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1. Introduction

The Takayama-Judge model of spatial equilibrium underpins many of the tests of food
market integration that have been used in developing countries by economists
(Takayama and Judge (1971)).  In the model, spatial arbitrage across regional food
markets restricts regional price differentials to at most the cost of transfer between the
regions.  At times where transfer takes place, the price differential equals the cost of
transfer.  Analysts have then proceeded by testing this spatial arbitrage rule.  When
market prices are integrated (in the econometric co-integration sense), this is taken as a
sign that the markets are trading and therefore, rather confusingly, integrated in the food
marketing sense.  This has generally been judged as ‘good’.  When market prices
diverge, there may be short or long-term impediments to trade.  This would be
detrimental to welfare and the removal of the obstacles to trade would be suggested.

In this paper, a more complex structure to regional food markets is hypothesised.  While
the Takayama-Judge model allows the spatial aspects of food markets to be explored,
the temporal features of food markets are not discussed.  This paper analyses this aspect
through more explicit reference to the dynamics of market trade.  In particular, the
departure from conventional modelling is the inclusion of commodity storage into a
model of inter-regional trade.  The addition of storage of grain yields interesting results.
Most notably, trade is intermittent with periods where a region will consume its stored
grains or purchase from another market.  In such periods, tests for correlation in market
prices would be inappropriate as inter-regional trading would not take place.

The paper will begin by discussing the motivation of the present research.  Two streams
in the literature are drawn together.  Firstly, the widespread adoption by developing
countries of food market liberalising policies has meant an explosion of interest in tests
of market performance.  A common test has been the checking of price time-series data
for co-integration.  Where co-integration is observed, the presence of arbitrage between
spatially dispersed markets has been surmised.  A second stream in the literature has
identified empirical examples where arbitrage rules appear to breakdown.  In their
attempt to explain this, Wright and Williams (1989) model the spatial-temporal
interaction which occurs when storage of a commodity as well as inter-market trade is
allowed.  They show that the empirical evidence can be explained without assuming
some market problem causing arbitrage conditions to be broken.

The third and fourth sections of the paper present an application of optimal control
where two regions are assumed to have an initial endowment of grain and access to
some external market for both purchase and sale.  The extent of inter-regional trade and
trade with the external market is then modelled.  Storage of grain is allowed but a
positive discount rate implies that such storage incurs an opportunity cost.  In the
optimal program, there will be periods when inter-regional trade will not take place as
regions either consume own stocks or source grain from the external market.  At such
times, prices will differ by amounts less than the cost of transfer between the region.  In
section four, how the various parameters affect the likelihood and the duration of inter-
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regional trade are explored.  The implications of these results will be discussed in the
final section.

2.  Motivation for research

2.1 Tests of market integration

The logic behind testing for market efficiency in food markets of developing countries
has been uncontested.  Various agencies have pressed developing countries to liberalise
food markets so that productive and allocative efficiency can be attained.  There has
been a need for tests on whether the policy has delivered its goals.  Takayama and Judge
(1971) provide a model of spatially dispersed markets which has provided the main
underpinning in investigating the conditions for trade.  In this model, equilibrium
conditions are derived and a spatial arbitrage rule results.  When trade occurs between a
pair of markets, the price differential between the markets would be equal to the cost of
transfer; when there is no trade, the price differential can at most equal the cost of
transfer.  The presence of trade would therefore result in co-movements of market
prices.

Early empirical work involved the use of simple correlation techniques.  However, it was
apparent that market price data was not stationary and Ravallion (1986) uses an error
correction specification to take account of this.  Co-integration analysis has suggested
methodological refinements.  Palaskas and Harriss-White (1993) first note that two price
series have to be co-integrated before an error correction model can be used citing the
literature in econometrics on the Granger Representation Theory.  When co-integration
is observed, this is taken as evidence of long-run market integration.  However, this is
considered quite a weak test of market performance and analysts proceed by adopting an
error correction model and testing for short-run market integration.  This, however,
relies on two key assumptions about market structure.  Firstly, Alexander and Wyeth
(1994) note that one market should be exogenous.  They provide empirical tests of this
assertion suggesting it should be a pre-cursor to Ravallion’s tests.

The second assumption - that there is continuous, unidirectional trading - is more
problematic.  In Ravallion’s case, both assumptions are satisfied by assuming that the
Bangladeshi marketing system is radial.  In such a system, a central market - perhaps, a
large city - does not produce the foodcrop but its populace depends on the commodity
as a staple.  Therefore, movements of grain are continuous throughout the year and
directed towards the central market.  This trade means that the spatial arbitrage
condition binds and a hypothesis that the price difference between a rural market and
Dacca should equal the cost of transfer for the entire period studied can be tested using
an error correction specification.

However, the assumptions about market structure needed for such analysis make the
methodology difficult to generalise across a wide range of countries.  The condition of
continuous trading resulting in the arbitrage condition being a strict equality are relaxed
in Baulch’s parity bounds model Baulch (1995).  He hypothesises that periodic market
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segmentation can occur.  These would result due to impediments to trade raising
transfer costs or due to a modest price spread between markets.  Both would make
inter-market arbitrage unprofitable.  However, it is only in the first scenario that a
market analyst should be concerned.  Baulch presents a test which differentiates between
the two different types of breaks of trade (Baulch (1997)).  In such circumstances, the
error correction models reject short-run integration unable to identify the intermittent
breaks in trade; tests for co-integration, meanwhile, do not reject long-run market
integration.

The Takayama-Judge model, however, remains behind all these empirical tests.  In the
error correction models, additional information regarding market structure is used to
justify assuming that the arbitrage condition binds.  Where breaks in trade are accepted,
such as in Baulch’s parity bounds model, these are not given a dynamic structure.
Baulch (1997) models breaks in market trade as stochastic.  This is satisfactory when the
cause is a random event, such as damage to transport systems due to weather.
However, as this paper shows, when the dynamics of grain trading are more explicitly
modelled, breaks of trade result as an optimal solution without recourse to some
exogenous shock.

