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1 Introduction

In this paper we consider discounted non-zero-sum repeated games between two players

with one-sided incomplete information and known own payo®s. We shall investigate equi-

librium payo®s as the players become patient. We consider two cases concerning relative

discount factors. Our ¯rst main result, in Section 3, states that for arbitrary given initial

beliefs, for a ¯xed value of the uninformed player's (player 2) discount factor, and if the

informed player's (player 1) discount factor is su±ciently close to one, the equilibrium

payo®s to player 1 (for each of a ¯nite number of types) must approximately satisfy the

conditions of a \fully revealing" equilibrium|one in which the informed player acts to

reveal her information at the start of the game. In such an equilibrium, the play (prob-

ability distribution over paths) induced by the strategy of each type of player 1 against

player 2's strategy must yield individually rational payo®s to player 2.1 This is potentially

a much stronger restriction on the set of equilibria than the condition that average play|

averaging across player 1's types using player 2's prior beliefs|should satisfy individual

rationality. This latter condition must hold in any equilibrium, and it also (trivially) holds

in the complete information game between a particular type k and player 2, where, com-

bined with the condition that play must be individually rational for type k of player 1, is

essentially the only restriction on equilibrium play (by the Folk Theorem). Depending on

the game, the former type-by-type condition can imply major restrictions on equilibrium

payo®s of an incomplete information game relative to the corresponding (for each type)

complete information game.

The restriction that play in a state where player 1 is type k0 satisfy the individual

rationality constraint, can imply that some type k, who always has the option to mimic

type k0; can guarantee herself a payo® higher than her lowest feasible individually rational

payo® (any equilibrium must satisfy the condition that no type prefers to mimic another

type). This ¯rst result implies a continuity result2 with the undiscounted case: holding

prior beliefs constant, as the players' discount factors go to one, if player 1's discount

factor goes to one su±ciently fast relative to that of player 2, then the limiting set of

1The precise statement of this requires the use of player 1's discount factor in the evaluation of player
2's payo®s.

2This continuity property is not uniform with respect to initial beliefs.
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equilibrium payo®s for player 1 must satisfy the necessary conditions appropriate for the

model with no discounting, because the latter has equilibrium payo® equivalence to fully

revealing equilibria (Shalev (1994); see Section 3 for a precise statement). This contrasts

with the Folk theorem applied to the complete information game involving type k.3

In Section 4, the symmetric discounting case is analysed. Under an assumption

on the existence of strictly individually rational payo®s, we establish a continuity result

with complete information games as the probability of one of the types goes to one: for

any degree of approximation, provided the players are su±ciently patient and provided

initial beliefs put su±ciently high probability on this type, then given any feasible strictly

individually rational payo® vector in the game between this type and player 2, there is a

Nash equilibrium of the incomplete information game with approximately these payo®s

(to this type of player 1 and to player 2). Since there is no such continuity result for

undiscounted games as the size of the perturbation goes to zero, it can be concluded that

the equilibrium characterization which exists for the undiscounted case is only the limit

(as discount factors go to one, holding beliefs constant) of the discounted case if the limit

is taken in a particular way, and notably it is not the limit of the discounted case if both

players' discount factors are equal.

Very roughly, the di®erence between the two cases can be explained as follows. If

the uninformed player is very patient relative to the informed, then the period of learning

of the uninformed player will be unimportant in the calculation of the informed player's

payo®s; from the point of view of the latter it is as if information is revealed early on

in play and the equilibrium must approximately satisfy conditions of a fully revealing

equilibrium. If the two players are equally patient, however, the period of learning can

always be used, if necessary, to drive the payo® of one of the types of the informed

player down towards her individually rational payo®, while rewarding player 2 to avoid

his individual rationality constraint from binding. (When there is no discounting, again,

the period of learning has no e®ect on payo®s.)

The situation where one or more players' preferences may be unknown to the oppo-

3See, e.g., Forges (1992) for an example and precise statement of how perturbing an undiscounted
complete information game by introducing a small probability of an alternative type of one of the players
can lead to a large reduction in the set of payo®s that player can receive in equilibrium. A similar example
is developed below in Section 4.
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nent(s) has received relatively little attention in the non-zero-sum discounted repeated

games literature, despite considerable work on `reputation' models where perturbations

of preferences are in terms of irrational or commitment types. Undiscounted repeated

games of incomplete information with known-own payo®s have, however, been studied in

some depth (see Section 3). Some recent results exist for the discounted case, however.

Kalai and Lehrer (1993) and Jordan (1995) have established that play, in a given state,

must converge to Nash play of the complete information game played between the realised

types in that state. Jordan (1995) has also proved the existence of an equilibrium for this

class of games. Perfect Bayesian equilibria of such games must have a Markov property

(Bergin (1989)). The results of Kalai and Lehrer and Jordan on convergence to Nash

play are informative about the long-run behaviour of an equilibrium, but to be able to

say anything about the overall payo®s from the beginning of the game|what we are in-

terested in here|it is necessary to know something about how rapidly convergence takes

place relative to the rate of discounting of payo®s and also, possibly, what happens in the

shorter run. By exploiting a result due to Fudenberg and Levine (1992) on the speed of

learning (see also Sorin (1999) for a synthesis of a number of the results in this literature)

the case where the informed player is arbitrarily patient relative to the uninformed player

can be completely solved purely on the basis of \long-run" considerations. A more de-

tailed consideration of the shorter run is needed for the symmetric discounting case as the

speed of learning is crucial.4 Finally, in a recent paper, equilibrium payo®s in discounted

repeated zero-sum games with incomplete information have been studied by Lehrer and

Yariv (1999), who show that as both players become in¯nitely and equally patient the

equilibrium payo®s converge to those with no discounting, whereas if the informed player

is in¯nitely more patient than the uninformed an example is given to show that this is

not true.

4This contrast is why the characterization for the case of a relatively patient informed player holds
for all priors which assign positive probability to all types: equilibria are shown to be approximately
equivalent in terms of player 1's payo®s to an equilibrium where information is revealed at the start of
play; prior beliefs are unimportant for such equilibria. In the symmetric discounting case, where the speed
of learning matters, priors play an important role and they determine the characterization of equilibrium
payo®s. In this case we only provide a characterization for priors putting almost all weight on a particular
type.
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2 The Model

The in¯nitely repeated game ¡(p; ±1; ±2) is de¯ned as follows. There are two players

called \1" (she) and \2" (he). At the start of the game, player 1's \type" k is drawn

from a ¯nite set K (where K also denotes the number of elements) according to the

probability distribution p = (pk)k2K 2 ¢K (the unit simplex of <K), and informed to
player 1. Hence pk will denote the prior probability of type k. We shall assume that each

type has strictly positive probability: pk > 0 for all k. In every period t = 0; 1; 2; : : :,

player 1 selects an \action" it out of a ¯nite action space I, while player 2 simultaneously

chooses an action jt from the ¯nite set J , where I and J have at least two elements.

Payo®s at stage t to type k of player 1 and to player 2 are respectivelyAk(i
t; jt) and

B(it; jt). Player i discounts payo®s with discount factor ±i 2 (0; 1), with the payo® to
type k of player 1 being ~ak = (1 ¡ ±1)P1

t=0 ±
t
1Ak(i

t; jt), and that to player 2 being

~b = (1 ¡ ±2)P1
t=0 ±

t
2B(i

t; jt). Both players observe the realized action pro¯le (it; jt)

after each period. Let H t = (I £ J)t+1 be the set of all possible histories ht up to
and including period t. A (behavioral) strategy for type k of player 1 is a sequence

of maps ¾k = (¾0k; ¾
1
k; ¢ ¢ ¢), ¾tk : H t¡1 ! ¢I. We de¯ne ¾ = (¾k)k2K . Likewise, a

strategy for player 2 is a sequence of maps ¿ = (¿0; ¿1; ¢ ¢ ¢), ¿ t : Ht¡1 ! ¢J . The prior

probability distribution p, together with a pair of strategies (¾; ¿ ), will induce a probability

distribution over in¯nite histories and hence over discounted payo®s. We use Ep;¾;¿ to

denote expectations with respect to this distribution, and abbreviate to E where there is

no ambiguity. Players are assumed to maximize expected payo®s, and a Nash equilibrium

is de¯ned as a pair of strategies (¾; ¿) such that, for each k, Ep;¾;¿ [~ak j k] ¸ Ep;¾0;¿ [~ak j k]
for all ¾0, and Ep;¾;¿ [~b] ¸ Ep;¾;¿ 0 [~b] for all ¿

0. Finally we shall need the following. Let

âk := ming2¢J maxf2¢I Ak(f; g) be type k's minmax payo®, where we use the notational

abuse that Ak(f; g) is the expected value of Ak(i; j) when mixed actions f and g are

followed. Likewise player 2's minmax payo® is given by b̂ := minf2¢I maxg2¢J B(f; g).

3 A Relatively Patient Informed Player

We start by considering the case where the discount factor of player 2 is taken as ¯xed,

and we let the discount factor of player 1, the informed player, go to one. This case
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corresponds closely to the undiscounted case; necessary conditions which must be satis¯ed

by player 1's payo®s in the undiscounted case must also be (asymptotically) satis¯ed in

the discounted case as ±1 ! 1. These necessary conditions can be interpreted as requiring

payo® equivalence to some fully revealing equilibrium.

Hart (1985) gave a complete characterization for the general class of undiscounted

games (payo®s evaluated according to a Banach limit) with one-sided incomplete infor-

mation, which includes the possibility that the uninformed player is unaware of his own

payo® function. For the case we are interested in, namely \known own payo®s" but where

one of the players does not know the payo®s of the other player, a simpler characteriza-

tion has been provided by Shalev (1994) (see also Koren (1988), and Forges (1992) for a

survey of the literature.) Denote this game by ¡(p; 1; 1). In Theorem 1 we shall show that

essentially the same characterization as that of Shalev can be obtained for the discounted

case provided the informed player is arbitrarily patient relative to the uninformed player.

We de¯ne ¯rst individual rationality in this setting. Punishment strategies for player

2 are more complex than in the complete information setting, because all possible types

of player 1 must simultaneously be punished. Let x := (xk)k2K 2 <K be a vector of

payo®s for the types of player 1. For q 2 ¢K, let a(q) be player 1's minmax payo® in the

one-shot game with payo®s given by
P
k2K qkAk(i; j).The set of payo®s fy 2 <K jy · xg

is said to be approachable by player 2 if and only if

q ¢ x ¸ a(q) for all q 2 ¢K:(1)

Blackwell's approachability result (Blackwell (1956)) then implies that player 2 has a

strategy, ¿ , that guarantees type k gets average (i.e., undiscounted) payo®s of no more

than xk whatever strategy, ¾, player 1 uses. Thus if the set fyjy · xg is approachable
then x is a vector of feasible punishment payo®s for player 2 to impose on the types of

player 1. We will say that the vector x = (xk)k2K is individually rational (IR) if the

set fyjy · xg is approachable. For player 2 the de¯nition of individual rationality is the
usual one from complete information repeated games: a payo® y for player 2 is individually

rational if

y ¸ b̂:(2)

Let ¼ = (¼ij)i;j 2 ¢I£J be a joint distribution over I £ J (i.e., a correlated strategy).
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This will generate a vector of payo®s for player 1 and a payo® for player 2 of Ak(¼) =P
i2I;j2J ¼ijAk(i; j) and B(¼) =

P
i2I;j2J ¼ijB(i; j) respectively. Let ¦ = (¢IJ)K be the

set of all correlated strategy pro¯les for each type, (¼k)k2K . Then

De¯nition 1 De¯ne ¦0 ½ ¦ to be the subset of pro¯les satisfying conditions (i) (in-

dividual rationality): (Ak(¼k))k2K is individually rational for player 1, and B(¼k) is

individually rational for player 2 for each k 2 K, and (ii) (incentive compatibility):

Ak(¼k) ¸ Ak(¼k0) for all k; k0 2 K.

Shalev (1994) showed that payo®s (a; b) are Nash equilibrium payo®s of ¡(p; 1; 1) if and

only if there exists a pro¯le of correlated strategies (¼k)k2K 2 ¦0 such that Ak(¼k) = ak
for all k 2 K and

P
k2K pkB(¼k) = b. In other words equilibria are payo® equivalent to

equilibria in which player 1 acts to reveal the true state at the start of the game. This

requires that B(¼k) is individually rational for player 2 for each k 2 K; as once player 2
is aware of the state, play, as summarised by ¼k; must yield player 2 at least his minmax

payo® otherwise he could pro¯tably deviate.

We are now in a position to state Theorem 1 | that Shalev's equilibrium character-

ization holds approximately as a necessary condition provided that player 1 is su±ciently

patient relative to player 2. This theorem is a characterization of the equilibrium pay-

o®s of player 1 only: since di®erent discount factors are being used, the usual feasibility

constraint on the average payo® pro¯le across both players does not apply. First we need

to de¯ne the set of payo® vectors which player 1 can receive in equilibrium in the undis-

counted case (i.e., the projection of the equilibrium payo® set onto the space of player 1's

payo®s). We de¯ne

A¤ = f(A1(¼1); A2(¼2); : : : ; AK(¼K)) : (¼k)k2K 2 ¦0g :(3)

We can state

Theorem 1 Let ±2, 0 < ±2 < 1, and p À 0 be ¯xed. Then for any ² > 0 there exists a

±1 < 1 such that for all 1 > ±1 > ±1, if player 1 has equilibrium payo®s a in ¡(p; ±1; ±2),

then

minx2A¤ k a¡ x k< ² :(4)
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The ¯rst ancillary result used to establish this is Lemma 2, which states that equi-

librium play between type k and player 2, as summarised in the average (using player 1's

discount factor in the weighted average) frequencies over action pro¯les, must approxi-

mately satisfy the individual rationality condition of De¯nition 1 for player 2. Its proof

depends on two main ideas. First (Lemma 1), if player 2's equilibrium strategy gives

him less than b̂ when he plays against k, then he must anticipate that the probability

distribution over outcomes if he is facing type k's strategy di®ers from the one generated

by the \expected" equilibrium strategy of player 1 (averaging over all possible types using

player 2's beliefs). Furthermore, because player 2 discounts future payo®s, there must be

a signi¯cant di®erence between these distributions in the not too distant future. The sec-

ond idea (Result 1) states that if player 1 follows type k's strategy, then player 2 cannot

continue to believe that the true probability distribution over outcomes is signi¯cantly

di®erent from the one generated by type k's strategy. Taken together, these results imply

that if player 1 plays according to type k's strategy, then player 2 cannot continue to

respond with a strategy which gives him less than b̂ against this strategy. Eventually he

will learn that his opponent is playing type k's strategy, and he will choose a response

which gives him at least his minmax payo®. For a ¯xed value of ±2, Result 1 implies an

upper bound on how long this learning takes. Consequently if a su±ciently high discount

factor (i.e., ±1 as opposed to ±2) is used to evaluate player 2's payo®s, this learning phase

will be insigni¯cant and player 2 must get approximately his minmax payo® against type

k.

For a ¯xed equilibrium of ¡(p; ±1; ±2), we de¯ne the average frequencies over action

pro¯les conditional on type k using discount factor ± as: ¼ijk (±) = (1¡±)E [
P1
t=0 ±

t1fi; j; tgj k] ;
for each i and j, where 1fi; j; tg is the indicator function for the action pro¯le (i; j) occur-
ring at date t. It is easy to check that the equilibrium payo®s are E [~ak j k] = Ak(¼k(±1))
for each k and E

h
~b
i
=
P
k2K pkB(¼k(±2)). Let bmin = mini2I minj2J B(i; j) be the worst

payo® player 2 can get in the stage game. Consider after any history ht the set of pos-

sible outcomes over the next N periods, that is (I £ J)N with typical element yN =³
(it+1; jt+1); : : : ; (it+N ; jt+N )

´
. For given equilibrium strategies (¾; ¿ ) we let qN(¢ j ht) be

the distribution over these outcomes (i.e., qN(yN j ht) =prob[ht+N = (ht; yN) j ht]; using
obvious notation; it is de¯ned for ht having positive probability) and likewise qN(¢ j ht; k)
the distribution conditional additionally upon player 1's true type being k (de¯ned for
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ht having positive probability conditional on type k). We de¯ne for any two distribu-

tions qN and q̂N , k qN ¡ q̂N k := maxyN
¯̄̄
qN(yN)¡ q̂N(yN )

¯̄̄
. Finally, de¯ne the

continuation payo® for player 1 type k, discounted to period t + 1, as: ~at+1k := (1 ¡
±1)

P1
r=t+1 ±

r¡t¡1
1 Ak(i

r; jr) ; and that for player 2 as ~bt+1 := (1¡±2)P1
r=t+1 ±

r¡t¡1
2 B(ir; jr):

Lemma 1 Let ±2 2 (0; 1) and ² > 0 be given and consider any Nash equilibrium and

any history ht which has positive probability in this equilibrium conditional upon type k.

