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Abstract

A mathematical model of a directed graph with stochastic transfers is presented. It
will be used to analyze the optimality (or “competitiveness”) properties of a network
of transactions involving risky transfers of assets in an economic system. These
properties are discussed in a model with some specific directed graph structures which
result in a decompositon of the graph into parts with “narrow” linkage.

1 Introduction

The purpose of this paper is to present a mathematical model of a directed graph with
stochastic transfers, which will be used to analyze the optimality (or “competitiveness”)
properties of a network of transactions involving risky transfers of assets in an economic
system.

A mathematical model of stochastic transfers in a directed graph is presented in section
2. The concepts of optimality of stochastic transfers are discussed in terms of efficiency
and competitiveness in section 3. A specific model of risky transfers of assets, which will
be called the “Wicksell triangle” plus a simple barter is presented in section 4. Optimality
properties of risky transfers in the specific model are briefly discussed in section 4.

2 A Model of Stochastic Transfers in a Directed Graph

2.1 A directed graph

An ordered pair (A, T ) consisting of a nonempty finite set A and a binary relation T on A
is a directed graph. The interpretation of the graph (A, T ) in this paper is the following:
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a point a ∈ A is a trader or an agent; an ordered pair (t1, t2) ∈ T shows a direction of
transfer, i.e., a transfer from t1 to t2.

Two typical examples of a directed graph arising from commodity and financial assets
transfers are illustrated in figure 1 and figure 2. Figure 1 illustrates a simple barter trade
transfers of commodities or assets. Agent a1 sends commodities or assets to agent a2

and vice versa. Then, it is represented by a directed graph (A, T ) with A = {a1, a2} and
T = {(a1, a2), (a2, a1), (a1, a1), (a2, a2)}. In figure 2, each agent sends commodities or assets
counterclockwise to another agent, indicating the fact that there are no “double coincidence
of wants.” This type of transfers is known as a “Wicksell triangle.” It is represented by
(A, T ) with A = {a1, a2, a3} and T = {(a1, a2), (a2, a3), (a3, a1), (a1, a1), (a2, a2), (a3, a3)}.
Figure 3 gives an illustration of a general directed graph.

2.2 Probability structure

The stochastic transfer will be formalized in terms of a state space Ω. We assume that a
probability measure space (Ω, P r) is given.

2.3 Commodities, endowments and preferences

Let there be ` kinds of commodities or assets. (Henceforth, assets and commodities are not
distinguished and they are simply referred to as commodities.) R` represents the space of
these ` commodities. The initial endowments of each agent a ∈ A of these commodities are
specified by a given mapping e : A → R`

+. Thus, each agent a is endowed with the bundle
of commodities e(a) ∈ R`

+.

In order to discuss state-contingent trade of these endowments, we adopt Arrow’s con-
vention that each type of commodity is a class of state-contingent commodities, one for
each state in Ω. Thus the set of all commodities is Ω×{1, . . . , `}. Each agent a is endowed
with ej(a) units of commodity (ω, j) for every ω ∈ Ω. Formally, the commodity space L is
given by 1

L ≡ (R`)Ω.

A commodity bundle x ∈ L may be viewed as a random vector defined on R` or a measurable
mapping x defined on Ω taking values in R`.

We assume that each agent’s preference between commodity bundles conforms to ex-
pected utility. Agent a has a von-Neuman-Morgenstern utility function ua : R` → R. Then,

1If one wants to conform to the Arrow-Debreu convention strictly, then one needs to distinguish com-
modities by each state, the origin and the place of its consumption. Then, the commodity space L should
be given by L ≡ (R`)Ω×T where for t = (t1, t2) ∈ T , t1 shows the origin of the commodity whereas t2 shows
its place of consumption. In this paper we do not adopt the convention because we like to assume each
agent derives utility from the consumption of commodities provided at his own location. This assumption
not only simplifies our analysis but also helps us to focus on the effects of transfers on the final consumption
attained by each agent.
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if x ∈ L is a commodity bundle, the expected utility of x for agent a, Ua(x) is given by

Ua(x) =

∫

Ω

ua (x(ω)) dPr.

2.4 Information partition

We shall consider two rounds of transfers. For each round of transfers, information of agents
is specified by an information partition P on Ω. Denote by Pn, n = 1, 2, the partitions
corresponding to these rounds. It is assumed that information becomes finer as rounds
proceed so that P1 ⊂ P2. In a specific model presented in section 4, one assumes P1 = {Ω}
and P2 = {S, F}. That is, there is no information available at round 1 and at round 2
information becomes available whether transfers have safely done, i.e., ω ∈ S or failed, i.e.,
ω ∈ F .

