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Katsuhiro Sugita∗

Graduate School of Economics, Hitotsubashi University, Tokyo 186-8601, Japan

Abstract

This paper considers a vector autoregressive model or a vector error correction model

with multiple structural breaks in any subset of parameters, using a Bayesian approach with

Markov chain Monte Carlo simulation technique. The number of structural breaks is deter-

mined as a sort of model selection by the posterior odds. For a cointegrated model, cointe-

grating rank is also allowed to change with breaks. Bayesian approach by Strachan (Jour-

nal of Business and Economic Statistics 21 (2003) 185) and Strachan and Inder (Journal of

Econometrics 123 (2004) 307) are applied to estimate the cointegrating vectors. As empirical

examples, we investigate structural changes in the predictive power of the yield curve and the

US term structure of interest rates. We find strong evidence of three structural changes in both

applications.

Key words: Bayesian inference; Structural break; Cointegration; Bayes factor;

JEL classification: C11; C12; C32

1 Introduction

The last decade has seen extensive study of the structural break in time series models. Papers

such as Perron (1989) deals with this issue in the framework of a priori imposed break dates,
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while others use methods where the break date is endogenized (Banerjee, Lumsdaine and Stock,

1992; Christiano, 1992; and Zivot and Andrews, 1992). Much of the subsequent research focus

on testing for a structural break when the break date may not be known. Among these, thesupF

statistic of Andrews (1993) and theexpF andaveF statistics of Andrews-Ploberger (1994) are

most notable. Based on Andrews and Andrews-Ploberger’s statistics, Hansen (2000) proposes a

bootstrapping method for testing for a single structural break.

An extension of the literature on testing for a structural break involves allowing for more than

one possible break date. For many macroeconomic or financial time series with the possibility

of a structural break, the assumption of at most one break date is unrealistic and restrictive. Bai

and Perron (1998) propose a test for multiple structural breaks at unknown dates using the dou-

ble maximum test. Another testing method for detecting multiple changes is a likelihood ratio

test with the null ofl breaks against the alternativel + 1 break points (Bai, 1999). While these

methods only allow for structural breaks in mean, breaks in variance are often found in economic

and financial data. Schwert (1990) finds that volatility of the stock-market is higher during and

after the 1987 crash. Inclan (1993), Inclan and Tiao (1994), and Chen and Gupta (1997) detect

multiple breaks in variance for several series of stock returns. Engel and Hakkio (1996) find that

European Monetary System exchange rates have higher volatility during the periods of alignment,

and Kim and Engel (1999) find multiple breaks in variance in real exchange rates associated with

historically significant monetary events. Kim and Nelson (1999) combine a structural break with

the Markov switching model to find evidence of variance breaks in postwar business cycles. For

a Bayesian approach to multiple structural breaks, Wang and Zivot (2000) consider univariate

models with multiple breaks in level, trend and variance. Another Bayesian approach to multiple

structural breaks is provided by Chib (1998), who considers structural breaks as regime switching

of discrete-state Markov process with restricted transition probabilities.

The above literatures consider structural break(s) in univariate models. The estimation of and

testing for structural break in cointegrated models has been also received attention. Gregory and

Hansen (1996a) study residual-based tests for cointegration with a single structural break in a

single equation model. They proposedADF−, Zα−, andZt−type tests designed to test the null of

no cointegration against the alternative of cointegration in the presence of a possible regime shift.
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Gregory and Hansen (1996b) extend this work, by permitting a trend shift as well as a regime

shift and providing the critical values for testing cointegration with a single break. Seo (1998)

derives the Lagrange multiplier test for structural breaks in cointegration relations and adjustment

terms, using the framework of Andrews and Ploberger (1994). Hansen and Johansen (1999) test

parameter instability in cointegrating vectors based on Nyblom’sL statistic (1989). Hansen (2003)

explores the multiple-break case in cointegrated systems, and allows changes in any subset of the

parameters, where the time of the change points and the number of cointegration relations are

treated as known. Inoue (1999) derives a rank test for cointegrated systems with a structural

change in trend. Bai et al. (1998) develop methods for constructing confidence intervals for the

date of a single break in multivariate time series, and show that the accuracy of the break point

estimators can be improved with series that have common breaks. While these authors assume

the constant volatility in VAR, Bai (2000) allows the variance-covariance matrices to be affected

by the breaks, using the quasi-maximum likelihood method. He also considered multiple breaks

instead of a single break.

The main contribution of this paper is the development of general multivariate structural

break models. We consider multiple structural breaks in any subset of the parameters in VAR

or co-integrated VAR models, using a Bayesian approach which extends Wang and Zivot’s (2000)

method for detecting multiple structural changes in univariate models. In cointegration analysis,

as changes in volatility and other terms are likely to affect the strength of the adjustment toward

the equilibrium, it is of interest to analyze a model where structural breaks also affect in the ad-

justment terms, cointegrating vectors, and/or cointegrating rank. Hansen (2003) considers similar

general cointegration models with structural breaks in any subset of parameters, where the number

of cointegration relations, the number of breaks and the location of the break points are known.

This paper considers general multivariate cointegrated models with breaks in any subset of the

parameters where the break points and the rank are unknown. This is possible by applying a valid

Bayesian approach to cointegration proposed by Strachan (2003), which is based on the singular

value decomposition method by Kleibergen and Paap (2002) and Kleibergen and van Dijk (1998).

For a less general case where cointegrating rank is not allowed to change with breaks, a simpler

method by Strachan and Inder (2004) can be applied.
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The Bayesian approach has several advantages over the classical method in the context of

structural break models as it is technically simpler, allows inferences that are optimal given the

framework, and allows for nonnested model comparison by computing posterior odds (see Raftery,

1994). Additionally, inference from the Bayesian approach is based on the exact finite sample

properties for all of the parameters of the model. Finally, unlike most classical methods for de-

tecting structural breaks, the Bayesian approach provides information about uncertainty in all

estimated parameters including the location of the break dates. When the posterior probability

mass function of the change point exhibits a substantial range in dates, the structural break may

occur smoothly, rather than suddenly at a particular date.

This paper is organized as follows. Section 2 presents a Bayesian approach to VAR model with

multiple structural breaks, using a simple Gibbs sampler. In Section 3, we extend the approach

of the VAR model with multiple breaks to vector error correction models with multiple breaks

in deterministic terms, adjustment term, cointegrating vector, variance-covariance matrices, and

cointegrating rank, using Metropolis-within-Gibbs sampling algorithm, based on the method by

Strachan (2003). We also consider a case where cointegrating rank is not allowed to change with

breaks. This case is treated by applying a simpler method by Strachan and Inder (2004) with

the Griddy-Gibbs sampler to estimate the cointegrating vectors. Section 4 considers the issue of

model selection for detecting multiple structural breaks using Bayes factors calculated by using

Schwarz BIC method and Chib’s (1995) method. In Section 5 determining the cointegrating rank

is considered for the two cases - one for where the cointegrating rank is subject to change and the

other is for where it is not subject to change with breaks. In Section 7, Monte Carlo simulations

are presented using artificially generated data for VAR models and vector error correction models

with multiple breaks in order to examine the performances of detecting the number of breaks using

our methods. To illustrate an empirical study of the VAR model with multiple breaks, Section 8

presents the predictive power of the yield curve on output growth. For an application of the vector

error correction model with multiple breaks, we apply the method to investigate US term structure

of interest rates. Section 9 concludes. All computation in this paper are performed using code

written by the author with Ox v3.30 for Linux (Doornik, 1998).
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2 Bayesian Inference in Vector Autoregressive Model with Multiple

Structural Breaks

2.1 Statistical Model for VAR with Multiple Structural Breaks

In this section we consider a Bayesian approach to VAR model with multiple structural breaks.

Let yt denote a vector ofn-dimensional(1×n) time series. If all parameters in a VAR are assumed

to be subject to structural breaks, then the model is

yt = µt + tδt +
p

∑
i=1

yt−iΦt,i + εt (1)

wheret = p, p+1, . . . ,T; p is the number of lags; andεt are assumedN(0,Ωt) and independent

over time. Dimensions of matrices areµt , δt andεt (1×n), Φt,i andΩt (n×n). The parameters

µt , δt andΩt are assumed to be subject tomstructural breaks (m< t) with break pointsb1, . . . ,bm,

whereb1 < b2 < · · ·< bm, so that the observations can be separated intom+1 regimes.

Equation (1) can be rewritten in the matrix format as:

Y = XB+E (2)

whereY =
[

y′p y′p+1, . . . , y′T

]′
, X =

[
X1 X2

]
,

X1 =



s1,p · · · sm+1,p s1,p · · · sm+1,p

s1,p+1 · · · sm+1,p+1 2s1,p+1 · · · 2sm+1,p+1

...
...

...
...

... · · ·

s1,T · · · sm+1,T (T− p+1)s1,T · · · (T− p+1)sm+1,T


,

X2 =



s1,py′p−1 · · · s1,py′1 · · · · · · sm+1,py′p−1 · · · sm+1,py′1

s1,p+1y′p · · · s1,p+1y′2 · · · · · · sm+1,p+1y′p · · · sm+1,p+1y′2
...

...
...

...
...

...
...

s1,Ty′T−1 · · · s1,Ty′T−p+1 · · · · · · sm+1,Ty′T−1 · · · sm+1,Ty′T−p+1


,

B =
[

µ′1, . . . , µ′m+1 δ′1, . . . , δ′m+1 Φ′
1,1, . . . , Φ′

p,1, . . . , Φ′
1,m+1, . . . , Φ′

p,m+1

]′
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Let τ be the number of rows ofY (τ× n), so thatτ = T − p+ 1, thenX is τ× κ whereκ =

(np+ 2)(m+ 1), andB is κ× n. si,t in X1 andX2 is an indicator variable which equals to 1 if

regime isi and 0 otherwise.

2.2 Prior Distributions and Likelihood Functions for VAR with Multiple Structural

Breaks

Let b= (b1,b2, . . . ,bm)′ denote the vector of break dates. We specify priors for parameters, assum-

ing prior independence betweenb, BandΩi , i = 1,2, . . . ,m+1, such thatp(b,B,Ω1,Ω2, . . . ,Ωm+1)=

p(b) p(B)∏m+1
i=1 p(Ωi). This is because if we consider that the prior forB is conditional onΩ as is

often used in regression models with the natural conjugate priors, it is not convenient to consider a

case when the error covariance is also subject to structural breaks. Thus, the prior density forB is

set as the marginal distribution and vectorized asvec(B) unconditional onΩi for convenience. The

prior for the covariance-variance matrix,Ωi , is specified with an inverted Wishart density. For the

prior for the location of the break datesb, we choose a diffuse prior such that the prior is discrete

uniform over all ordered subsequences oft = p+ 1, . . . ,T −1. We consider that all priors forb,

Ωi , andvec(B) are proper as:

p(b)∼ U(p+1,T−1) (3)

Ωi ∼ IW (ψ0,i ,ν0,i) (4)

vec(B)∼MN(vec(B0) ,V0) (5)

whereU refers to a uniform distribution;IW refers to an inverted Wishart distribution with pa-

rametersψ0,i ∈ Rn×n and degrees of freedom,ν0,i ; MN refers to a multivariate normal with mean

vec(B0) ∈ Rκn×1, κ = (np+2)(m+1) and covariance-variance matrixV0 ∈ Rκn×κn.