2.2 Backwardation and the breaking of arbitrage rules
Backwardation, in the presence of significant stocks of a commodity, has been observed
in the commodity markets by economists for many years - Kaldor (1939) being an early
reference.  Backwardation is when a commodity’s price for future delivery is below the
price for immediate delivery.  If stocks are high, it appears that commodity storers
would be losing money on stocks as the costs of storage would not be met through
revenue from future sales.  Backwardation in the presence of significant stores of grain
is an empirical example of the breakdown of a temporal arbitrage rule.  Early
explanations of the phenomenon have identified some benefit of storage to the storer.
For example, the storing of a commodity allows supply variations to be smoothed.  This
would justify the observed backwardation and the implicit negative price for storage as
storers will effectively be paying for the additional benefit they gain through storage.

Wright and Williams (1989) propose an alternative explanation which relies on a model
of storage across space.  They consider storage under backwardation as an aggregation
phenomenon.  In their model, there are two commodities with the transformation of  a
quantity of the first into the second incurring a cost.  Wright and Williams (1989) note
that the most obvious example of a transformation is the transfer of the grain from one
region to another so that the transformation cost becomes the transport cost.  In the
model, two periods are considered, the present and the future.  While there is no
physical costs to storing grain to be traded in the future market, a positive constant rate
of interest insures that there is an opportunity cost to tying up capital in storing the
commodity.

The deriving of an optimal solution is an application of the partial equilibrium theory of
investment under uncertainty (Schienkman and Schechtman (1983)) and is solved by
treating the two regions as one firm seeking to maximise the value of the future profit
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stream.  The maximisation yields first-order conditions similar to Takayama-Judge
conditions: transfer occurs until the marginal cost of transporting an additional unit
equals the price differential across the regions.   However, the additional feature of
storage adds temporal conditions: where the expected price in the next period exceeds
the present price by the rate of interest, storage takes place.  When the temporal price
difference is less than the costs of storage, no storage takes place.

These conditions set up a richer pricing and storage model.  There are two sets of spot
and futures prices associated with the storing behaviour of two different regions.  This
proves very important as comments about storage under backwardation never
considered disaggregated price and stocks data.  Wright and Williams (1989) then
consider aggregation of commodity price and the storage levels across the regions.  If
spot and futures prices are quoted with delivery in some central market, as with Telser’s
(1958) use of grain prices, it is clear that only when both regions are storing would there
be no backwardation.  If there is no storage in the first regions, that region’s future price
will be below its spot price.  If the stock levels are aggregated, however, the other
region’s stores will be included, backwardation would be observed in the presence of
non-zero storage.  In aggregate, the fact that there is no storage in one of the regions is
hidden.

Empirical evidence supporting the model has been provided by Thompson (1986) who
found that as the definition of coffee stocks and prices became more precise, observation
of significant stockholding in times of backwardation diminish.  This behaviour would be
consistent with the model indicating the importance of the aggregation assumption (see
also Benirschka and Binkley (1995) and Brennan et al. (1997)).

For the present research, the model offers an important insight into inter-regional
trading.  When one of the region’s grain stocks are exhausted, the transport of grain
from the other can be viewed as a period of inter-regional trading.  Wright and Williams
(1989) do not explore this aspect in any detail preferring to note the conditions under
which exhaustion of a commodity will cause backwardation.  Here, the issue of timing of
trade and its determinants are discussed more fully.  To do this, some important changes
to the Wright-Williams model are made.  In their model, the cost of transformation
function is of a general form, but the treatment of time is greatly simplified by only
considering a two-period model.  In the following sections, a model is presented which
pays more attention to the time when transformation takes place.

3.  A model of trading when regions store grain

3.1 Overview

To analyse the grain marketing behaviour of two regions with stores of the commodity,
this section presents an optimal control analysis.  The section gives the necessary and
sufficient conditions for an optimal program as detailed in Seierstad and Sydsaeter
(1977).  In the model, there are two regions which each have an initial harvest of grain.
The regions must maintain non-negative grain stocks while using grain to meet their



6

regional consumption needs.  The regions can trade with each other and there is also an
external market which buys and sells grain at a constant price throughout the program.
However, this external market is some distance from the regions and purchases from and
sales to it incur transfer costs.

In the optimisation, a revenue function is maximised over time with the revenues of the
two regions added together.  Combining revenue across regions in this manner means
that the value of grains transferred between the regions is netted out.  Only the costs
associated with transfer are deducted from the total revenue.  Storage of grains also
incurs an opportunity cost.  A positive discount rate, constant over the program, implies
that storage of grain is at the expense of the earnings of some interest-bearing asset.
Variables are as follows:

t time;
hi harvested production of commodity in region i;
r rate of interest;
m cost of transport between markets;

pi(t) price of commodity at t in market i;
y(t) quantity of commodity transferred from market 2 to market 1;
xi(t) grain sales by region i to the external market;
zi(t) grain purchases by region i from the external market;

p the price of grain in the external market;
di the cost of transfer from the external market;

* initial value of a variable, i.e. at time, t=0.

3.2 Two-region model as a dynamic optimisation

Assume there are two regions, i=1,2, which each produce an initial harvest at time t=0
of grain, hi.  The regions must each then maintain non-negative stocks of grain, si, until
the following harvest at the end of the program at t=T.  For simplicity, grain
consumption is modelled as a constant out-flow of one unit from the grain stock.

One source for grain is an external market which buys and sells grain at a price p.  This
price is constant throughout the program.  The external market may be an international
market for grain or may be some super-regional marketing institution, such as a grain
marketing board.  The regions procure grain, zi, from this external market and such
purchases will reduce total revenue.  Apart from the price p charged, there is a cost of
transfer, di.  Thus, a unit of grain purchased from the external market will reduce
revenue by p+di.  When region i is selling xi to the external market, the cost of transfer
means that the revenue raised would be p-di per unit sold.

Inter-regional trade can also occur.  Without loss of generality, it is assumed that
transfer only takes place from region 2 to region 11.  Transfer of an amount of grain will
reduce revenue by the transfer cost, m, per unit multiplied by the amount which is
transferred, y.  Assumptions regarding the parameters and the initial level of regional
harvests are as follows:
                                               
1  In situations where the direction of the inequality is reversed, the region 1 would become region 2 and
vice versa and the same analysis can be applied.
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(A1) Transfers are costly, i.e. d1 0> , d2 0> , m > 0.
(A2) Transfer costs are less than the external market price, d d m p1 2, , < .

(A3) The opportunity cost of storage, r, is a positive constant.
(A4) Transfer costs are such that d m d2 1+ > .
(A5) Transfer costs are such that d m d1 2+ > .

