completely. We obtain that the singleton
structure, that is, a contest among all individual players, is the only Nash
equilibrium of the former game for any degree of rivalry. This is because
individual agents can free ride on the existence of bigger and less aggressive
coalitions when they leave their own group. More concentrated coalition
structures, including the grand coalition, can be supported as equilibria of
the γ game when rivalry is not too strong. The reason is that a defection
in this case triggers a fierce contest among ex-members. However, when
intra-group rivalry is very intense, individual defections become again too
attractive for any coalition to be stable.

We then analyze a sequential game of coalition formation proposed by
Bloch (1996) in which players’ reaction to deviations are fully endogenous.
In this game, results depend again on the level of rivalry and they seem to
display a bang-bang pattern: For low levels of rivalry, an asymmetric two-
group contest can be supported. For high levels, either the grand coalition
or the singleton structure are stable, and under very strong rivalry only the
latter is stable. We have not been able to obtain results for the intermediate
range, but examples indicate that only the grand coalition is stable in those
cases. All this suggests that rivalry has a non-monotonic effect on the level of
social conflict. The grand coalition is not formed when rivalry is either weak
or very strong; whereas obvious in the latter case, it happens in the former
because when the first player to move forms a singleton, it still pays to the
rest of players to form the complementary coalition rather than to trigger a
contest among singletons that would in turn leave the initial defector worse
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off. Hence, peace breaks up.
The first analysis of the role of groups in contests dates back to the

pioneering work by Olson (1965). He established what is often referred to as
the group-size paradox of collective action: Small groups are more effective
than larger ones in pursuing their targets. Olson argued that there exist
two reasons for this: First, the perceived effect of an individual defection
decreases with the size of the group, so free-riding intensifies. The second
force is precisely the concept of rivalry we employ here: When the prize
is private and must be divided up, individual prizes get smaller as groups
become larger.1

However, the literature has remained relatively silent on the issue of
coalition formation in contests. Baik and Shogren (1995), Baik and Lee
(1997) and Baik and Lee (2001) explored models that proceeded in three
stages: First, players form coalitions, then choose the sharing rule to be
employed within them and they finally compete. The resulting stable group
structures tend to contain one coalition comprising half of the players. These
games differ from ours in two important stands: Firstly, they use open
membership games where players cannot exclude others from joining their
group. We see this feature as a caveat in the context of confrontations and
contests. We employ instead simultaneous and sequential games of exclusive
membership where the formation of a coalition requires a certain degree of
agreement among members. Secondly, their sharing rule depends directly
upon the contest investments by members. In contrast, we do not model
sharing rules explicitly and take individual benefits from victory as given
when groups compete at the second stage of the game (see footnote 2).

The closest contributions to ours are Garfinkel (2004a) and (2004b) and
Bloch et al. (2006). The first two papers apply the concept of farsighted
stability (Chwe, 1994) to a model of contests in which members engage in
a new contest after victory. Because deviations under this solution concept
must be stable themselves, relatively more group structures end up being
stable compared to our framework. Both models obtain that symmetric and
nearly symmetric coalition structures are farsighted stable, but not the grand
coalition when rivalry is strong. On the other hand, Bloch et al. (2006)
study coalition formation in a general model of contests with convex costs.
Because in their model there is a minimal degree of rivalry within groups,
the grand coalition is always the efficient group structure, and consequently
constitutes the main focus of their analysis. We obtain parallel results for
that case, but we are able to extend our stability analysis to other coalition
structures and under different degrees of intra-group rivalry.

The remainder of the paper is organized as follows. Section 2 lays down
the basic elements of the model. Section 3 characterizes the equilibrium

1Olson’s argument has been explored in depth later onby Nitzan (1991), Lee (1995),
Esteban and Ray (2001) and Ueda (2002).
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of the contest stage given a coalition structure, derives the valuation and
studies its properties. In Section 4, group formation is studied under two
simultaneous games of exclusive membership. Section 5 analyzes the se-
quential game of coalition formation. Section 6 concludes.

2 The model

Let us suppose that interactions across individuals occur in two stages, as in
the games of coalition formation developed by Hart and Kurz (1983), Bloch
(1996) and Ray and Vohra (1997). In the first stage, agents form groups. In
the second stage, they engage in a contest that will determine the winning
coalition; victory grants benefits to members of the group. A third stage
determining how the spoils from victory are distributed could eventually be
added but we will not model it here explicitly.

Formally, consider a setN composed by n players who are ex-ante identi-
cal and have the same strategy set. A coalition structure C = {C1, C2, ..., CK}
is a partition of N into a collection of disjoint coalitions indexed by k. Let
us denote by |Ck| the cardinality of Ck. Without loss of generality, we will
order groups within any coalition structure C in ascending order of sizes so
|Ck| ≤ |Ck+1| . A coalition structure is called symmetric when all coalitions
in it are of the same size.

Once a coalition has formed, agents in Ck invest resources in order to
make their group win the contest. The formation of a group implies thus
that members pool their efforts and commit to not fighting each other in
the second stage of the game. Let us denote by ri the resources spent by
agent i and by R(C) = (R1, R2, ..., RK), where Rk =

P
i∈Ck ri, the vector of

coalitional efforts. The result of this contest is driven by the contest success
function that maps R(C) into a vector p ={pk}Kk=1 of coalitional winning
probabilities (with probability pk the coalition Ck attains the control of
the resource and so on). We will adopt a simple functional form initially
proposed by Tullock (1967), and axiomatized by Skaperdas (1996): Coalition
Ck wins the contest with probability

pk(R) =
Rk

KP
k=1

Rk

=
Rk

R
. (1)

Observe that coalitions care only about the supply of effort made by
other groups and not about the exact composition of C. We will assume
that, as in the case of all-pay-auctions, the cost of investments is linear and
independent of the outcome of the contest.

In the present setup, agents form coalitions because by doing so they
can absorb potential rivals and pool their efforts. Hence, coalitions have
no other specific objective, like supporting an ideology or an ethnic group,
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rather than victory. For this reason, we assume that all members of group
Ck receive the same payoff, denoted by πk in case of winning the contest,
and that they receive nothing if their coalition is defeated. Therefore, the
payoff of an agent i belonging to group Ck is given by

uik(Ck,R(C)) = pkπk − ri =
Rk

R
πk − ri. (2)

Throughout the paper we will impose two mild conditions on the indi-
vidual payoff πk.

Assumption 1 (Anonymity) For any two distinct coalitions Ck and Cj

such that |Ck| = |Cj | , it holds that πk = πj.