Suppose that conditional upon player 1 being type k the expected continuation payo® for

player 2 is

E
h
~bt+1 j ht; k

i
· b̂¡ ² :(5)

Then there exists a ¯nite integer N and a number ´ > 0, both depending only on ±2 and

², such that

k qN(¢ j ht)¡ qN (¢ j ht; k) k > ´ :(6)

Proof: Straightforward.

The next result shows that if player 1 follows the strategy of type k, then there can

be only a ¯nite number of periods in which the probability distribution over outcomes

predicted by player 2 di®ers signi¯cantly from the true distribution. Eventually, player

2 will predict future play (almost) correctly. Given integers N and n, with N > 0 and

0 · n < N , de¯ne the set T (n;N) = fn; n+N; n+2N; : : :g. The result is a straightforward
adaptation of the main theorem of Fudenberg and Levine (1992, Theorem 4.1) which is

stated for the case N = 1.

Result 1 (Fudenberg and Levine) Given integers N and n, with N > 0 and 0 · n <
N , and for every » > 0, Ã > 0 and a type k of player 1 with pk > 0, there is an m

depending only on N , », Ã, and pk such that for any (¾; ¿ ) the probability, conditional on

player 1's true type being k, that there are more than m periods t 2 T (n;N) with

k qN(¢ j ht)¡ qN(¢ j ht; k) k > Ã(7)

is less than ».
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Lemma 2 states that equilibrium play between type k and player 2, as summarised

in the average (using player 1's discount factor in the weighted average) frequencies over

action pro¯les, must approximately satisfy the individual rationality condition of De¯ni-

tion 1 for player 2 (see Cripps et al. (1996) for a related argument in the `reputation'

context).

Lemma 2 Given ±2 < 1 and for any Á > 0, there exists a ±1 < 1 such that whenever

±1 < ±1 < 1, the average frequencies over action pro¯les for each k 2 K in any Nash

equilibrium, calculated using discount factor ±1, ¼k(±1), satisfy

B(¼k(±1)) ¸ b̂¡ Á :(8)

Proof: Fix an equilibrium and a type k and choose ² = Á=3 in Lemma 1; then there

is an N and an ´ such that (6) holds whenever (5) holds. Set Ã = ´ in Result 1, take

any integer n, 0 · n < N , and set » = Á

3N(b̂¡bmin) (assuming that b̂ > bmin; the lemma

is trivial otherwise). Then by Result 1 there is an m (¯nite) such that the probability

that inequality (6) holds more than m times in T (n;N) is less than », so the probability

that inequality (5) holds more than m times in T (n;N) must also be less than ». Hence,

considering all values for n, 0 · n < N , we have that the probability, conditional upon
type k, that the inequality

E
h
~bt+1 j ht; k

i
· b̂¡ Á=3(9)

holds more than Nm times is smaller than N» = Á

3(b̂¡bmin) . Next, E
h
~bt+1 j k

i
=

E
h
(1¡ ±2)B(it+1; jt+1) + ±2~bt+2 j k

i
; so (1¡±2)E [B(it+1; jt+1) j k] = E

h
~bt+1 ¡ ±2~bt+2 j k

i
:

Hence, player 2's payo® against type k in the equilibrium, calculated using player 1's dis-

count factor, is

B(¼k(±1)) = (1¡ ±1)
1X
t=0

±t1E
h
B(it; jt) j k

i
=

1¡ ±1
1¡ ±2

1X
t=0

±t1E
h
~bt ¡ ±2~bt+1 j k

i
=

1¡ ±1
1¡ ±2

(
E
h
~b0 j k

i
+ E

" 1X
t=0

E
h
±t1(±1 ¡ ±2)~bt+1

¯̄̄
ht; k

i¯̄̄̄¯ k
#)

:(10)

Using the result on the number of times (9) holds, for ±1 > ±2 the random variableP1
t=0E

h
±t1(±1 ¡ ±2)~bt+1

¯̄̄
ht; k

i
¸

n
±1¡±2
1¡±1 (b̂¡ Á

3
)¡ (±1 ¡ ±2)(b̂¡ bmin)Nm

o
with probabil-

ity at least (1¡N») conditional on k, where we are using the fact that in the event that
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(9) fails no more than Nm times, subtracting (b̂¡ bmin) Nm times undiscounted yields a

payo® lower than the minimum possible. The random variable is at least ±1¡±2
1¡±1 bmin other-

wise. Using this in (10) gives a lower bound, say ­(±1; ±2), so that B(¼k(±1)) ¸ ­(±1; ±2),
and notice that ­(±1; ±2) is independent of the particular equilibrium studied. Next, tak-

ing the limit as ±1 ! 1 yields lim±1!1­(±1; ±2) = (1 ¡ N»)
³
b̂¡ Á

3

´
+ N»bmin ; hence,

since N» = Á

3(b̂¡bmin) , we get

lim
±1!1

­(±1; ±2) = b̂¡ Á
3
¡ Á

3(b̂¡ bmin)

Ã
b̂¡ bmin ¡ Á

3

!

= b̂¡ 2Á
3
+

Á2

9(b̂¡ bmin)
> b̂¡ 2Á

3
:(11)

Choosing ±
(k)
1 such that ­(±1; ±2) is within

Á
3
of its limit (±

(k)
1 depends only upon pk, Á

and ±2), we have for ±1 ¸ ±(k)1 ; B(¼k(±1)) ¸ b̂¡ Á: Set ±1 = maxk2Kf±(k)1 g and the result
follows. Q.E.D.

We are now in a position to prove Theorem 1.

Proof of Theorem 1: We take ±2 and p to be ¯xed throughout the proof. First con-

sider condition (i) of De¯nition 1 of ¦0, individual rationality (for player 1). Let (¾; ¿ )

be a Nash equilibrium pair of strategies for the game ¡(p; ±1; ±2), and suppose that the

equilibrium payo® pro¯le for player 1, a = (Ak(¼k(±1)))k2K, is not individually rational.

Then by (1), there exists q¤ 2 ¢K such that q¤ ¢ a < a(q¤). By the minimax theorem,

q¤ ¢ a < max
f2¢I

min
g2¢J

X
k

q¤kAk(f; g) ;(12)

so that if player 1 plays a mixed action f ¤ which attains the maximum in (12), q¤ ¢ a <P
k q

¤
kAk(f

¤; g) for all g 2 ¢J . Denote by ¾¤ the repeated game strategy in which

player 1 plays the mixed action f¤ each period and independently of type k. Then

Ep;¾¤;¿ [(1¡ ±1)P1
t=0 ±

t
1

P
k q

¤
kAk(i

t; jt)] > q¤ ¢ a (NB. k is not a random variable), so

that

X
k

q¤kEp;¾¤;¿ [~ak j k] =
X
k

q¤kEp;¾¤;¿

"
(1¡ ±1)

1X
t=0

±t1Ak(i
t; jt) j k

#
> q¤ ¢ a ;(13)

since given that ¾¤ does not vary with type, conditioning on k does not a®ect the distri-

bution over histories. Because q¤ 2 ¢K, it follows that Ep;¾¤;¿ [~ak j k] > ak for at least
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one k, contradicting the de¯nition of equilibrium. Hence individual rationality must be

satis¯ed for player 1 for any value of ±1; that is, a satis¯es (1). Next, condition (ii) of

De¯nition 1 (incentive compatibility) must be satis¯ed for any ±1, 0 < ±1 < 1, since in any

Nash equilibrium Ak(¼k(±1)) ¸ Ak(¼
0
k(±1)) for all k, k

0 by the de¯nition of equilibrium

(recall that Ak(¼k(±1)) is the equilibrium payo® of type k of player 1, and Ak(¼
0
k(±1)) is

the payo® type k would get from following the strategy of type k0).

Finally, individual rationality for player 2 must be dealt with. De¯ne

¦̂ := f(¼k)k2K 2 ¦ j Ak(¼k) ¸ Ak(¼k0) all k; k0; (Ak(¼k))k2K is individually rationalg ;

and de¯ne the compact valued correspondence ª : [0;1)!! ¦ by

ª(Á) =
n
(¼k)k2K j B(¼k) ¸ b̂¡ Á for all k 2 K

o
:

Since ª is an upper hemi-continuous function of Á, it follows that the correspondence given

by ª\ ¦̂, which is non-empty (Shalev (1994)), is also upper hemi-continuous. Moreover,
if the linear function A((¼k)k2K) := (A1(¼1); A2(¼2); : : : ; AK(¼K)) is de¯ned on ¦, the

correspondence given by A[ª(Á) \ ¦̂] is an upper hemi-continuous function of Á, with
value A¤ at Á = 0. Hence given ², there is a ¹Á > 0 such that for 0 · Á < ¹Á, all payo®s in

A[ª(Á) \ ¦̂] lie within ² of A¤. Choose Á in Lemma 1 to be ¹Á; the corresponding ±1 is

therefore as required for (4) to hold. Q.E.D.

Theorem 1 developed necessary conditions which equilibrium payo®s must satisfy asymp-

totically. In the undiscounted model, the condition that play must correspond to a point

in ¦0 is necessary and su±cient for equilibrium (Shalev (1994)). Theorem 1 established

that in the discounted game it is necessary that equilibrium play (averaged using ±1)

approximately satisfy the same condition when player 1 is su±ciently patient. A partial

converse is provided by the following, where it is assumed that the inequalities in the

conditions of De¯nition 1 are assumed to hold strictly. We say that a payo® vector a is

strictly individually rational for player 1 if there exists some individually rational point x

with ak > xk for all k.

Theorem 2 Suppose that (¼k)k2K 2 ¦0 satis¯es (i) : (Ak(¼k))k2K is strictly individually
rational for player 1, and B(¼k) is strictly individually rational for player 2 for each

11



k 2 K, and (ii) : Ak(¼k) > Ak(¼k0) for all k; k0 2 K. Then for any ² > 0 there exists a
± such that whenever 1 > ±1, ±2 > ±, there exists a Nash equilibrium of ¡(p; ±1; ±2) with

payo®s (a; b) satisfying jAk(¼k)¡ akj < ² for all k 2 K and jPk2K pkB(¼k)¡ bj < ².

The proof is straightforward and is omitted; it follows closely the argument for the undis-

counted case given in Koren (1988) which constructs a completely revealing joint plan,

with each type k revealing itself during the ¯rst few periods and thereafter playing ap-

proximately according to ¼k. One complication which arises is the punishment of player

1; see Section 4 for a discussion of Blackwell punishment strategies with discounting.

4 Symmetric Discounting

In this section we consider games where the two players are equally patient. We denote

this class of games by ¡(p; ±), so ¡(p; ±) := ¡(p; ±; ±). We show that the (Nash) Folk

Theorem for complete information games is robust to small perturbations in the informa-

tion structure; speci¯cally it can be extended to the repeated games ¡(p; ±) when p1 is

close to one. In the previous section, by contrast, the characterization was valid for all

values of p. (For symmetric discounting, it is easy to construct examples in which the

Folk Theorem characterization fails when p1 is not close to one.) In the repeated game

of complete information played between, say, type 1 of player 1 and player 2, which we

denote by ©1(±); the Folk Theorem asserts that, given any pro¯le of feasible and strictly

individually rational payo®s (a1; b), there is a Nash equilibrium where the players receive

these payo®s if the players are su±ciently patient. We will extend this result in the fol-

lowing way. Again let (a1; b) be any pro¯le of feasible and strictly individually rational

payo®s for the complete information game played by type 1 and player 2. Then Theorem

3 shows, given an assumption on the existence of strictly individually rational payo®s,

that there exists ±º; p
º
1 < 1 such that the pair (a1; b) can be approximately sustained as

equilibrium payo®s in ¡(p; ±) if ± > ±º and p1 > p
º
1. Thus introducing a small amount of

uncertainty about the type of player 1 does not reduce the set of equilibrium payo®s in

any signi¯cant way when both of the players are su±ciently, and equally, patient.

The de¯nition of individual rationality given in Section 3.1 applies to player 1's

undiscounted payo®s. In discounted games as the players become more patient, player 2

12



is able to approximate these punishments arbitrarily closely. First we de¯ne the notion

of ²-IR payo®s.

De¯nition 2 Let ² > 0 be given. The vector x = (xk)k2K 2 <K is ²-individually rational
(²-IR) if the set f y 2 <K j y + ²1 · x g is approachable.

(The notation 1 is used to denote a K¡ dimensional vector of 1's.) There is a lower
threshold on the discounting, ±², so that if ± > ±² then player 2 can hold player 1 down

any ²-IR payo® in ¡(p; ±). Let Cav a(p) be the (pointwise) smallest concave function

g(p) satisfying g(p) ¸ a(p) where a(p) is de¯ned in (1). Then Cav a(p) is the value for
the zero-sum repeated game of incomplete information with no discounting that is played

when player 2's payo®s are (¡Ak(i; j))k2K (e.g., Zamir (1992, p.126)). Now consider

the zero-sum discounted repeated game of incomplete information with the same payo®s.

The value function for this game, v±(p), exists and satis¯es 0 · v±(p) ¡ Cav a(p) ·
M
q
f(K ¡ 1)(1¡ ±)=(1 + ±)g (see Zamir (1992, pp.119-125)). This implies that as ± ! 1

the punishments that can be imposed in the discounted game converge uniformly to the

punishments that can be imposed in the undiscounted game (details of this ¯nal step

available on request).

The Folk Theorem for discounted repeated games of complete information, as usually

stated, applies only to strictly individually rational payo®s. Likewise, we shall assume (in

(A.1)) that we can ¯nd strictly (by a margin of at least ¹²) individually rational payo®s

for the repeated game of incomplete information ¡(p; ±).

(A.1) There exists (¼̧1; ¼̧2; :::; ¼̧K) 2 (¢IJ)K and ¹² > 0 such that (Ak(¼̧k))k2K
is ¹²-IR and B(¼̧k) > b̂+ ¹² for all k 2 K.

We de¯ne strict individual rationality by a strict inequality and approachability,

rather than in relation to the players' minmax levels. As in the complete information

case there are always weakly individually rational payo®s, that is, there exists (¼̧k)k2K 2
(¢IJ)K and an individually rational vector (!̧k)k2K so that: Ak(¼̧k) ¸ !̧k, B(¼̧k) ¸ b̂, for
all k 2 K, but A.1 requires more. In particular, it implies that the game of complete
information played between each type k and player 2 has strictly individually rational

13



payo®s and thus it cannot be the case, for example, that one of player 1's types plays

a zero-sum game with player 2. It is, nevertheless, a natural extension of the implicit

restriction made in the complete information case.