The joint prior ofb, B, andΩi is given by multiplication of (3) - (5) as follows:
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p(b,B,Ω1,Ω2, . . . ,Ωm+1)

∝

(
m+1

∏
i=1

|ψ0,i |ν0,i/2 |Ωi |−(ν0,i+n+1)/2

)
|V0|−1/2

×exp

[
−1

2

{
tr

[
m+1

∑
i=1

(
Ω−1

i ψ0,i
)]

+vec(B−B0)
′V−1

0 vec(B−B0)

}]
(6)

Using the definition of the matric-variate Normal density (see Bauwens, et al., 1999), the

likelihood function for the structural break VAR model with the parameters,b,B,Ω1, . . . ,Ωm+1, is

given by,

L(b,B,Ω1, . . . ,Ωm+1 |Y)

∝

(
m+1

∏
i=1

|Ωi |−ti/2

)
exp

(
−1

2
tr

[
m+1

∑
i=1

{
Ω−1

i (Yi −XiB)′ (Yi −XiB)
}])

=

(
m+1

∏
i=1

|Ωi |−ti/2

)
exp

(
−1

2

m+1

∑
i=1

[
(vec(Yi −XiB))′ (Ωi ⊗ Iτ)

−1(vec(Yi −XiB))
])

(7)

whereti denotes the number of observations in regimei, i = 1,2, . . . ,m+1;Yi is theti×n partitioned

matrix ofY values in regimei; andXi is ti ×κ partitioned matrix ofX values in regimei.

2.3 Posterior Specifications and Estimation for VAR with Multiple Structural Breaks

The joint posterior distribution can be obtained from the joint priors given in (6) multiplied by the

likelihood function in (7), that is,

p(b,B,Ω1, . . . ,Ωm+1 |Y) ∝ p(b,B,Ω1, . . . ,Ωm+1)L(b,B,Ω1, . . . ,Ωm+1 |Y)

∝

(
m+1

∏
i=1

{
|ψ0,i |ν0,i/2 |Ωi |−(ti+ν0,i+n+1)/2

})
|V0|−1/2
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×exp

(
−1

2

[
tr

(
m+1

∑
i=1

Ω−1
i

)
+

m+1

∑
i=1

{(
[vec(Yi −XiB)]′ (Ωi ⊗ Iτ)

−1vec(Yi −XiB)
)}

+vec(B−B0)
′V−1

0 vec(B−B0)
])

(8)

Consider first the conditional posterior ofbi , i = 1,2, . . . ,m. Given thatp = b0 < · · · < bi−1 <

bi < bi+1 < · · · < bm+1 = T and the form of the joint prior, the sample space of the conditional

posterior ofbi only depends on the neighboring break datesbi−1 andbi+1. It follows that, for

bi ∈ [bi−1,bi+1],

p(bi | [b−bi ],B,Ω1, . . . ,Ωm+1,Y) ∝ p(bi | bi−1,bi+1,B,Ωi ,Ωi+1,Yi) (9)

for i = 1, . . .m, which is proportional to the likelihood function evaluated with a break atbi only

using data betweenbi−1 andbi+1 and probabilities proportional to the likelihood function. Hence,

bi can be draw from multinomial distribution as

bi ∼ M (bi+1−bi−1, pL) (10)

wherepL is a vector of probabilities proportional to the likelihood functions.

Next, we consider the conditional posterior ofΩi , andvec(B). To derive these densities, the

following theorem can be applied:

Theorem: In the linear multivariate regression model Y= XB+ E, with the prior densities of

vec(B)∼MN(vec(B0),V0) andΩ∼ IW(Ψ0,ν0), the conditional posterior densities of vec(B) and

Ω are

vec(B) | Ω,Y ∼MN(vec(B?),VB)

Ω | B,Y ∼ IW (Ψ?,ν?)

where the hyperparameters are defined by

vec(B?) =
[
V−1

0 +Ω−1⊗ (X′X)
]−1
[
V−1

0 vec(B0)+(Ω⊗ Iκ)
−1vec(X′Y)

]
VB =

[
V−1

0 +Ω−1⊗ (X′X)
]−1
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Ψ? = (Y−XB)′(Y−XB)+Ψ0

ν? = T +ν0

Proof: see Appendix A.�

From (8), we can write two terms using the above theorem as:

m+1

∑
i=1

{
[vec(Yi −XiB)]′ (Ωi ⊗ Iτ)

−1vec(Yi −XiB)
}

+[vec(B−B0)]
′V−1

0 vec(B−B0)

= [vec(B−B?)]
′V−1

B vec(B−B?)+Q

where

Q =
m+1

∑
i=1

{
[vec(Yi)]

′ (Ωi ⊗ Iτ)
−1vec(Yi)

}
+[vec(B0)]

′V−1
0 vec(B0)− [vec(B?)]

′V−1
B vec(B?)

Thus, the conditional posterior ofΩi is derived as an inverted Wishart distribution asΩi | b,B,Y∼

IW(Ψi,?,ν?,i) whereΨi,? = (Yi −XiB)′ (Yi −XiB)+ψ0,i andν?,i = ti +ν0,i , thus:

p(Ωi | b,B,Y) = C−1
IW |Ωi |−(ti+νi+n+1)/2exp

[
−1

2
tr
(
Ω−1

i Ψi,?
)]

(11)

whereCIW = 2n(ti+ν0,i)/2πn(n−1)/4 ∏n
j=1 Γ{(ti +ν0,i +1− j)/2}|Ψi,?|−(ti+ν0,i)/2, Γ(α)=

∫ ∞
0 xα−1exp(−x)dx

for x > 0. The conditional posterior ofvec(B) is a multivariate normal density with covariance-

variance matrix,VB, that is,

p(vec(B) | b,Ω1, . . . ,Ωm+1,Y) = (2π)−κn/2 |VB|−1/2exp

[
−1

2

{
[vec(B−B?)]

′V−1
B vec(B−B?)

}]
(12)

where
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vec(B?) =

[
V−1

0 +
m+1

∑
i=1

{
Ω−1

i ⊗
(
X′

i Xi
)}]−1[

V−1
0 vec(B0)+

m+1

∑
i=1

{
(Ωi ⊗ Iκ)

−1vec
(
X′

i Yi
)}]

,

(13)

and

VB =

[
V−1

0 +
m+1

∑
i=1

{
Ω−1

i ⊗
(
X′

i Xi
)}]−1

(14)

Given the full set of conditional posterior specifications above, we illustrate the Gibbs sam-

pling algorithm for generating sample draws from the joint posterior. The following steps can be

replicated:

• Step 1: Setj = 1. Specify starting values for the parameters of the model,b(0) B(0), and

Ω(0)
i , whereΩi is a covariance-variance matrix at regimei.

• Step 2a: Compute likelihood probabilities sequentially for each date atb1 = b( j−1)
0 +1, . . . ,b( j−1)

2 −

1 to construct a multinomial distribution. Weight these probabilities such that the sum of

them equals 1.

• Step 2b: Generate a draw for the first break dateb1 on the sample space(b( j−1)
0 ,b( j−1)

2 ) from

p(b( j)
1 | b( j−1)

0 ,b( j−1)
2 ,B( j−1),Ω( j−1)

1 ,Ω( j−1)
2 ,Y) .

• Step 3a: Fori = 3, . . . ,m+ 1, compute likelihood probabilities sequentially for each date

at bi−1 = b( j−1)
i−2 + 1, . . . ,b( j−1)

i − 1 to construct a multinomial distribution. Weight these

probabilities such that the sum of them equals 1.

• Step 3b: Generate a draw of the(i−1)th break dateb( j)
i−1 from the conditional posterior

p(b( j)
i−1 | b( j−1)

i−2 ,b( j−1)
i ,B( j−1),Ω( j−1)

i−1 ,Ω( j−1)
i ,Y). Go back to Step 3a to generate next break

date, but with imposing previously generated break date. Iterate until all breaks are gener-

ated.

• Step 4: Generatevec(B)( j) from p(vec(B) | b( j),Ω( j−1)
i , . . .Ω( j−1)

m+1 ,Y) and convert toB( j).

• Step 5: GenerateΩ( j)
i from p(Ωi | b( j),B( j),Y) for all i = 1, . . . ,m+1.
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• Step 6: Setj = j +1, and go back to Step 2.

Step 2 through to Step 6 can be iteratedN times to obtain the posterior densities. Note that the

first L iterations are discarded in order to remove the effect of the initial values.

3 Bayesian Inference in Co-integrated VAR Model with Multiple Struc-

tural Breaks

3.1 VECM with Multiple Structural Breaks Where the Cointegrating Rank is Sub-

ject to Shift with Breaks

In this subsection, we consider a co-integrated multivariate model with multiple structural breaks

where cointegrating rank and all parameters of the model are subject to shift with breaks. Letyt

denote anI (1) vector of 1×n with r linear cointegrating relations. The long-run multiplier matrix

Π is decomposed asβα, whereα is the adjustment term andβ is the cointegrating vector, and both

α′ andβ aren× r (r ≤ n). Then, a vector error correction model (VECM) withp lags is expressed

as

∆yt = µ+ tδ+yt−1Π+
p−1

∑
l=1

∆yt−l Φl + εt

= µ+ tδ+yt−1βα+
p−1

∑
l=1

∆yt−l Φl + εt (15)

whereε ∼ iid(0,Ω); µ, δ andεt are 1×n; Φ andΩ aren×n.

If all parameters in the VECM (15) are subject tomstructural breaks (m< t) with break points

b1, . . . ,bm, whereb1 < b2 < · · ·< bm, so that the observations can be separated intom+1 regimes,

then the VECM representation withp lag for observationst = p, p+1, . . . ,T, is:

∆yt = µt + tδt +yt−1βtαt +
p−1

∑
l=1

∆yt−l Φl ,t + εt (16)

whereεt are assumedN(0,Ωt).

Equation (??) can be rewritten in the matrix format as:
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Y = ZΠ+XΓ+E = WB+E (17)

where

Y =
[

∆y′p · · · ∆y′T

]′
, W =

[
Z X

]
, B =

[
Π′ Γ′

]′
, E =

[
ε′p · · · ε′T

]′
,

Z =
[

Z1 · · · Zm+1

]
, Zi =

[
si,p−1y′p−1 · · · si,T−1y′T−1

]′
for i = 1, . . . ,m+1,

Π =
[

Π′
1 · · · Π′

m+1

]′
whereΠi = βiαi ,

Γ =
[

µ′1 · · · µ′m+1 δ′1 · · ·δ′m+1 Φ′
1,1 · · · Φ′

1,p−1 · · · · · · Φ′
m+1,1 · · · Φ′

m+1,p−1

]
,

X =
[

X1 X2

]
,

X1 =



s1,p · · · sm+1,p s1,p · · · sm+1,p

s1,p+1 · · · sm+1,[+1 2s1,p+1 · · · 2sm+1,p+1

...
...

...
...

... · · ·

s1,T · · · sm+1,T (T− p+1)s1,T · · · (T− p+1)sm+1,T


,

X2 =



s1,p∆y′p−1 · · · s1,p∆y′1 · · · · · · sm+1,p∆y′p−1 · · · sm+1,p∆y′1

s1,p+1∆y′p · · · s1,p+1∆y′2 · · · · · · sm+1,p+1∆y′p · · · sm+1,p+1∆y′2
...

...
...

...
...

...
...

s1,T∆y′T−1 · · · s1,T∆y′T−p+1 · · · · · · sm+1,T∆y′T−1 · · · sm+1,T∆y′T−p+1


,

Let τ be the number of rows ofY, so thatτ = T − p+ 1, thenX is τ× (np+ 2)(m+ 1), Γ is

(np+ 2)(m+ 1)×n, W is τ× κ whereκ = (np+ n+ 2)(m+ 1), andB is κ×n. si,t in X is an

indicator variable which equals to 1 if regime isi and 0 otherwise. Equation (17) represents the

multivariate regression form of (??).