(A6) Regional harvests are such that h h
r

p d

p d m2 1
1

2

1
> −

+
+ −

ln .

Assumptions A1 to A5 are used later to show that various onward sales by markets are
not cost-effective.  In appendix 1, it is shown that assumption A6 guarantees the
direction of trade is from region 2 to region 1 and will later be relaxed to indicate how
the model can be generalised for trade in both directions.  Essentially, it indicates that
while region 1’s harvest level may be slightly greater than region 2, trade will occur from
region 1 to region 2 if this disparity is too large.  This would mean that the problem as
set up would be inappropriate as the variable y only considers flows from 2 to region 1.

The optimal control problem is one of maximising the revenue from selling grain to the
external market, less the costs of any purchases from it, for each of the regions and then
deducting the costs associated with inter-regional trade:

max [ ]e p d x p d x p d z p d z my dtrt

t

T
−

=

− ⋅ + − ⋅ − + ⋅ − + ⋅ −∫ ( ) ( ) ( ) ( )1 1 2 2 1 1 2 2

0

(1)

The maximisation will be subject to the change in grain stock being equal to the various
in-flows and out-flows:

&s z x y1 1 1 1= − + − (2)
&s z x y2 2 2 1= − − − . (3)

At the end of the program, there is a new harvest and it is assumed that households use
all grain by this time.  Further, non-negativity is imposed on the level of stocks and
flows:

si ≥ 0 ; i=1,2 (4)
s Ti ( ) = 0 ; i=1,2 (5)
z x yi i, , ≥ 0 ; i=1,2. (6)

Combining (1) with (2) and (3) gives an autonomous dynamic optimisation problem
(Leonard and Van Long (1992)) so that a current value Hamiltonian can be used.  This
has five control variables - x1, x2, z1, z2 and y - and two current value costate variables
associated with equation (2) and (3), ψ1 and ψ2 respectively:

L p d x p d x p d z p d z my

z x y z x y s s

= − + − − + − + − +
− + − + − − − + +

( ) ( ) ( ) ( )

( ) ( )
1 1 2 2 1 1 2 2

1 1 1 2 2 2 1 1 2 21 1ψ ψ µ µ
. (7)

The variable µi(.) is the Langrange multiplier associated with the non-negativity
constraint on the stock of grain, equation (4).  The necessary and sufficient conditions
for the optimal dynamic program are detailed in Seierstad and Sydsaeter (1977).
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Conditions (6) regarding the non-negativity of grain flows are integrated into the first
order conditions for this problem2:

∂
∂

ψL
x

x p d x
i

i i i i. (( ) ).= − − = 0 ;  xi ≥ 0 ;  
∂
∂

L
xi

≤ 0 i=1,2 (8)

∂
∂

ψL
z

z p d z
i

i i i i. ( ( ) ).= − + + = 0 ;  zi ≥ 0 ;  
∂
∂

L
zi

≤ 0 i=1,2 (9)

∂
∂

ψ ψL
y

y m y. ( ).= − + − =1 2 0 ;  y ≥ 0 ;  
∂
∂
L
y

≤ 0 (10)

The non-negativity of the grain stocks imply that:
si i.µ = 0 i=1,2 (11)

The dynamics of the two regional stocks of grain, given in equations (2) and (3),
combines with the constraint that the grain stocks cannot be negative to  complicate the
dynamics of the costate variables.  At most times, the following condition holds:

&ψ ∂
∂

µ ψi
i

i i

L
s

r= − = − + i=1,2 (12)

However, as observed by Jacobsen et al. (1971) (theorem 6), there can be jumps in the
costate variable if the level of the state variable - grain stocks in this case - reaches the
lower bound (zero).  Such times in the optimal programme are called junction points.
Defining tj (j=1,2,...,k) as the values taken by t at the junction points in the particular
program, additional conditions for the optimal solution are derived.  The condition is,
where - and + imply the instants before and after the jump:

ψ ψ βi j i j i jt t t( ) ( ) ( )− +− =  with β i jt( ) ≥ 0  and β i j it s( ). = 0 (13)

Finally, the terminal level of grain stocks must be zero (5), so there are no terminal
conditions on the value taken by the costate variables at the end of the program.  The
transversality conditions are hence ‘free’.

3.3 Preliminary model results

As with many optimal control programs, the essence of the model rests in the dynamics
of the costate variables.  The behaviour of the costates in this case are determined jointly
by the level of the state variable (the stocks of grain in each of the regions) and which of
the control variables takes a non-zero value.  Consider the behaviour of the costate
variable ψi when the region has grain stocks, i.e. si > 0 .  Condition (11) implies that the

Lagrangean multiplier µi(.) takes the value zero so that (12) can be solved giving lemma
1.  (Note that a superscript asterix refers to the value of a variable at the start of the
program, i.e. ψ ψi i

∗ = ( )0 ).

                                               
2 The first order conditions include the non-negativity constraint on the flow variables.  An alternative
means to include this would be to add five additional terms to the Lagrangean - of the form λy y for the
variable y - for each of the control variables.  For example, condition (3.6c) would then become:

∂
∂

ψ ψ λL

y
m y= − + − + =1 2 0  ; λ y ≥ 0 ; λy•y=0

The non-negativity of the Langrangean multiplier, λy implies the third part of condition (3.6c).  The
first part rewrites the standard Lagrangean condition  λyy = 0.
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Lemma 1.  When there are stocks of grain in region i (=1,2), si > 0 , the costate
variable is given by the function:

ψ ψi
rt

i
e= ∗ i=1,2. (14)

It is common to interpret the costate variable as the shadow price of the state variable,
i.e. the price of a unit of grain in store.  Therefore, this result can be viewed as a
reiteration of the Hotelling r-percent rule (see Neher (1990)) which states that the value
of stock of a resource must appreciate at the rate of discount.  Any lower rate of
appreciation would prompt storers to sell grain in favour of the interest-bearing asset
while a higher rate would cause movement of funds in the opposite direction.

Some conditions on the control variables can also be derived easily using (7) to (13) and
the assumptions of the model.  Clearly, as d i > 0  (A1), p d p di i+ > − .  Therefore,
using (8) and (9), the costate variable for a region cannot satisfy both Lxi

= 0  and

Lzi
= 0 .  This implies that zi > 0  and xi > 0  cannot both be true simultaneously and

leads to a second result.