It is now possible to state the main result of this section. G1(0) denotes the set

of feasible, individually rational payo®s in ©1(±); i.e., G1(0) := f(A1(¼); B(¼))jA1(¼) ¸
â1; B(¼) ¸ b̂; ¼ 2 ¢IJg:

Theorem 3 Assume A.1 and let º > 0 be given. Then there exists ±º < 1, p
º
1 < 1 such

that for all p with p1 > p
º
1 and for all ± > ±º, given any (a1; b) 2 G1(0) the game ¡(p; ±)

has an equilibrium with the payo®s ((®1; :::; ®K); ¯) 2 <K+1 which satisfy

k(®1; ¯)¡ (a1; b)k < º:(14)

4.0.1 Example

As an illustration, we consider an example, where 2 > c ¸ 1 (which satis¯es (A.1)

below provided c > 1). In this example, Shalev's (1994) results (discussed in Section

B

T

L R

3
1

0
0

0
0

1
3

(A1; B)

B

T

L R

c
1

0
0

1
0

0
3

(A2; B)

3) imply that for c < 2; there is a lower bound on type 1's equilibrium payo® in the

undiscounted case strictly above her minmax payo® of 3=4 (see Forges (1992; Proposition

8.3), for a general statement of this result); individual rationality for type 2 and for player

2 (A2(¼2) ¸ 1; B(¼2) ¸ 3=4), together with incentive compatibility, implies A1(¼1) ¸
A1(¼2) ¸ 3(c + 2)=4(3c¡ 2): (This is clearest for the case where c = 1; since A2(¼2) ¸ 1
then implies ¼2(T; L) + ¼2(T;R) = 1 and ¼2(T; L) ¸ 3=4; so that A1(¼1) ¸ 9=4). Here we
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show in the symmetric discounting case that as ± ! 1; type 1's equilibrium payo® can be

driven down to 3=4, provided p1 ¸ 3=4:

Let ² > 0 be given. In what follows, type 2 of player 1 will play T on all equilibrium

paths. Consider ¯rst the following (pooling) equilibrium of ¡ (p; ±): both types of player

1 play T and player 2 plays L in every period, irrespective of past history. Player 1 gets

(3; c) and player 2 gets a payo® of 1 (this plays the role of the equilibrium of Lemma 5).

This will be our \terminal equilibrium". Next, precede this equilibrium by the repeated

play of (T;R) by both types and by player 2 ((T;R) is played to reduce type 1's payo®

and in general will need to be replaced by a ¯nite sequence). Punishments in all earlier

periods involve player 2 being minmaxed thereafter for observable deviations, and type 1

being minmaxed for observable deviations by player 1 (so type 2 gets (3 + c)=4 after any

observable deviation); in the general proof we shall need to vary the punishment with

type 1's payo®. The constraint that limits the length of the phase where (T;R) is played

in such a pooling equilibrium concerns player 2's individual rationality. Thus (T;R) is

played out N times before the above terminal equilibrium is played, where N is the largest

integer satisfying (1¡ ±N)0+ ±N1 ¸ (1¡ ±)3+ ±3=4 (the LHS is player 2's payo® from the
strategy speci¯ed, and he can get at most 1 in the period of deviation and is minmaxed

thereafter). When ± is close to 1; ±N is close to 3=4; so player 2's payo® is also close to

3=4 : there exists ±¤(²) < 1 such that for ± > ±¤(²), player 2's payo® ±N is within ²=3 of

3=4; 5 and thus type 1's payo® ±N3 is no more than ² above 9=4: Payo®s to type 1 and

player 2 at this (pooling) equilibrium are shown by point C in Figure 1.

To reduce type 1's payo® further, we introduce a randomization by type 1 in the

¯rst period of this equilibrium: suppose that type 1 plays B with probability q such that

p1q = 0:5 (assuming for the moment that p1 > 0:5), where p1 is player 2's prior at the

start of the period (so that from player 2's point of view B is played with probability

0:5). If B is played, so that player 1 signals she is type 1; then from the start of the

following period an equilibrium of the complete information game is played in which, to

ensure type 1's indi®erence, the payo® to type 1, say x; satis¯es (1 ¡ ±)1 + ±x = ±N3;

5The continuation payo® received by player 2 at any date can change between consecutive dates by
at most 2M(1 ¡ ±) < ²=6 for ± > 1¡ ²=12M = 1¡ ²=36; likewise the RHS of the inequality de¯ning N
given above is within ²=6 of 3=4 if ± > 1 ¡ 9

24²; on the other hand ±
N cannot be below 3=4 or else 2's

constraint would be violated. Consequently for ± > ±¤(²) := 1¡ ²=36; ±N 2 [3=4; 3=4 + ²=3]:
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Figure 1: Payo®s to type 1 and player 2

and player 2 gets 4 ¡ x (on the frontier of feasible set). Consequently payo®s at this
equilibrium to type 1 and player 2 are (3±N ; (±N +(1¡ ±)3+ ±(4¡x))=2) = (3±N ; 2¡ ±N);
after substitution for x: The purpose of the randomization is to increase the payo® that

player 2 receives so as to relax his incentive compatibility constraint, thus allowing further

plays of (T;R): The equilibrium just described (see point D in the ¯gure) now replaces

the initially described pooling equilibrium in a repetition of the argument. N 0 rounds of

(T;R) are added at the start until again player 2's individual rationality constraint binds:

(1 ¡ ±N 0
)0 + ±N

0
(2 ¡ ±N) ¸ (1 ¡ ±)3 + ±3=4: Repeating the argument given earlier, for

± > ±¤(²); ±N
0
(2 ¡ ±N ) is within ²=3 of 3=4: Again add an initial randomization of say

q0 of playing B by type 1 so that p01q
0 = 0:5, where p01 is player 2's prior at the start

of the period, and an equilibrium of the complete information game played by type 1

and player 2, which we denote ©1(±); with payo®s (y; 4 ¡ y) to follow. Payo®s are then
(3±N+N

0
; (±N

0
(2¡ ±N) + (1¡ ±)3 + ±(4¡ y))=2) = (3±N+N 0

; 2¡ 2±N+N 0
+ ±N

0
); which for

² < e² for some e² > 0 and ± > ±¤(²), lie above the 45o line being su±ciently close to
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(27=20; 17=10).6 A further repetition of the argument, so that more plays of (T;R) are

appended at the beginning, then implies that the payo® of type 1 will reach 3=4 before

that of player 2 does, so that the latter constraint no longer prevents type 1 receiving

a low payo®. By choosing ² < e² small enough, type 1 can be held as close to 3/4 as
desired provided ± > ±¤(²). Observable deviations cannot be optimal as all continuation

payo®s are above punishment levels: this is clear for type 1 and for player 2; type 2

gets a continuation payo® of (1 ¡ ±n)1 + ±nc where there are n periods to go before
the ¯nal pooling equilibrium, and ±n ¸ 1=4 by type 1's individual rationality; whereas

deviation yields at most ±(3 + c)=4. We also need to check that type 2 cannot bene¯t

from playing the sequence of actions associated with type 1 revealing her type; type 2's

payo® is (1 ¡ ±N 00
)1 + ±N

00
c ' (3 + c)=4 where N 00 is the total number of periods to go

before the ¯nal pooling equilibrium, and ±N
00 ' 3=4: Along any of the three paths that

are played in equilibrium, let ® be the discounted frequency of (T; L); ¯ of (B;R) and

(1 ¡ ® ¡ ¯) of (T;R): For type 1 to be indi®erent among them, 3® + ¯ must equal a
constant, say C (' 3=4); while type 2 gets 1 + ®(c ¡ 1) ¡ ¯; which is maximised, given
type 1's indi®erence condition, by ® = C=3; ¯ = 0; which corresponds to the equilibrium

path of type 2 (while mimicking revelation by type 1 has ¯ > 0). So mimicking cannot

be pro¯table. As there were two randomizations (at each of which the total probability of

player 1 revealing herself to be type 1 is 1=2), the strategies above are an equilibrium of

¡ (p; ±) provided p1 ¸ 3=4: To obtain higher payo®s to type 1; it is only necessary to stop
the above process earlier; to obtain arbitrary payo®s to player 2, we append an initial

randomization by type 1, as described earlier, but in which the equilibrium of ©1(±) gives

player 2 close to the desired payo®s. Provided type 1's probability is su±ciently close to

1, this will provide any desired degree of approximation.

In the generalisation of the example which follows, we shall split the above con-

struction into three steps, ¯rst ignoring type k = 2 and constructing the equilibrium as

an equilibrium of a complete information game, before introducing the possibility of a

second type. Finally we deal with more than two types.

6Speci¯cally, given that ±N 2 [3=4; 3=4 + ²=3]; and ±N 0 ¢ (2 ¡ ±N) · 3=4+ ²=3; it follows that ±N
0 ·

3=5 + 32²=5(15¡ 4²) ´ 3=5 + ¢: Thus type 1's payo® ±N+N 0 ¢ 3 · 3(3=4 + ²=3) (3=5 +¢) ; while player
2's payo® 2¡ 2±N+N 0

+ ±N
0 ¸ 17=10¡¢; and thus there exists e² > 0 such that for ² < e² payo®s lie above

the 45o line.

17



4.1 An Equilibrium of the Complete Information Game

The ¯rst step in our argument is the construction of an equilibrium of the complete

information game played by type 1 and player 2, ©1(±). In Lemma 4 we construct a

particular type of equilibrium where any feasible and strictly individually rational payo®

to type 1 can be obtained as an equilibrium payo®. This will consist of a continuation

equilibrium, in which type 1 receives a high payo®, precede by play which yields type

1 a low payo®; by extending this latter phase of play, the overall payo® will be reduced

towards any desired target payo®. It may be, however, that this process violates player 2's

individual rationality; each time this is threatened, a randomization by player 1 is used

to probabilistically reward player 2 so the latter has su±cient incentive to stick to this

path. In Section 4.2 we shall use these equilibrium strategies to construct an equilibrium

of a two-type incomplete information game.

Some additional notation is now necessary. For ² ¸ 0; de¯ne the set of feasible

(uniformly strictly for ² > 0) individually rational payo®s for the complete information

game between type k and player 2: Gk(²) := f(Ak(¼); B(¼))jAk(¼) ¸ âk + ²;B(¼) ¸
b̂ + ²; ¼ 2 ¢IJg, k 2 K. Next de¯ne ¹ak(²) to be the largest payo® to type k in Gk(²)
and ak(²) to be the smallest such payo®, that is ¹ak(²) := maxf ak j (ak; b) 2 Gk(²) g,
and ak(²) := minf ak j (ak; b) 2 Gk(²) g. Also de¯ne ¹a := (¹a1; :::; ¹aK) 2 <K; where
¹ak = ¹ak(0):

7 We also use M to denote an upper bound on the absolute magnitude of the

players' payo®s, so that M ¸ jAk(i; j)j; jB(i; j)j, for all (i; j), k. De¯ne the function f ,
where f : [a1(0); ¹a1(0)] ! <, to be the maximum feasible payo® to player 2 given that

type 1 receives the payo® a1, that is, f(a1) := maxf b j (a1; b) 2 G1(0) g. The function
f(:) is made up of a ¯nite number of linear segments. De¯ne S to be the maximum

absolute value of the slopes of these segments (this is ¯nite). In Lemma 4 we will also

need ¡s to denote the greatest negative slope of f(:) when f(:) has a decreasing segment
(so s > 0) and s = 1 otherwise.

We start with two preliminary results. The ¯rst is an approximation result which al-

lows correlated strategies to be approximated by average behaviour along deterministic

sequences of action pro¯les.

7Note that the function ¹ak(:) (ak(:)) maximizes (minimizes) a linear function on a set of linear in-
equalities that vary continuously in ². ¹ak(:) (ak(:)) is, therefore, continuous in a neighbourhood of zero.
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Result 2 Let ² > 0 be given. There is a ±̂(²) < 1 such that if ± > ±̂(²) and given any

correlated strategy ¼ 2 ¢IJ , then there exists a sequence of actions f(it; jt)g1t=0 such that:
Ak(¼) = (1 ¡ ±)P1

t=0 ±
tAk(i

t; jt), for all k 2 K, and B(¼) = (1 ¡ ±)P1
t=0 ±

tB(it; jt);

moreover¯̄̄̄
¯ (1¡ ±)

1X
t=s

±t¡sAk(it; jt)¡Ak(¼)
¯̄̄̄
¯ · ²=2 s = 0; 1; 2; :::; 8k 2 K;¯̄̄̄

¯ (1¡ ±)
1X
t=s

±t¡sB(it; jt)¡B(¼)
¯̄̄̄
¯ · ²=2 s = 0; 1; 2; ::: :

The proof of Result 2 can be adapted from the proof of Lemma 2 in Fudenberg and

Maskin (1991). It follows immediately that given ² > 0, there is a ±(²) ¸ ±̂(²) such that
(ak; b) 2 Gk(²) are equilibrium payo®s for any ± > ±(²).

Next, consider the following strategies, which will be used to construct an equilibrium

in which a single randomization occurs. The proof of Lemma 4 will require the iteration

of this construction. Take ² > 0 to be given and also a sequence f(̂{t; |̂t)gT¡1t=0 and an

arbitrary (a¤1; b
¤) 2 G1(3²) and (x; f(x)) 2 G1(2²). Assume that ± > ±(²).

Type 1 : In period 0 play {̂0 with probability û and ~{ 6= {̂0 with probabil-

ity 1 ¡ û. If (̂{0; |̂0) is played in period zero, continue to play the sequence
f{̂tgT¡1t=0 n times and then in period nT begin playing the equilibrium strategy

to get the payo®s (a¤1; b
¤) 2 G1(3²). If (~{; |̂0) is played in period zero, play the

in¯nite sequence of stage-game actions, determined by Result 2, to get the

payo®s (x; f(x)) 2 G1(2²). (Both payo® pro¯les are equilibrium payo®s by

the assumption that ± > ±(²).) Minmax all deviations by player 2.

Player 2 : In period 0 play |̂0. If (̂{0; |̂0) is played in period zero continue to

play the sequence f|̂tgT¡1t=0 n times and then in period nT begin playing the

equilibrium strategy to get the payo®s (a¤1; b
¤) 2 G1(3²). If (~{; |̂0) is played

in period zero play the in¯nite sequence of stage-game actions, determined

by Result 2, to get the payo®s (x; f(x)) 2 G1(2²). Minmax all deviations by
player 1.

Call the strategies de¯ned above ¾̂(n; a¤1; b
¤; x) for type 1 and ¿̂ (n; a¤1; b

¤; x) for player

2 (we suppress the implicit dependence on û and of the continuation equilibria on ±).
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Also de¯ne the strategies ^̂¾(n; a¤1; b
¤) for type 1 and ^̂¿(n; a¤1; b

¤) for player 2, which are the

same as ¾̂(n; a¤1; b
¤; x) and ¿̂ (n; a¤1; b

¤; x) except that they do not involve a randomization

in period 0, that is, type 1 always plays {̂0 in period zero. De¯ne payo®s when there are

n complete rounds of the sequence to be played as a1(n) := (1 ¡ ±nT )Â1 + ±nTa¤1 and
b(n) := (1¡ ±nT )B̂ + ±nT b¤. We will now establish the following result.

Lemma 3 Let ² > 0 be given; also let f(̂{t; |̂t)gT¡1t=0 and ±¤(²) < 1 be so that Â1 :=

((1 ¡ ±)=(1 ¡ ±T ))PT¡1
s=0 ±

sA1(̂{
s; |̂s) < â1 + ² for 1 > ± > ±

¤(²), and let (a¤1; b
¤) 2 G1(3²)

with a1(2²)+² < a
¤
1 < ¹a1(2²)¡²=2, also be given. If ± > maxf±(²); ±¤(²); [4M=(²+4M)]1=Tg

and n ¸ 1 is the largest integer satisfying

b(n) > b̂+ 2²;(15)

a1(n) > a1(2²) + ²=2;(16)

then (i) there exists (x; f(x)) 2 G1(2²) so that (¾̂(n; a¤1; b¤; x); ¿̂(n; a¤1; b¤; x)) is an equilib-
rium of ©1(±), and (ii) (^̂¾(n; a

¤
1; b);

^̂¿(n; a¤1; b)) is an equilibrium of ©1(±).

Proof: We will ¯rst show that n ¸ 1. We have

a1(1)¡ a1(2²)¡ ²=2 = a¤1 ¡ a1(2²)¡ ²=2 + (1¡ ±T )(Â1 ¡ a¤1)
> a¤1 ¡ a1(2²)¡ ²=2¡ (1¡ ±T )2M:

By our assumption on a¤1 and (1¡ ±T )2M < ²=2 by the assumption on ±, the bottom line

is positive. A similar argument shows b(1) > b̂+ 2².