To estimate the VECM with multiple structural breaks, the method for a VAR model with

breaks presented in the previous section, can be directly applied to estimateb, Ωi , and B =

(Π′,Γ′)′, and Strachan (2003)’s method is applied to decomposeΠi = βiαi , which is based on

the singular value decomposition (SVD) approach by Kleibergen and van Dijk (1998).

There are several Bayesian methods for estimating cointegrating vectors. The prior for the

cointegrating vectorβ, might be chosen as a normal prior or Studentt density withr2 linear re-
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strictions for identification and normalization onβ such thatβ′ = (Ir ,β′?), whereβ? is (n− r) ×

r unrestricted matrix. This prior is used by Bauwens and Lubrano (1996) and Kleibergen and

Paap (2002), but criticized by Strachan (2003) as this prior with the linear identifying restrictions

on β is very likely to be invalid because this normalization restricts the estimable region of the

cointegrating space, and the prior with this normalization is not invariant with respect to the or-

dering of the variables. Strachan (2003) proposes the method of identifying the space spanned

by the cointegrating vectors. Strachan and van Dijk (2003) and Strachan and Inder (2004) dis-

cuss further problems associated with the use of linear identifying restrictions, and propose the

Grassman approach which is valid prior on the cointegrating space. The identifying restrictions

areβ′β = Ir , that do not distort the weight on the cointegrating space, unlike the linear restrictions

which entail several problems. Koop et al. (2004) provide general survey of Bayesian inference in

the cointegrated model with a focus on the prior elicitation for the cointegrating space.

Strachan and Inder (2004) propose a simpler solution than Strachan (2003) to estimate the

cointegrating vector and to detect the cointegration rank that uses a Laplace approximation. How-

ever, their method cannot be directly applied in our structural break model where the cointegration

rank is subject to shift with breaks. Their transformation of the VECM in (??) is Y = WB+ E

whereW = (X,Zβ) andB = (Γ′,α′)′, instead of (17), that isY = WB+E whereW = (X,Z) and

B= (Γ′,Π′)′, so that the number of rank in each of the subsamples should be specified to generate

draws ofB within the Gibbs sampler. In order to use their method, we estimate total of(n+1)(m+1)

models and calculate the Bayes factors for all these models to determine the number of cointegra-

tion relations in each of the regimes. By transforming the VECM to (17), generating draws ofB

does not depend on the number of rank, and thus we only need to estimate and calculate the Bayes

factors of total of(n+ 1)(m+ 1) models. However, their method can be used for models where

the cointegrating rank is not subject to shift with breaks as shown in the next subsection.

In this paper Strachan’s (2003) approach is used to identify the cointegrating vectors and the

adjustment terms using the SVD ofΠ, and the number of rank is determined using approach based

on the singular value decomposition method by Kleibergen and Paap (2002) and Kleibergen and

van Dijk (1998) as Strachan (2003) applies this method.

Prior specifications forb, Ωi , andvec(B) are the same as those of a VAR model shown in the
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previous section;p(b)∼U(p+1,T−1), Ωi ∼ IW(ψ0,i ,ν0,i), andvec(B)∼MN(vec(B0),V0). We

assume thatΠi , i = 1, . . . ,m+1, is distributed independently, so thatV0 (nκ×nκ) is defined as

V0 =

 ΣΠ 0

0 ΣΓ

 (18)

whereΣΠ is n2(m+ 1)× n2(m+ 1) matrix such thatΣΠ = VΠ0 ⊗ In(m+1), VΠ0 (n× n) is prior

covariance-variance matrix ofΠi ∼ MVN(Π0,VΠ0); ΣΓ is n(np+ 2)(m+ 1)×n(np+ 2)(m+ 1)

matrix and is prior covariance-variance matrix ofΓ | Π ∼MVN(Γ0,ΣΓ).

With these priors, the posterior densities forb, Ω, andvec(B) are given as:

p(bi | B,Ωi ,Yi) ∝ p(bi | bi−1,bi+1,B,Ωi ,Ωi+1,Yi) for ∀i (19)

Ωi | b,B,Y ∼ IW
(
(Yi −WiB)′ (Yi −WiB)+ψ0,i , ti +ν0,i

)
for ∀i (20)

vec(B) | b,Ω1, . . . ,Ωm+1,Y ∼ N(vec(B?) ,VB) (21)

wherevec(B?) andVB are given as

vec(B?) =

[
V−1

0 +
m+1

∑
i=1

{
Ω−1

i ⊗
(
W′

i Wi
)}]−1[

V−1
0 vec(B0)+

m+1

∑
i=1

{
(Ωi ⊗ Iκ)

−1vec
(
W′

i Yi
)}]

,

and

VB =

[
V−1

0 +
m+1

∑
i=1

{
Ω−1

i ⊗
(
W′

i Wi
)}]−1

.

After drawing the posterior ofB = (Γ′,Π′)′ from (21) in the Gibbs sampling, it is possible

to identify the cointegrating vectors and the adjustment terms using Strachan’s (2003) approach

that is based on Kleibergen and van Dijk’s (1998) SVD approach. Following Strachan (2003), we

define the matricesSjk,i for j,k = 0,1,2 asSjk,i = M jk,i −M j2,iM
−1
22,iM2 j,i whereM jk,i = (ti +(p+

3)n+ 1)−1Σti
t=ti−1+1z′j,tzk,t , z0,t = ∆yt , z1,t = yt−1, andz2,t = xt . With the identifying restrictions
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imposed onβi in the normalizationsβ′iS11,iβi = Ir andβ′iS10,iS
−1
00,iS01,iβi = Λi = diag(γ1,i , . . . ,γr,i)

γ1,i > · · ·> γr,i , a total number of the restrictions isr2, the transformation is given as:

Πi = βiαi +S−1
11,iβ⊥,iλiα⊥.iΣ̃i (22)

whereΣ̃i = S00,i−S01,iS
−1
11,iS10,i , n× (n− r) matricesβ′⊥,i andα⊥,i are orthogonal toβ′i andαi such

that β′iβ⊥,i = 0 andα⊥,iα′i = 0. With this transformation, unrestricted (full rank) model is given

by:

∆yt = yt−1βtαt +yt−1S−1
11,tβ⊥,tλtα⊥,t Σ̃t +xtΦ+ εt (23)

If λi = 0, thenΠi is a reduced rank and thus the cointegration occurs. Thus, the posterior for

ζi = (vec(αi),vec(βi)) is obtained as

p(ζi | y) = p(ζi ,vec(λi) | y) |λi=0= p(vec(Πi),ζi ,vec(λi)) |λi=0

∣∣J(vec(Πi),ζi ,vec(λi)) |λi=0

∣∣
(24)

wherep(ζi ,vec(λi) | y) is posterior obtained from unrestricted (full rank) model in (23);|J(Πi ,(ζi ,vec(λi)))|

is the Jacobian for the transformation. See Appendix of Strachan (2003) for derivation of this Ja-

cobian.

DefineΠ?
i by Πi = S−1/2

11,i Π?
i Σ̃1/2

i , then the following transformation by the SVD is given as:

Π?
i = UiSiV

′
i =

[
U1,i U2,i

] S1,i 0

0 S2,i


 V ′

1,i

V ′
2,i


= U1,iS1,iV

′
1,i +U2,iS2,iV

′
2,i (25)

whereUi are the eigenvectors ofΠ?
i Π?

i
′, U1,i andV ′

1,i aren× r, U2,i andV2,i aren× (n− r) andS1,i

andS2,i are diagonalr× r and(n− r)×(n− r). Define ther× r orthogonal matrixϒi (thus,ϒiϒ′i =

ϒ′iϒi = Ir) that contains the eigenvectors of theU ′
1,iS

−1/2
11,i S10,iS

−1
00,iS01,iS

−1/2
11,i U1,i , and(n− r)× (n−

r) orthogonal matricesϒ1,i andϒ2,i that contain the eigenvector of the matricesU ′
2,iS

−1
11,iU2,i and
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V ′
2,iΣ̃iV2,i respectively. Then the SVD in (25) is expressed as

Π?
i = U1,iϒiϒ′iS1,iV

′
1,i +U2,iϒ1,iϒ1,iS2,iϒ2,iϒ′2,iV

′
2,i (26)

and we obtain:

βi = S−1/2
11,i U1,iϒi (27)

αi = ϒ′iS1.iV
′
1,iΣ̃

1/2
i (28)

λr,i = ϒ′1,iS2,iϒ2,i (29)

where the square root matricesS−1/2
11,i andΣ̃1/2

i are defined as diagonal matrices with each of the

diagonal elements replaced by its square root. From (27)-(29), the transformation (22) can be

obtained. To drawζi from (24), run the Metropolis-Hastings algorithm to draw from the posterior

p(λi ,αi ,βi ,Ωi | y) = g(λi |αi ,βi ,Ωi ,y)p(αi ,βi ,λi ,Ωi | y) whereg(λi |αi ,βi ,Ωi ,y) is the candidate-

generating function that can be chosen by derivation from the conditional posterior density for

vec(B) in (21). With the assumption thatΠi , i = 1, . . . ,m+ 1, is distributed independently each

other such thatΠi ∼ MVN(Π0,VΠ0) whereVΠ0(n× n) is the firstm+ 1 diagonal matrix ofV0

defined in (18),p(B) is written as

p(B) = p(Π)p(Γ | Π)

=

{
m+1

∏
i=1

p(Πi)

}
p(Γ | Π1, . . . ,Πm+1) (30)

Then, the conditional posterior density forΠi can be written asΠi | b,Ωi ,Y ∼ MVN(Π?,i ,VΠ,i,?)

whereVΠ,?,i = (V−1
Π0

+Z′i ZiΩ−1
i )−1 andΠ?,i =VΠ,?,i(V−1

Π0
Π0+Z′i (Yi−XiΓi)Ωi) that is derived from

(21). The decomposition of the trace in the posterior, as shown in Kleibergen and Paap (2002),

gives a convenient choice forg is,
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g(λi | αi ,βi ,Ωi ,y)

= (2π)−(n−r)2/2
∣∣∣α⊥,iΣ̃iα′⊥,i

∣∣∣(n−r)/2
∣∣∣∣β′⊥,iS

−1
11,i

(
V−1

Π0
+Z′i ZiΩ−1

i

)−1
β⊥,iS

−1
11,i

∣∣∣∣(n−r)/2

×exp

[
−1

2
tr

{
β′⊥,iS

−1
11,i

(
V−1

Π0
+Z′i ZiΩ−1

i

)−1
S−1

11,iβ⊥,i(λi − λ̃i)α⊥,iΣ̃iα′⊥,i(λi − λ̃i)′
}]

(31)

where

λ̃i =
{

β′⊥,iS
−1
11,i

(
V−1

Π0
+Z′i ZiΩ−1

i

)−1
S−1

11,iβ⊥,i

}−1

β′⊥,iS
−1
11,i

(
V−1

Π0
+Z′i ZiΩ−1

i

)−1
Σ̃iα⊥,i(α⊥,iΣ̃iα′⊥,i)

−1.

Appendix B provides the decomposition of the trace for the candidate-generating functiong in

(31). With the j-th draws, we can calculate the weightw( j) as follows;

w( j)
i =

g
(

λ( j)
i | αi ,βi ,Ωi ,y

)
p
(

α( j)
i ,β( j)

i ,λ( j)
i ,Ω( j)

i | y
)
|λi=o

p(α( j)
i ,β( j)

i ,λ( j)
i ,Ω( j)

i | y)
. (32)

Given the full set of conditional posterior specifications above, we illustrate the Metropolis-

within-Gibbs sampling algorithm for generating sample draws from the joint posterior. The fol-

lowing steps are replicatedN times to obtain the posterior densities with the firstL iterations

discarded:

• Step 1: Setj = 1. Specify starting values for the parameters of the model,b(0) B(0), and

Ω(0)
i .