2.5 A network of stochastic transfers

A given directed graph (A, T ) represents the infrastructure of a network of stochastic
transfers. For the purpose of our present analysis, we consider two rounds of transfers.
Each agent a ∈ A in the network decides amounts and constituents of his transfer to other
agents in the network at each round. We assume, however, that agents make an agreement
for transfers of commodities among them before the initial round. The agreement among
them is binding. The list of stochastic transfers among agents for each round of transfers
is denoted by

τn : Ω × T → R`
+, n = 1, 2,

where τn is Pn-measurable, indicating that agents can use information available at the time
of actual transfers. τn (ω, (t1, t2)) represents a state-contingent transfer from agent t1 to t2
in state ω at n-th round.

The stochastic nature of rounds of transfers will be described by a stochastic safety rate
function for each round, which indicates the safely arrived proportion of commodities that
are sent from one agent to another. Stochastic safety rate functions are given by

σn : Ω × T → [0, 1], n = 1, 2,

where both σ1 and σ2 are P2-measurable. Since P1 is the information available at initial
round, P2-measurability of σ1 means that agents do not know for initial round transfers
the actual proportion of commodities that reaches another agent, so that agents face risky
transfers. On the other hand, P2-measurability of the stochastic safety rate function σ2 for
second round transfers means that agents exactly know the proportion of commodities that
will reach another agent at the time transfers are to be made. Thus, agents can make second
round transfer agreement contingent on the events in P2. When 0 < σ2 < 1, it means that
second round transfers are costly. This cost which is sometimes called as “iceberg cost,”

5



can be viewed as a crude way of reflecting various intuitive considerations including time
preference and exposure to business loss due to delayed availability of transferred funds.
We assume that the information Pn, n = 1, 2, is publicly available at n-th round.

Round 1 2

Transfer
τ1 : Ω × T → L+

P1-measurable
τ2 : Ω × T → L+

P2-measurable

Stochastic Safety Rate
σ1 : Ω × T → [0, 1]
P2-measurable

σ2 : Ω × T → [0, 1]
P2-measurable

2.6 A transfer network economy

An ordered pair τ = (τ1, τ2) of stochastic transfer functions will be called a stochastic
transfer. An ordered pair σ = (σ1, σ2) of stochastic safety rate functions will be called a
transfer technology.

A transfer network economy E will be given by a quintuple consisting of a directed graph
(A, T ), an initial endowment function e : A → R`, a specification of a utility function
to each agent (ua)a∈A, a transfer technology σ = (σ1, σ2), and an information structure
P = {Pn}n=1,2 , i.e.,

E = {(A, T ), e, (ua)a∈A, σ,P} .

Let us introduce some further notation for convenience. For any f : T → R`
+, V, W ⊂ A,

we write
f(V, W ) =

∑

t∈U

f(t)

where U = (V × W ) ∩ T , f(a, W ) = f({a}, W ), and f(V, a) = f(V, {a}). If we regard a
mapping f : T → R` as a contingent transfer, then f(a, W ) is the total of commodities that
are sent from agent a to agents belonging to W , and f(V, a) is the total of commodities
that are sent to agent a from agents in V . (See fig. 4.)

Given a transfer network economy E and a stochastic transfer τ = (τ1, τ2), it is assumed
that the consumptions take place after second round transfers are completed. Let us denote
by τ s(ω, t) the total of commodities in state ω sent from t1 to t2 where t = (t1, t2), i.e.,

τ s(ω, t) ≡ τ1(ω, t) + τ2(ω, t),

and by τσ(ω, t), the total of commodities in state ω sent from t1 to t2 and actually received
by t2, i.e.,

τσ(ω, t) ≡ σ1(ω, t)τ1(ω, t) + σ2(ω, t)τ2(ω, t).

Thus, by our notational convention, τ s(ω, a, A) represents the total of commodities sent
by a ∈ A to other agents in A and τσ(ω, A, a) represents the total of commodities sent by
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various agents in A that are received by a . We say that a stochastic transfer τ is feasible
for E if for every a ∈ A and ω ∈ Ω, we have

0 ≤ τs(ω, a, A) ≤ e(a).