To prove (i), the strategies are an equilibrium of ©1(±) provided: (a) type 1 is in-

di®erent when she randomizes in period zero, and (b) no player prefers to deviate when

playing out the sequence f(̂{t; |̂t)gT¡1t=0 n times. Part (ii) follows if (b) holds. Type 1 is

indi®erent in period zero if we can ¯nd an equilibrium with the payo®s (x; f(x)) 2 G1(2²)
where the payo® x satis¯es

x =
a1(n)

±
¡ (1¡ ±)

±
A1(~{; |̂

0):(17)

But (17) implies that ja1(n)¡ xj < 2M(1¡ ±)=± < ²=2, where the last inequality follows
from our assumptions on ±. This implies a1(2²) < x < ¹a1(2²); the lower bound follows as
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a1(n) satis¯es a1(2²)+²=2 < a1(n), and the upper bound is true since x · a¤1+²=2 < ¹a1(2²).
So there exists a pair (x; f(x)) 2 G1(2²) where x satis¯es (17).

Type 1's expected payo® from continuing to play the sequence when there are t

periods of the current sequence and n0 · n repetitions of the sequence left to play satis¯es

(1¡ ±)
t¡1X
s=0

±sA1(̂{
T¡t+s; |̂T¡t+s) + ±ta1(n0) ¸ ¡M(1¡ ±T ) + ±Ta1(n)

¸ ¡M(1¡ ±T ) + ±T (â1 + 2²) :

This follows as a1(n
0) ¸ a1(n). Type 1's payo® from deviation is bounded above by (1¡

±T )M+±T â1, so a su±cient condition for deviation not to be pro¯table, ±
T (²+M) ¸M , is

given in the proposition. An identical argument using the fact that b(n0) ¸ minfb(n); b¤g
shows that player 2 also does not bene¯t from deviating when they are playing out the

sequence n times. Q.E.D.

In the next lemma, we start with an equilibrium of ©1(±) with payo®s (a
¤
1; b

¤) close

to the maximum feasible and individually rational payo® to type 1 in G1(3²). Using this

equilibrium we use Lemma 3 to ¯nd a new equilibrium with the payo®s (a1(n); ûb(n) +

(1¡ û)[(1¡ ±)B(~{; |̂0)+ ±f(x)]), where, by construction, a1(n) < a¤1. If the payo®s at this
new equilibrium satisfy (a1(n); ûb(n) + (1¡ û)[(1¡ ±)B(~{; |̂0) + ±f(x)]) 2 G1(3²) and the
condition a1(2²) + ² < a1(n) then it is possible to apply Lemma 3 a second time to ¯nd

a further equilibrium of ©1(±) where type 1 receives the payo® a1(n + n
0) < a1(n) < a¤1.

Again if this new equilibrium gives payo®s in G1(3²) and satisfying the same condition,

it will be possible to iterate the lemma a third time, to ¯nd further equilibria of ©1(±)

where type 1 receives even lower payo®s, and so on.

We de¯ne (¾̂(N); ¿̂ (N)) to be the strategies that iteratively apply Lemma 3 to the

equilibrium with payo®s (a¤1; b
¤) where the sequence f(̂{t; |̂t)gT¡1t=0 is played out in total N

times; each iteration uses the strategies (¾̂; ¿̂) de¯ned above Lemma 3 except for the last

which uses (^̂¾; ^̂¿ ) (so there is no initial randomization). (The dependence on ±, û, ² and

(a¤1; b
¤) is suppressed.) There is an upper bound on the number of times Lemma 3 can

be applied, and hence on N ; let Nmax be this upper bound on N . (We show that the

strategies (¾̂(Nmax); ¿̂ (Nmax)) will imply that a1 is close to a1(
65
16
²).) Randomizations by

player 1 occur at each new application of Lemma 3.
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Lemma 4 Let 0 < ² < s(¹a1(0)¡â1)=(10+3s) and C > 0 be given and let f(̂{t; |̂t)gT¡1t=0 and

±¤(²) < 1 be so that Â1 := ((1¡ ±)=(1¡ ±T ))PT¡1
s=0 ±

sA1(̂{
s; |̂s) < â1 + ² for 1 > ± > ±

¤(²).

There exists r > 0 and ~±(²) ¸ ±¤(²) such that: given (a¤1; b
¤) 2 G1(3²) which satis¯es

¹a1(2²)¡ ²=2 > a¤1 > ¹a1(3²)¡ C²; a1 2 [a1(6516²) + ²; ¹a1(3²)¡ C²], and ± > ~±(²); then there
exists an N such that (¾̂(N); ¿̂ (N)) is an equilibrium of ©1(±) with a payo® to type 1 of

a1(N) within
²
32
of a1, and at this equilibrium type 1 departs from repeated play of the

sequence f(̂{t; |̂t)gT¡1t=0 (by playing ~{ instead of {̂0 at the points of randomisation) with a

total probability of at most 1¡ r.

Proof: Let ~±(²) := maxf±(²); ±¤(²); [32M=(²+ 32M)]1=T ; 1¡ ²=[32M(S + 1)];1¡ ²(¹a1(0)¡
â1)=9M

2; 1¡ s²(¹a1(0)¡ â1)=(16M2(1+ s))g. This lower bound on ± implies that if x and
y are any two feasible payo®s for player i, then

jx¡ [(1¡ ±T )y + ±Tx]j = (1¡ ±T )jx¡ yj < (1¡ ±T )2M < ²=16:(18)

We will ¯rst show that it is possible to choose û · 0:5 strictly positive, independent of
±, such that the payo® to type 1 at the equilibrium (¾̂(Nmax); ¿̂ (Nmax)) is no greater than

a1(
65
16
²)+ ². It is impossible to apply Lemma 3 another time if a1(Nmax) · a1(2²)+ ², but

in this case the result is proved. We will now suppose that a1(Nmax) > a1(2²) + ², which

implies that in the last feasible iteration of Lemma 3 the constraint a1(n) > a1(2²) + ²=2

does not bind (cf. the argument in the ¯rst paragraph of the proof of Lemma 3). Thus,

instead, in the last feasible iteration of Lemma 3 the constraint b(n) > b̂+2² binds (where

now b(n) is de¯ned using the strategies which iterate Lemma 3) and Lemma 3 cannot be

reapplied because (a1(n); ûb(n)+(1¡ û)[(1¡±)B(~{; |̂0)+±f(x)]) 62 G1(3²). There are now
two separate cases to consider: (1) If ûb(n)+ (1¡ û)[(1¡ ±)B(~{; |̂0)+ ±f(x)] ¸ b̂+3², but
(a1(n); ûb(n)+(1¡û)[(1¡±)B(~{; |̂0)+±f(x)]) 62 G1(3²), then it must be that a1(n) < a1(3²).
(2) If ûb(n) + (1¡ û)[(1¡ ±)B(~{; |̂0) + ±f(x)] < b̂+ 3², then b(n) > b̂+ 2² implies

(1¡ ±)B(~{; |̂0) + ±f(x) < b̂+ 2²+ ²

1¡ û · b̂+ 4²(19)

(which follows as û · 0:5). Player 1's equilibrium payo® is a1(n) = (1¡±)A(~{; |̂0)+±x, by
indi®erence. The point (a1(n); (1¡ ±)B(~{; |̂0) + ±f(x)) is in the feasible set and is within
²=16 of the point (x; f(x)), by (18). We know that f(x) < b̂ + 65

16
², from (18) and (19).

If f(x) is non-decreasing, therefore, it follows that x < a1(
65
16
²). This and (18) applied
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again implies a1(n) < a1(
65
16
²) + 1

16
². If, however, f(x) is decreasing over part of its range,

f(x) < b̂ + 65
16
² can also imply that x > ¹a1(

65
16
²) and a1(n) > ¹a1(

65
16
²) ¡ 1

16
². We will now

show that û can be chosen (independently of ± and ²) su±ciently small so that this second

alternative cannot apply. To be precise we will show that we can choose û > 0 su±ciently

small (but independent of ± and ²) so that ûb(n)+(1¡ û)[(1¡ ±)B(~{; |̂0)+ ±f(x)] > b̂+3²
whenever x > ¹a1(

65
16
²). As b(n) ¸ b̂ + 2², it is su±cient to show that there exists some

e > 0 such that for all 0 < ² < s(¹a1(0) ¡ â1)=(10 + 3s) and ± > ~±(²) it is the case that

(1¡ ±)B(~{; |̂0) + ±f(x) > b̂+ (3 + e)². By (17) it is su±cient to show that

(1¡ ±)B(~{; |̂0) + ±f
Ã
a1(n)

±
¡ 1¡ ±

±
A1(~{; |̂

0)

!
> b̂+ (3 + e)²:(20)

There must be at least one iteration of the strategies for the constraint to bind, so we

will write (a1(n); b(n)) = (1 ¡ ±Tn)(Â1; B̂) + ±Tn(ay1; by) where (ay1; by) 2 G1(3²) is the

continuation equilibrium payo® after n iterations of the ¯nite sequence. By construction

ay1 > a1(n) > ¹a1(
65
16
²)¡²=16. If x > ¹a1(6516²) implies f(x) < b̂+ 65

16
², then f(:) contains linear

segments with strictly negative slope. Recall that ¡s is the largest strictly negative slope
of f(:) (the °attest downward sloping segment). A line through (ay1; by) with slope ¡s will
lie below f(x0) for x0 2 [¹a1(6516²); ay1], that is, by¡s(x0¡ay1) · f(x0) for all x0 2 [¹a1(6516²); ay1].

Now we establish that x < ay1. The constraint b(n) > b̂ + 2² binds and any further

iterations of the ¯nite sequence will violate the constraint, so from (18) it must be that

b̂ + 33
16
² > (1¡ ±Tn)B̂ + ±Tnby > b̂ + 2². This implies a lower bound on 1 ¡ ±nT and thus

a lower bound on ay1 ¡ a1(n) of (by ¡ b̂ ¡ 33
16
²)(ay1 ¡ Â1)=(by ¡ B̂). However, by ¸ b̂ + 3²

and by ¡ B̂ < 2M , so ay1 ¡ a1(n) > 15
32M

²(ay1 ¡ Â1). The de¯nition of ¡s implies that
¹a1(

65
16
²) > ¹a1(0)¡ 65²

16s
, so ay1¡ Â1 > ¹a1(6516²)¡ 1

16
²¡ â1¡ ² ¸ ¹a1(0)¡ â1¡ ²

16
(65
s
+17), where

the ¯rst inequality follows from ay1 > ¹a1(
65
16
²) ¡ ²

16
and Â1 < â1 + ². If this inequality is

substituted into the earlier one we get

ay1 ¡ a1(n) >
15²

32M

·
¹a1(0)¡ â1 ¡ ²

16

µ
65

s
+ 17

¶¸
>
15²

64M
(¹a1(0)¡ â1):(21)

The last inequality follows from the upper bound on ². By construction j a1(n) ¡ x j<
(1¡ ±)2M , so the lower bound on ± (± ¸ 1¡ ²(¹a1(0)¡ â1)=9M2) ensures j a1(n) ¡ x j<
ay1 ¡ a1(n). This establishes that x < ay1, and the construction at the end of the previous
paragraph can be used. Therefore, a su±cient condition for (20) is

(1¡ ±)B(~{; |̂0) + ±
"
by ¡ s

Ã
a1(n)

±
¡ 1¡ ±

±
A1(~{; |̂

0)¡ ay1
!#
> b̂+ (3 + e)²:
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Some rearranging of this condition gives

(1¡ ±)
h
B(~{; |̂0)¡ by + s(A1(~{; |̂0)¡ ay1)

i
+ (by ¡ b̂¡ 3²) + s(ay1 ¡ a1(n)) > e²:(22)

Replacing the ¯rst term by a lower bound, noting that the second term in (22) is nonneg-

ative by construction, and using (21),a su±cient condition for this is

¡(1¡ ±)(1 + s)2M +
15s²

64M
(¹a1(0)¡ â1) > e²(23)

The lower bound on ± (± ¸ 1¡ s²(¹a1(0)¡ â1)=(16M2(1 + s))) implies that the coe±cient

on ² on the left of (23) is at least 7s(¹a1(0)¡ â1)=64M . As (23) is su±cient for ay1 ¸ x, an
e with the requisite properties exists, and we have completed this part of the proof.

The payo® to type 1 at the equilibrium (¾̂(Nmax); ¿̂ (Nmax)) is thus no greater than

a1(
65
16
²) + ². Therefore, type 1's payo® at the equilibrium (¾̂(N); ¿̂(N)) ranges from less

than a1(
65
16
²)+ ² (for N large) to a¤1 > ¹a1(3²)¡C² (for N = 0). By (18), type 1's payo® at

the equilibrium (¾̂(N); ¿̂(N)) decreases by at most ²=16 as N increases in integer steps.

Thus there must be a value N for which type 1's payo® is within ²=32 of any point in

[a1(
65
16
²) + ²; a1(3²)¡ C²].

Fix a particular (a¤1; b
¤) satisfying the conditions of the lemma statement and a ± >

~±(²). The equilibrium (¾̂(Nmax); ¿̂(Nmax)) is well de¯ned, so: there are only a ¯nite number

of periods when the sequence f(̂{t; |̂t)gT¡1t=0 is played and there are only a ¯nite number

of occasions when type 1 randomizes over the actions {̂0 and ~{. Thus, there is a strictly

positive probability r of always playing {̂0 and not deviating from the sequence. We

now need to prove that the number of randomizations between n = Nmax and n = 0 is

bounded above by a number independent of ± and (a¤1; b
¤). For a given ± and (a¤1; b

¤), at

the equilibrium (¾̂(Nmax); ¿̂(Nmax)), let a1(n) and a1(n + n
0) be player 1's payo® at two

consecutive randomizations (assuming there are at least 2 randomizations). Recall that

there is no randomization at the start of the very ¯rst period of play, so n + n0 < Nmax.

At Nmax the constraint (16) binds and at all other iterations constraint (15) binds. We

must, therefore, have

b(n+ n0) = (1¡ ±n0T )B̂ + ±n0Tfûb(n) + (1¡ û)[(1¡ ±)B(~{; |̂0) + ±f(x)]g > b̂+ 2²;(24)

where x is chosen as in (17). (If there are any randomizations, then B̂ < b̂+ 2², because

otherwise the constraint (15) will not bind.) By de¯nition of there being a randomization
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at n + n0 the inequality in (24) must be violated for one more iteration of the ¯nite

sequence, that is, n+n0+1 (since the constraint a1(n+n0) > a1(2²)+
1
2
² can only bind |

in the sense that additional play of the sequence f(̂{t; |̂t)gT¡1t=0 would lead to its violation

| at n + n0 = Nmax). The inequality (24) is therefore reversed when n
0 is replaced by

n0 + 1. This gives an upper bound on ±(n
0+1)T . ±T is bounded below by the assumption

± > ~±, so we then get an upper bound on ±Tn
0
:

(1 + ²=32M)(b̂+ 2²¡ B̂)
ûb(n) + (1¡ û)[(1¡ ±)B(~{; |̂0) + ±f(x)]¡ B̂ > ±n

0T :

But a1(n + n
0) = (1 ¡ ±Tn0)Â1 + ±Tn0a1(n) and Â1 < â1 + ², so an upper bound on ±n0T

implies an upper bound on a1(n+ n
0):

a1(n+ n
0)¡ Â1 < (a1(n)¡ Â1)

(
(1 + ²=32M)(b̂+ 2²¡ B̂)

ûb(n) + (1¡ û)[(1¡ ±)B(~{; |̂0) + ±f(x)]¡ B̂

)
:

The above expression implies that a1(n)¡Â1 declines exponentially, at a rate independent
of ±; if the term in braces is bounded below one. If this is the case we will be able to show

that a ¯nite number of randomizations are needed for a1(Nmax) · a1(2²)+ 1
2
². A su±cient

condition for the term in braces to be bounded strictly below unity for all ± > ~±(²) is that

there exists an ´ > 0 such that

1 +
²

32M
+ ´ <

ûb(n) + (1¡ û)[(1¡ ±)B(~{; |̂0) + ±f(x)]¡ B̂
b̂+ 2²¡ B̂ ; 8 1 > ± > ~±(²):(25)

Subtracting unity from each side and then noticing that the denominator on the right is

strictly less than 2M gives the following su±cient condition

²

16
< ûb(n) + (1¡ û)[(1¡ ±)B(~{; |̂0) + ±f(x)]¡ b̂¡ 2²; 8 1 > ± > ~±(²):

There is a randomization at the payo® a1(n), so by the argument at the start of the proof

ûb(n) + (1¡ û)[(1¡ ±)B(~{; |̂0) + ±f(x)] is strictly greater than b̂+ 3². Thus this su±cient
condition must hold. We have shown that after the ¯rst randomization the value a1(n)¡Â1
declines (at least) exponentially with each randomization at some constant rate, say Ã < 1;

independently of ±. That is, a1(n+n
0)¡ Â1 < Ã[a1(n)¡ Â1] (where n and (n+n0) refer to

consecutive randomizations, as before). Since Â1 < â1+² this implies a1(n+n
0)¡(â1+²) <

Ã[a1(n) ¡ (â1 + ²)]. Thus even if the ¯rst iteration (i.e., up to the ¯rst randomization)
had an arbitrarily small e®ect, and since a1 at the ¯rst randomization is bounded above
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by ¹a1, it follows that after h randomizations a1(n) ¡ (â1 + ²) < Ãh¡1[¹a1 ¡ (â1 + ²)]. If
h¤ satis¯es Ãh

¤¡1 < ²[¹a1 ¡ (â1 + ²)]¡1 we can be certain that at most h¤ randomizations
are required before a1(n) · a1(2²) + 1

2
², and that there is a strictly positive lower bound

(independent of ±) r ¸ ûh¤ on the probability of sticking to repeated play of the sequence
f(̂{t; |̂t)gT¡1t=0 . Q.E.D.