Assumption 2 (Rivalry) The aggregate coalitional payoff Πk = |Ck| · πk
is non-increasing in |Ck| .

These assumptions have very simple motivations. Anonymity stems nat-
urally from the assumption of ex-ante identical players. Hence, individual
prizes should not depend on the exact identity of the members of a group.

On the other hand, observe that Rivalry implies that the individual
payoff πk must be strictly decreasing in the size of the group |Ck|. It (that
closely relates to S-convexity, employed by Bloch et al., 2006) holds when the
prize is peacefully shared among members or when some internal struggle
determines the allocation of the rent. This property is also naturally satisfied
by several models of contests proposed in the literature, as shown below.

Example 1.1: Continuing contest. This example is based on Garfinkel
and Skaperdas (2006). After the contest among groups takes place, rivalry
may remain strong enough within the winning group to prompt members
to engage in a new contest. Still, there may be some degree of cooperation
that (partially) binds them to not fight each other. Individual payoffs for
the members of the coalition will then depend on how much they invest in
this new contest, denoted by si, and the degree of cooperation within the
group, denoted by µ

πik = (
µ

|Ck|
+ (1− µ)

siX
j∈Ck

sj
)V − si. (3)

This new contest admits a unique symmetric Nash equilibrium yielding
the expected payoff

πk =
V

|Ck|
µ(|Ck|− 1) + 1

|Ck|
,
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that satisfies Assumptions 1-2. This formulation encompasses several models
proposed in the rent-seeking literature2: The case when µ = 1, as in Bloch
et. al. (2006), corresponds to a scenario of no conflict within the winning
group; the prize is thus equally shared or, alternatively, distributed through
a fair lottery among members. When µ = 0, rivalry is resolved by means
of a full-fledged contest. Examples of the latter type of interaction can be
found in Katz and Tokatlidu (1996), Wärneryd (1998), Stein and Rapoport
(2004) and Garfinkel (2004b).3

Example 1.2: Exclusion from an open-access resource. This example
is based on Sánchez-Pagés (2006). It assumes that coalitions fight for the
right to exploit an open access resource. Rivalry stems from the ’Tragedy
of the commons’ outcome due to the non-cooperative exploitation of the
resource. Suppose that production is carried through the iso-elastic function
F (Lk) = (Lk)

α, where Lk =
P

i∈Ck li is the sum of individual labor inputs
and α ∈ [0, 1). Following the classical exposition of the commons’ problem
by Cornes and Sandler (1983) the individual payoff is given by

πik =
li
Lk
(Lk)

α − li. (4)

Again, this game admits a unique Nash equilibrium yielding the equilib-
rium payoff

πk =
1− α

|Ck|2
(
|Ck|− 1 + α

|Ck|
)

α
1−α , (5)

which also satisfies Assumptions 1-2 for any value of α. Overexploitation
becomes more severe as the size of the group that gains access to the resource
increases.4

3 The contest stage

In this Section we study the game agents play once a particular coalition
structure C has formed, derive the valuation and analyze its properties.

The individual payoff for an individual i ∈ Ck in the contest stage is
given by expression (2). Players choose simultaneously their investments in

2Nitzan (1991), Baik and Shogren (1995), Lee (1995), Baik and Lee (1997), Baik and
Lee (2001) and Ueda (2002) have considered sharing rules that are the weighted aver-
age between equal sharing and sharing proportional to effort contributions in the group
contest. In contrast, under (3) the second and third stage decisions are not directly linked.

3All these contributions assume that no group can be formed in this new contest. This
issue by Skaperdas (1998), Tan and Wang (2000) and Esteban and Sakovics (2003), but
their models differ substantially from those considered here.

4 In Garfinkel (2004a) agents in the winning group also engage in production at this
third stage and in addition spend resources to secure shares of the output jointly produced.
The resulting equilibrium payoffs satisfy both Anonimity and Rivalry as well.
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the contest aiming to maximize (2) taking as given the investments made
by their fellow group members and the outsiders.

With linear costs of effort, it is well-known that in contests with hetero-
geneous agents some players may remain inactive and make no investment.
These players are those who value victory less and thus prefer to drop out.
In the present set-up, agents within bigger coalitions receive lower payoffs in
case of victory so big groups will tend to remain inactive. The next Lemma,
that follows Hillman and Riley (1989), characterizes the number of coali-
tions that will be active in the contest.

Lemma 1 The number of active coalitions in C is the largest integer κ ≥ 2
such that

πκ >
κ− 2Pκ−1
j=1

1
πj

=
κ− 2
κ− 1Hκ−1, (6)

where Hκ−1 is then the harmonic mean of the individual payoff πk for coali-
tions k = 1, ..., κ− 1.

Proof. It is easy to see that (2) is a strictly concave function so the individ-
ual decision problem always admits an interior solution. We will show now
that condition (6) characterizes the set of active coalitions. The first order
condition for the member of one of those groups is

∂uik
∂ri

=
R−Rk

R2
πk − 1 = 0. (7)

Solving for Rk and summing up across coalitions yields,

R∗ =
κ− 1Pκ
j=1

1
πj

=
κ− 1
κ

Hκ,

and after plugging it back to (7), the equilibrium individual level of effort is

r∗i =
κ− 1
κ

Hκ

|Ck|
(1− Hκ

πk

κ− 1
κ

).

This implies that coalition k exerts positive effort if and only if

πk > Hκ
κ− 1
κ

.

that can be rewritten as the condition stated in the text. Now it remains to
check that it does not pay for agents in coalitions k = κ+ 1, ...,K, for who
condition (6) does not hold, to exert any effort. This hinges of the sign of
the derivative

∂uiκ+1
∂ri

=
R∗ −Rκ+1

(R∗)2
πκ+1 − 1

= (1− pκ+1)
πκ+1
κ−1
κ Hκ

− 1 < 0,
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so members of any coalition k ≥ κ+ 1 exert no effort in the contest.

Therefore, only the κ smallest coalitions in C will be active in the contest.
In fact, singletons will always be active. Moreover, all groups are active if
C is a symmetric coalition structure. The next Lemma shows that this
generalizes to other coalition structures if groups sizes are not too unequal.

Lemma 2 The biggest active coalition in C is strictly smaller than the sum
of the two smallest coalitions .