Lemma 2.  A region will not buy from the external market at the same time as it is
selling grain to the external market.

The assumptions regarding the cost of transfers relative to the cost of accessing the
external market - A4 and A5 - preclude other control variables from being positive
contemporaneously.  If inter-regional trade is occurring, y > 0 , condition (10) implies
that ψ ψ1 2− = m .  Firstly, consider whether region 2 could be buying from the external
market, i.e. z2 0> , when this takes place.  In such a case both conditions (9) and (10)
would be equalities, that is both ψ ψ1 2− = m  andψ 2 2= +p d  hold.  The two are not
consistent as, from A4, ψ 1 2 1= + + > +p m d p d .  This contradicts the condition that
Lz1

0≤ , condition (9).  Secondly, given y > 0 , consider whether region 1 would be

simultaneously selling to the external market, x1 0> .  For this to occur, (8) indicates
that ψ ψ1 2− = m  and ψ 1 1= −p d  must hold.  This cannot hold at the same time as
ψ 2 1 2= − − < −p m d p d .  This contradicts the condition that Lx2

0≤ , condition (8).

These two results are combined to give lemma 3.

Lemma 3.  If inter-regional trade is occurring - region 2 selling grain to region 1 -
then:

i) Region 2 is not buying from the external market;
ii) Region 1 is not selling to the external market.

These general results would be present in models which do not jointly consider spatial
and temporal aspects of grain markets.  The first result, that the price in a region with
grain stocks would obey the Hotelling r-percent rule, would be true for models where
inter-regional trade did not take place, but storage was allowed.  The second two results
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follow directly from the assumptions of the model and would be the case in a static,
spatial model.  Onward selling of grain is not cost-effective as assumptions A4 and A5
make the total cost of two transfers greater than that of a single transfer.  The following
propositions will indicate how the interaction of time and space in grain markets adds to
these results.  A first proposition of the dynamic model concerns the timing of any grain
sales made by the regions.  The external market purchases grain from the regions at a
price fixed for the entire program.  The positive rate of discount implies that if sales are
to occur at all, it would be optimal to make the sales as early in the program as possible
and then invest the revenue earned.  This is proven as proposition 1.

Proposition 1.  In the model of inter-regional grain marketing described by A1 to A6
and (1) to (6), if grain sales to the external market occur, they will take place at time
t=0.

Proof.  Conditions (2) to (5) indicate that for sales to the external market to take place,
i.e. xi > 0 , either region i possesses grain stocks, si > 0 , or it purchases grain from the
external source, zi > 0 .  Lemma 2 (above) rules this latter possibility out.  In region 1,
in addition to these possibilities, region 2 could supply grain, i.e. y > 0 , to be sold to the
external market, x2 0> .  This is ruled out by lemma 3.

Consider then the case where si > 0 .  Lemma 1 indicates that, denoting the

initial values of ψi with an asterix, ψ ψi
rt

i
e= ∗ .  The exponential growth in the costate

means that its initial value is the lowest value taken during the entire period while there
are positive grain stocks.  For positive grain sales, (8) indicates that ψ i ip d= − .  Also,

from (8), 
∂
∂

L
xi

≤ 0  implies that p d i i− − ≤ψ 0 .  The value of the costate at times of

grain sales must be the lowest value ψi takes.  It therefore follows that this can only
occur at t=0. o

Corollary 1. If sales occur in region i, xi > 0 , then ψ i ip d∗ = − .

Proposition 1 greatly simplifies the discussion of the marketing system.  Essentially, the
selling of grain allows the region to earn revenue from any harvested grain which will be
excess to the optimal program.  Due to the positive rate of discount, storage of grains is
costly and so any excess grain should be sold as early as possible.

Proposition 2.  In the model of inter-regional grain marketing described by A1 to A6
and (1) to (6), inter-regional trade occurs after region 1 runs out of grain.

Proof.  By contradiction.  Taking equation (4) and condition (5) (i.e. s2 0≥ ), grain sold
to region 1 by region 2 must come from either: a) region 2’s grain stock ( s2 0> ); or b)
purchases from the external market ( z2 0> ).  Lemma 2 precludes (b).

 In the former case, s e rt
2 2 2 20 0> ⇒ = ⇒ = ⋅∗µ ψ ψ .  For inter-regional trade,

y > 0  so that for condition (10) to be true, ψ ψ1 2− = m .  Combining,



11

ψ ψ1 2= ⋅ +∗ e mrt  when region 2 has grain stocks and inter-regional trade is occurring.
This behaviour of the costate variable, ψ 1 , is not consistent with s1 0> .  Lemma 1
indicates that the presence of stocks in region 1 would mean that the costate rises
exponentially, i.e. ψ ψ1 1= ⋅∗ ert .  Thus, s2 0>  and z2 0>  is not consistent with
s1 0> .o

Corollary 2.  Region 2 must possess own stocks of grain for the entire period of inter-
regional trade.

Proposition 3.  In the model of inter-regional grain marketing described by A1 to A6
and (1) to (6), purchases from the external market occur from some time (here, t=T2)
until the end of the program, if at all.

Proof.  While region 2 has grain, lemma 1 gives s e rt
2 2 2 20 0> ⇒ = ⇒ = ⋅∗µ ψ ψ .

After this, with no stocks in region 2, condition (4) indicates that the region can only
purchase from the external market.  (9) gives the condition ψ 2 2= +p d  on the costate
when these purchases take place and the condition ψ 2 2< +p d  when no purchases are
taking place.  The exponential growth of the costate when stocks exist in the region is
consistent with the latter strict inequality and so must precede the equality on the
costate.  Consumption of own stocks must precede purchases from the external market.

For region 1, conditions (2) and (3) indicates that once own stocks are
exhausted, consumption could be met through purchases from the region 2 or from the
external market.  When inter-regional trade is taking place, proposition 2 demonstrates
that ψ ψ1 2= ⋅ +∗ e mrt .  This is a strictly increasing function and so the limit imposed on
the costate variable of region 1 by (9, for region 1) would be a strict inequality, i.e.
ψ 1 1< +p d .  Only after the exhaustion of stocks and any inter-regional trade can the
equality hold, ψ 1 1= +p d  and so z1 0> . o

Propositions 1 to 3 order the regions’ actions.  Grain sales to the external market occur
at the start of the program, at t=0, and there follows a period of time when the regions
consume their own stocks of grain.  When region 1 runs out of grain, inter-regional
trade may occur.  The corollary to proposition 2 states that region 2’s grain stocks must
outlast this period of inter-regional trade.  At the end of the program purchases will
occur.  The entire period of time can therefore be split into four periods.  From t=0 to
T1, both regions are consuming own stocks.  After this to Tm, inter-regional trade occurs.
After this, until T2, region 1 is purchasing from the external market while region 2 still
has own stocks remaining.  After T2, both regions have exhausted their stocks of grain
so that the external market is the only source of grain.