The lemma asserts that the total probability with which player 1 departs from repetitions

of the sequence (by playing ~{ at one of the points of randomization) is bounded below

one. Lemma 4 is essential because we can adapt its construction to build an equilibrium

where player 1 is one of two di®erent types: type k always plays the ¯xed sequence of

actions and type 1 plays the sequence with occasional randomizations. By requiring the

probability of type k to be su±ciently small (in particular it must be less than r), and by

adjusting the probability that type 1 plays ~{, the actions of the two types will combine to

reproduce the strategy ¾̂(N) and the optimal response by player 2 thus remains ¿̂(N).

4.2 The Repeated Game of Incomplete Information

There are several lemmas needed before the proof of Theorem 3 can be given. Using A.1 we

can now describe a particular equilibrium, which we refer to as the terminal equilibrium.

The terminal equilibrium is revealing in the sense that there is an initial signalling phase,

where each player signals her type with possible pooling, and no information is revealed

thereafter. In general the incentive compatibility conditions (that each type should have

no incentive to send the signal associated with another type) will bind most tightly at

such an equilibrium. We therefore choose the payo®s at the equilibrium so type k receives

a payo® close to ¹ak(²): (This was why, in Lemma 4, terminal payo®s were restricted to be

high.) The terminal equilibrium will serve to describe the players' long-run behaviour in

¡(p; ±), apart from on paths on which player 1 reveals herself to be type 1 earlier in the

game.

Lemma 5 Given A.1, there exists an ~² > 0 such that for all ² < ~²: there exists a ¹±(²) < 1

such that for all ± > ¹±(²) and all p 2 ¢K the game ¡(p; ±) has an equilibrium with payo®s,
((¹®1; :::; ¹®K); ¹̄), that satisfy:

(a) ¹ak(3²)¡ 1
2
² ¸ ¹®k > ¹ak(3²)¡C² for some constant C, independent of ² and ±, and for
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k = 1; 2; :::;K;

(b) ¹̄ ¸ b̂+ 3².

Proof: We start by constructing correlated strategies that give the players payo®s close

to their maximum feasible and individually rational payo®s. Consider the convex set

D² :=
K\
k=1

f ¼ 2 ¢IJ j Ak(¼) · ¹ak(3²)¡ 3
4
²; B(¼) ¸ b̂+ 4²g:

D0 has a non-empty interior, by A.1. D² is de¯ned by K +1 linear inequalities which are

continuous in ² and become tighter as ² increases. De¯ne ²̂ > 0 to be the largest ² such

that D² 6= ; for all ² · ²̂. For k = 1; 2; :::; K and ² · ²̂, choose ¼¤k(²) to maximize Ak(:)
on the constraint set D²; obviously Ak(¼

¤
k(0)) = ¹ak(0). We will de¯ne ~² to be the largest

value of ² · ²̂ such that the vector (Ak(¼¤k(²))k2K) is 3²-IR.

We will now show that there exists a constant Co, independent of ² and ±, so that

Co² > ¹ak(3²)¡ Ak(¼¤k(²)); for ² · ~²; 8 k:(26)

Let k be given. For ¸ 2 [0; 1] de¯ne ¼¸ := ¸¼y+(1¡¸)¼¤k(0), where ¼y 2 D~². By linearity
B(¼¸) ¸ ¸(b̂+4~²)+(1¡¸)b̂, so ¼¸ is a feasible solution to maxf Ak(¼) j B(¼) ¸ b̂+¸4~²g.
Thus ¹ak(¸~²) ¸ Ak(¼

¸) = ¸Ak(¼
y) + (1 ¡ ¸)¹ak(0). Let ¸ = ²=~² for 0 · ² · ~²; then this

implies

¹ak(²) ¸ ¹ak(0)¡ ²¹ak(0)¡ Ak(¼
y)

~²
; 8 ² < ~²:

De¯ne Ck to be the term that multiplies ²; then for ² < ~² and 8 k;

¹ak(²) ¸ ¹ak(0)¡ Ck²;(27)

and note that Ck is a constant independent of ² and ±. Consider again, for a ¯xed k; the

correlated strategy ¼¸. If ¸ ¸ ²=~², then ¼¸ satis¯es the constraint B(¼¸) ¸ b̂ + 4². If

¸ ¸ ²(3
4
+ 3Ck0)=(¹ak0(0) ¡ Ak0(¼y)) for all k0, then ¼¸ satis¯es the constraint Ak0(¼¸) ·

¹ak0(3²) ¡ 3
4
² for all k0 (note: such ¸ is less than one for ² small). This second condition

follows from rearranging the below su±cient condition for the constraint:

(1¡ ¸)¹ak0(0) + ¸Ak0(¼y) · ¹ak0(0)¡ Ck03²¡ 3
4
²(28)

(it is su±cient since the LHS of (28) is an upper bound for Ak0(¼
¸), while the RHS is

no greater than ¹ak0(3²) ¡ 3
4
² by (27)). Thus ¼¸ 2 D² if ¸ ¸ E², where E is a positive
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constant. The value Ak(¼
E²) is, therefore, a lower bound on Ak(¼

¤
k(²)) for ² < 1=E. This

implies that

¹ak(3²)¡Ak(¼¤k(²)) · ¹ak(0)¡ Ak(¼E²) = E[¹ak(0)¡Ak(¼y)]²

for ² < x, for some x > 0, and thus a constant Cok exists such that for ² < x, Cok² >

¹ak(3²)¡ Ak(¼¤k(²)). It follows that on any compact interval for which ¹ak(3²)¡ Ak(¼¤k(²))
is de¯ned a linear upper bound exists with ¯nite slope, and in particular it has a linear

upper bound on [0; ~²], and (26) follows.

By Result 2, for any ± > ±̂(²) we can specifyK sequences of action pro¯les f(itk; jtk)g1t=0
such that

Ak0(¼
¤
k(²)) = (1¡ ±)

1X
s=0

±tAk0(i
t
k; j

t
k); 8k; k0 2 K;

B(¼¤k(²)) = (1¡ ±)
1X
s=0

±tB(itk; j
t
k); 8k 2 K:

By Result 2 we can also choose these sequences so that, for all k, k0, player k0's continuation

payo®s, if play follows fitk; jtk)g1t=0, are within ²=2 of Ak0(¼¤k(²)) at all future times. These
sequences will be our equilibrium path actions. As (Ak(¼

¤
k(²))k2K) is 3²-IR there is a pro¯le

of IR payo®s (!̧k)k2K , satisfying !̧k + 3² · Ak(¼¤k(²)), and player 1 will be punished for
an observable deviation by being held down to !̧k + ² for all k:

In this proof we will choose ¹±(²) < 1 so that (i) ¹±(²) > ±̂(²), (ii) ¹±(²) > ±², (iii)

¹±(²) > [16M=(16M + ²)]1=K, (iv) ¹±(²) > [(b̂ + 3² +M)=(b̂ + 4² +M)]1=K for all k. The

second condition ensures that player 2 can hold the types of player 1 to within ² of any

IR payo®s. The third ensures that the loss from signalling is at most ²=8 and the last

condition will ensure that player 2 never gets less than b̂+ 3².

We now take ² < ~² to be given. We now show that the following strategies are an

equilibrium of ¡(p; ±): Player 2 begins by playing the ¯xed sequence of actions associated

with type 1, fjt1g, and if he observes player 1 deviating from her corresponding sequence

fit1g in period t, for t = 0; 1; :::; K ¡ 2, he interprets this move as a signal that player 1 is
type k = t+ 2. When type k is signalled he then begins to play out the sequence fjtkg1t=0
from the beginning and expects player 1 to play out the corresponding sequence fitkg1t=0.
If player 1 deviates from the sequence fit1g in period t > K ¡ 2, or deviates from the
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sequence fitkg once type k has been signalled, then player 2 punishes these deviations by
holding her to the payo®s (!̧k)k2K + ²1 (de¯ned above). This is possible as ± > ±². Each

of player 1's types plays a best response to this strategy of player 2 and minmaxes player

2 if he deviates from the above strategy.

If type k signals truthfully, then her expected payo® is bounded below by ¹ak(3²) ¡
Co² ¡ 1

8
². (We have shown that Ak(¼

¤
k(²)) > ¹ak(3²)¡ Co² and the assumption 16M(1¡

±K) < ²±K implies that the payo®s over the ¯rst K ¡ 1 periods contribute at most ²=8
to her total payo®.) Thus the optimal response of type k to 2's strategy must give her

a payo®, ¹®k, satisfying ¹®k > ¹ak(3²) ¡ (Co + 1
8
)², since she always has the option of

signalling truthfully. Then once we have established equilibrium, the lower bound on

equilibrium payo®s to player 1 will be as required with C = Co + 1
8
. In general the

optimal response for type k will be to signal some type k0 (which may be k itself) and

never to trigger the punishment from player 2. Suppose this is false, so that it is optimal

for type k to signal type k0 and to trigger the punishment after s periods of following

the action sequence of type k0. Her payo® from playing out the sequence f(itk0 ; jtk0)g1t=0
in its entirety can be decomposed into her average payo® over the ¯rst s periods, x, and

her average payo® over the remaining periods, y, that is, Ak(¼
¤
k0(²)) = (1 ¡ ±s)x + ±sy.

By the construction of the sequence of actions, at any point in time the continuation

payo® satis¯es y ¸ Ak(¼
¤
k0(²)) ¡ ²=2. These two facts imply an upper bound on x:

(1 ¡ ±s)x · (1 ¡ ±s)Ak(¼¤k0(²)) + ±s²=2. Her payo® (discounted to the period after the
signal is sent) from following the action sequence of type k0 and then deviating in period

s is thus bounded above by

(1¡ ±s)Ak(¼¤k0(²)) + ±s²=2 + (1¡ ±)±sM + ±s+1(!̧k + ²):(29)

If she prefers to be punished from time s, then Ak(¼
¤
k0(²)) · !̧k + 25²=16, because her

payo® from continuing to play fitk0g1t=0 is at least Ak(¼¤k0(²))¡²=2 by the construction of the
action sequences, and the deviation payo® is at most (1¡±)M+±(!̧k+²) · !̧k+²(1+1=16).
This upper bound for Ak(¼

¤
k0(²)) and the bound on ± implies that (29) is less than !̧k+2².

By the de¯nition of ~² the payo®s (Ak(¼
¤
k(²))k2K are 3²-IR, so this is strictly less than the

payo® from truthful revelation, described above, which gives a contradiction. Likewise,

an observable deviation during the signalling leads to a payo® of at most !̧k+²+
1
8
², which

is less than the payo® from truthful revelation. Type k's equilibrium payo®s can now be
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broken down into a payo® from signalling and a payo® Ak(¼
¤
k0(²)) after signalling. This is

bounded above by (1¡ ±K)M + ±K(¹ak(3²)¡ 3
4
²), by de¯nition of ¼¤k0(²). Assumption (iii)

on ± ensures that this is less than ¹ak(3²)¡ 1
2
². The upper bound on equilibrium payo®s

is established.

Player 2's expected payo® is determined by playing at most K ¡ 1 arbitrary actions
followed by one of the ¯xed sequences f(itk; jtk)g. His equilibrium payo® is therefore no less
than (1¡ ±K)(¡M) + ±K(b̂+4²). This lower bound is strictly greater than b̂+3² (by the
fourth assumption on ±). This proves part (b) of the Lemma. His payo® from a deviation

is at most (1¡ ±)(M)+ ±b̂, so we have also shown that player 2 cannot pro¯tably deviate
from the strategy above. Q.E.D.

The next result determines K ¡ 1 correlated strategies (¼2; :::; ¼K) 2 (¢IJ)K¡1. It
shows that: (a) each correlated strategy holds type 1 to at most her minmax level; (b)

normalizing for the e®ect on type 1's payo®, each correlated strategy satis¯es an incentive

compatibility condition; (c) there is an individually rational point z 2 <K where type 1
receives her minmax payo® and type k > 1 receives a convex combination of her payo® ¹ak

and the payo® she gets from playing the correlated strategy, that is ¹ak+¸k(Ak(¼k)¡ ¹ak),
where the weight ¸k is chosen to produce a convex combination which holds type 1 to her

minmax level when type 1 uses the same correlated strategy ¼k, ¹a1+¸k(A1(¼k)¡¹a1) = â1.
In the construction used in the proof of Theorem 3, each correlated strategy ¼k will be

approximated by a ¯nite sequence of actions played by type k; condition (b) will be used

to ensure that no type k would want to send the signal associated with k0 6= k while z

will be used to ensure that on the equilibrium path all types receive individually rational

payo®s. From (b) the ¼k are chosen to maximise the rate at which type k acquires payo®

relative to the rate at which type 1's falls. This will be shown to imply that given the

choice between following the prescribed path for type k and deviating when type 1 has

a given continuation payo®, and following the prescribed path for type k0 and deviating

when type 1 has the same continuation payo®, type k would always prefer the former.

Lemma 6 Assume A.1, then there exist correlated strategies (¼2; :::; ¼K) 2 (¢IJ)K¡1 such
that:

(a) A1(¼k) · â1 for all k = 2; 3; :::;K,
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(b) (Ak(¼k)¡ ¹ak)=(¹a1 ¡ A1(¼k)) ¸ (Ak(¼k0)¡ ¹ak)=(¹a1 ¡ A1(¼k0))
for all k; k0 = 2; 3; :::;K,

(c) z is individually rational, where

z :=

Ã
â1; ¹a2 +

¹a1 ¡ â1
¹a1 ¡ A1(¼2)

(A2(¼2)¡ ¹a2); :::; ¹aK +
¹a1 ¡ â1

¹a1 ¡A1(¼K)
(AK(¼K)¡ ¹aK)

!
:(30)

Proof: Consider the constrained optimization

max
¼2¢IJ

Ak(¼)¡ ¹ak
¹a1 ¡A1(¼) ; subject to A1(¼) · â1:(31)

As ¹a1 > â1, by assumption A.1, the maximand is well de¯ned. As the constraint set is non-

empty (by the Minimax Theorem) and compact there is a solution ¼k to the optimization

for all k > 1.