• Step 2 - 5: Generateb( j), B( j) andΩ( j)
i as described in the previous section of the sampling

scheme for the VAR model.

• Step 6a: Seti = 1. From the posterior ofB( j) =(Γ( j)′Π( j)′)′ whereΠ( j) =(Π( j)′
1 · · ·Π( j)′

m+1)’,

perform the SVD ofΠ( j)
i =U ( j)

i S( j)
i V( j)

i
′, and then computeζ( j)

i = (α( j)
i ,β( j)

i ) given the num-

ber of rankr using (28) and (34).

• Step 6b: Generate(ζ( j)
i ,λ( j)

i ) and fromp(ζi ,λi | y), and calculatew( j)
i .
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• Step 6c: Accept(ζ( j)
i ,λ( j)

i ) with probability min(w( j)
i /w( j−1)

i ,1), otherwise(ζ( j)
i ,λ( j)

i ) =

(ζ( j−1)
i ,λ( j−1)

i ).

• Step 6d: Seti = i +1, and go back to Step 6a fori = 2, . . . ,m+1.

• Step 7: Setj = j +1, and go back to Step 2

To determining the number of rankr in each regimei = 1, . . . ,m+1, we calculate the Bayes factors

in Section 5.

3.2 VECM with Multiple Structural Breaks Where the Cointegrating Rank is Con-

stant

The previous subsection dealt with general VECM with multiple structural breaks. If, however,

the cointegrating rank is restricted to be constant over the whole sample, a simpler method by

Strachan and Inder (2004) can be applied. The structural break VECM withε ∼ N(0,Ωt)

∆yt = µt + tδt +yt−1βtα′t +
p−1

∑
l=1

∆yt−l Φl ,t + εt ,

can be written as, instead of (17),Y =WB+E whereY =(∆y′p, · · · ,∆y′T),W =(Z1β1, · · · ,Zm+1βm+1,X),

B = (α′,Γ′)′, α = (α′1, · · · ,α′m+1)’, E = ( ε′pσ′p · · · ε′Tσ′T )′, Zi = (si,p−1y′p−1, . . . ,si,T−1y′T−1)
′

for i = 1, . . . ,m+1. Γ andX are defined as in (17). Letτ be the number of rows ofY, thenW is

τ×κ matrix andB is κ×n matrix, whereκ = (np+2+ r)(m+1).

Prior specification forb, Ωi , andvec(B) are the same as those of previous subsection asp(b)∼

U(p+ 1,T − 1), Ωi ∼ IW(ψ0,i ,ν0,i), andvec(B) ∼ MN(vec(B0),V0). We assume thatαi , i =

1, . . . ,m+1, is distributed independently, so thatV0 (nκ×nκ) is defined as

V0 =

 Σα 0

0 ΣΓ

 (33)

whereΣα isnr(m+1)×nr(m+1) matrix such thatΣα =Vα0⊗Ir(m+1),Vα0(n×n) is prior covariance-

variance matrix ofαi ∼ MVN(α0,Vα0); ΣΓ is n(np+2)(m+1)×n(np+2)(m+1) matrix and is

prior covariance-variance matrix ofΓ | α ∼MVN(Γ0,ΣΓ).
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With these priors, the conditional posterior forb, Ω, andB are given as exactly same as (19),

(20), and (21) respectively. However, we now have to specify a prior forβi in W. Since the linear

normalization,β′ = (Ir ,β∗′), is not valid as discussed by Strachan (2003) and Strachan and Inder

(2004), we apply the Grassman approach by Strachan and Inder (2004) that specifies the prior on

the cointegrating space rather than on the cointegrating vectors asp(β) ∝ π−(n−r)r ∏r
j=1

Γ[(n+1− j)/2]
Γ[(r+1− j)/2]

whereΓ[q] =
∫ ∞

0 uq−1e−udu, q> 0 with identification restrictions,β′β = In. According to Strachan

and Inder (2004), the resulting posterior forβ is

p(β | y) ∝ p(β)
∣∣β′D0β

∣∣−τ/2 ∣∣β′D1β
∣∣(τ−n)/2

(34)

whereD0 = D1−D2, D1 = S11 and D2 = S10S
−1
00 S01, Sjk = M jk −M j2M−1

22 M2k, M jk = h jk +

∑τ
t=1z′j,tzk,t , h jk = 0 if j 6= k, h j j = ϕI . To drawβ from (34), the conditional posterior forβ in (34)

is not a known form and thus can be drawn by employing importance sampling, the Metropolis-

Hastings algorithm (see Chib and Greenberg, 1995) or the Griddy-Gibbs sampling (see Ritter and

Tanner, 1992). Strachan and Inder (2004) use the Laplace approximation instead of the simulation

methods. In this paper, we choose the Griddy-Gibbs sampling technique because the algorithm

does not require the specification of the candidate-generating function that approximate the poste-

rior. Choosing the Griddy-Gibbs sampler, however, requires the appropriate choice of the grid of

points and the computing cost is much higher than other algorithms. Appendix C briefly explains

the algorithm of the Griddy-Gibbs sampler for convenience.

4 Detecting for the Number of the Structural Breaks by Bayes Fac-

tors

In this section we consider detecting for the number of structural breaks as a problem of model

selection. In Bayesian context, model selection for modeli and j means computing the posterior

odds ratio, that is the ratio of their posterior model probabilities,POi j :

POi j =
p(Mi |Y)
p(M j |Y)

=
p(Y | Mi)
p(Y | M j)

· p(Mi)
p(M j)

= BFi j ·
p(Mi)
p(M j)

(35)
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whereBFi j denotes Bayes factor, defined as the ratio of marginal likelihood,p(Y | Mi) andp(Y |

M j). We compute the posterior odds for all possible modelsi = 1, . . . ,J and then obtain the

posterior probability for each model by computing

Pr(Mi |Y) =
POi j

∑J
m=1POm j

(36)

whereJ is the number of models we consider.

There are several methods to compute the Bayes factor. Chib (1995) provides a method of

computing the marginal likelihood that utilizes the output of the Gibbs sampler. The marginal

likelihood can be expressed from the Bayes rule as

p(Y | Mi) =
p(Y | θ?

i )p(θ?
i )

p(θ?
i |Y)

(37)

wherep(Y | θ?
i ) is the likelihood for Modeli evaluated atθ?

i , which is the Gibbs output or the

posterior mean ofθi , p(θ?
i ) is the prior density andp(θ?

i |Y) is the posterior density. If the exact

forms of the marginal posteriors are not known like our case,p(θ?
i |Y) cannot be calculated. To

estimate the marginal posterior density evaluated atθ?
i using the conditional posteriors, first block

θ into l segments asθ = (θ′1, . . . ,θ′l )
′, and defineϕi−1 = (θ′1, . . . ,θ′i−1) andϕi+1 = (θ′i+1, . . . ,θ′l ).

Since p(θ? | Y) = ∏l
i=1 p(θ?

i | Y,ϕ?
i−1), we can drawθ( j)

i , ϕi+1,( j), where j indicates the Gibbs

output j = 1, . . . ,N, from (θi , . . . ,θl ) = (θi ,ϕi+1) ∼ p(θi ,ϕi+1 |Y,ϕ?
i−1), and then estimatêp(θ?

i |

Y,ϕ?
i−1) as

p̂(θ?
i | y,ϕ?

i−1) =
1
N

N

∑
j=1

p(θ?
i |Y,ϕ?

i−1,ϕ
i+1,( j)).

Thus, the posteriorp(θ?
i |Y) can be estimated as

p̂(θ? |Y) =
l

∏
i=1

{
1
N

N

∑
j=1

p(θ?
i |Y,ϕ?

i−1,ϕ
i+1,( j))

}
. (38)

Note thatp(b1, . . . ,bm |B,Ω1, . . . ,Ωm+1,Y) = ∏m
i=1 p(bi | bi−1,bi+1,B,Ωi ,Ωi+1,Yi) can be directly

obtained from the Gibbs algorithm shown in Step 2 (a) in the section 2.3.

Chib’s method can be used to determine the number of breaks for VAR models in Section 2

and cointegrated VAR models where the cointegrating rank is subject to change with breaks given
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in Section 3.1, however, it cannot be used for cointegrated VAR models where the cointegrating

rank is constant given in Section 3.2 due to non-standard form of the posterior forβ.1 In this case,

we can adopt the Schwarz BIC method to approximate the Bayes factors as Yao (1988), Liu et al.

(1997), and Wang and Zivot (2000) use the Schwarz BIC to determine the number of breaks. The

Schwarz BIC is defined as

BIC j=-2 lnL
(

θ̂ j |Y;M j

)
+q j ln(t) (39)

whereL
(

θ̂ j |Y;M j

)
is the likelihood for modelj evaluated at̂θ j , the posterior means of the

parameters for modelj; q j denotes the total number of estimated parameters in the modelj and

M j denotes the model indicator for modelj. With the Schwarz BIC the Bayes factor for modeli

against modelj can be approximated byBFi j ≈ exp[−0.5(BICi −BIC j)]

The BIC method described above gives a rough approximation to the Bayes factors, which is

easy to use and does not require evaluation of the prior distribution, as Kass and Raftery (1995)

note. However, it only provides an approximation, not an exact value of the Bayes factor. In this

paper, the BIC method is only adopted for cointegrated VAR models where the rank is constant.

For VAR models and cointegrated VAR models where the rank is allowed to change with breaks,

we adopt Chib (1995)’s method to compute marginal likelihoodp(y |Mi) to determine the number

of structural breaks.2

5 Determining the Cointegrating Rank

To determine the cointegrating rank for the VECM in Subsection 3.1 where the cointegrating rank

is also subject to change with breaks, the Bayes factorBF(r | n) is calculated using the Savage-

Dickey density ratio, that is the ratio of the marginal posterior density and the marginal prior

density. With the approach of Chen (1994), the Bayes factorBF(r | n) for all possible rank except

r = n (that is, full rank) can be obtained using draws ofαi , βi , andλi from the posterior as follows;

1If the posterior is generated from non-standard form of density through the Metropolis-Hastings algorithm, one can
estimate the marginal likelihood adopting a method by Chib and Jeliazkov (2001).