Proposition 4.  In the model of inter-regional grain marketing described by A1 to A6
and (1) to (6), the costate variable is continuous.
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Proof.  The number of junction points where the Jacobson-Lele-Speyer conditions (13)
may be satisfied is two in the present model, j=1 when t = T1 (region 1 exhausts its stock
of grain) and j=2 when t = T2 (when region 2 exhausts its grain).  Consider region 2.  At
time t = T2, a discontinuity would imply that the costate will decrease at that instant.
However, as observed in proposition 3, during the period prior to the junction point,
ψ 2 2≤ +p d .  After the junction point, the region purchases from the external market so

that ψ 2 2= +p d  which is greater than any value the ψ1 could take prior to T1.  The
costate variable cannot instantaneously fall as (13) so β 2 2 0( )T = .

For region 1, if no inter-regional trade occurs, β 1 1 0( )T =  by an analogous
argument to region 2.  Otherwise, at time t = T1, inter-regional trade will begin so that
ψ ψ1 2− ≤ m  (condition 10) will actually bind.  Corollary 2 notes that during and before

trade, region 2 has stocks of grain so that ψ ψ2 2= ⋅∗ e rt  for the period before and after

trade begins.  The condition ψ ψ1 2≤ + ⋅∗m ert  prior to trade means that ψ1 cannot fall

after trade begins and the condition binds, i.e. ψ ψ1 2= + ⋅∗m e rt .   Again, the costate
variable cannot instantaneously fall as (13) so β 1 1 0( )T = . o

3.4 Complete specification of the model of regional trade

The four propositions allows the optimal program to be completely solved.  The first
three propositions allow the ordering of the various grain flows to be characterised.  The
order after harvest is grain sales at t=0, followed by a period of consumption of
harvested grain.  When region 1 exhausts its grain stocks, there may follow a period of
inter-regional trade with region 2 consuming its own stock of grain as well as selling
grain to meet region 1’s consumption needs.  After grain trading, region 2 consumes any
remaining own grain while region 1 sources all consumption from the external market.
Both regions purchasing from the external market are the concluding flows.  Some of
the control variables may remain at zero throughout the program with the control
variable associated quantifying inter-regional trade requiring particular attention.  When
a particular control variables takes a non-zero value, the associated function of the
costate variable becomes an equality.  Table 1 indicates the regional costate’s functional
form which results due to this for the entire program when there is trade between the
two regions.  Table 2 details the behaviour of the costate when there is no trade between
the regions and the costates are independent.

Proposition 4 indicates what happens at the points in the program where there are
switches between control variables.  According to the maximum principle, the costate
variable is continuous at all times except when the state variable reaches a bound, zero
grain stocks being the case in this program.  At such junction points, proposition 4
proves that the costate functions would be continuous.  The continuity of the costate
throughout the program allows the points in the program when costate switching occurs
to be written in terms of costate equalities, i.e. an equality sign can be placed between
the functional forms before and after the point in time when a switch occurs.  This
allows a set of conditions to be derived.  When there is trade between the two regions,
the conditions are:

At t = T1, ψ ψ1 2
1 1∗ ∗⋅ = ⋅ +e e mrT rT ; (15)
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At t = Tm, p d e mrTm+ = ⋅ +∗
1 2ψ ; (16)

At t = T2, p d erT+ = ⋅∗
2 2

2ψ . (17)

When there is no trade between the two regions, the continuity of the costate implies
that:

For ψi at t=Ti , ψ i
rT

ie p di∗ = + i=1,2. (18)
Further, the lack of trade implies that y =0 throughout the optimal program.  From
condition (10) - the spatial arbitrage condition -  a further relationship can be noted.
The lack of inter-regional trade implies that, at the time when inter-regional trade could
begin (at the exhaustion of region 1’s grain stocks (see proposition 2)) the difference
between regional costates is less than the cost of transfer:

ψ ψ1 2
1 1∗ ∗⋅ − ⋅ <e e mrT rT . (19)

This states that when region 1 has exhausted its grain supply, inter-regional trade would
not be initiated as the difference in the costate variables is less than the cost of transfer.

Table 1: Costate Variable Functional Forms during the
Optimal Program when Trade Occurs

t = 0 T1 Tm T2 1
NO TRADE TRADE NO TRADE NO TRADE

ψ1 ψ 1
∗ ⋅ e rt ψ 2

∗ ⋅ +e mrt p d+ 1 p d+ 1

ψ2 ψ 2
∗ ⋅ ert ψ 2

∗ ⋅ ert ψ 2
∗ ⋅ ert p d+ 2

Table 2: Costate Variable Functional Forms without Trade
i.e. ψ ψ1 2

1 1∗ ∗⋅ − ⋅ <e e mrT rT

t = 0 T1 T2 1
ψ1 ψ 1

∗ ⋅ e rt p d+ 1 p d+ 1

ψ2 ψ 2
∗ ⋅ ert ψ 2

∗ ⋅ ert p d+ 2

Having derived the dynamics of the costates after harvest, the initial values taken by the
costates can be considered.  This depends on whether there are grain sales to the
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0 T1 Tm T2

m

T
time

p2
∗

Region 1

Region 2

price

NO TRADE TRADE NO TRADE

p1
∗

p d+ 1

p d+ 2
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external market.  Corollary 1 can be used to give the combination of values of the
costate and the level of grain stocks at t=0.  When one of the regions sells grain at the
start of the program, the initial value the costate takes in that region is its minimum
value, p d i− .  Also, the sales of grain by the region implies that the initial stocks of
grain are some value less than the harvested level.  The initial values taken be regional
costate variables and stock levels differ when regions do not sell any grain to the
external market.  In such regions, the initial value the costate variable takes is greater
that p d i− .  However, as no sales are made, initial grain stock levels must equal the
harvested level of grains.  Table 3 summarises the four possibilities.