Proof. Take coalition C3 and suppose contrary to our statement that |C3| ≥
|C1|+ |C2| . By Rivalry,

1

π1
+
1

π2
≤ |C1|+ |C2||C3|

1

π3
≤ 1

π3
,

whereas for C3 to be active it must hold that

π3 >
1

1
π1
+ 1

π2

⇒ 1

π1
+
1

π2
>
1

π3
,

so we have reached a contradiction. By the same token, 1
π1
+ 1

π2
≤ 1

πk
for

any coalition k > 3, but at the same time it must hold that

πk ≥
k − 2

1
π1
+ 1

π2
+
Pk

j=3
1
πj

>
k − 2

1
π1
+ 1

π2
+ (k − 3)( 1π1 +

1
π2
)
=

1
1
π1
+ 1

π2

.

This Lemma implies that singleton coalitions will be active if C contains
at least two of them.

We are now in the position of characterizing the existence of an equilib-
rium of the subgame induced by any coalition structure.

Proposition 1 The contest induced by coalition structure C with κ active
coalitions has a unique Nash equilibrium where individual investments in the
contest are given by

r∗k =

(
κ−1
κ

Hκ
|Ck|(1−

Hκ
πk

κ−1
κ ) if k ≤ κ

0 otherwise.

Proof. The proof follows directly from the proof of Lemma 1.

Simple inspection of the equilibrium profile shows that members of big
groups will spend less effort in the contest. This is due to two reasons: As
groups become large, free-riding intensifies and the value of the prize they
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are fighting for decreases. In the limit, when coalitions are sufficiently big
relative to the rest of groups in the coalition structure, they remain inactive.

We can finally derive the closed form solution for the equilibrium payoff
for a member of coalition Ck.

u(|Ck| , C) =
(

πk
|Ck|(1−

κ−1
κ

Hκ
πk
)(|Ck|− κ−1

κ
Hκ
πk
) if k ≤ κ

0 otherwise.
(8)

Notice that this payoff depends only on the size of the coalition agents
belong to and on the size of the other coalitions in C via πk.

Strictly speaking, the payoff function in (8) is called a valuation because
it allows agents to evaluate the payoff they get from each possible coalition
structure. Next, we will show that our valuation satisfies some properties
proposed in the literature of coalition formation with spillovers.

A useful classification of valuations is based on whether coalition forma-
tion creates positive or negative externalities to nonmembers.

Definition A valuation u(|Ck| , C) exhibits positive externalities if u(|Ck| , C) <
u(|Ck| , C 0),where and Ck ∈ C,C 0 and C 0 is obtained by merging two coali-
tions in C\{Ck}.

Well-known models of coalition formation, as cartels in oligopoly (Bloch,
1995), research joint ventures (Yi and Shin, 2000) or public good provision
(Ray and Vohra, 2001) generate positive externalities.

Note that the merger of two groups can potentially create very strong
spillovers in our set-up, because such a merger may substantially alter the
constellation of active coalitions. Next we show that the sign of these
spillovers will indeed be positive in the range of relevant cases.

Proposition 2 The valuation (8) exhibits positive externalities whenever
the merging coalition C 0 remains active.

Proof. This result is trivial for previously inactive coalitions. Lemma A
below (see the appendix) shows that no active coalition can become inactive
after the merging if C 0 is active. Hence, we need to consider the rest of cases:
Suppose first that none of the inactive coalitions become active. Simple
inspection of the valuation (8), after being rewritten as

u(|Ck| , C) =
πk
|Ck|

(1− (κ− 1)
1
πkPκ
j=1

1
πj

)(|Ck|− (κ− 1)
1
πkPκ
j=1

1
πj

),

shows that our claim is true since the number of active coalitions has been
reduced by one and the ratio 1

πk
/
Pκ

j=1
1
πj
has increased given that 1

πl
+ 1

πm
≤

1
πl ∪ m

. Consider now that some previously inactive coalitions become active
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after the merger. Denote by κ0 ≥ κ the index under C of the biggest group
among the newly active coalitions. In order to show the existence of positive
spillovers in this case we need to check simply that

κ− 1Pκ
j=1

1
πj

≥ κ0 − 2Pκ0
j=1

1
πj
− 1

πl
− 1

πm
+ 1

πl ∪ m

.

Note that the left hand side above is not smaller than πκ+1 since Cκ+1

was previously inactive. Now, first suppose that |Cl ∪ m| ≤ Cκ0 . Then the
right hand side is smaller or equal than πκ0 since Cκ0 is now active. So the
expression holds true. If |Cl ∪ m| > Cκ0 then

κ0 − 2Pκ0
j=1

1
πj
− 1

πl
− 1

πm
+ 1

πl ∪ m

<
κ0 − 3Pκ0

j=1− 1
πl
− 1

πm

≤ πκ0 ,

where the first inequality holds from 1
πl ∪ m

> 1
πκ0

, and the second again
from the fact that πκ0 is active. This finally proves the existence of positive
spillovers.

Notice that the Proposition 2 applies to the range of relevant cases be-
cause an active coalition will clearly prefer to not merge if the resulting
group becomes inactive.

In contests then, outsiders benefit from a reduction in the number of
contenders due to a merger. This is so because the new group is less aggres-
sive than the original coalitions given that the private benefit of winning the
contest for their members has gone down. This result rests on the fact that
the merger can only make inactive groups active, but not in the other way
around. The interest of this observation is not merely technical. We often
see that groups previously silent in some social dispute suddenly mobilize
and become active after the configuration of other social groups changes. In
our case, the merger decreases the relative cost of effort for non-members
because the new group is less aggressive than the old ones, so previously
inactive coalitions have more incentives to enter the contest.

Our valuation also satisfies other conditions proposed in the literature
(see Bloch, 1997). They will prove useful later on when analyzing the sta-
bility of different coalition structures.

Proposition 3 Under Assumptions 1-2 the valuation (8) satisfies the fol-
lowing properties:

(i) Negative association: Given C, the members of smaller coalitions get
higher payoffs, i.e. u(|Ck| , C) > u(|Cl| , C) for |Ck| < |Cl| .

(ii) Inverse monotonicity: If a member of coalition Ck leaves it to join
a larger coalition Cl, then the members in Cl become worse off, i.e.
u(|Cl| , C) < u(|Cl|+1, C\{Ck, Cl}∪ {Ck\i, Cl ∪ i}) when |Ck| < |Cl| .
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Proof. The first property entails no change in the number of active coali-
tions. It only requires to show that (8) is decreasing in size for a fixed C. It
can be conveniently rewritten as

u(|Ck| , C) = πk(1−R(|Ck|))(1−
R(|Ck|)
|Ck|

), (9)

where R(|Ck|) = (κ − 1)
1
πk
κ
j=1

1
πj

. It is clear that the two first factors are

strictly decreasing in |Ck| by Assumption 2. Hence it is enough to show that
R(|Ck|)
|Ck|

≤ R(|Cl|)
|Cl|

,

that reduces to the inequality 1
Πk
≤ 1

Πl
, that is also satisfied because of

Assumption 2.
For Inverse monotonicity, notice that the addition of a player to coalition

Cl can make it inactive. Then, the property immediately follows. If Cl ∪ i
remains active, we have to distinguish several cases.