2An alternative approach for calculating the marginal likelihood is using the harmonic mean of the likelihood as

f (Y | Mi) = N
[
∑N

j=1L(θ( j) |Y)
]−1

, whereθ( j), j = 1, . . . ,N, are Gibbs output. Computing the harmonic mean of the

likelihood is simple, however, as described in Kass and Raftery (1995), this method may exhibit unstable results.
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1
cr,i

{
1
N

N

∑
j=1

w( j)
i

}
→

BFi(r | n) =
1

cr,i

∫ ∫ ∫ ∫
g(λi | αi ,βi ,Ωi ,y)p(αi ,βi ,λi ,Ωi | y) |λi=0 dΩidλidβidαi∫ ∫ ∫ ∫

p(αi ,βi ,λi ,Ωi | y)dΩidλidβidαi
(40)

wherecr,i is a constant depending uponr and is calculated as:

ci,r =
∫ ∫ ∫ ∫

p(αi ,βi ,λi ,Ωi) |λi=0 h(λi | αi ,βi ,Ωi)dΩidλidβidαi∫ ∫ ∫ ∫
p(αi ,βi ,λi ,Ωi)dΩidλidβidαi

(41)

whereh(λi | αi ,βi ,Ωi) is a proper conditional density. As shown in Kleibergen and Paap (2002),

an appropriate density functionh for the prior specification ofp(B) is a density function which is

close to the conditional prior ofλ, thus

h(λi | αi ,βi ,Ωi) = h(λi | αi ,βi) = (2π)−(n−r)2/2
∣∣∣α⊥iΣ̃iα′⊥,i

∣∣∣(n−r)/2 ∣∣∣β′⊥,iV
−1
Π0

β⊥,i

∣∣∣(n−r)/2

×exp

[
−1

2
tr
{

β′⊥,iV
−1
Π0

β⊥,i(λi −ξi)α⊥,iΣ̃iα′⊥,i(λi −ξi)′
}]

(42)

whereξi = (β′⊥,iV
−1
Π0

β⊥,i)−1β′⊥,iV
−1
Π0

(Π0−βiαi)Σ̃iα′⊥,i(α⊥,iΣ̃iα′⊥,i)
−1. To obtain the value of (41),

we simulate from the prior

p(ζi ,vec(λi),Ωi) ∝ p(vec(Πi),Ωi) |Πi=βiαi+S−1
11,iβ⊥,iλiα⊥,i Σ̃i

|J(vec(Πi),(ζi ,vec(λi)))|

to compute the ratio of the integrands of the numerator and denominator in (41), then take an

average of these simulated ratios to estimateci,r . See Kleibergen and Paap (2002) for details.

For a model where the number of rank is not subject to change with breaks as shown in

Subsection 3.2, the Bayes factors for all possible non-zero rank are obtained using the Savage-

Dickey density ratio as follows:

BF(r = 0 | r 6= 0) = BF(α = 0 | α 6= 0)

=
p(α = 0 | y)

p(α = 0)
(43)
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where the denominator is the prior density evaluated atα = 0; and the numerator is the poste-

rior density evaluated atα = 0. The prior forB, vec(B) ∼ MN(vec(B0),V0) with V0 defined in

(33), impliesp(α) = ∏m+1
i=1 p(αi), whereαi ∼ MVN(α0,Vα0). The posterior forαi is also inde-

pendently distributed asαi | b,Ωi ,Yi ∼ MVN(α?,i ,Vα,?,i) whereVα,?,i = (V−1
α0

+ Z′i ZiΩ−1
i )−1 and

α?,i = Vα,?,i(V−1
α0

α0 +Z′i (Yi −XiΓi)Ωi). Since

1
N−N0

N

∑
n=N0+1

p(α = 0 | b(n),Ω(n),Y)→ p(α = 0 |Y) (44)

asN goes to infinity, the numerator of (43) can be easily calculated.

6 Simulation

In this section Monte Carlo simulation is conducted to examine the performance of the approach

outlined in the previous sections. A simulation for VAR models with breaks is followed by another

for VECM with breaks. Two structural breaks are given in artificially generated data for both

simulations. We are interested in examining the performance in both detecting the number of

breaks when the number of the breaks are unknown and the estimation of the location of the

breaks when the number of breaks are correctly specified.

6.1 Monte Carlo Simulation: VAR with Structural Breaks

The first Monte Carlo simulation is for vector autoregressive models with multiple structural

breaks. The following five data generation processes (DGPs) of two-variable VAR models with

two structural breaks are considered:

DGP 1:yt = µ1 +yt−1Φ1 +σ1εt

DGP 2:yt = µt +yt−1Φ1 +σ1εt

DGP 3:yt = µt +yt−1Φ1 +σtεt

DGP 4:yt = µt +yt−1Φt +σ1εt
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DGP 5:yt = µt +yt−1Φt +σtεt

for t = 1,2, . . . ,300,

whereεt ∼ iidN(0,1), µt = µ1 = (−0.1,−0.1), Φt = Φ1 = 0.2I2, σt = σ1 = 0.02I2 for 0< t < 100,

µt = µ2 = (0,0), Φt = Φ2 =

 0.3 −0.2

−0.2 0.5

, σt = σ2 = 0.1I2, for 100≤ t < 200,µt = µ3 =

(0.1,0.1), Φt = Φ3 =−0.2I2 , σt = σ3 = 0.02I2, for 200≤ t ≤ 300. DGP 1 contains no structural

break while other models contain two structural breaks. In DGP 2, only the constant term changes

with breaks. DGP 3 allows the constant terms and volatility to change with breaks. DGP 4 allows

µ and Φ to change with breaks. DGP 5 is the most general model in which breaks affect all

parameters of the model.

The Gibbs sampling algorithm presented in Subsection 2.3 is employed for the estimation of

models form= 0,1, . . . ,4 break points. For prior parameters, we setΨ0,i = 0.1I2 andν0,i = 2.001

for all i for the variance-covariance prior in (4),B0 = 0 andV0 = 100× Ink in (5) to ensure fairly

large variance for representing prior ignorance. The number of lags in VAR is assumed to be

known. Also, we assume that, except the number of breaks, correct model specifications are

known for each model. We assign an equal prior probability to each model withi breaks, so that

Pr(m=i)
Pr(m=0) = 13. After running the Gibbs sampler for 500 iterations, we save the next 2,000 draws

for inference. This procedure is replicated 500 times.

Table 1 summarizes the results of the Monte Carlo simulations. Each element in the Table

shows the average posterior probability out of 500 replications for each number of breaks. We

compute the posterior probability with Chib’s method described in Section 4. For DGP 1, where

there are no breaks, the average posterior probability whenm= 0 is 94.2%. For DGP 2, 3, 4, and

5, the correct number of breaks,m = 2, is detected at about 94.5%, 99.5%, 96.7%, and 98.1%

respectively. Thus, the DGP of the VAR models with breaks in volatility (DGP3 and 5) perform

better than those of the homoskedastic VAR. Overall most of the iterations choose the correct

number of breaks. Table 2 reports that the Monte Carlo mean of estimated break points that are

the mode of the posterior when the correct number of breaksm= 2 is chosen. The estimates are

3Inclan (1993) and Wang and Zivot (2000) use the prior odds as an independent Bernoulli process with probability
p∈ [0,1].
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all close to the true values,b = (100,200).

6.2 Monte Carlo Simulation: VECM with Structural Breaks

The second experiment is for vector error correction models with multiple structural breaks. We

consider the following five data generation processes (DGPs) of a two-variable co-integrated

model:

DGP 1:∆yt = µ+yt−1βα+σεt

DGP 2:∆yt = µt +yt−1βα+σεt

DGP 3:∆yt = µt +yt−1βα+σtεt

DGP 4:∆yt = µt +yt−1βαt +σεt

DGP 5:∆yt = µt +yt−1βαt +σtεt

for t = 1,2, . . . ,300.

whereεt ∼ iidN(0,1). DGP 1 represents a no structural break model. DGP 2 is a structural break

model inµ only, and DGP 3 allowsµ andσ to change with breaks. DGP 4 represents a structural

break model inµ, α. DGP 5 allowsµ, α andσ to change with breaks. In both DGP 4 and 5,

the cointegrating rank is constant over the whole sample. The parameters given in each DGP 2-5

are shown in Table 3. For the DGP 1, the parameters are set as:µ = µ1 of the DGP 2, and other

parameters are the same as those of the DGP 2. These values are obtained by using Japanese short-

and long-term interest rates.

The Gibbs sampling algorithm in Section 3.2 is implemented for the estimation of models for

m= 0,1, . . . ,4 break points. For prior parameters, we set the same values forν0,i , ψ0,i , B0, andV0

as used in the previous simulation for the VAR models with breaks to ensure fairly large variance

for representing prior ignorance. The cointegration rank and the number of the lags in VECM are

assumed known. Also, we assume that correct model specifications are known for each model

except the number of breaks. We assign an equal prior probability to each model withi breaks, so

that Pr(m=i)
Pr(m=0) = 1. After running the Gibbs sampler for 500 iterations, we save the next 2,000 draws
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for inference. This procedure is replicated 500 times.

Table 4 summarizes the results of the Monte Carlo simulations for model selection. Each

element in the Table shows the average posterior probability out of 500 replications for each num-

ber of breaks. Unlike in the previous simulation for the VAR model, the Schwarz BIC method

is adopted to calculate the marginal likelihood for the posterior probabilities. The Table shows

that in most of the cases the correct number of break points,m= 2, is selected with dominantly

high posterior probabilities. The heteroscedastic DGPs (DGP 3 and 5) perform better than the ho-

moscedastic DGPs (DGP 2 and 4), as in the case of the simulation for VAR models in the previous

subsection. DGP 5 shows the best performance with 94.4% of the time form= 2.

Table 5 reports the Monte Carlo mode of the estimated break points. As in VAR models

cases, these results show that in most of the cases the estimates are all closed to the true values,

b = (100,200). The results of the homoscedastic DGPs, DGP 2 and DGP 4 show much higher

standard deviations in estimating the break points.

7 Application 1: Predictive Power of the Yield Curve

In this section, we illustrate the instability of the predictive power of the yield curve on output

growth in the United States as an empirical application of the VAR model with multiple structural

breaks shown in Section 2.

7.1 Predictive Power of the Yield Curve on Output Growth

The predictive relationships between the slope of the yield curve and subsequent inflation or real

output have been extensively studied. The consumption capital asset pricing model (CCAPM) with

habit formation by Campbell and Cochrane (1999) shows that the term structure is related to the

future economic activity - positive slopes of the real term structure precede economic expansion

and negative slopes precede economic recession. Mishkin (1990a, 1990b), based on the Fisher

decomposition, finds that the yield curve can predict inflation. Although Chen (1991), Estrella

and Hardouvel (1991) and other studies find a positive correlation between the yield curve slopes

and future real economic activities, Estrella et al (2003) suggest verifying the stability of the
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relationship because the predictive power may depend on factors that may change over time such

as monetary policy reaction function, real productivity, or monetary shocks.

Estrella et al (2003) investigate the instability of the predictive power based on the following

model:

ipk,t = β0 +β1spt + εt (45)

wherespt is the spread between the two interest rates of bonds with different maturity; andipk,t

is the future growth rate of industrial production,IPt , at a forecast horizonk and is defined as

ipk,t ≡ (1200/k)ln(IPt+k/IPt). We consider the forecast horizon of one year, that is,k = 12,

as Estrella et al (2003) show that the predictive power of the spread on industrial production is

maximum atk = 12.

7.2 Estimation Results

Instead of the linear single equation model given in (45), where future growth rate of industrial

production is treated as the endogenous variable, we consider VAR models withp= 3,4 and 5 lag

terms as:

Xt = µt +
p

∑
i=1

Xt−iΦi + εt (46)

whereXt = (spt , ipk,t) andεt ∼ iidN(0,Ωt). That is, we consider a VAR model with structural

breaks in the intercept termµ and the volatilityΩ.4 The data for this model are,IPt , the US indus-

trial production,r l ,t , 10-year US treasury rate as a long-term interest rate, andrs,t , the Federal fund

rate as a short-term interest rate, based on monthly data obtained from the Saint Louis Federal

Reserve Bank. The sample ranges from 1970:01 to 2005:11 with 430 observations. The two vari-

ables,spt ≡ r l ,t − rs,t andip12,t ≡ 100ln(IPt+12/IPt), are plotted in Figure 1. The prior parameters

are the same as those used in the Monte Carlo simulation in Section 6.1. The Gibbs sampling is

performed with 10,000 draws and the first 1,000 discarded for the VAR models with the number

4We also consider other models such thatΦi also changes with breaks or the homoskedastic models whereΩ does
not change over time; however, the results prove to be insignificant as the Bayes factors are much lower than those in
the model (46).
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of structural breaksm= 0,1, . . . ,4 and the lagsp = 3,4 and 5.