2.7 Consumptions resulting from a stochastic transfer

Let τ be a feasible stochastic transfer for E . We now provide an explicit definition of agents’
consumptions resulting from a stochastic transfer. Each agent a is endowed with a bundle
e(a) of various commodities to start out with. Out of what a has, a transfers a bundle
τ s(ω, a,A) comprising of various commodities to agents in A and receives a commodity
bundle τσ(ω, A, a). In general one has

∑

a∈A

τσ(ω, A, a) <
∑

a∈A

τ s(ω, a, A)

for a.e. ω ∈ Ω (that is, the total of commodities received by various agents are strictly
less than that of commodities sent out by the agents as first round transfers are risky and
second round transfers are costly.) Thus, after the stochastic transfer τ is completed, the
amount of commodities at hand for agent a, which is available for a’s consumption, is given
by

e(a) − τ s(ω, a,A) + τσ(ω, A, a).

3 Efficiency and Competition

3.1 Efficiency

Given a stochastic transfer τ for E and a nonempty subset C ⊂ A, we say τ is C-inefficient
if there is another stochastic transfer µ feasible for E such that

(1) (∀a ∈ C)E [ua (e(a) − µs(ω, a,A) + µσ(ω, A, a))]

≥ E[ua (e(a) − τs(ω, a, A) + τσ(ω, A, a))],

(2) (∃a ∈ C)E[ua (e(a) − µs(ω, a,A) + µσ(ω, A, a))]

> E[ua (e(a)− τ s(ω, a,A) + τσ(ω, A, a))],

(3) (for a.e. ω ∈ Ω) (∀t = (t1, t2) ∈ T with t1 /∈ C or t2 /∈ C)

µ1(ω, t) = τ1(ω, t) and µ2(ω, t) = τ2(ω, t).

(3.1)

τ is C-efficient if it is not C-inefficient. A feasible stochastic transfer τ is Pareto efficient
if it is A-efficient. A feasible stochastic transfer τ is totally efficient if for any nonempty
C ⊂ A, it is C-efficient.
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3.2 Competition

Since we are concerned with efficiency and competitiveness properties of a network transfer
economy without explicit consideration of “market prices”, we appeal to the game theoretic
notion of core. For a nonempty C ⊂ A, a stochastic transfer τ is C-subcompetitive (or
C-dominated) if there is another feasible stochastic transfer µ satisfying (1) and (2) above
and

(3′) (for a.e. ω ∈ Ω) (∀t = (t1, t2) ∈ T with t1 /∈ C or t2 /∈ C)

µ1(ω, t) = 0 and µ2(ω, t) = 0. (3.2)

A feasible stochastic transfer τ is said to be C-competitive if it is not C-subcompetitive.
Finally, a stochastic transfer τ is called totally competitive if it is C-competitive for all
nonempty C ⊂ A. In particular, τ is called individually rational if it is {a}-competitive for
all a ∈ A.

3.3 Facts

One can check the following lemma and propositions without difficulty.

Lemma 1 Assume C1 ⊂ C2. If τ is C2-efficient, then it is C1-efficient.

Proof Let C1 ⊂ C2. Assume τ is C2-efficient but not C1-efficient. Then, there is another
feasible stochastic transfer µ satisfying the properties (1), (2) and (3) with C = C1. Since
C1 ⊂ C2, it also implies that τ is C2-inefficient contradicting to the assumption.

Proposition 1 τ is totally efficient if and only if it is Pareto efficient.

Proof Assume τ is totally efficient. Then, it is trivially A-efficient.

On the other hand, assume τ is Pareto-efficient or A-efficient. Then, by Lemma 1, for
any C ⊂ A, τ is C-efficient. Thus, it is totally efficient.

Proposition 2 If τ is totally competitive, then it is totally efficient.

Proof Let τ be totally competitive. Assume τ is not A-efficient. Then, there is another
feasible stochastic transfer µ satisfying the properties (1),(2) and (3) with C = A. Since
the complement of A is empty, τ must be A-subcompetitive contradicting the fact that it
is totally competitive. Thus, it must be A-efficient. It follows from Proposition 1 that τ is
totally efficient.
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3.4 A Specific Result

At this point we would like to introduce a network transfer economy with a very specific
directed graph which has relevance to some economic problems. (See, for example, [2] and
[3].)