Suppose first that the number of active coalitions does not decrease.
Suppose that the index under C of the last active coalition after the change
was κ0 ≥ κ. To show that the valuation decreases for members in Ck it is
enough to show that

R(|Cl|)
|Cl|

≤ R(|Cl|+ 1)
|Cl|+ 1

, (10)

but because of Rivalry it is enough to show that

κ− 1Pκ
j=1

1
πj

≥ κ0 − 1Pκ
j=1,j 6=l,k

1
πj
+ 1

πk\i
+ 1

πl∪i
+
Pκ0

j=κ+1
1
πj

. (11)

By employing Rivalry repeatedly one can obtain that

1

πl∪i
− 1

πl
≥ 1

|Cl|
1

πl
≥ 1

|Ck|
1

πk
=
1

πk
− |Ck|− 1

|Ck|
1

πk
>
1

πk
− 1

πk\i
, (12)

so the above inequality holds if

(κ− 1)(
κX

j=1

1

πj
+

κ0X
j=κ+1

1

πj
) ≥ (κ0 − 1)

κX
j=1

1

πj
⇔

κ− 1Pκ
j=1

1
πj

≥ κ0 − κPκ0
j=κ+1

1
πj

.

In the right hand side of the last inequality, we have the harmonic mean
of the individual payoffs corresponding to the newly active coalitions. But
because the smaller of them, Cκ+1, was inactive before we know that

κ0 − κPκ0
j=κ+1

1
πj

≤ πκ+1 <
κ− 1Pκ
j=1

1
πj

,

12



and this proves that the valuation has decreased.
Let us now show that the alternative, that is, that coalitions previously

active become inactive after the change, cannot occur. To show that, it is
enough to show that Cκ remains active, or formally that

πκ >
κ0 − 1Pκ

j=1,j 6=l,k
1
πj
+ 1

πk−1
+ 1

πl+1
+
Pκ0

j=κ+1
1
πj

.

Note that in the previous discussion, we have just shown that the in-
equality (11) holds, so given that πκ > (κ − 1)/

Pκ
j=1

1
πj
, our statement is

true. This concludes the proof.

The intuitive reason why our valuation satisfies Negative association and
Inverse monotonicity5 is due both to Rivalry and the strong free-riding that
exists within big groups. Small coalitions not only enjoy higher benefits
from winning the contest (and are thus more aggressive) but also face rivals
whose members both value victory less and have more incentives to free-ride.

4 Exclusive membership games of group forma-
tion

As is evident from the discussion above, the complexity of the analysis of
group formation in our setup stems from the presence of spillovers. Because
of this difficulty, there is not a unique theoretical approach to tackle the
problem. In the next two sections, we will explore two different classes of
games that seem suitable to the study of coalition formation in contests.

The first class of rules of group formation that we will consider here
belong to the more general family of simultaneous games in which agents
announce the coalition they would like to belong to. Contrary to the open
membership games considered by Baik and Shogren (1995), Baik and Lee
(1997) and Baik and Lee (2001), in the games of exclusive membership,
players are not free to join an existing group. This requires some degree of
agreement among members.

We will analyze two exclusive membership games first proposed by Hart
and Kurz (1983). In these games, the strategy space of the players is the set
of all coalitions they can belong to, i.e. Ci = {Ck ⊆ N / i ∈ Ck}. Players
simultaneously announce a group ci ∈ Ci and coalitions form according to
one of the following two rules of group formation:

(i) The γ game, in which a coalition forms if and only if all its members
announced that coalition; unanimity is required, i.e. a group Ck forms
only if all members i of Ck have chosen ci = Ck. In that case, if a
member of Ck deviates, the coalition breaks apart.

5These properties are called (P.2) and (P.3) respectively in Yi (1997).
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(ii) The δ game, in which a group forms among those players who an-
nounced the same coalition even though some of its prospective mem-
bers announced something else. Formally, for any possible coalition
Ck, let C(k) = {i / ci = Ck} denote the group formed by all play-
ers who announced Ck. Hence, if a member of C(k) deviates all other
members remain together.

These games are called of exclusive membership because players an-
nounce a list of fellow members. The basic solution concept to be employed
is the Nash equilibrium (NE henceforth). This set of equilibria is often very
large so refinements like Strong Nash (Aumann, 1959) and Coalition-proof
equilibrium (Bernheim et al., 1987) have been also considered in the litera-
ture.

A very useful concept when characterizing the NE coalition structures
under these two games is stand-alone stability.

Definition A coalition structure C = {C1, ..., CK} is said to be stand-
alone stable if and only if for any player i ∈ Ck, u(|Ck| , C) ≥ u(1, C 0), for
C 0 = C\{Ck} ∪ {Ck\i, i}.

A coalition structure is stand-alone stable if no player is better off by
leaving her coalition to become a singleton, holding the rest of the coalition
structure fixed.

The importance of this property is clear: It is straightforward to show
that a coalition structure is a NE of the δ game if and only if it is stand-alone
stable (Yi and Shin, 2000). The next Proposition fully characterizes the set
of NE of the δ game.

Proposition 4 The unique NE (stand-alone stable) coalition structure of
the δ game is the singleton structure {1, ..., 1}.

Proof. First of all, notice any group structure in which at least one coalition
is inactive cannot be stand alone stable since any member of an inactive
coalition can secure a positive payoff by deviating. On one extreme, the
singleton structure is stand-alone stable by definition. On the other, the
grand coalition is stand alone stable if and only if

πN ≥ πi(

1
π
N\i

1
πi
+ 1

πN\i

)2,

where πN\i denotes the individual payoff for a member of the complementary
coalition. By Rivalry, 1

π
N\i
≥ n−1

πi
so

πi(

1
π
N\i

1
πi
+ 1

πN\i

)2 ≥ πi(
n− 1
n

)2 ≥ πN
n
(n− 1)2 > πN ,
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and we reach a contradiction. Finally, we show that for any other coalition
structure, a member of the largest group has an incentive to defect and
become a singleton.