Table 6 reports the Gibbs sampling results of model selection for the number of structural

breaks,m, and the lag in the VAR,p. A VAR model with m= 3 andp = 4 results in the highest

posterior model probability with 93.15%. Clearly, a VAR model with no break (m= 0) is rejected

with nearly zero percent of the posterior model probability.

The estimates of the break points and other parameters of the VAR model withm = 3 and

p = 4 are presented in Table 7. The posterior mass of each break date is plotted in Figure 2.

The first break point is detected in the 95% HPDI (Highest Posterior Density Interval) between

1973:09 and 1975:07 with the posterior mode 1974:07. After the first break the variance of the

interest rate spread decreased significantly and the productivity growth changed due to the first oil

shock. The second break point is detected in the 95% HPDI between 1977:10 and 1979:10 with

the posterior mode 1978:11. This second break date is associated with the advent of Fed Chairman

Volcker in October 1979, initiating some fundamental changes until October 1982. However, the

HPDI of the second date merely covers the assumed break date, October 1979, in the tail. The

variance-covariance matrix of the regime between the second and third break dates,Ω3, is much

larger than that of the previous regime,Ω2. The third estimated break date is found between

1982:09 and 1983:03 with the posterior mode 1983:01. This third break date is associated with

the completion of the Volcker’s monetary policies of the period with thenon-borrowed reserves

operating procedure,while the estimated mode of the third date is not exactly matched with the

assumed date but the HPDI merely covers the assumed date in the tail. After the third break date

the variance of both the spread and the industrial productivity growth was much reduced as shown

in Ω4.

8 Application 2: US Term Structure of Interest Rates

In this section, we analyze the US term structure of interest rates using the cointegration model

with multiple structural breaks presented in Section 3.
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8.1 The Expectations Hypothesis

The term structure of interest rates states that the expected future spot rate is equal to the future

rate plus a time-invariant term premium. For an overview of the expectations hypothesis theory,

see Shiller (1990). The continuously compounded yield to maturity for anf period bond is defined

asr f ,t = −(1/ f ) pf ,t wherepf ,t denote the log of the price of a unit-par-value discount bond at

datet with f periods to maturity, and the one-period future rate of return, earned from periodt + f

to t + f +1, is given by 1+Ff ,t = Pf ,t/Pf+1,t . Let r f ,t denote the yield to maturityf at t. Then the

expectations hypothesis implies:

r f ,t − r1,t = f−1
f−1

∑
j=1

j

∑
i=1

Et (∆r1,t+i)+L f (47)

whereL f = f−1 ∑ f−1
j=0 Λ j andΛ j is the term premium. Ifr1,t is integrated of order one, thenr f ,t

must be integrated of order one andyf ,t andy1,t are cointegrated with cointegration vector (1, -1),

which is analyzed by Campbell and Shiller (1987). This cointegration relationship should be held

in any pair of yield to maturity.

However, many studies find that the expectations hypothesis is rejected for US data. Hall et al

(1992), and Engsted and Tanggaard (1994) consider this is due to the instability for interest rates

between September 1979 and October 1982, known as the period with thenon-borrowed reserves

operating procedure. Taking this period into consideration, several studies such as Hansen and Jo-

hansen (1999), Bliss and Smith (1998), and Hansen (2003) show that the expectations hypothesis

is held when structural breaks are imposed into the models.

8.2 Estimation Results

We analyze the US term structure of interest rates for detecting structural breaks in a vector error

correction model applying the method outlined in Section 3. The data we use are the same as those

of the previous application, that is, the Federal fund rate as a short-term interest rate and 10-year

treasury bond yield as a long-term interest rate based on monthly data from the Saint Louis Federal

Reserve Bank ranges from 1970:01 to 2006:01, with 432 observations. These series are plotted in

Figure 3.
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Let yt = (r l ,t , rs,t), wherer l ,t denotes the long-term interest rate at timet andrs,t denotes the

short-term interest rate at timet, then the VECM with multiple structural breaks in the coin-

tegrating rank, the adjustment termα, the cointegrating vectorβ, the risk premiumδ and the

covariance-variance matrixΩ can be expressed from the Granger representation theorem as:

Model 1: ∆yt = (yt−1βt −δt)αt +
p−1

∑
i=1

∆yt−iΨi + εt

= µt +yt−1βtαt +
p−1

∑
i=1

∆yt−iΨi + εt (48)

whereεt ∼ N(0,Ωt) andµt = −δtαt . Thus,µt is restricted as its space spanned byαt . However,

we ignore this restriction asµt is independent upon the space spanned byαt . Note that the risk

premiumδ is assumed to be constant in a given regime. This model is estimated using a method

in Section 3.1, which is based on Strachan’s (2003) approach with the Metropolis-within-Gibbs

sampling algorithm. We also estimate a model where the cointegrating vectors, and thus the

number of rank, are not subject to change with breaks as:

Model 2: ∆yt = µt +yt−1βαt +
p−1

∑
i=1

∆yt−iΨi + εt (49)

whereεt ∼ N(0,Ωt). This model is estimated using a method in Section 3.2, based on Strachan

and Inder’s (2004) approach with the Griddy-Gibbs sampler. Model 1 allowsµ, α, β andΩ to

change with the breaks, while Model 2 restricts the cointegrating vectorβ to remain constant over

the whole sample. We estimate both models and calculate the Bayes factors form = 0,1, . . . ,4

break points. The number of lags in VAR,p, is varied withp = 2,3 and 4. We set the same prior

parameters used in the Monte Carlo simulation in Section 6.2. The MCMC sampling is performed

with 10,000 draws with the first 1,000 discarded for both models.

Table 8 and Table 11 report the posterior model probabilities for the various number of break

points as a model selection for Model 1 and Model 2 respectively. Note that the posterior model

probabilities for Model 1 are calculated by Chib’s method while those for Model 2 are by the

Schwarz BIC method. Clearly, no-structural break,m= 0, is rejected by the data for both Model
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1 and 2. Model withm = 3 andp = 3 is strongly favored with 99.7% for Model 1 and 97.2%

for Model 2. Table 9 presents the posterior probabilities for different number of rank for Model

1 with m = 3 and p = 3, and it shows thatr = 1 is favored for all regimes, although it is not

clear in the regime 3. For Model 2 where the cointegrating rank does not change with break,

the posterior probabilities for each rank is Pr(r = 0 | Y) = 0.0790, Pr(r = 1 | Y) = 0.9210, and

Pr(r = 2 | Y) = 0.000, so that the rank 1 is strongly supported. The estimates of the parameters

excluding the lag terms in the vector error correction model with three structural breaks are given

in Table 10 for Model 1 and in Table 12 for Model 2. The posterior mode for the first two breaks

are detected around late 1979 and late 1982, which almost coincides with the period with thenon-

borrowed reserves operating procedure. The third break is detected in 1988:06 for both models.

The posterior probability mass functions for the break dates are shown in Figure 4 for Model 1

and in Figure 6 for Model 2.

The results show that there are significant changes inµ, α , andΩ; however, no significant

changes are shown inβ. To compare Model 1 to Model 2, we calculate the Bayes factor using the

Schwarz BIC asBF21≈ exp[−0.5(BIC2−BIC1)], that results in 33.91.5 Thus, Model 2 is strongly

favored over Model 1.

As for the adjustment term,αi = (αlong,i ,αshort,i)′ wherei = 1, . . . ,4, αlong,i is negative in all

regimes, andαshort,i is positive in all regimes for both models. This suggests that positive deviation

from the long-run equilibrium (ytβ > 0) would be corrected by rising in the short rate and/or by

falling in the long rate. The adjustment terms for the short rateαshort,i (in absolute value) are

much higher than those for the long term rateαlong,i for all regimes, which indicates that the short

rate tends to have much more power to adjust toward the long-run equilibrium than the long-term

rate. In regime 2, between late 1979 and late 1982, volatility of both the long- and short-term

interest rates is quite high and the adjustment term in absolute value is also very high. After the

third break (regime 4), the volatility of the interest rates and the adjustment term are quite small,

especiallyαlong for both models seem not to be significant; that is, the long term rate does not

respond by the deviations from the long-run equilibrium, while only short-term rate moves toward

5See Kass and Raftery (1995) for a rule of thumb for evaluating Bayes factors. According to this rule of thumb, if
BFi j is between 20 and 150, there is a strong evidence against modelj, and if BFi j is more than 150, there is a very
strong evidence against modelj.

32



the equilibrium. The posterior densities for the adjustment terms are plotted in Figure 5 for Model

1 and in Figure 7 for Model 2.

The expectation hypothesis implies thatβ2 =−1 and this value is included in the 95% HPDI of

the posterior density. More formal testing for this over-identifying restrictions on the cointegrating

vector can be done by computing Bayes factor with the null ofβ2 =−1 against the alternative of

β2 6= −1. The Bayes factor is computed using (39) asBF ≈ exp[0.5(BICUR−BICR)], where

BICUR denotes the unrestricted BIC and BICR denotes the restricted BIC with the restrictions of

β2 = −1. The Bayes factor is approximated to 338.98 for Model 2, which shows very strong

evidence to support the expectation hypothesis.

9 Conclusion

We developed a Bayesian approach for analyzing a VAR model and co-integrated VAR model

with multiple structural breaks based on the MCMC simulation methods. The number of struc-

tural breaks are chosen by the posterior model probability based on the estimation of the model.

In the case of the cointegrated VAR models, the cointegration rank is also allowed to change

with breaks, and the adjustment term and the cointegrating vectors are estimated using Strachan’s

(2003) method with the Metropolis-within-Gibbs sampling algorithm, a valid Bayesian method

in terms of prior restrictions for the cointegrating vector. For a model where the cointegration

rank is not allowed to change with breaks, we apply Strachan and Inder’s (2004) method and use

the Griddy-Gibbs sampling method to generate the cointegrating vectors. The Monte Carlo sim-

ulations demonstrated that our approach provides generally accurate estimation for the number

of structural breaks as well as their locations. The Bayesian approach provides useful informa-

tion such as uncertainty of models and all parameters including the location of the dates by the

posterior mass function for each estimated break point.

The method is applied to two empirical studies, the predictive power of the yield curve and the

US term structure of interest rates, in order to show that our Bayesian method is useful to analyze

the case of multiple structural breaks. We found strong evidence of three structural breaks in both

applications.
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Appendix A. Proof of Theorem

For a linear regression modelY = XB+E, E ∼ iidN(0,Ω), whereY andE areT×n; X is T×κ;

B is κ×n, given the prior density forvec(B) ∼ MN(vec(B0),V0) andΩ ∼ IW(Ψ0,ν0), the joint

posterior is obtained by the joint prior

p(vec(B),Ω) = p(vec(B))p(Ω)

∝ |Ψ0|ν0/2 |Ω|−(ν0+n+1)/2 |V0|−1/2exp

[
−1

2

{
tr
(
Ω−1Ψ0

)
+vec(B−B0)′V−1

0 vec(B−B0)
}]
(50)

with the likelihood

L(B,Ω |Y) ∝ |Ω|−T/2exp

[
−1

2
tr
{

Ω−1(Y−XB)′(Y−XB)
}]

(51)

so that the joint posterior is

p(vec(B),Ω |Y) ∝ p(vec(B),Ω)L(B,Ω |Y)

|Ψ0|ν0/2 |Ω|−(T+ν0+n+1)/2 |V0|−1/2exp

[
−1

2
tr
{

Ω−1((Y−XB)′(Y−XB)+Ψ0
)}]

×exp

[
−1

2

{
vec(B−B0)′V−1

0 vec(B−B0)
}]

. (52)

From the joint posterior (52), it is easy to derive the conditional posterior density forΩ, which

is the inverted Wishart densityIW(Ψ?,ν?) as

p(Ω | B,Y) =
p(B,Ω |Y)

p(B |Y)
∝ p(B,Ω |Y)

∝ |Ω|−(T+ν0+n+1)/2exp

[
−1

2
tr
{

Ω−1((Y−XB)′(Y−XB)+Ψ0
)}]

= |Ω|−(T+ν0+n+1)/2exp

[
−1

2
tr
(
Ω−1Ψ?