We aim to show that the point z, de¯ned above, is individually rational. We must,

therefore, show that the set fxjx · zg is approachable. By Zamir (1992), for example, it
is su±cient to show that for any q 2 <K with q ¸ 0 there exists a mixed action, g, for
player 2 such that

q((A1(i; g); :::; AK(i; g))¡ z) · 0; 8i 2 I:(32)

Let ĝ be a mixed strategy that ensures player 2 receives his minmax level (B(i; ĝ) ¸ b̂ for
all i 2 I) and let ĝ1 be a mixed strategy that minmaxes type 1 (A1(i; ĝ1) · â1 for all i 2 I).
We will show that for any q ¸ 0 either g = ĝ or g = ĝ1 will ensure (32) holds. If (32) holds
for all q when g = ĝ then there is nothing to prove. Suppose that for some q ¸ 0 (32) does
not hold with g = ĝ; then there exists i 2 I such that q((A1(i; ĝ); :::; AK(i; ĝ))¡ z) > 0.
By the de¯nition of ¹a, ¹ak ¸ Ak(i; ĝ), and together with the fact that q ¸ 0, this implies
q(¹a¡ z) > 0. A substitution from the de¯nition of z shows this is equivalent to

(¹a1 ¡ â1)
Ã
q1 +

KX
k=2

qk
Ak(¼k)¡ ¹ak
A1(¼k)¡ ¹a1

!
> 0:(33)

We must show that if (33) holds, q((A1(i; ĝ1); :::; AK(i; ĝ1)) ¡ z) · 0 for all i 2 I. It
is su±cient to show q((A1(¼); :::; AK(¼)) ¡ z) · 0 for all ¼ such that A1(¼) · â1. A

substitution for z then gives

q((A1(¼); :::; AK(¼))¡ z)
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= q1(A1(¼)¡ â1) +
KX
k=2

qk

Ã
Ak(¼)¡ ¹ak + (¹a1 ¡ â1)Ak(¼k)¡ ¹ak

A1(¼k)¡ ¹a1

!

= (A1(¼)¡ â1)q1 + (¹a1 ¡A1(¼))
KX
k=2

qk

Ã
Ak(¼)¡ ¹ak
¹a1 ¡A1(¼) +

¹a1 ¡ â1
¹a1 ¡A1(¼)

Ak(¼k)¡ ¹ak
A1(¼k)¡ ¹a1

!

· (A1(¼)¡ â1)
Ã
q1 +

KX
k=2

qk
Ak(¼k)¡ ¹ak
A1(¼k)¡ ¹a1

!
· 0 8¼ such that A1(¼) · â1:

The ¯rst inequality arises because ¼ is replaced by ¼k in (Ak(¼)¡ ¹ak)=(¹a1 ¡ A1(¼)) and
this is therefore maximized on the set of ¼'s with A1(¼) · â1. The ¯nal inequality

then follows from (33). Thus if q((A1(i; ĝ); :::; AK(i; ĝ)) ¡ z) > 0 it must be true that

q((A1(i; ĝ1); :::; AK(i; ĝ1)) ¡ z) · 0. We can conclude that z is individually rational.

Q.E.D.

In Lemma 7 we de¯ne K ¡ 1 ¯nite sequences of actions that approximate the corre-
lated strategies (¼2; :::; ¼K).

Lemma 7 For any ² > 0 there exists ±0(²) < 1, a ¯nite integer T > 0 and K ¡ 1
sequences of actions f(̂{sk0 ; |̂sk0)gT¡1s=0 , for k

0 = 2; 3; :::;K, such that for all 1 > ± > ±0(²):

(a) jÂk;k0 ¡ Ak(¼k0)j < ²=2 for k 2 K, k0 = 2; 3; :::; K; (b) jB̂k0 ¡ B(¼k0)j < ²=2 for

k0 = 2; 3; :::; K; where

Âk;k0 :=
1¡ ±
1¡ ±T

T¡1X
s=0

±sAk(̂{
s
k0; |̂

s
k0); B̂k0 :=

1¡ ±
1¡ ±T

T¡1X
s=0

±sB(̂{sk0 ; |̂
s
k0):(34)

Proof: For k0 = 2; 3; :::;K, let ¼(k0) be a rational approximation to the correlated strat-

egy ¼k0 , such that k¼k0 ¡ ¼(k0)k < ²=4 for k0 = 2; 3; :::;K. There exists a positive integer
T such that T¼(k0)ij is an integer for all k0 = 2; 3; :::; K, i 2 I and j 2 J , (where ¼(k)ij
denotes the ijth element of the correlated strategy ¼(k)). Choose the K ¡ 1 sequences
so that the action pair (i; j) appears T¼(k0)ij times in the sequence f(isk0 ; jsk0)gT¡1s=0 . Con-

tinuity then ensures that there exists ±0(²) such that for all ± > ±0(²) the result holds.

Q.E.D.

We now prove our main result. It contains two main elements. The ¯rst element

of the proof is an investigation of the two-type game where only type 1 and type k are

given positive probability by player 2. We describe an equilibrium of this game where the

combined actions of the players (i.e., using the priors over player 1's types) replicate the

32



strategies (¾̂(N); ¿̂(N)), described in Lemma 4: type k repeatedly plays the ¯nite sequence

of Lemma 7, while type 1 occasionally randomizes. As there is strictly positive probability

that this sequence is played out in full, provided the probability of type k is less than r,

it is possible for the combined actions of the types to replicate the strategy ¾̂(N). And if

the sequence is played out in full the players settle down at the equilibrium described in

Lemma 5. In this construction we will use Lemma 6 to de¯ne punishments. By Lemma 4

we can therefore deduce that, provided type 1 is given su±ciently high probability, there

is an equilibrium where type 1's payo® is arbitrarily close to any a1 2 [a1(0); ¹a1(0)]. Next,
the strategies remain an equilibrium if an initial random move by type 1 is added, at which

type 1 reveals herself with a high probability and after this plays out an equilibrium of

the full information game where player 2 receives the payo® b. Provided the probability

of type 1 is su±ciently high, this allows us to ¯nd an equilibrium of the two-type game

where given any pair (a1; b) 2 G1(0); type 1's equilibrium payo® is close to a1 and player

2's payo® is close to b. The second step in the construction is an initial signalling phase

where each type k > 1 of player 1 sends a distinct signal, while type 1 randomly selects

one of the signals. Assuming that p1 is su±ciently high, after this signalling phase player

2 assigns positive probability only to type 1 and one other k > 1; with arbitrarily high

probability on type 1. Consequently the argument of part 1 of the proof can be applied.

(It is necessary for type 1 to send each signal with su±ciently positive probability, since

otherwise player 2 will assign too high a probability to the type k > 1 after the signalling

phase for the earlier argument to be applied.) Two main di±culties in the construction:

¯rst, ensuring the indi®erence of type 1 between each of the signals, which requires that

player 2 randomizes in the period that each type k signals and that the outcome of player

2's randomization determines the equilibrium of the two type game that is subsequently

played. The second di±culty is checking that none of the types k > 1 can pro¯tably

deviate by sending a signal other than the assigned one.

Proof of Theorem 3: Some de¯nitions and notation: Choose Q > 0 to be a linear

upper bound on the di®erence between ¹ak(²) and ¹ak for all ² 2 (0; ¹²) and for all k (where
¹² is de¯ned in Assumption A.1); in particular, choose Q so that

¹ak ¡ ¹ak(3²) + 3²=4 < Q² 8k 2 K; 0 < ² < ¹²:(35)
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(See, e.g., the argument for (27) in Lemma 5.) We will also de¯ne a non-negative constant

R as follows (where ¼k is de¯ned in Lemma 6):

R := max
k

?????¹ak ¡ Ak(¼k)¹a1 ¡ A1(¼k)

????? :(36)

From Lemma 6(b) we have that

Ak(¼k)¡ ¹ak
¹a1 ¡ A1(¼k)

¸ Ak(¼k0)¡ ¹ak
¹a1 ¡A1(¼k0)

; 8k; k0 = 2; 3; :::;K:(37)

We will begin by assuming that this inequality is strict when k 6= k0, that is,
Ak(¼k)¡ ¹ak
¹a1 ¡A1(¼k)

>
Ak(¼k0)¡ ¹ak
¹a1 ¡A1(¼k0)

; 8k; k0 = 2; 3; :::;K; k 6= k0:(38)

(We will deal with the case of k 6= k0 satisfying (37) with equality at the end of the proof.)
Finally, Y is de¯ned to be the slope (with 2's payo®s in the numerator) of G1(0) when

this set is a line segment (IntG1(0) = ;) and when IntG1(0) 6= ; we de¯ne Y = 1. Y is

bounded above and strictly positive by Assumption A.1.

Let ¶ > 0 be given, where ¶ < minf¹²; ~²g (¹² is de¯ned in A.1, ~² in Lemma 5). Choose
0 < ² < (¹a1(0) ¡ â1)=3 so that: (i) 3² < ¶; (ii) for all k; k0 = 2; 3; :::; K with k 6= k0 it is
true that for all ± > ±0(²)

Âk;k ¡ xk
x1 ¡ Â1;k

>
Âk;k0 ¡ xk
x1 ¡ Â1;k0

+ (2 +R)²;
Âk;k ¡ xk
x1 ¡ Â1;k

< R+ 1;(39)

for all xk 2 (¹ak(3²)¡C²; ¹ak(3²)¡ 1
2
²] and all x1 2 (¹a1(3²)¡C²; ¹a1(3²)¡ 1

2
²], where Âk;k0

and ±0(²) are as de¯ned in Lemma 7; (iii) ¸ 2 [0; 1] such that ¸â1+(1¡¸)¹a1 > â1+ ¶¡ ²=2
implies ¸z + (1¡ ¸)¹a is (2 + (Q+ 2)(R+ 1))²-IR; (iv) a1(6516²) + ² < a1(¶) < ¹a1(3²)¡ C²
where C is de¯ned in Lemma 5 (a1(¶) < ¹a1(0), because G1(¹²) is non-empty by Assumption

A.1 and ¶ < ¹²; so the last inequality holds for small ²); (v) ¶ > [8(9=8)K¡2¡7]²maxfY; 1g.
((ii) is possible because ¹ak(3²)¡C² is continuous in ² at zero and jÂk;k0 ¡Ak(¼k0)j < ²=2
(by Lemma 7) and the strict inequality (38) holds. (iii) is possible because the sets of

²-IR payo®s are convex and these sets converge to the set of IR payo®s as ²! 0. So (a)

as the point ¹a is (2+(Q+2)(R+1))²-IR for ² su±ciently small, (b) the set of ²-IR payo®s

is convex and converges to the set of IR payo®s as ² ! 0, and (c) the point z is IR, the

convex combination (1 ¡ ¸)z + ¸¹a, for a given ¸ < 1 will be (2 + (Q + 2)(R + 1))²-IR

provided ² is su±ciently small.) Given this value for ², let T and ±0(²) be as de¯ned in
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Lemma 7, and setting ±¤(²) = ±0(²), let ~±(²) be as de¯ned in Lemma 4 (each of the K ¡ 1
¯nite sequences speci¯ed in Lemma 7 satis¯es the conditions of Lemma 4; ~±(²) depends

on them only through T ). Choose ±¶ = maxf~±(²); ±²; ¹±(²); (4M=(4M + ²2))1=Kg, where ±²
is de¯ned below De¯nition 2 and ¹±(²) is de¯ned in Lemma 5.

1. The Game with Two Types

Let some type k > 1 be given. Recall that Lemma 4 de¯ned an equilibrium (¾̂(N); ¿̂(N))

of the complete information game where, with occasional randomizations, type 1 and

player 2 play out a ¯nite sequence of actions N times and then settle on an equilibrium.

Recall also that type 1's average payo® over the ¯nite sequence of actions f(̂{sk; |̂sk)gT¡1s=0

(de¯ned in Lemma 7) is not greater than â1 + ² for all ± > ±
0(²), and for all ± > ¹±(²) that

the equilibrium de¯ned in Lemma 5 has payo®s, (¹®1; ¹®2; :::; ¹®K; ¹̄), that satisfy ¹̄ ¸ b̂+3²
and ¹a1(3²)¡ ²=2 ¸ ¹®1 > ¹a1(3²)¡ C². Let a01 2 [a1(¶); ¹a1(3²)¡ C²] be given (this interval
is non-empty by (iv) above); then by Lemma 4 with (a¤1; b) = (¹®1; ¹̄); and by (iv), for all

± close to 1, there exists N and strategies which we denote as (¾̂(k;N); ¿̂ (k;N)) which

constitute an equilibrium of ©1(±), in which type 1 gets a payo® within
1
32
² of a01. At this

equilibrium the sequence f(̂{sk; |̂sk)gT¡1s=0 is played N times with occasional randomizations

by type 1 and ¯nally, if 1 has not deviated from the sequence at a point of randomization,

play settles on an equilibrium of ©1(±) where the players receive the payo®s (¹®1; ¹̄). By

Lemma 4, there is a probability of at least r, independent of ±, that type 1 ends up playing

the equilibrium with payo®s (¹®1; ¹̄).

Let p with 0 < p1 <
1
4
and pk0 = 0 for all k0 6= 1; k be given. We will now show

there exists a p0, satisfying p01 ¸ p1, p
0
k · pk and p

0
k0 = 0 for all k0 6= 1; k, such that

the following strategies, or a slight modi¯cation explained below, are an equilibrium in

the game ¡(p0; ±). Type k plays a pure strategy and type 1 either follows k's actions or

plays a revealing action ~{at one of a number of points of randomization. In the modi¯ed

equilibrium, one of the points of randomization is replaced by both types playing ~{ with

probability one and following the same path thereafter.

Type k plays out the ¯nite sequence f(̂{sk; |̂sk)gT¡1s=0 N times and then plays out the strategy

(for k) in the equilibrium of ¡(p; ±) with the payo®s (¹®1; :::; ¹®K ; ¹̄) given above. Deviations
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by player 2 from his equilibrium strategy are minmaxed.

Type 1 plays a strategy so that from player 2's perspective the combined actions of types

1 and k over the ¯rst TN periods replicate the strategy ¾̂(k;N), de¯ned above, and,

after TN periods of playing the sequence, type 1 settles down to play the equilibrium of

¡(p; ±) given above. Thus, in periods where ¾̂(k;N) requires player 1 to randomize, type

1 actually deviates from the sequence with probability more than 1 ¡ û to compensate
for the fact that type k never deviates from the sequence. If r (where r > r) is the

total probability that player 1 does not deviate from this sequence, then after TN periods

player 2 has the prior (r¡ (1¡ p01))=r that player 1 is type 1. Provided we choose p0 such
that p1 = 1¡ (1¡ p01)=r, or p01 = 1¡ r(1¡ p1), then playing the continuation equilibrium
is feasible. Deviations by player 2 from his equilibrium strategy are minmaxed.

Player 2 will play out the strategy ¿̂ (k;N) on the equilibrium path over the ¯rst TN

periods with the terminal equilibrium of ¡(p; ±) given above being played thereafter,

or one of the revealing equilibria if type 1 has revealed her type. However, if player 1

uses a pure action that deviates from her equilibrium strategy (i.e., a probability zero

action), then player 2 responds in the following way. He ¯rst calculates type 1's expected

payo® if she were to continue playing out her strategy (and player 2 plays the actions

described above); call this c. Then he takes the convex combination ¸z + (1 ¡ ¸)¹a, of
the point z (de¯ned in (30)) and the point ¹a, that gives type 1 exactly the payo® c,

that is, ¸ = (¹a1 ¡ c)=(¹a1 ¡ â1). By the construction above (point (iii) below (39)), since
c > â1+ ¶¡ ²=2 then this convex combination is (2+ (1+R)(2 +Q))²-IR.8 That is, there
exists a vector of IR payo®s (!1; ::::; !K) 2 <K such that

(!1; :::; !K) + (2 + (1 +R)(2 +Q))²1 · ¸z+ (1¡ ¸)¹a
=

Ã
c; ¹a2 ¡ (¹a1 ¡ c)¹a2 ¡ A2(¼2)

¹a1 ¡ A1(¼2)
; :::; ¹aK ¡ (¹a1 ¡ c)¹aK ¡ AK(¼K)

¹a1 ¡ A1(¼K)
!
:(40)

Player 2 responds to a deviation of player 1 by holding each type k to a payo® of at most

!k + ², which is possible as ± > ±².