Table 3: Initial Values of Costate and State Variables

Initial Scenario ψ 1
∗ ψ 2

∗ s1
∗ s2

∗

Both regions sell grain p d− 1 p d− 2 h x1 1− h x2 2−
Only region 1 sells grain p d− 1 ≥ −p d2 h x1 1− h2

Only region 2 sells grain ≥ −p d1 p d− 2 h1 h x2 2−
Neither region sell grain ≥ −p d1 ≥ −p d2 h1 h2

Figure 1 indicates the behaviour of the costate variables in one of the four cases.  In
figure 1, initial harvest levels and parameter values are such that neither region sells
grain but there is inter-regional trade.  Region 1 is consuming it harvested grain until the
period T1.  As there are stocks of grain in both region during this period, both regional
costates rise exponentially.  After this, region 1 begins purchasing grain from region 2.
Until time Tm, region 1’s costate differs from region 2’s by the cost of transfer.  During
this period, price correlation may be expected as shocks in either region which affect the
market clearing price would be transferred.  Inter-regional trade ends when the external
market becomes a cheaper source of grain for region 1 than region 2 so that region 1
purchases from the external market.  From this point until T2, region 2 is consuming its
own grain and the costate continues its exponential rise.  The external market becomes
the sole supplier of grain after region 2 exhausts its stocks.

The total grain harvested at the start of the program provides regional constraints on the
total level of flows out of, into and between the regions.  As consumption of grain is
identical in both regions at one per unit time, the times at which the various flows of
grain switch off and on are equal to the quantity of grain transferred from a particular
source.  For example, in region 1, the quantity of grain available in the harvest must
equal the sum of the amount region 1 sells to the external market and the length of time
before the region exhausts its own supply (i.e. T1):

h x T1 1 1= +∗ . (20)

For region 2, the picture is complicated by the region’s supplying of region 1 if there is a
period of inter-regional trade.  In the present model, due to the simple way in which
consumption is specified, the amount of grain transferred is equal to the length of time
trade occurs, that is Tm - T1:
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h x T T Tm2 2 2 1= + + −∗ . (21)
If inter-regional trade does not take place, then the constraint on region 2 is similar to
that of region 1:

h x T2 2 2= +∗ . (22)

Equations (14)-(22) and the various combinations of costate and grain stock initial
values provide systems of solvable equations for each of the four initial scenarios set out
in table 2.  However, the exact scenario which will occur depends on the levels of
harvest in relation to the parameters of the model.  These relationships are investigated
further in the following section.

4.  Behaviour of spatial commodity markets

4.1 Overview

This section considers the behaviour of regional markets when there is an external
market and the possibility of inter-regional trade.  The section focuses on the whether
the two regions would trade in a particular season so that market integration would be
observed.  It will also consider how long such inter-regional trade will last.  As might be
expected, the parameters of the model and the level of harvest in the two regions jointly
determine the extent of market integration.

An assumption of the previous section will be relaxed.  Inter-regional trade was
previously considered to be unidirectional - from region 2 to region 1.  Appendix 1
indicates the conditions on the parameters and the level of the two regions’ harvest
when this assumption will be unsatisfactory.  However, it also shows that in such
circumstances, the model may be respecified with the regions exchanging places.  This
intuitively appealing property of the model allows the results of the following analysis to
be generalised to inter-regional trade in either direction through a transformation of
variables and parameters.  In the two figures 2 and 3, figure 2 considers the combination
of regional harvests which would yield trade from region 2 to 1.  However, by
reformulating the problem with the two regions switching places, figure 3 gives a more
complete picture allowing trade to occur both from 2 to 1 and, in the upper left side of
the diagram, from 1 to 2.  It is worth noting that figure 3 is not symmetrical about the
h1=h2 line unless the two regions are equidistant from the external market, i.e. d1=d2.

4.2 The occurrence of inter-regional trade

The conditions when trade do not take place provide an initial insight into the parameter
relationships which determine the nature of regional grain stock management.  If, after
harvest, the regions do not trade with each other, the harvested grain is either consumed
within the region or sold to the external market.  Thus, constraints (20) and (22) are
relevant to the program (i.e. harvested grain equals the sum of grain sales and the time
before exhaustion of regional grain stocks).  With regard to the conditions at the start of
the program, the four potential scenarios detailed in table 2 need to be considered:
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neither region selling grain to the external market, region 1 selling, region 2 selling and
both regions making sales to the external market.

A start in analysing these various situations is to note the conditions on regional harvests
for positive grain sales in both regions.  Using (20) and (22), it is clear that when sales
occur in regions i=1,2, and there is no inter-regional trade:

h Ti i> i=1,2. (23)
Further, positive grain sales constrain the initial value of a region’s costate variable as
given by table 1b:

ψ i ip d∗ = − i=1,2. (24)
Conditions (23) and (24) can be combined with equation (18):

For ψi at t=Ti , ψ i
rT

ie p di∗ = + i=1,2. (18)
For a region, this gives a minimum harvest level for grain sales to the external market
from that region to occur when the two regions do not trade:

h
r

p d

p di
i

i

>
+
−

1
ln i=1,2. (25)

These two inequalities partition the (h1, h2) space into distinct areas.  However, as shown
in figure 2, only in the situation where both regions are selling to the external markets
are conditions (25) for regions i=1,2 sufficient to guarantee no inter-regional trade.  This
is area B in figure 2 and occurs when both areas have very high harvest levels.  For this
to be a sufficient condition, equation (19) needs to be considered:

ψ ψ1 2
1 1∗ ∗⋅ − ⋅ <e e mrT rT . (19)

(In appendix 2, this condition is explored further.)