)]
(53)
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whereΨ? = (Y−XB)′(Y−XB)+Ψ0 andν? = T +ν0.

As for the conditional posterior density forvec(B), the likelihood

L(B,Ω |Y) ∝ |Ω|−T/2exp

[
−1

2
tr
{

Ω−1(Y−XB)′(Y−XB)
}]

∝ |Ω|−T/2exp

[
−1

2
(vec(Y−XB))′ (Ω⊗ IT)−1(vec(Y−XB))

]
(54)

can be used for obtaining the joint posterior density instead of (51) as:

p(vec(B),Ω |Y) ∝ p(vec(B),Ω)L(B,Ω |Y)

∝ |Ψ0|ν0/2 |Ω|−(T+ν0+n+1)/2 |V0|−1/2exp

[
−1

2
tr
(
Ω−1Ψ0

)]
× exp

[
−1

2

{
(vec(Y−XB))′ (Ω⊗ IT)−1(vec(Y−XB))+(vec(B−B0))

′V−1
0 vec(B−B0)

}]
.

(55)

The key term in the third line of the joint posterior density (55) can be written as:

(vec(Y−XB))′ (Ω⊗ IT)−1(vec(Y−XB))+(vec(B−B0))
′V−1

0 vec(B−B0)

= (vec(B−B?))′V−1
B vec(B−B?)+Q (56)

whereQ = (vec(Y))′(Ω⊗ IT)−1vec(Y) + (vec(B0))′V−1
0 vec(B0)− (vec(B?))′V−1

B vec(B?), VB =[
V−1

0 +(Ω−1⊗ (X′X)
]−1

, andvec(B?) = VB
[
V−1

0 vec(B0)+(Ω⊗ Iκ)−1vec(X′Y)
]
.

To prove equation (56), first rewrite the LHS of equation (56) as:

LHS = (vec(Y−XB))′ (Ω⊗ IT)−1(vec(Y−XB))+(vec(B−B0))
′V−1

0 vec(B−B0)

= (vec(Y))′ (Ω−1⊗ IT)vec(Y)+(vec(XB))′ (Ω−1⊗ IT)vec(XB)−2(vec((Y))′ (Ω−1⊗ IT)vec(XB)

+(vec(B))′V−1
0 vec(B)+(vec(B0))

′V−1
0 vec(B0)−2(vec(B0))

′V−1
0 vec(B). (57)
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The RHS can be written as:

RHS = (vec(B−B?))′V−1
B vec(B−B?)+(vec(Y))′(Ω⊗ IT)−1vec(Y)

+(vec(B0))′V−1
0 vec(B0)− (vec(B?))′V−1

B vec(B?)

= (vec(B))′V−1
B vec(B)−2(vec(B?))

′V−1
B vec(B)

+(vec(Y))′ (Ω−1⊗ IT)vec(Y)+(vec(B0))
′V−1

0 vec(B0). (58)

So, from (57) and (58),LHS−RHSis

LHS−RHS = (vec(XB))′ (Ω−1⊗ IT)vec(XB)+(vec(B))′V−1
0 vec(B)− (vec(B))′V−1

B vec(B)

−2
{
(vec(Y))′ (Ω−1⊗ IT)vec(XB)+(vec(B0))

′V−1
0 vec(B)− (vec(B?))

′V−1
B vec(B)

}
= C−2D (59)

whereC andD are defined as

C = (vec(XB))′ (Ω−1⊗ IT)vec(XB)+(vec(B))′V−1
0 vec(B)− (vec(B))′V−1

B vec(B) (60)

D = (vec(Y))′ (Ω−1⊗ IT)vec(XB)+(vec(B0))
′V−1

0 vec(B)− (vec(B?))
′V−1

B vec(B). (61)

By substitutingVB =
[
V−1

0 +
{

Ω−1⊗ (X′X)
}]−1

, the third term ofC in (60) is

(vec(B))′V−1
B vec(B) = (vec(B))′

[
V−1

0 +
{

Ω−1⊗ (X′X)
}]

vec(B)

= (vec(B))′V−1
0 vec(B)+(vec(B))′

[
Ω−1⊗ (X′X)

]
vec(B)

= (vec(B))′V−1
0 vec(B)+(vec(B))′ vec

[
(X′X)BΩ−1] . (62)

Using (62) in (60), we have
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C = (vec(XB))′ (Ω−1⊗ IT)vec(XB)− (vec(B))′ vec(X′XBΩ−1).

Since(vec(XB))′ (Ω−1⊗IT)vec(XB)= ((In⊗X)vec(B))′ vec(XBΩ−1)= (vec(B))′ (In⊗X)′vec(XBΩ−1),

and(vec(B))′ vec(X′XBΩ−1) = (vec(B))′ (In⊗X)′vec(XBΩ−1), so we haveC = 0.

Next, we considerD. The first term ofD in (61) is

(vec(Y))′ (Ω−1⊗ IT)vec(XB) = (vec(Y))′ (Ω−1⊗ IT)(In⊗X)vec(B)

= (vec(Y))′ (Ω−1⊗X)vec(B). (63)

Sincevec(B?) = VB
[
V−1

0 vec(B0)+(Ω⊗ Iκ)−1vec(X′Y)
]
= VB

[
V−1

0 vec(B0)+vec(X′YΩ−1)
]
, the

third term ofD is,

(vec(B?))
′V−1

B vec(B) =
[
V−1

0 vec(B0)+vec(X′YΩ−1)
]′

vec(B)

= (vec(B0))
′V−1

0 vec(B)+
[
(Ω−1⊗X′)vec(Y)

]′
vec(B)

= (vec(B0))
′V−1

0 vec(B)+(vec(Y))′ (Ω−1⊗X)vec(B).

(64)

Thus, with (63) and (64), we haveD as:

D = (vec(Y))′ (Ω−1⊗X)vec(B)+(vec(B0))
′V−1

0 vec(B)

−
{
(vec(B0))

′V−1
0 vec(B)+(vec(Y))′ (Ω−1⊗X)vec(B)

}
= 0.

Therefore, withC = D = 0, we haveLHS−RHS= C−2D = 0, so that equation (56) is proved

and thus the conditional posterior density forvec(B) is
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p(vec(B) | Ω,Y) =
p(B,Ω |Y)
p(Ω |Y)

∝ p(vec(B),Ω |Y)

∝ exp

[
−1

2

{
(vec(Y−XB))′ (Ω⊗ IT)−1(vec(Y−XB))+(vec(B−B0))

′V−1
0 vec(B−B0)

}]
∝ exp

[
−1

2

{
(vec(B−B?))′V−1

B vec(B−B?)
}]

where

VB =
[
V−1

0 +(Ω−1⊗ (X′X))
]−1

and

vec(B?) = VB
[
V−1

0 vec(B0)+(Ω⊗ Iκ)−1vec(X′Y)
]
,

so thatvec(B) | Ω,Y ∼MN(vec(B?),VB).

Appendix B. Decomposition

The conditional posterior specification forvec(B) in (21) is Normal. SinceB=(Π′,Γ′)′ =(Π′
1, . . . ,Π′

m+1,Γ′)′,

if we assume thatp(B) =
{

∏m+1
i=1 p(Πi)

}
p(Γ | Π1, . . . ,Πm+1) as (30) where prior forΠi is Nor-

mal such asp(Πi) ∝ exp
[
−1

2tr
{

(Πi −Π0)′V−1
Π0

(Πi −Π0)
}]

, the conditional posterior forΠi is

also Normal such asp(Πi |Ωi ,y) ∝ exp
[
−1

2tr(Πi −Π?,i)′V−1
Π,?,i(Πi −Π?,i)

]
whereVΠ,?,i = (V−1

Π0
+

Z′i ZiΩ−1
i )−1 andΠ?,i = VΠ,?,i(V−1

Π0
Π0 +Z′i (Yi −XiΓi)Ωi). The trace in the posterior density can be

decomposed as follows:

tr
{
(Πi −Π?,i)′V−1

Π,?,i(Πi −Π?,i)
}

= tr

{
(βiαi +S−1

11,iβ⊥,iλiα⊥,iΣ̃i −Π?,i)′
(
V−1

Π0
+Z′i ZiΩ−1

i

)−1
(βiαi +S−1

11,iβ⊥,iλiα⊥,iΣ̃i −Π?,i)
}

+tr

{
(α⊥,iΣ̃iα′⊥,i)(λi − λ̃i)′β′⊥,iS

−1
11,i

(
V−1

Π0
+Z′i ZiΩ−1

i

)−1
S−1

11,iβ⊥,i(λi − λ̃i)
}

−tr

{
Σ̃iα′⊥,i(α⊥,iΣ̃iα′⊥,i)

−1α⊥,iΣ̃i(βiαi −Π?,i)
(
V−1

Π0
+Z′i ZiΩ−1

i

)−1
S−1

11,iβ⊥,i

}
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×

[{
β′⊥,iS

−1
11,i

(
V−1

Π0
+Z′i ZiΩ−1

i

)−1
S−1

11,iβ⊥,i

}−1

S−1
11,iβ⊥,i

(
V−1

Π0
+Z′i ZiΩ−1

i

)−1
(βiαi −Π?,i)

]

where

λ̃i =
{

β′⊥,iS
−1
11,i

(
V−1

Π0
+Z′i ZiΩ−1

i

)−1
S−1

11,iβ⊥,i

}−1

β′⊥,iS
−1
11,i

(
V−1

Π0
+Z′i ZiΩ−1

i

)−1
Σ̃iα⊥,i(α⊥,iΣ̃iα′⊥,i)

−1.

So that equation (31) can be derived.

Appendix C. Griddy-Gibbs Sampler

The Griddy-Gibbs sampler is proposed by Ritter and Tanner (1992). This sampler can be im-

plemented when the conditional posterior density is unknown to the researcher. The advantage

of using this sampler over the importance sampler or the Metropolis-Hastings algorithm is that

researcher does not have to provide an approximation of the function. The disadvantage is that

this sampler demands more computing time. The procedure for implementing the Griddy-Gibbs

sampler is as following:

1. Before we begin the chain, we must choose the range of the grid and the number of the grid.

The range should be chosen so that the generated numbers are not truncated.

2. Let vec(β)′ = (β1,β2, . . . ,βm). With an arbitrary starting value (within the upper and the

lower bound of the grid), computef (β1|βi
2,β

i
3, . . . ,β

i
m,Y), wherei denotes thei-th loop,

over the grid(β1,1,β1,2, . . . ,β1,U), whereβ1,1 is the lower bound of the grid ofβ1, andβ1,U

is the upper bound of the grid ofβ1.

3. Compute the valuesG = (0,Φ2,Φ3, . . . ,ΦU) where

Φ j =
∫ β1, j

β1,1

f (β1|βi
2,β

i
3, . . . ,β

i
m,Y)dβ1

j = 2, . . . ,U

4. Compute the normalized pdf valuesGζ = G j/ΦU of ζ(β1|βi
2,β

i
3, . . . ,β

i
m,Y).
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5. Draw the random numbers from the uniform density with the lower bound as zeros and the

upper bound asΦU and invert cdfG by numerical interpolation to obtain a drawβi
1 from

ζ(β1|βi
2,β

i
3, . . . ,β

i
m,Y).