• Case (i): Suppose C is a symmetric coalition structure. Then we want
to show that

πi(

1
π
k\i

1
πi
+ 1

πk\i

)2 ≥ πk
|Ck|

1

κ
(|Ck|−

κ− 1
κ

) =
πk
n
(|Ck|− 1 +

|Ck|
n
),

since after i’s defection all coalitions except i and Ck\{i} become in-
active by Lemma 2. By applying Rivalry twice, one time at each side
of above inequality, it is enough to show that

πi(
|Ck|− 1
|Ck|

)2 ≥ πi
n
(
|Ck|− 1
|Ck|

+
1

n
)⇔ |Ck|− 1

|Ck|
≥
√
5 + 1

2

1

n
,

and since n ≥ 4 and |Ck| ≥ 2, the latter inequality holds true. Hence,
no symmetric coalition structure apart from the singleton structure
can be stand-alone stable.

• Case (ii): Suppose that there exists a coalition k such that |Cj | =
|C1| + 1 for j = k, ..., κ and |Cj | = |C1| otherwise. In that case, our
aim is to show that

πκ
|Cκ|

(1−(κ−1)
1
πκPκ
j=1

1
πj

)(|Cκ|−(κ−1)
1
πκPκ
j=1

1
πj

) < πi(1−k
1
πi

1
πi
+ k 1

π1

)2,

since after i’s defection all coalitions Cj such that k ≤ j < κ will
become inactive. Note that

πκ
|Cκ|

(1− (κ− 1)
1
πκPκ
j=1

1
πj

)(|Cκ|− (κ− 1)
1
πκPκ
j=1

1
πj

) ≤ πi

|Cκ|2
1

κ
(|Cκ|− 1 +

1

κ
)

=
πi

(|C1|+ 1)2
1

κ
(|C1|+

1

κ
)

≤ πi
(|C1|+ 1)2

1

k
(|C1|+

1

k
),

since 1
πκ
/
Pκ

j=1
1
πj
≥ 1

κ and κ ≥ k. At the same time, notice that by

Rivalry 1
π1
≥ |C1|

πi
so

πi(1− k
1
πi

1
πi
+ k 1

π1

)2 ≥ πi(
|C1| k − k + 1

|C1| k + 1
)2.
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Hence for our purposes it is enough to show that

πi
(|C1|+ 1)2

1

k
(|C1|+

1

k
) < πi(

|C1| k − k + 1

|C1| k + 1
)2.

Note that the left hand side is decreasing in |C1| whereas the right hand
side is increasing. Suppose that |C1| ≥ 2. Then it is enough to show that

πi
9

1

k
(2 +

1

k
) < πi(

k + 1

2k + 1
)2 ⇔ 0 < 9k4 + 10k3 − 3k2 − 6k − 1,

which holds true for any k ≥ 2. If instead |C1| = 1 we can perform direct
computations since then it must be the case that κ = 2 (otherwise some
coalition would be inactive to start with). Hence, we have to check that

πκ
2
(1− (κ− 1)

1
πκ

(κ− 1) 1πκ +
1
πi

)(2− (κ− 1)
1
πκ

(κ− 1) 1πκ +
1
πi

) ≤ πi
9
,

but again, we can use the fact that 1
πκ
≥ 2

πi
, so the above holds if

πi
2

κ

(2κ− 1)2 ≤
πi
9
⇔ 0 ≤ 8κ2 − 17κ+ 2,

which is true for any κ ≥ 2. Hence, this coalition structure is not stand-alone
stable either.

• Case (iii): Suppose that |Cκ| ≥ |C1|+2 and that there exists a coalition
k ≤ κ such that |Ck| ≥ |C1| + 1 and |Cj | = |C1| for j = 1, ..., k − 1.
In that case, all coalitions bigger than |C1| become inactive after i’s
defection. By applying the same procedure as above, it is enough to
show that

πi
(|C1|+ 2)2

1

k
(|C1|+ 1 +

1

k
) ≤ πi(

|C1| (k − 1)− (k − 2)
|C1| (k − 1) + 1

)2.

Suppose again that |C1| ≥ 2 then the above holds if

πi
16

1

k
(3 +

1

k
) ≤ πi(

k

2k − 1)
2 ⇔ 0 ≤ 16k4 − 12k3 + 8k2 + k − 1,

which holds true for any k. Finally, if |C1| = 1 notice that again it must be
that κ = 2, otherwise all coalitions bigger than |C1| would be inactive. In
that case, the above comparison reduces to 5

36πi ≤
1
4πi, which holds true.

This coalition structure is not stand alone stable either. This exhausts all
possible cases and finishes the proof.

This Proposition shows that players have very strong incentives to break
up the group they belong to if defections leave unchanged the rest of the
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coalition structure. That is natural since by becoming a singleton the agent
obtains the maximum prize in case of victory and faces bigger and thus less
aggressive groups. However, as we will see below, it may be unreasonable to
expect that no further deviations will take place. Observe also that the set
of Nash, Strong Nash, and Coalition-proof equilibrium coalition structures
of the δ game coincide.6

On the other hand, the γ game assumes that individual defections trigger
the collapse of the group into singletons. We know from Bloch (1997) that if,
as in our case, the valuation displays positive spillovers and satisfies Negative
association and Inverse monotonicity, the γ game tends to support more
concentrated structures than the δ game. This is because although members
of big coalitions receive lower payoffs before the break up, they also face a
higher number of rivals afterwards, so the incentives to defect are weaker7.

Unfortunately, less clear-cut results can be obtained in this case. For this
reason, in the remainder of the paper, we will in occasions adopt a specific
functional form for the individual payoff given by

πk =
V

|Ck|ρ
, (13)

where ρ ≥ 1. In line with the examples in Section 2, the parameter ρ mea-
sures the degree of intra-group rivalry: The cases ρ = 1 and ρ = 2 coin-
cide with µ = 1 and µ = 0 respectively in Example 1.1; this range also
matches the degree of rivalry in Example 1.2. Hence, we will refer to the
case ρ ∈ (1, 2) as an intermediate level of rivalry, whereas we will consider
that the case ρ > 2 corresponds to an extremely intense conflict of interests
within groups.

The following Proposition partially characterizes the set of Nash equi-
libria of the γ game.

Proposition 5 In the γ game of coalition formation,

(i) The grand coalition {N} is a NE if and only if πNn2 > πi.

(ii) Any coalition structure with at least one singleton cannot be supported
in equilibrium.

6By Lemma 2, only the coalition composed by n−1 players would be active if it deviates
collectively. But, as Proposition 6 below shows, members of such group are indifferent
between {1, ...1} and {n− 1, 1} when Πk is constant in size and strictly prefer the former
partition otherwise. Hence, the singleton structure constitutes the unique Strong Nash
equilibrium too. Finally, since the set of Coalition-proof equilibria contains the set of
Strong Nash and it is a subset of the set of Nash equilibria, the three sets coincide.