Area C gives combinations of regional harvest levels where sales to the external market
are made by region 2 and there is no inter-regional trade.  Inter-regional trade does not
occur only if region 2’s sales to the external market could not be cheaply transferred to
the other market.  This is the case if condition (19) is met throughout the program.  By
noting that the maximum value the difference between regional costates can take will be
at time, t=T1, and, as there are no grain sales by region 1, this occurs at t=h1, (19) can be
re-written.  Substituting into (18) using t=h1, for region 1:

ψ 1 1
1∗ ⋅ = +e p drh (18)

and the results from table 2:
ψ 2 2

1 1∗ ⋅ = − ⋅e p d erh rh( ) (26)
and solving gives the condition:

h
r

p d m

p d1
1

2

1
>

+ −
−

ln
( )

( )
. (27)
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Figure 2: Regional Harvest Levels and Inter-Regional Trade

A No Inter-regional Trade or Grain Sales to the
External Market

B No Inter-regional Trade; Both Regions sell to the
External Market

C No-Inter-regional Trade; Region 2 sells to the
External Market

D Trade from Region 2 to 1 with Region 2 also selling
to the External Market

E Trade from Region 2 to 1 with Neither Region selling
to the External Market
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E’

Figure 3: Regional Harvest Levels and Inter-Regional Trade

A No Inter-regional Trade or Grain Sales to the
External Market

B No Inter-regional Trade; Both Regions sell to the
External Market

C No-Inter-regional Trade; Region 2 sells to the
External Market

C’ No-Inter-regional Trade; Region 1 sells to the
External Market

D Trade from Region 2 to 1 with Region 2 also selling
to the External Market

D’ Trade from Region 1 to 2 with Region 1 also selling
to the External Market

E Trade from Region 2 to 1 with Neither Region selling
to the External Market

E’ Trade from Region 1 to 2 with Neither Region selling
to the External Market
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This is indicated as region C in figure 2.  The reflection of this is indicated as region C’
in figure 3.

Area A indicates combinations of harvest which result in no inter-regional trade and no
sales to the external market.  This area shows that equal or nearly equal harvests give
rise to regional autarky.  This is not surprising and can be explained by noting the
identical consumption needs of the regions.  When harvests are similar, both regions
exhaust their grain stocks at a similar time and so it is unlikely that a region will sell to
its neighbour.  Appendix 1 indicates the derivation of the region.  It is shown there that
if inter-regional trade is only allowed in the direction of region 2 to 1, then the
conditions on the harvest are:

h h1 2≥ (28)

h h
r

p d m

p d1 2
2

1

1
≤ +

+ −
+

ln . (29)

The first condition notes that the distribution of harvests favours region 1.  In such
circumstances, there would be not trade in the direction of 2 to 1.  The second condition
is the bound put on the extent to which region 1’s harvest can exceed 2’s without
causing price divergence to be great enough for trade from region 1 to region 2.

The dark area made up from A, B and C indicates combinations of regional harvest
which would make regional trade unnecessary as own stocks and the external market
would be adequate to meet the needs of the regions.  Area A indicates that equal or near
equal harvest levels would also make trade unlikely.  The likelihood of falling into the
regions C and D can be proxied by considering the two inequalities:

h
r

p d m

p d1
1

2

1
≥

+ −
−

ln
( )

( )
; (30)

h
r

p d m

p d2
2

1

1
≥

+ −
−

ln
( )

( )
. (31)

If both are true, then inter-regional trade does not occur as the harvest combination
would be in the dark area of figure 2.  From (30) and (31), it is apparent that the higher
the rate of discount, the less likely trade is.  Trade, however, is more likely to occur
when regions are distant from the external market and the transfer costs between the
regions is small.

Appendix 2 qualifies conditions (30) and (31) somewhat.  Under certain parameter
values, only one of the two conditions can be used to differentiate harvest levels where
trading takes place from harvest levels without trading.  When parameters take these
values one of (30) and (31) will be replaced by one of the conditions (25).

4.3 The timing of trade

When there is inter-regional trade, figure 2 distinguishes between two possible
scenarios.  Inter-regional trade from region 2 to region 1 can take place in the presence
of region 2 selling to the external market, indicated as area D.  However, when region
2’s harvest is low, such inter-regional trade can occur with no grain sales to the external
market by either region.  In figure 2, this is indicated as E.  Trade from region 1 to
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region 2 is indicated by areas D’ (with region 1 selling to the external market) and E’
(no sales) in figure 3.  The conditions on the harvest levels in the two regions to
differentiate between the two can be derived by looking at the length of time that trade
occurs and then comparing these results with the conditions for grain sales, that is, the
pair of equations (25).

Consider firstly the situation where only region 2 sells grain both to the external market
and the other region.  Clearly, the lack of sales to the external market from region 1
means that its harvested grain is exhausted through consumption and the time taken by
this is equal to the level of harvest, i.e.:

T1 = h1. (32)
Trade begins at time T1.  Region 2’s sale of grain indicates that the initial value of the
costate can be derived from equation (24) as p d− 2 .  This combines with (16) to give:

p d p d e mrTm− = − ⋅ +1 2( ) . (33)
The time when trading ends can then be easily derived:

T
r

p d m

p dm =
+ −

−
1 1

2

ln . (34)

The time when region 2 exhausts its own supply of grain, T2, is derived by combining
(32) with (17) to give:

p d p d erT+ = − ⋅2 2
2( ) . (35)

This solves to provide:

T
r

p d

p d2
1

2

1
=

+
−

ln . (36)

Now, consider the constraints (20) and (21) which, when combined, state that the total
harvest must equal total grain sales, grain consumption and the amount of grain traded
between the regions:

h h x x T Tm1 2 1 2 2+ = + + +∗ ∗ . (37)

Noting that for grain sales from region 2 to occur, x2 0∗ > , and that x1 0∗ = :

h h
r

p d p d m

p d p d1 2
2 1

2 2

1
> − +

+ ⋅ + −
− ⋅ −

ln
( ) ( )

( ) ( )
. (38)

The inequality (38) splits the region D from E - combinations of regional harvests which
combine inter-regional trade with and without region 2 selling grain respectively.

The timing of trading derived can provide some indication of the length of time that
markets trade.  Trade occurs during the period Tm - T1 and, when sales are made to the
external market by region 2, this is equal to:

T T
r

p d m

p d
hm − =

+ −
−

−1
1

2
1

1
ln . (39)

When there is no grain sales to the external market, the length of time that trade takes
place becomes:

T T
r

p d m

p d

h h
m − =

+ −
+

+
−

1
1

2

2 11

2 2
ln . (40)
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Equations (39) and (40) both indicate that the more expensive it is for region 1 to buy
grain from the external market, the value p+d1, the longer the trade.  Cheapness in
procuring grain from the neighbouring region, low m, and a low rate of discount, r, has
a similar effect.  The denominator in the logged fraction indicates the impact of grain
sales on the level of trade.  When region 2 is selling grain to the external market, the
revenue gained through selling grain, p - d2, is negatively related to the duration of inter-
regional trade.  When no grain sales occur, the opportunity cost of selling grain to
region 1 becomes the cost of grain purchases from the external market, p + d2.