6. Repeat steps 2-5 forβ2, . . . ,βm.

7. Seti = i +1 (incrementi by 1) and go to step 2.

Note that integration at the step 3 can be done by the deterministic approximation such as the

Simpson’s rule or the Trapezoidal rule.
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Table 1: Monte Carlo Results for VAR Models: Average Posterior Probabilities

DGP\#.of breaks m= 0 m= 1 m= 2 m= 3 m= 4

DGP 1 0.942 0.057 0.001 0.000 0.000

DGP 2 0.000 0.013 0.945 0.042 0.000

DGP 3 0.000 0.000 0.995 0.004 0.000

DGP 4 0.000 0.000 0.967 0.033 0.000

DGP 5 0.000 0.008 0.981 0.011 0.000

Table 2: Monte Carlo Mean of the Mode of the Posterior for the Break Points whenm= 2: VAR

Models
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()=Monte Carlo standard deviation

DGP 2 DGP 3 DGP 4 DGP 5

1st break 99.571 (3.092) 100.06 (1.635) 99.987 (2.216) 100.03 (1.504)

2nd break 200.94 (2.237) 200.97 (1.403) 200.85 (3.093) 201.02 (1.883)

The true value of the first break is att = 100, and the second is att = 200.
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Table 3: Parameters Given in DGPs for Monte Carlo Simulations of VECM with Two Structural

Breaks

DGP 2 DGP 3 DGP 4 DGP 5

µ1 (-0.0551, -0.0370) (-0.0072, 0.0250) (-0.0389, -0.0862) (-0.0342, 0.0355)

µ2 (0.0746, 0.1578) (0.0045, -0.1671) (0.0378, 0.1123) (-0.0017, -0.0535)

µ3 (-0.0448, -0.2355) (0.0421, -0.1282) (-0.0558, -0.1406) (-0.0227, -0.0997)

α1 (0.0004, 0.1766) (-0.0511, 0.0983) (-0.0333, 0.1530) (-0.0503, 0.1413)

α2 (-0.2292, 0.1425) (-0.0525, 0.0331)

α3 (0.0118, 0.0884) (0.0018, 0.0746)

β (1, -0.9902) (1, -0.9894) (1, -0.9807) (1, -0.9744)

σ1

 0.0764 0.0238

0.0238 0.0353


 0.1272 0.0499

0.0499 0.0787


 0.0828 0.0292

0.0292 0.1134


 0.3049 0.1010

0.1010 0.2131


σ2

 0.0685 0.0196

0.0196 0.0252


 0.0865 0.0272

0.0272 0.0579


σ3

 0.0112 0.0007

0.0007 0.0028


 0.0133 0.0007

0.0007 0.0027
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Table 4: Monte Carlo Results for VECM Models: Average Posterior Probabilities

DGP\ #.of breaks m= 0 m= 1 m= 2 m= 3 m= 4

DGP 1 0.946 0.054 0.000 0.000 0.000

DGP 2 0.084 0.030 0.875 0.030 0.000

DGP 3 0.000 0.000 0.902 0.098 0.000

DGP 4 0.085 0.108 0.807 0.000 0.000

DGP 5 0.000 0.000 0.944 0.056 0.000

Table 5: Monte Carlo Mean of the Mode of the Posterior for the Break Points whenm= 2:

VECM

()=Monte Carlo standard deviation

DGP 2 DGP 3 DGP 4 DGP 5

1st break 91.231 (21.24) 99.090 (3.335) 100.96 (17.43) 100.27 (0.793)

2nd break 188.21 (23.74) 200.33 (1.085) 203.01 (13.54) 200.82 (2.170)

The true value of the first break is att = 100, and the second is att = 200.

Table 6: Model Selection: Application 1

p\m m= 0 m= 1 m= 2 m= 3 m= 4

p = 3 0.0000 0.0000 0.0000 0.0002 0.0000

p = 4 0.0000 0.0000 0.0000 0.9315 0.0120

p = 5 0.0000 0.0000 0.0000 0.0344 0.0219

Note: Each element shows the posterior probability in () using Chib’s (1995) method.

p: the number of the lag in a VAR

m: the number of the structural breaks

48



Table 7: Posterior Results of a VAR Model withm= 3 andp = 4 for Application 1

(): standard deviation

(a) Estimates of Break Points

Posterior Mode 95% HPDR

1st break 1974:07 (0.5580) 1973:09, 1975:07

2nd break 1978:11 (0.5602) 1977:10, 1979:10

3rd break 1983:01 (0.1637) 1982:09, 1983:03

(b) Estimates of Other Parameters (Mean of the Posterior)

Parameters sp ip Parameters sp ip

µ1 -0.0123 (0.0170) 0.1283 (0.0573) sp(−2) -0.2612 (0.0228) 0.0212 (0.0217)

µ2 0.0543 (0.0302) 0.2197 (0.0748) ip(−2) 0.0590 (0.0081) 0.0762 (0.0221)

µ3 -0.0488 (0.0952) 0.0823 (0.0442) sp(−3) 0.0410 (0.0272) -0.1705 (0.0213)

µ4 0.0773 (0.0071) 0.1058 (0.l0133) ip(−3) 0.0113 (0.0067) 0.0129 (0.0114)

sp(−1) 1.1967 (0.0131) 0.0675 (0.0119) sp(−4) -0.0292 (0.0157) 0.1290 (0.0133)

ip(−1) 0.0049 (0.0071) 1.0700 (0.0163) ip(−4) -0.0718 (0.0049) -0.2303 (0.0075)

Ω1 =



0.1928 0.0322

(0.0424) (0.0221)

0.0322 1.2628

(0.0221) (0.2661)


, Ω2 =



0.0916 0.0599

(0.0375) (0.0210)

0.0599 0.9991

(0.0210) (0.2195)


,

Ω3 =



2.0566 0.4891

(0.5271) (0.1277)

0.4891 1.3336

(0.1277) (0.2728)


, Ω4 =



0.0822 −0.0057

(0.0073) (0.0017)

−0.0057 0.4911

(0.0017) (0.0455)
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Table 8: Selection of the Number of the Breaks for Application 2 by Model 1

p\m m= 0 m= 1 m= 2 m= 3 m= 4

p = 2 0.0000 0.0000 0.0000 0.0000 0.0000

p = 3 0.0000 0.0000 0.0000 0.9973 0.0018

p = 4 0.0000 0.0000 0.0000 0.0007 0.0000

Note: Each element shows the posterior probability in ().

p: the number of the lag in a VAR

m: the number of the structural breaks

Table 9: Selection of the Number of Ranks of Model 1 withm= 3 andp = 3

rank\i i = 1 i = 2 i = 3 i = 4

r = 0 0.0000 0.0311 0.0000 0.0742

r = 1 1.0000 0.9699 0.6121 0.9258

r = 2 0.0000 0.0000 0.3880 0.0000

Note: Each element shows the posterior probability in ().

r: the number of rank

i: regime divided by the structural breaks
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Table 10: Posterior Results of Model 1 withm= 3 andp = 3, andr = 1 for all regimes for

Application 2

(a) Estimates of Break Points

Posterior Mode 95% HPDR

1st break 1979:10 (0.0548) 1979:09, 1979:10

2nd break 1983:01 (0.0601) 1982:10, 1983:02

3rd break 1988:06 (0.1226) 1988:04, 1988:08

(b) Estimates of Other Parameters (Mean of the Posterior)

Parameters r l rs Parameters r l rs

µ1 0.0219 (0.0053) -0.0043 (0.0167) α3 -0.0265 (0.0049) 0.0755 (0.0093)

µ2 -0.0005 (0.0763) 0.2087 (0.0819) α4 -0.0006 (0.0010) 0.0171 (0.0011)

µ3 0.0238 (0.0114) -0.1297 (0.0132) β1 1 -0.9911 (0.0636)

µ4 -0.0194 (0.0017) -0.0289 (0.0055) β2 1 -0.9915 (0.0793)

α1 -0.0100 (0.0011) 0.0368 (0.0023) β3 1 -1.0023 (0.0193)

α2 -0.0831 (0.0189) 0.1610 (0.0679) β4 1 -0.9935 (0.0473)

Ω1 =



0.0407 0.0378

(0.0058) (0.0075)

0.0378 0.1796

(0.0075) (0.0247)


, Ω2 =



0.4822 0.5426

(0.1193) (0.1407)

0.5426 2.8110

(0.1407) (0.5828)


,

Ω3 =



0.1153 0.0423

(0.0205) (0.0077)

0.0423 0.1140

(0.0077) (0.0181)


, Ω4 =



0.0471 0.0053

(0.0047) (0.0006)

0.0053 0.0204

(0.0006) (0.0019)


,
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Table 11: Selection of the Number of the Breaks for Application 2 by Model 2

p\m m= 0 m= 1 m= 2 m= 3 m= 4

p = 2 0.0000 0.0000 0.0000 0.0000 0.0000

p = 3 0.0000 0.0000 0.0000 0.9719 0.0263

p = 4 0.0000 0.0000 0.0000 0.0009 0.0009

Note: Each element shows the posterior probability.

p: the number of the lag in a VAR

m: the number of the structural breaks
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Table 12: Posterior Results of Model 2 withm= 3 andp = 3, andr = 1 for all regimes for

Application 2

(a) Estimates of Break Points

Posterior Mode 95% HPDR

1st break 1979:10 (0.0552) 1979:09, 1979:10

2nd break 1983:01 (0.0610) 1982:11, 1983:02

3rd break 1988:06 (0.1376) 1988:04, 1988:08

(b) Estimates of Other Parameters (Mean of the Posterior)

Parameters r l rs

µ1 0.0225 (0.0053) -0.0061 (0.0162)

µ2 0.0000 (0.0644) 0.2117 (0.0762)

µ3 0.0263 (0.0173) -0.1228 (0.0165)

µ4 -0.0189 (0.0024) -0.0301 (0.0071)

α1 -0.0102 (0.0012) 0.0371 (0.0022)

α2 -0.0846 (0.0181) 0.1672 (0.0640)

α3 -0.0257 (0.0051) 0.0709 (0.0216)

α4 -0.0003 (0.0013) 0.0173 (0.0014)

β 1 -0.9844 (0.0610)

Ω1 =



0.0406 0.0376

(0.0058) (0.0075)

0.0376 0.1789

(0.0075) (0.0249)


, Ω2 =



0.4829 0.5438

(0.1179) (0.1412)

0.5438 2.7944

(0.1412) (0.5808)


,

Ω3 =



0.1150 0.0420

(0.0207) (0.0078)

0.0420 0.1147

(0.0078) (0.0182)


, Ω4 =



0.0472 0.0053

(0.0047) (0.0006)

0.0053 0.0205

(0.0006) (0.0019)
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Figure 1: The Interest Rates Spread (sp) and the US Industrial Production Growth Rate (ip)

solid line - the interest rates spread, dotted line - the US industrial production growth rate
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Figure 2: Posterior Probability Mass of the Break Dates for Application 1
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Figure 3: US Long- and Short-Term Interest Rates

solid line - 10-year TB rate, dotted line - 3-month TB rate
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Figure 4: Posterior Probability Mass of the Break Dates for Application 2 - Model 1
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Figure 5: Posterior Density ofα for Application 2 - Model 1
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Figure 6: Posterior Probability Mass of the Break Dates for Application 2 - Model 2
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Figure 7: Posterior Density ofα for Application 2 - Model 2
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