8At the equilibrium strategy for type 1 described above, type 1's payo® at the start of each ¯nite
sequence is a convex combination of Â1;k and the terminal equilibrium payo® ¹®1 : (1¡±nT )Â1;k+±nT ¹®1,
for some integer n · N . The integer n = N is chosen so that her equilibrium payo® (i.e., at the start of
the ¯rst round of the ¯nite sequence) is within ²=32 of a01 ¸ â1+ ¶; and hence at least â1+ ¶¡ ²=32: The
payo® ¹®1 is at least ¹a1(3²)¡C² > â1 + ¶ (by the assumption on ²): Allowing for the small integer e®ects
which arise when playing out the ¯nite sequence of actions, it is thus the case that her continuation payo®
c at any point always exceeds â1 + ¶¡ ²=16.
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To show that these strategies form an equilibrium of the game ¡(p0; ±) which gives

positive probability only to types f1; kg, it is su±cient to show that type 1 and type k
do not bene¯t by deviating from their equilibrium strategy by playing an action that is

assigned probability zero by their strategy.9 It will be convenient to let c (as above) and

d denote, respectively, type 1 and type k's equilibrium continuation payo®s at the start

of the period in which the observed deviation occurred. We will ¯rst show that type 1

does not bene¯t by deviating. By the construction above, if ± > ±² then type 1's expected

payo® from deviation is at most (1¡ ±)M + ±(!1 + ²), whereas her expected payo® from

continuing, c, satis¯es c > !1 + 3² from (40); our assumption on ± is su±cient to ensure

a deviation is suboptimal.

Next, we show that type k cannot pro¯tably deviate from these strategies. Type k

can make unobservable deviations from the equilibrium by playing the action type 1 uses

to reveal her type (by playing ~{ at a point of randomization), and then by continuing

to follow type 1's actions, playing out an equilibrium of the game ©1(±). It is possible

that such a deviation is pro¯table. A small re-working of the players' strategies gives a

\semi-pooling" equilibrium (either type 1 reveals her type or both types end up following

the same path) with the same payo® to type 1 and a greater payo® to type k, if this is

the case. Let t denote the ¯rst time at which this unobservable deviation is pro¯table for

type k. Rede¯ne the players' equilibrium strategies, so that before time t all players use

exactly the same actions and at time t both types play ~{ (the revealing action) and play

out the strategies of the equilibrium of the game ©1(±). (Player 2's strategy is exactly

the same as before.) This does not change type 1's equilibrium payo® because she was

indi®erent at ~{. It raises type k's equilibrium payo®, because she prefers the deviation

to the original putative equilibrium. Player 2's payo®s remain individually rational at

each date because the continuation equilibrium after ~{ yields a higher payo® than the

payo® when ~{ is not played, and so 2's payo® increases. Finally, to verify that this is

an equilibrium we must show that type k will not bene¯t from making an observable

deviation at some later stage from the equilibrium of ©1(±). We will address this in the

parentheses after case (b) below.

9Lemma 4 guarantees that type 1 is indi®erent between the positive probability actions in periods
when she must randomize, and that player 2 is playing an optimal response to types 1 and k.
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Now, we consider observable deviations by k from the equilibrium, which result in

player 2 punishing player 1, assuming for the moment that the equilibrium is not the

semi-pooling type just described. By (40) there exists a vector of punishment payo®s !

such that

!k + (2 + (1 +R)(2 +Q))²

· ¹ak ¡ (¹a1 ¡ c)¹ak ¡ Ak(¼k)
¹a1 ¡ A1(¼k)

= f(1¡ ±TN 0
)Âkk + ±

TN 0
¹®k ¡ dg+ ±TN 0f¹ak ¡ ¹®kg+ (1¡ ±TN 0

)fAk(¼k)¡ Âkkg
+
¹ak ¡ Ak(¼k)
¹a1 ¡ A1(¼k)

n
(1¡ ±TN 0

)[Â1k ¡ A1(¼k)] + [c¡ (1¡ ±TN 0
)Â1k ¡ ±TN 0

¹®1]

¡±TN 0
[¹a1 ¡ ¹®1]

o
+ d

< d+ f(1¡ ±TN 0
)Âkk + ±

TN 0
¹®k ¡ dg+Q²+ ²=2

+
¹ak ¡ Ak(¼k)
¹a1 ¡ A1(¼k)

n
²=2¡ (1¡ ±TN 0

)Â1k ¡ ±TN 0
¹®1 + c+Q²

o
:(41)

The ¯nal inequality follows from (35), Ak(¼k) ¡ Âkk < ²=2 and Â1k ¡ A1(¼k) < ²=2

(which follows from Lemma 7). Thus if player 2 assesses type 1's continuation payo®,

c, to be close to what she would receive from N 0 iterations of the ¯nite sequence and

if d is close to what type k gets from N 0 iterations of the ¯nite sequence then type

k prefers d to its punishment payo®. Type 1's continuation payo®, c, is determined

either by (a) continued playing out of the sequence f(̂{sk; |̂sk)g followed by the terminal
equilibrium (in this case type k's deviation is detected immediately), or by (b) her payo®

from continued playing out of the revealing equilibrium (relevant when type k made an

undetected deviation by playing ~{ and then later made an observable deviation). Let us

deal ¯rst with a deviation by type k in case (a). If type 1 has N 0 complete repetitions

of the sequence left to perform, then, analogously with the derivation of (18), type 1's

payo® c satis¯es j(1 ¡ ±TN 0
)Â1k + ±

TN 0
¹®1 ¡ cj · ²

16
and type k's continuation payo®, d,

satis¯es j(1 ¡ ±TN 0
)Âkk + ±

TN 0
¹®k ¡ dj · ²

16
. These inequalities, and (36), substituted in

(41), imply that !k+(3+R)² < d; thus a deviation for type k is not pro¯table in this case

(by the assumption on ±). Now let us consider case (b). Assume the observed deviation

occurred t periods after ~{ was played at ¿ , so an equilibrium of ©1(±) has been played for

the last t periods. Let the sequence f(is; js)g1s=0 have as an initial point the move (~{; |̂0)
and then include the sequence of actions played by the two players at this equilibrium.

Let !0k = (1¡ ±)ak + ±!k denote k's payo® in the period she deviates and the subsequent
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payo®s from the punishment. Her continuation payo® from playing ~{ and then making an

observable deviation satis¯es

(1¡ ±)
t¡1X
s=0

±sAk(i
s; js) + ±t!0k = (1¡ ±t)(1¡ ±)

1X
s=0

±sAk(i
s; js) + ±t!0k

+±t(1¡ ±)[
1X
s=0

±sAk(i
s; js)¡

1X
s=t

±s¡tAk(is; js)]:

Let d0 denote type k's continuation payo® from abiding by her equilibrium strategy, and

not playing ~{. (Thus d0 denotes type k's continuation payo® at ¿; the time the unobserved

deviation occurred, at the start of the revealing equilibrium.) The unobservable followed

by the observable deviation is optimal only if d0 < (1 ¡ ±)Pt¡1
s=0 ±

sAk(i
s; js) + ±t!0k. The

above implies that this is equivalent to

d0 ¡ !0k <
1¡ ±t
±t

[(1¡ ±)
1X
s=0

±sAk(i
s; js)¡ d0] + (1¡ ±)[

1X
s=0

±sAk(i
s; js)¡

1X
s=t

±s¡tAk(is; js)]:

By assumption, k does not want to pool on the revealing equilibrium, so the ¯rst term on

the RHS is non-positive. The ¯nal term on the RHS is less that 9
16
², because the strategies

¾̂(k;N), as de¯ned above Lemma 4, used Result 2 to ensure that play after ~{ gives all types

within ²=2 of their continuation payo® at ~{ at all future times and the playing of ~{ can

change the payo® by at most 1
16
². Thus, this condition can only be true if d0 < !0k+

9
16
², or

d0 < !k + 10
16
² because of the assumption on ±. The punishment payo®, !k, is determined

by (40) and c (the continuation payo® to type 1 at the point of the observed deviation

by type k) Replacing d by d0 in (41), letting N 0 be the number of plays of the sequence

left at ¿ (d and N 0 are arbitrary in (41)), noting that c is within ²=2 of the continuation

payo® at ¿ to type 1, say c0, and as above j(1 ¡ ±TN 0
)Â1k + ±

TN 0
¹®1 ¡ c0j · ²

16
and also

j(1¡ ±TN 0
)Âkk + ±

TN 0
¹®k ¡ d0j · ²

16
, we can deduce from (41) that !k + (3 +

15
16
R)² < d0.

This is a contradiction as d0 < !k + (10=16)². [In the semi-pooling equilibrium, described

in the previous paragraph, type k and type 1 both play out an equilibrium of ©1(±). Type

k bene¯ts by a subsequent observable deviation if her payo® from continued play of the

equilibrium, d0 ´ (1 ¡ ±)P1
s=0 ±

sAk(i
s; js) (where d0 is again k's payo® from sticking to

her equilibrium strategy, computed at the start of the revealing equilibrium, but now k's

strategy speci¯es that ~{ is played), is less than what she receives by deviation t periods after

~{ was played: (1¡ ±)Pt¡1
s=0 ±

sAk(i
s; js) + ±t!0k. This implies !

0
k > (1¡ ±)

P1
s=t ±

sAk(i
s; js).

But by !0k = (1¡ ±)ak + ±!k and Result 2, we have again !k + 1
16
² > d0 ¡ 9

16
². However,
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noting that in a semi-pooling equilibrium d0 satis¯es d0 ¸ (1¡±TN 0
)Âkk+±

TN 0
¹®k¡ ²

16
(where

N 0 again denotes the number of plays of the sequence left at the start of the revealing

equilibrium), and c as in the above argument satis¯es j(1¡ ±TN 0
)Â1k + ±

TN 0
¹®1 ¡ cj · 9²

16
,

so (41) again implies !k + (3 +
15
16
R)² < d0, a contradiction.]

The strategies above are an equilibrium, so, given any ± > ±¶, a
0
1 2 [a1(¶); ¹a1(3²)¡C²]

and terminal priors p satisfying 0 < p1 <
1
4
and pk0 = 0 for all k

0 62 f1; kg, there exists p0
(with p01 = 1¡ r(1¡ p1)) and an equilibrium of the game ¡(p0; ±) with the payo®s (~®1; ~̄)
where type 1's payo®, ~®1, satis¯es j~®1 ¡ a01j < 1

32
². We use this result to show that there

exists an r0 > 0 such that if ± > ±¶, p
00
1 > 1 ¡ r0 and p00k0 = 0 for all k0 62 f1; kg, then

for any pair (a1; b) 2 G1(¶) with a1 < ¹a1(3²) ¡ C²; ¡(p00; ±) has an equilibrium with the

payo®s (®¤1; ¯
¤) that satisfy k(®¤1; ¯¤) ¡ (a1; b)k < ². To do this it is necessary to alter

the period zero strategies of the equilibrium described above. Now type 1 randomizes

in period zero | with probability 1 ¡ ¹ she plays out the equilibrium just described

where a01 is set equal to a1, and with probability ¹ she reveals her type by playing ~{ 6= {̂0,
and play then follows an equilibrium of the complete information game in which ¯rst-

period actions are (~{; |̂0). As in the above argument, we can choose the equilibrium in

the complete information game so that type 1 is indi®erent between the two ¯rst-period

actions ~{ and {̂0. Let (~a1;~b) 2 G1(²) denote the payo®s, discounted to period 0, type 1 and
player 2 receive conditional on ~{ being played in the ¯rst period. As type 1 randomizes

in the ¯rst period ~a1 = ~®1, so ~a1 is within
1
32
² of a1 and we can therefore also choose ~b

to be within 1
32
² of b (since (a1; b) 2 G1(¶) and ² < ¶). The arguments above imply that

this will also be an equilibrium for ± > ±¶, provided player 2 has the priors p
0 after {̂0 is

observed in the ¯rst period. Type 1 and player 2's expected payo®s from these strategies

are (®¤1; ¯
¤) = (~®1; p001¹~b+ (1¡ p001¹) ~̄), so

j¯¤ ¡ bj = jp001¹~b+ (1¡ p001¹) ~̄¡ ~b+~b¡ bj
· j ~̄¡ ~bj(1¡ p001¹) + j~b¡ bj · 2M(1¡ p001¹) +

²

32
:

If ¹ can be chosen to satisfy ¹ ¸ (1¡ ²=(6M))=p001, we can ensure that ¯¤ is within ²=2 of
b. If {̂0 is observed in the ¯rst period player 2's posterior for type k is (1¡p001)=(1¡¹p001), so
to play the equilibrium constructed above, ¹ must also satisfy 1¡p01 = (1¡p001)=(1¡¹p001).
As 1 ¡ p01 = r(1 ¡ p1) (where r is the probability that player 1 does not deviate from
the ¯xed sequence in the equilibrium above) we can re-write this condition as 1 ¡ p001 =
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r(1¡p1)(1¡¹p001). For any p00 and ¹ 2 [0; 1] that satisfy ¹ ¸ [1¡²=(6M)]=p001 and 1¡p001 =
r(1 ¡ p1)(1 ¡ ¹p001), we have found an equilibrium where type 1 and player 2 get payo®s

close to (a1; b). Given a p
00
1; a value for ¹ > 0 can be found to satisfy these two conditions

provided 1¡ p001 < r(1¡ p1)²=6M . We chose p1 < 1
4
and by Lemma 4, r > r, where r > 0

is independent of ± and a1, so a su±cient condition for this is 1¡p001 < r 34²=6M . Provided
p001 > 1¡r0 where r0 := r 34²=6M we have found an equilibrium of ¡(p00; ±) with the desired

properties. (If type k prefers to mimic the revelation action of type 1 at date 0; then the

strategies can be amended as in the semi-pooling equilibrium to re-establish equilibrium.)

We have now shown that whenK = 2 and (a1; b) 2 G1(¶)\f(x; y)jx < ¹a1(3²)¡C²¡²g the
game has an equilibrium and payo®s that satisfy k(®1; ¯) ¡ (a1; b)k < ¶. (The condition
a1 < ¹a1(3²)¡C²¡ ² ensures there is at least one randomization by player 1.) By choosing
¶ < minfº=2; ¹²=2g su±ciently small then proves the theorem when K = 2:

2. The game with many types K > 2

We now describe the players' strategies in the repeated game of incomplete information

¡(p; ±) where all types are given positive probability, and show that these strategies are an

equilibrium with payo®s satisfying (14). The play in the game is divided into a signalling

phase, where all types are given positive probability, and a payo® phase where only two

types of player 1 are given positive probability.

Periods t=0,1,...,K-3 : The Signalling Phase: The players use the following

strategies: Type k, where k = 2; 3; :::;K¡1, plays action it = 1 in periods t = 0; 1; :::; k¡3
and in period t = k ¡ 2 she plays action i = 2 to signal her type. Type K plays action

it = 1 in periods t = 0; 1; :::;K ¡ 3. The signalling phase ends the ¯rst time it = 2 or

in period K ¡ 1 whichever happens the sooner. Type 1 chooses a type k = 2; 3; :::;K

with probability Ák and sends the signal appropriate for that type. (All of the types of

player 1 minmax player 2 if she chooses a pure action that is not played with positive

probability in the signalling phase.) Player 2 plays action j = 1 with probability q0 and

action j = 2 with probability 1¡ q0 in period zero. If, in period t < K ¡ 2, player 1 used
action i = 1 in all past periods, then player 2 plays action j = 1 with probability qt(ĥt¡1)

and action j = 2 with probability 1¡ qt(ĥt¡1), where ĥt¡1 is the history of player 2's past
actions up to t ¡ 1. (If player 2 observes a deviation in period t · K ¡ 3 then he plays
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the punishments described above for the 2-type game with the types f1; t+ 2g.)

After the signalling: At the end of the signalling phase, that is, as soon as type k

is identi¯ed, only two types of player 1, f1; kg, will be given positive probability by player
2. The players then play an equilibrium described in part 1 of the proof; however, the

equilibrium they play will depend on the entire sequence of actions player 2 plays during

the signalling phase.