7Sadly, this result cannot help us to sharpen our characterization of the equilibria;
given that only the singleton structure {1, ..., 1} was δ-stable, any equilibrium structure
under the γ game will be necessarily more concentrated.

17



(iii) Assume that πk is given by (13). Then the set of Nash equilibria coali-
tion structures consists of any structure satisfying

|Ck| (n− |Ck| (K − 1))(n−K + 1) > n2, for k = 1, ...,K, (14)

when ρ = 1, and the singleton structure {1, ..., 1} when ρ ≥ 2.

Proof. The valuation under the grand coalition is simply πN . An individual
deviation would imply the collapse of N into the singleton structure, and the
valuation is then πi

n2
. The comparison between these two yields the stated

condition on the γ stability of the grand coalition. On the other hand,
suppose that some group in C is already a singleton. Then, the rest of
coalitions in C must be of the same size in order to be γ stable. Otherwise,
at least one would be inactive. Then, it is straightforward to show that the
valuation for all the coalitions is smaller or equal than

πi
|Ck|

(|Ck|− 1)(K − 1) + 1
(|Ck| (K − 1) + 1)2

≤ πi
(|Ck|+ 1)2

,

where the last term coincides with the valuation after i’s deviation. Hence,
a coalition structure with at least one singleton cannot constitute a NE of
the γ game.

Finally, when individual payoffs are such that πk = V
|Ck|ρ , the valuation

can be rewritten as

V

|Ck|ρ
(1− (K − 1) |Ck|ρPK

j=1 |Cj |ρ
)(1− (K − 1) |Ck|ρ−1PK

j=1 |Cj |ρ
).

After i’s deviation, and assuming that no coalition in C is a singleton,
her payoff is simply V

|Ck|2
. Then checking whether C constitutes a NE of the

γ game reduces to show that

1

|Ck|ρ−2
(1−(K−1) |Ck|ρPK

j=1 |Cj |ρ
)(1−(K−1) |Ck|ρ−1PK

j=1 |Cj |ρ
) > 1 for k = 1, ...,K.

When ρ = 1, the condition becomes the one stated in the text of the
Proposition. When ρ ≥ 2 it is straightforward to see that the left hand side
of the above expression attains its minimum value for coalition CK . Knowing
that,

1

|CK |ρ−2
(1− (K − 1) |CK |ρPK

j=1 |Cj |ρ
)(1− (K − 1) |CK |ρ−1PK

j=1 |Cj |ρ
) ≤ |CK |K −K + 1

|CK |ρ−1K2

≤ |CK |K −K + 1

|CK |K2

≤ 2 |CK |− 1
4 |CK |

< 1,
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so C cannot be an equilibrium of the γ game.

This result shows that the set of NE coalition structures of the γ game
is rather limited. Again notice that no partition in which at least one group
is inactive can be supported as an equilibrium of this game. Hence, equi-
librium structures will tend to be formed by groups of similar size. But
this Proposition also illustrates the importance of intra-group rivalry: The
grand coalition will fall apart if rivalry is strong enough, i.e. ρ > 2, and
so will do any other coalition structure apart from the singleton one. Only
when rivalry is not very intense, i.e. ρ < 2, other coalition structures can be
supported as Nash equilibria of the γ game.8

5 Sequential coalition formation

In the previous Section, the behavior of players following a defection was
exogenously imposed. After a deviation, the rest of members may not nec-
essarily stick together nor break apart. This shortsightedness in reactions
can be avoided by employing sequential games in which the extensive form
fully describes the process of group formation. In this case, players can
rationally predict the coalition structure that outsiders will form after any
move they make. The drawback of this approach is common to all games
in extensive form, namely that many alternative protocols can be consid-
ered. Here, we will follow Bloch (1996) game of coalition formation in which
groups form à la Rubinstein. The game proceeds as follows: The first player
in a pre-determined protocol makes a proposal for a coalition she belongs to.
The players in this proposed coalition decide sequentially whether to accept
or not this proposal. The process stops when all members accept or one
rejects. In the former case, the proposed coalition forms and the next avail-
able player in the protocol is called to move. In the latter case, the rejector
must make a counter-offer and propose the formation of another coalition
she belongs to. Bloch (1996) shows that when, as in our case, valuations are
symmetric, that is, payoffs depend on the size of the coalition and not on
the particular identity of its members, this game yields the same stationary
subgame perfect equilibrium coalition structure as the much simpler ”Size
Announcement game”: The first player in the protocol proposes a coalition
of size |C1| that immediately forms. Then player |C1|+1 in the protocol pro-
poses a coalition |C2| and so on until the player set is exhausted. This game

8Bloch et al. (2006) obtain parallel results for the grand coalition when rivalry is
minimal, i.e. ρ = 1. On the other hand, Garfinkel (2004b) employs the concept of
farsighted stability, that requires deviations to be δ-stable themselves. The author shows
that any symmetric and nearly symmetric coalition structure, except the grand coalition,
is inmune to such deviations. This is because, given that only the singleton structure is
δ-stable, any Pareto superior partition is farsighted stable.
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is solved by backward induction and generically admits a unique subgame
perfect equilibrium (SPE henceforth).

This sequential game of coalition formation is very well suited to our
particular application since it can uncover the dynamics of coalition forma-
tion in contests. If for instance, we focus our attention on the stability of
the grand coalition, this game can help us to disentangle the incentives of
any player to break up peace, since the game fully endogenizes how events
will unravel afterwards.

We can use Proposition 5 to state the following Lemma that partially
characterizes player’s optimal strategies in this game:

Lemma 3 Assume the aggregate coalitional payoffs Πk are strictly decreas-
ing in size. Then in a SPE of Bloch’s game of sequential coalition formation
if any player forms a singleton all subsequent players choose to form single-
tons too.

Proof. Suppose that S ≤ n players remain in the game. By subgame
perfection, players know that after they move all coalitions subsequently
formed will be active. Then by Lemma 2, if player n−S+1 in the protocol
announces a singleton all coalitions formed after that must be of the same
size. Note that if before that player is called to move a singleton already
formed, the Lemma holds straightaway.