5.  Discussion and conclusions

In this paper, the Takayama-Judge spatial arbitrage model has been extended to consider
the situation where there is storage of the commodity.  A model presented by Williams
and Wright (1989) highlights how commodity storage leads to breakdowns in temporal
arbitrage rules.  This paper extends this result into a dynamic seasonal model of storage.
Previous models have assumed that inter-regional trade would occur throughout a year
and then proceeded to test for price co-movements.  Here, it is suggested that periods of
time where there is no trade may be the result of storage substituting for trade as an
efficient means to offset transportation costs.  This substitutability depends crucially on
the cost of transfer between the regions and the rate of discount.

The optimal control model and figures 2 and 3 highlight how likely it is that trade takes
place in a particular year with a particular distribution of harvest.  The lighter shaded
parts of figure 3 give combinations of regional harvests where trade would take place
and the Takayama-Judge condition on inter-regional could be expected to  bind for
some part of the year.  Further as trade is taking place, market clearing prices in the two
regions would be interdependent so that price correlation would be expected.  However,
the model presented here would only expect regional trade to occur for some portion of
a year.  Inter-regional trade throughout a year would not be optimal in the model so that
periods where regional market prices are not correlated would be expected.

In years where harvest levels are in the dark area of figure 3, there is no inter-regional
trade in the optimal program.  In such years, there would be no reason to expect
correlation between market prices in the two regions and market integration tests would
be inappropriate.  Because there would be no reason to suppose price changes would be
transferred between markets, such an analysis of the price data may erroneously suggest
market trade is in some way obstructed.  The diagrams indicate that this is most likely to
be the case when two regions have similar initial stocks levels (harvests).  Trade would
not be beneficial in such circumstances.

The results of this paper highlight the effect of spatial and temporal interaction on food
market behaviour.  In areas where storage of grain is significant, the market integration
tests must be used with some caution.  The primary result of the present analysis is that
trade cannot be assumed to be a constant feature of food markets.
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 Appendix 1

In this appendix, the conditions under which inter-regional flows of grain will be from
region 2 to region 1 is discussed.  A situation is considered where there is no trade and
the inter-regional difference in costate variable is less than the cost of transfer.
However, as ψ ψ2 1> , if trade were to occur, it would be towards region 2.  Inter-
regional trade does not occur as long as:

ψ ψ2 1
∗ ∗⋅ − ⋅ <e e mrt rt (1.1)

is guaranteed throughout the program.  If both regions do not trade, and assuming no
grain sales to the external market, so that h Ti i= , and using equation (18):

ψ i i
rhp d e i∗ −= + ⋅( ) (1.2)

Combining (1.1) and (1.2) gives:
( ) ( )( ) ( )p d e p d e mr t h r t h+ ⋅ − + ⋅ <− −

2 1
2 1 (1.3)

Inter-regional trading from region 1 to 2 would occur when region 2 exhausts its grain
stock if at all.  Thus, if (1.3) holds at t h= 2  then it will have held during the entire
program.  This gives the condition (which is  assumption 6):

h h
r

p d

p d m2 1
1

2

1
> −

+
+ −

ln . (A6)

Note that A6 can be rewritten so that region 1 and region 2 exchange places.  This can
then be rearranged so that h2 appears on the left-hand side:

h h
r

p d

p d m2 1
2

1

1
< +

+
+ −

ln (1.4)

The areas given by (A6) and (1.4) overlap.  This indicates that there is no pair of harvest
levels which will not fall in one of the two areas.  Some harvest pairs will lie in both.
The direction of inter-regional trade - region 2 to 1 if A6 holds, region 1 to 2 if (1.4)
holds, either direction is both are satisfied - can then be decided on this basis.  This
means that the present model can be applied to all harvest combinations.

Appendix 2

Figures 1 and 2 have been drawn assuming that:
p d

p p

p d m

p d
i

i

i

j

+
−

>
+ −

−
(i,j)=(1,2),(2,1) (2.1)

It can readily be derived that this will be the case, if:
d d d m p d d m1 2 1 1 2⋅ − + < ⋅ − +( ) ( ) (2.2)

in the case where (i,j)=(1,2) and:
d d d m p d d m2 1 2 2 1⋅ − + < ⋅ − +( ) ( ) (2.3)

in the case where (i,j)=(2,1).

It can readily be seen that if the two regions are the same distance from the external
market, then conditions (2.2) and (2.3) will be satisfied because assumption 2 states that
d d p1 2, < .  The extent to which p exceeds the transfer costs for regions to the external
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market determines whether (2.2) and (2.3) are satisfied.  For a wide range of parameter
values, the two conditions are satisfied so that diagrams 2 and 3 can be viewed as
representing the most likely scenario.  However, when one of the two conditions is not
satisfied, e.g. the sign of (2.2) is reversed:

d d d m p d d m1 2 1 1 2⋅ − + > ⋅ − +( ) ( ) (2.4)
The fact that p d> 1  and p d> 2  necessarily implies that (2.3) must hold.  Thus, at least
one of (2.2) and (2.3) is always true.  Figure 4 indicates what the effect of (2.4) is on the
extent of market trading.  It indicates that region C in figure 3 no longer exists.  That is,
region 2 selling to the external market is no longer consistent with no inter-regional
trade.  The intuition behind this is that the parameters of the model are such that region
1 is more integrated with region 2 than with the external market.  If region 2 has
sufficient grain to sell to the external market, then some part of those sales would be
firstly claimed by region 1.  Note that the region C’ still indicates: region 2 can sell grain
to the external market and to the other region.
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E’

Figure 3: Regional Harvest Levels and Inter-Regional Trade

A No Inter-regional Trade or Grain Sales to the
External Market

B No Inter-regional Trade; Both Regions sell to the
External Market

C’ No-Inter-regional Trade; Region 1 sells to the
External Market

D Trade from Region 2 to 1 with Region 2 also selling
to the External Market

D’ Trade from Region 1 to 2 with Region 1 also selling
to the External Market

E Trade from Region 2 to 1 with Neither Region selling
to the External Market

E’ Trade from Region 1 to 2 with Neither Region selling
to the External Market
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