We will begin by considering the case where IntG1(0) 6= ;. Let (a1; b) be a point in
G1(¶) that satis¯es the condition U [(a1; b); ¶; ¶] ½ G1(¶) \ f(x; y)jx < ¹a1(3²)¡ C²g (¶ will
be chosen su±ciently small to ensure this is possible). Here we introduce notation for the

open rectangle centered at the point (x; y) with width W and height H, that is,

U [(x; y);W;H] := f (x1; y1) 2 <2 j jx¡ x1j < 0:5W; jy ¡ y1j < 0:5H g:

We will show how the continuation equilibria after the signalling can be chosen to give

the players incentives to randomize. We will also show that after the signalling phase

player 2's posterior beliefs will still attach positive probability to type 1, and as p1 ! 1

these posteriors give arbitrarily high probability to type 1. Thus, it is possible to choose

p1 su±ciently high for the equilibrium (described above) of the game with two types to

be played after the signalling phase. We also show that the signalling strategies give the

players payo®s close to (a1; b).

Let (®k;j1 ; ¯
k;j) denote the continuation equilibrium payo®s to type 1 and player 2

when player 1 signals type k and player 2 plays action j in the period the signal was sent.

We will start in the ¯nal signalling period t = K ¡ 3. We will choose the continuation
equilibria in period K ¡ 3 with payo®s that satisfy

(®K;11 ; ¯K;1); (®K¡1;21 ; ¯K¡1;2) 2 U [(ay1 ¡ ²; by ¡ ²); ²; Y ²];(42)

(®K;21 ; ¯K;2); (®K¡1;11 ; ¯K¡1;1) 2 U [(ay1 + ²; b
y + ²); ²; Y ²];(43)

where (ay1; by) is chosen so that U [(a
y
1; b

y); 3²; 3Y ²] ½ U [(a1; b); ¶; ¶]. (Recall that Y = 1

when IntG1(0) 6= ;, as assumed for the moment; however it will be convenient to retain
the general notation for the case when IntG1(0) = ;.) It is possible to choose such

continuation equilibria, because the sets on the right of (42) and (43) are in IntG1(¶) \
f(x; y)jx < ¹a1(3²)¡C²g and part 1 of the proof, therefore, applies. Continuation equilibria
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satisfying (42) and (43) can be found, because (by (18) and part 1) type 1's payo® can be

approximated to within ²=16 and by player 2's payo® can be approximated to within ²=2.

Given this choice of continuation equilibria in period K ¡ 3 we will show that players'
expected payo®s at the start of period K¡ 3 (potential continuation equilibria for period
K ¡ 4) lie in the set U [(ay1; by); ²½; Y ²½], where ½ = 1 + 1

8
. This will furnish an inductive

step. In period K¡ 3 type 1 randomizes between i = 1 and i = 2. Her payo®s from these
actions are:

(i = 1) (1¡ ±)A1(1; qK¡3) + ±[qK¡3®K;11 + (1¡ qK¡3)®K;21 ];

(i = 2) (1¡ ±)A1(2; qK¡3) + ±[qK¡3®K¡1;11 + (1¡ qK¡3)®K¡1;21 ]:

(A1(i; q
K¡3) is an abuse that denotes type 1's stage-game payo® from action i when player

2 plays (qK¡3; 1¡ qK¡3) .) Player 1 is indi®erent between these two actions if
1¡ ±
±
[A1(1; q

K¡3)¡A1(2; qK¡3)] = qK¡3[®K¡1;11 ¡ ®K;11 ] + (1¡ qK¡3)[®K¡1;21 ¡ ®K;21 ]:(44)

Let (¹; 1¡¹) denote the probability player 1 plays i = 1 and i = 2 in period K ¡ 3 given
the observed history. If we abuse our notation in a similar fashion as before, player 2 is

indi®erent between action j = 1 and j = 2 when

1¡ ±
±
[B(¹; 1)¡B(¹; 2)] = ¹[¯K;2 ¡ ¯K;1] + (1¡ ¹)[¯K¡1;2 ¡ ¯K¡1;1]:(45)

We can ¯nd qK¡3 2 [0; 1] and ¹ 2 [0; 1] to make both players indi®erent. First, the

LHS of (44) is less than ²=16 (by our assumption on ±) and the LHS of (45) is less than

Y ² 1
16
in absolute value (2M is the maximum variation in player 1's payo®s so 2YM is the

maximum variation in player 2's). The assumption on the continuation equilibria implies

that the RHS of (44) [respectively (45)] is a linear function of qK¡3 [respectively ¹] that

includes in its range ¡² [respectively ¡Y ²] to ² [respectively Y ²]. Thus there exist qK¡3
and ¹ that solve (44) and (45). There are upper and lower bounds on the value of ¹ for

which (45) holds. As the LHS is less than Y ² 1
16
, the ¯rst square bracket on the RHS is

in (Y ²; 3Y ²) and the second is in the interval (¡3Y ²;¡Y ²), we get 3
4
+ 1

64
> ¹ > 1

4
¡ 1

64
.

Also, by taking the minimal and maximal continuation payo®s we can show that type

1's and player 2's expected payo®s at the start of K ¡ 3 lie in the set U [(ay1; by); ²½; Y ²½],
where ½ = 1 + 1

8
.
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The paragraph above describes potential continuation equilibria after period K ¡ 4
of the signalling phase (assuming type K¡2 is not signalled). We will use this to describe
an equilibrium for period K ¡ 4 onward with payo®s in U [(ay1; by); ²½2; Y ²½2], provided

U [(ay1; b
y); (2 + ½+ ½2)²; S(2 + ½+ ½2)²] ½ U [(a1; b); ¶; ¶]:(46)

To build this equilibrium it is ¯rst necessary to describe behaviour in period K ¡ 3.
Repeat the argument of the previous paragraph with the sets in (42) and (43) replaced

by U [(ay1; by)¡ (²½; Y ²½)§ (²; Y ²); ²; Y ²], to ¯nd a period K ¡ 3 equilibrium with payo®s

in U [(ay1; by) ¡ (²½; Y ²½); ²½; Y ²½] ((46) is su±cient for this to be possible). This is the
equilibrium played if (i; j) = (1; 1) in period K ¡ 4. A similar procedure can be followed
to ¯nd a period K¡3 equilibrium with payo®s in U [(ay1; by)+(²½; Y ²½); ²½; Y ²½] and again
(46) is su±cient; this is played if (i; j) = (1; 2) in period K ¡ 4. If player 1 plays i = 2 in
periodK¡4 we can use the argument in part 1 and (46) to ¯nd two continuation equilibria
of the game with the types f1; K ¡ 2g with payo®s in U [(ay1; by)¡ (²½; Y ²½); ²½; Y ²½] and
U [(ay1; by) + (²½; Y ²½); ²½; Y ²½], which are played when (i; j) equals respectively (2; 2) or

(2; 1) in periodK¡4. Now consider the randomizations in periodK¡4. We can apply the
argument of the previous paragraph to show that the probability player 1 randomizes is

again in [1
4
¡ 1
64
; 3
4
+ 1
64
] and that type 1's and player 2's period K¡4 expected equilibrium

payo®s are in U [(ay1; by); ²½2; Y ²½2]. ( It is necessary to replace ² by ²½.)

Now we can iterate this argument working backwards to the ¯rst round of signalling

at time zero | all the time getting bounds on player 1's randomization. When there are

K¡2 periods of signalling it is necessary to be able to ¯nd equilibria in periodK¡3 that lie
in the sets U [(ay1; by)§(1+½+ :::+½K¡3)(²; Y ²); ²; Y ²]. This is possible if (a1; b) = (ay1; by),
(v) holds (see beginning of proof) and U [(a1; b); ¶; ¶] ½ G1(¶) \ f(x; y)jx < ¹a1(3²) ¡ C²g.
The construction of the signalling phase ensures period zero's expected payo®s are in the

interval U [(a1; b); ²½
K¡2; Y ²½K¡2] ½ U [(a1; b); ¶; ¶].

When IntG1(0) = ; the above argument will work virtually unchanged, because of
the inclusion of Y . However, it is necessary to replace the open rectangles U [(a1; b); x; Y x]

with the open line segment between the points (a1; b)§ 0:5(x; Y x) (this is the diagonal of
the rectangle above). By the de¯nition of Y , this lies in the feasible set and replaces the

open rectangles as a measure of a neighbourhood in the one dimensional set.
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The construction gives type 1 and player 2 period-zero expected payo®s in the set

U [(a1; b); ¶; ¶]. We must check that in all the continuation equilibria p1 is su±ciently large.

Given the lower bounds on player 1's probabilities derived above, each possible history of

player 1's signalling-phase actions occurs with at least probability (1
4
¡ 1

64
)K¡1 (from the

bound on ¹ above). Provided pk < r
0(1
4
¡ 1

64
)K¡1 we have p001 ¸ 1¡ r0 and it is possible to

apply part 1 of the proof and play continuation equilibria satisfying (42) and (43). The

required lower bound on p1 is thus 1¡ r0(14 ¡ 1
64
)K¡1 (this implies pk < r0(14 ¡ 1

64
)K¡1 for

all k > 1).

We now show that no player wishes to deviate from their equilibrium strategies in the

equilibrium with many types. As argued, under the assumption on ± and (a1; b) player 2's

continuation payo® is within ¶ of b during the entire signalling phase and hence greater

than b̂+¶, whereas a deviation yields at most b̂+²=2, which by ² < ¶=2 is thus unpro¯table.

Thereafter, whichever types are signalled player 2 does not bene¯t from deviating by

Lemma 4. A similar argument coupled with part 1 of this proof ensures that type 1

does not bene¯t by deviating from the strategies described above and neither does type k

bene¯t by deviating when she has signalled that she is type k, because the losses during the

signalling phase are su±ciently small. The four possible extra deviations that can arise

when there are many types are: type k mimics type k0 (unobservable), type k mimics

type k0 and then deviates to take a punishment (unobservable then observable), type k

mimics type k0 and later she plays ~{ and then mimics type 1 at a revealing equilibrium

(unobservable), or type k mimics type k0, later she plays ~{ and then mimics type 1 before

¯nally deviating from the revealing equilibrium to take a punishment (unobservable then

observable). We will begin by showing that these deviations are not pro¯table when

the strategy of type k0 is to play the original strategy described and then treat the case

described in part 1 when the semi-pooling strategies are followed. Suppose type k sends

the signal of type k0 and then plays out her ¯nite sequence N 0 times before settling at

the equilibrium described in Lemma 5. From (34) her payo® from this, discounted to

the period after the signalling is ¯nished, is (1¡ ±TN 0
)Âk;k0 + ±

TN 0
¹®k, whereas her payo®

from playing her equilibrium strategy can be written as (1 ¡ ±TN)Âk;k + ±TN ¹®k. At an
equilibrium, type 1 will follow the action sequences of type k and type k0 with positive

probability. Let c be type 1's expected equilibrium payo® from type k's sequence and c0
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be her expected payo® from type k0's sequence, that is,

c = (1¡ ±TN)Â1;k + ±TN ¹®1 = (1¡ ±TN)(Â1;k ¡ ¹®1) + ¹®1;(47)

c0 = (1¡ ±TN 0
)Â1;k0 + ±

TN 0
¹®1 = (1¡ ±TN 0

)(Â1;k0 ¡ ¹®1) + ¹®1:(48)

The following will be a su±cient condition to rule out the ¯rst form of deviation described

above (since the signalling phase contributes at most ²2=2 to payo®s by our choice of ±):

(1¡ ±TN)Âk;k + ±TN ¹®k > (1¡ ±TN 0
)Âk;k0 + ±

TN 0
¹®k + ²

2;

or equivalently

(1¡ ±TN )(Âk;k ¡ ¹®k) > (1¡ ±TN 0
)(Âk;k0 ¡ ¹®k) + ²2;

or
Âk;k ¡ ¹®k
¹®1 ¡ Â1;k

¡ Âk;k0 ¡ ¹®k
¹®1 ¡ Â1;k0

>
Âk;k ¡ ¹®k
¹®1 ¡ Â1;k

c¡ c0
¹®1 ¡ c0 +

²2

¹®1 ¡ c0 ;(49)

where the last inequality follows from substitution for (1¡±TN) from (47) and for (1¡±TN 0
)

from (48). By (39) the LHS above is greater than (2 + R)², so it is su±cient to show

that the RHS is less than this. Type 1 randomizes between mimicking type k and type

k0 in equilibrium. The signalling phase payo® plus c and the signalling phase payo® plus

c0 give type 1 identical payo®s. The signalling phase payo®s contribute at most 1
2
²2, so

jc¡ c0j < ²2. Also c0 < ¹a1(3²)¡ C²¡ ² so that there is at least one iteration of the ¯nite
sequence and ¹®1 > ¹a1(3²) ¡ C² so ¹®1 ¡ c0 (the denominator of the last term) is strictly
bigger than ². The last term is, therefore, strictly less than ². Similarly (39) implies

the ¯rst term on the RHS is less than (R + 1)²: So (49) holds and it is optimal for type

k to play her equilibrium strategy. We can now consider the second form of deviation.

Suppose that type k mimics type k0 and then deviates (before N 0 iterations are played)

when type 1's continuation payo® is c. The strategies described in part 1 of the proof

impose the same punishment on type k as the punishment she would have received if she

had truthfully signalled her type and then deviated when type 1's continuation payo®

was c (she can get the same deviation payo® by signalling truthfully). A repetition of the

above argument shows that this latter option is strictly preferred to the former, and hence

a fortiori type k prefers to use her equilibrium strategy. If the third type of deviation

gives type k more than her equilibrium payo® a small emendation of the above strategies
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restores an equilibrium. To do this replace type k's strategy with her mimicking player

k0 and then playing ~{ in this way and remove the stage of the signalling phase where

type k is signalled. This increases player 2's payo® when k0 is signalled so her payo®s

remain individually rational throughout. (If there are more than two types for which this

deviation is pro¯table, each type can likewise play the signal which she prefers). If the

fourth type of deviation is optimal then type k must bene¯t from an observable deviation

from the equilibrium of the complete information game after ~{ was signalled. In this case

the argument in parentheses dealing with the semi-pooling equilibrium applies mutatis

mutandis.

Now we must deal with the amended strategies and consider what occurs if type k0

at some point plays a semi-pooling equilibrium with type 1, rather than continuing to

reveal her type. If type k0 and type 1 play the semi-pooling equilibrium, then the possible

deviations available to type k mimicking type k0 or type 1 were available to her above

also. Thus the argument above applies to this case also.

Now we return to the condition (38), that has been assumed to hold. This condition

guaranteed that the types k > 1 strictly preferred to play the iterations of their ¯nite

sequence, f(̂{sk; |̂sk)g, rather than another type's sequence, before settling on the terminal
equilibrium. (This condition will fail if, for example, the payo®s of type k are a linear

transformation of the payo®s of type k0 and so ¼k = ¼k0.) Suppose, now, that there exist

k and k0 so that
Ak(¼k)¡ ¹ak
¹a1 ¡A1(¼k)

=
Ak(¼k0)¡ ¹ak
¹a1 ¡A1(¼k0)

:(50)

In this case we can choose ¼k = ¼k0 and the sequence f(̂{sk; |̂sk)g to be the same as f(̂{sk0; |̂sk0)g.
A small change to the above strategies restores an equilibrium. Change type k's equilib-

rium strategy so that she plays exactly the same actions as type k0 until the ¯nal playing

of the equilibrium described in Lemma 5, that is, so that both k and k0 signal at the same

time (and in the same way) and so that the period in the signalling phase where type k

was signalled is removed. Note that conditions (a)-(c) of Lemma 6 still apply when ¼k is

replaced by ¼k0 ( since ¼k0 must also solve (31)), so the previous argument can be repeated

mutatis mutandis. Any remaining indi®erences can be handled in exactly the same way.

Let R(¶) denote the set of points (a1; b) in the relative interior of G1(¶)\ f(x; y)jx <
¹a1(3²)¡C²¡ ²g that are at a distance at least ¶ from the boundary of the relative interior
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of G1(¶) \ f(x; y)jx < ¹a1(3²) ¡ C² ¡ ²g. We have shown that there exists a ±¶ < 1 and

p¶1 < 1 such that for all p with p1 > p¶1 and ± > ±¶, given any (a1; b) 2 R(¶) the game
¡(p; ±) has an equilibrium with payo®s that satisfy k(®1; ¯) ¡ (a1; b)k < ¶: By choosing
¶ < º=3 and su±ciently small the Theorem follows. Q.E.D.
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