Suppose M ≥ 1 coalitions already formed before player n − S + 1 was
called to move, and denote by |C2| ≤ S− 1 the size of the group that player
n − S + 2 announces. Again, if |C2| = 1 the Lemma trivially holds. We
know that |C2| will not be in any case bigger than the smallest among the
M groups, otherwise it would be inactive. So either all those M groups
become inactive or at most m ≤ M of them remain active, but they must
be of exactly size |C2|. Now we can establish that this coalition structure
cannot constitute a SPE of the Bloch game for |C2| ≥ 2 by using Proposition
5 to show that the last player that is called to move prefers instead to form
a singleton. To see this notice that we are exactly in case (ii) of that
Proposition, since by forming a singleton two of them have formed and it
is optimal for all players after n− S + 2 to form singletons too. Hence the
proposed coalition structure is a SPE of the Bloch game only if it is γ-stable.
And we know it cannot be the case when aggregate coalitional payoffs are
strictly decreasing in size (if they are constant, player n+S−1 is indifferent
between announcing a singleton and announcing S−1 when m = 0). Notice
finally that this argument also holds if M = 0.

This Lemma shows that cooperation is very fragile in our setup. A
player contemplating the formation of a coalition of size two or more knows
that her group will become inactive if one of the subsequent players in the
protocol were to form a singleton. At the same time, she can ensure to
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herself a positive payoff by forming one. This indicates the existence of the
bang-bang outcomes that we will find below.

Beyond this point, a full characterization of the subgame perfect equi-
libria of the game requires a relatively simple closed form solution for the
valuation. The main difficulty we face here is that as coalition structures
change, the constellation of active coalitions also changes. This makes play-
ers’ optimal decisions hard to characterize. One possible way to proceed is
to employ the functional form for individual payoffs introduced in Propo-
sition 5, and state the results in terms of the parameter ρ measuring the
degree of intra-group rivalry.

Proposition 6 Assume that πk is given by (13). Then the SPE coalition
structure of the Bloch game of coalition formation

(i) is {1, n− 1} when ρ = 1.

(ii) are the grand coalition and the singleton structure {1, ..., 1} when ρ = 2.

(iii) is the singleton structure {1, ..., 1} when ρ > 2.

Proof. Assume ρ = 1. The closed form solution for the valuation is then

u(|Ck| , C) =
V

|Ck|
n0 − (κ− 1) |Ck|

n0
n0 − κ+ 1

n0
,

where n0 is the number of players belonging to the active coalitions in C.
Simple inspection shows that the best case scenario for the first player in the
protocol is to form a singleton and that κ = 2, n0 = n. Next we show that
this can be supported as a SPE of the Bloch game of coalition formation:
The second player in the protocol knows that for any announcement |C2|
that she makes, any other coalition that will form after that will be of size
no bigger than that and moreover, by subgame perfection, that all these
coalitions will end up being active. If C2 becomes inactive after that, the
result trivially holds. If not, then it must be that n0 = n and κ ≥ n−1

|C2| + 1.

But for |C2| ≥ 2, Proposition 5 again implies that the last coalition formed
will prefer to break up into singletons, so C2 will be inactive in that case
too. Then, player 2 has only two options, either to announce n − 1 or to
form a singleton, and then trigger {1, ..., 1}. Direct computations show that
she is indifferent between the two, so {1, n− 1} constitutes a SPE.

Parts (ii) and (iii) can be proved by noting first that when ρ ≥ 2,
for any 2 ≤ |Ck| < n, the valuation u(|Ck| , C) is strictly smaller than
u(N) = V/ |Ck|2 , the payoff under a contest among |Ck| singletons. Then,
in any SPE coalition structure, the last group formed cannot be of such size,
since the player who announced it will always prefer to form a singleton. But
even if the last group formed is a singleton, Proposition 5 implies that the
second to last coalition would like to break up too unless it is a singleton
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itself. So the only two candidates left for a SPE structure are the grand
coalition and the singleton structure. In the special case when ρ = 2 both
payoffs are equal to V

n2
. Hence, both can constitute a SPE. For ρ > 2

however, the payoff under {N} becomes lower, so the singleton structure is
the unique SPE of the game.

This Proposition shows the complex effect of rivalry on coalition forma-
tion. For relatively low levels, an asymmetric two-sided contest emerges,
with the first player forming a singleton against all the rest. Since rivalry is
not very strong, it pays for the second player in the protocol to avoid further
conflict by forming a grand coalition among the remaining players. Notice
that this is not efficient from the social point of view, since when ρ = 1 it
is the grand coalition the structure that maximizes the sum of payoffs. On
the other hand, when rivalry is relatively strong, the rest of players always
prefer to form singletons after a coalition has been formed. Then, the first
player in the protocol can either form the grand coalition or trigger a con-
test among singletons. Only when ρ = 2 he is indifferent between the two.
When ρ > 2 however, intra-group rivalry outweights the benefits of avoiding
conflict by absorbing rivals, so conflict ensues.

The following example illustrates the outcome of the game in the inter-
mediate case, i.e. ρ ∈ (1, 2).

Example 2: Suppose that N = {a, b, c, d, e}, ρ = 1.5 and V = 100 . The
following table describes the valuation for all possible coalition structures.

ua(C) ub(C) uc(C) ud(C) ue(C)

{N} 9 9 9 9 9

{abcd}, {e} 1.1 1.1 1.1 1.1 79

{abc}, {de} 5.3 5.3 5.3 18 18

{abc}, {d}{e} 0 0 0 25 25

{ab}, {cd}, {e} 3 3 3 3 49

{ab}, {c}, {d}, {e} 0 0 11.1 11.1 11.1

{a}, {b}, {c}, {d}, {e} 4 4 4 4 4

Table 1: Valuation when ρ = 1.5 and n = 5.

Take player a, the first in the protocol. We know from Lemma 3 that
forming a singleton triggers the singleton contest, so she prefers to announce
{N}. Announcing sizes 3 or 4 are also dominated by the grand coalition since
even in the best case scenario (the complementary coalition forms) they yield
payoffs below 9. Finally, if she announces a coalition of size 2, player c can
either form the grand coalition among the remaining players, form a group
of size 2 or trigger a contest among the three last players. She prefers the
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last option, so player a would become inactive if she announces 2. Hence,
the grand coalition is the SPE coalition structure of this sequential game of
coalition formation. Notice that the efficient coalition structure in this case
is one singleton against the rest of players.

This example suggests the existence of a non-monotonic relationship
between the degree of underlying rivalry in society and the level of conflict.
When rivalry is not too strong the formation of a small coalition may trigger
a fierce conflict among singletons. On the other hand, big coalitions give
too low payoffs since they are heavily disadvantaged in the contest. Hence,
the first player may prefer to form the grand coalition and avoid conflict.
As rivalry becomes stronger, the payoff from preserving peace decreases,
whereas the payoff under the singleton contest remains constant. In the
limit, when ρ = 2, they coincide and the game admits two SPE as we have
seen above; this is the tipping point between these two partitions. Hence
for ρ > 1, the sequential game of coalition formation presents bang-bang
outcomes, either universal peace for intermediate levels of rivalry, or a "war
of all against all" when rivalry is strong.

This parallels somehow the results obtained by Bloch et. al. (2006).
There, the dynamics of coalition formation also displayed this choice faced
by the first player between the grand coalition and the singleton structure.
However, the former was always the efficient partition in their setup, so when
choosing between these two symmetric partitions, the first player always
preferred to form the grand coalition.

In other models of coalition formation with positive spillovers, like cartel
formation under Cournot competition (Bloch, 1996) or public goods pro-
vision (Ray and Vohra, 2001), the sequential game of coalition formation
yields coarser partitions than the singleton structure, but not the grand
coalition. In these games, the first players to move typically tend to free-
ride on the reduction of output or pollution abatement carried by the bigger
groups that form later. This effect is not present in our case since if, for
instance, one players forms a singleton, all the rest will do the same in order
to avoid becoming inactive, resulting in a fierce contest.

6 Conclusion

The main objective of the present paper has been to gain insights into the
reasons why confrontation erupts in some contexts and why coalitions form
in such situations. It has explored a model of contests where agents first
form groups and then compete over prizes by investing resources. Rivalry
persists within coalitions once victory is attained, so prizes at this stage
are assumed to be decreasing in the size of the group. We show that bigger
groups tend to drop out of the contest and that coalition formation generates
positive spillovers on non-members.
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When coalitions form simultaneously, the contest among individual agents
is the only stable structure if deviations are assumed to leave the rest of the
structure intact. When, on the contrary, coalitions break apart completely
after a member withdraws, more concentrated coalition structures, including
the grand coalition, can be stable provided that intra-group rivalry is not
too strong. On the other hand, the sequential game of coalition formation
suggests that there exists a non-monotonic relationship between intra-group
rivalry and social conflict: Whereas a two-sided contest emerges for low lev-
els of rivalry, the grand coalition is likely to form for intermediate levels,
and a fierce contest among individuals agents precipitates when intra-group
rivalry is so strong that any kind of cooperation breaks up.

It is important to notice that our reduced-form formulation of prizes
allows us to encompass several models of contests, as for instance those dis-
cussed in Example 1.1 by setting ρ = 2. Most of these contributions take the
number of (asymmetric) groups as exogenously given. Our analysis suggests
that this may not be a reasonable assumption given that stable structures
tend to be symmetric, mostly the grand coalition and the singleton struc-
ture. If coalition formation were allowed in these models, groups would then
either merge or break apart. These analysis are relevant though if there ex-
ist restrictions in the process of coalition formation due, for instance, to
identity, ethnic belonging or ideology.

The private nature of the prize is also worth discussing. Esteban and
Ray (2001) show that free-riding within groups is alleviated if the prize
contains some public characteristics. One may wonder what would happen
in our model if the Rivalry assumption were relaxed and, as in Katz et
al. (1990), groups would compete for a public good. Our response is that,
unless individual payoffs also violate the Anonymity assumption, contests
over such good (even if excludable) make no sense. To see this, notice that
if preferences are not group-specific, coalitions obtain the same good if they
win the contest and under a peaceful agreement with the rest of groups, so
there is no point in initiating a wasteful confrontation. In this case, group
formation would always yield the grand coalition9. This may not be the case
if Anonymity does not hold and individuals have different preferences. But
this in turn would make coalition formation irrelevant unless a procedure to
aggregate preferences within groups were explicitly introduced.
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A Appendix

Lemma A An active coalition Ck ∈ C remains active after two coalitions
in C\{Ck} merge if the newly formed coalition is active too.

Proof. For this result to be true, it is enough to show that Cκ, the biggest
coalition active in C, will still be active in C 0. Note that the proof is trivial
if the two merging coalitions are bigger than Cκ.

Suppose that only one of the two merging groups, denoted by Cl, is
smaller (or of equal size) than Cκ. For it to become inactive, it must be that

κ− 1Pκ
j=1,j 6=l

1
πj
+ 1

πl

< πκ <
κ− 2Pκ
j=1,j 6=l

1
πj

,

implying thus that

πl <
κ− 2Pκ
j=1,j 6=l

1
πj

.

At the same time, since Cl was active before the merger, it is true that

πl >
l − 2Pl−1
j=1

1
πj

.

These two statements are contradictory since for all coalitions with index
j > l it is true that 1

πj
< 1

πl−1
. Hence coalition Cκ must remain active.

Similarly, suppose that the two merging coalitions, indexed by l and m,
are smaller than Cκ but that (with some abuse of notation) the resulting
coalition C

l ∪ m
is bigger than Cκ. Then it must be that,

κ− 1Pκ
j=1,j 6=l,m

1
πj
+ 1

πl
+ 1

πm

< πκ <
κ− 3Pκ

j=1,j 6=l,m
1
πj

.
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These two bounds are compatible if and only if

2
κX

j=1,j 6=l,m

1

πj
< (κ− 3)( 1

πl
+

1

πm
),

< (κ− 3) 1

πl ∪ m
,

< (κ− 3)
Pκ

j=1,j 6=l,m
1
πj
+
P

l ∪ m
j=κ

1
πj

(l ∪m)− 1 ,

where the second line derives from the fact that

1

πl
+

1

πm
≤ l

l +m

1

πl ∪ m
+

m

l +m

1

πl ∪ m
=

1

πl ∪ m
, (15)

by applying Rivalry twice, and the third line comes from our assumption
that coalition C

l ∪ m
remains active after the merger. Since |C

l ∪ m
| > |Cκ|,

we have reached a contradiction. Finally, suppose that |C
l ∪ m

| ≤ |Cκ| . If
Cκ becomes inactive it must be that

κ− 1Pκ
j=1,j 6=l,m

1
πj
+ 1

πl
+ 1

πm

< πκ <
κ− 2Pκ

j=1,j 6=l,m
1
πj
+ 1

πl ∪ m

.

This implies thus that

(κ− 2)( 1
πl
+

1

πm
) > (κ− 1) 1

πl ∪ m
+

κX
j=1,j 6=l,m

1

πj
,

but notice that by applying (15) we have reached a contradiction again.
Hence, we have proved that already active coalitions remain active after a
merger of two other groups occurs.
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