The structure of a specific directed graph that we consider here is what we call a
“Wicksell triangle” plus a simple barter which is given by the following (see fig. 5) :

• A = {a1, a2, a3, a4}

• T = {(a1, a2), (a2, a3), (a3, a1), (a3, a4), (a4, a3), (a1, a1), (a2, a2), (a3, a3), (a4, a4)}

For a transfer network economy with a directed graph which is given by a Wicksell triangle
plus a simple barter, we have the following characterization of its total competitiveness.

Proposition 3 Let E = {(A, T ), e, (ua)a∈A, σ,P} be a transfer network economy with a
directed graph (A, T ) as specified above. Assume each agent’s utility function ua, a ∈ A,
be locally nonsatiated in his own endowment goods. Let τ be a stochastic transfer feasible
for E. Then, τ is totally competitive if and only if the following conditions hold: τ is
individually rational, totally efficient, {a1, a2, a3}- and {a3, a4}-competitive.

Proof Assume τ is totally competitive. Then, it must satisfy the conditions by definition
and proposition 2.

Conversely, suppose that a stochastic transfer τ is individually rational, totally efficient,
{a1, a2, a3}- and {a3, a4}-competitive. The only nonemty subset C for which τ could be
C-subcompetitive without explicitly violating one of the three conditions are then:

• A. The subsets consisting of a4 together with either a1 or a2; and

• B. The subsets to which exactly two members of {a1, a2, a3} belong.

Call these type A and type B subsets respectively. We now show that any individually
rational and totally efficient stochastic transfer τ cannot be C-subcompetitive for any subset
of either type A or type B.

Assume that a stochastic transfer µ satisfied the conditions (1), (2), and (3’) for a
subset C. Suppose C is of type A. Since τ is totally efficient, it is C-efficient and thus the
only possible µ satisfying the conditions (1) and (3’) is autarky, i.e., µs(ω, a,A) = 0 for
a ∈ A when C is {a1, a4} or {a2, a4}. But since τ is individually rational, µ cannot satisfy
condition (2) for either of those two subsets.

Now suppose that C is of type B. That is, either C = {a, b} ⊂ {a1, a2, a3}, or else
C = D ∪ {a4} and D = {a, b} ⊂ {a1, a2, a3}. In the former case, without loss of generality,
a = aj , b = ai with j = i + 1 (mod 3). The only transfer that can occur in any state of
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nature between these two agents is for a to receive some of b’s endowment goods. This
must happen with positive probability, in order for (2) to be satisfied for a. In that case,
though, neither (1) nor (2) can be satisfied for b. The same argument applies in the latter
case, unless b is agent a3 who receives some of the endowment goods of agent a4 (and a is
agent a1). If so, define a stochastic transfer θ = (θ1, θ2) by

θn(ω, t) =





0 if t = (a3, a1)

µn(ω, t) otherwise

for n = 1, 2. Agent a3 strictly prefers θ to µ, and agent a4 is indifferent between θ and µ.
Therefore, if τ were C-subcompetitive for µ, then τ would be {a3, a4}-subcompetitive for
θ, contrary to hypothesis.

3.5 Decomposition of a graph

Before proceeding to obtain further results on efficiency and competition, we would like to
discuss concepts concerning the decomposition of a graph.

Let (A, T ) be a directed graph. {(Ai, Ti)}i=1,··· ,n is a decomposition of (A, T ) if {Ai}i=1,··· ,n
is a partition of the set A and Ti = T ∩ (Ai ×Ai). We write Tij = T ∩ (Ai × Aj), and put
T −1

ij ≡ {(a, b) ∈ Ai × Aj | (b, a) ∈ Tji} for i 6= j. A decomposition {(Ai, Ti)}i=1,··· ,n of a
directed graph is called perfect if Tij = ∅ for all i 6= j.

Let E = {(A, T ), e, (ua)a∈A, σ,P} be a transfer network economy. A feasible stochastic
transfer τ is said to be C-totally competitive if it is C ′-competitive for all nonempty C ′ ⊂ C.

We now state a very easy result.

Proposition 4 Let E = {(A, T ), e, (ua)a∈A, σ,P} be a transfer network economy. Let
{(Ai, Ti)}i=1,··· ,n be a perfect decomposition of (A, T ). Then, a feasible stochastic transfer
τ is totally competitive if and only if it is Ai-totally competitive for each i = 1, · · · , n.

Proof Let {(Ai,Ti)}i=1,··· ,n be a perfect decomposition of the directed graph (A, T ). If
τ is a feasible stochastic transfer which is totally competitive, then it is trivially Ai-totally
competitive for all i = 1, · · · , n.

Conversely, assume that τ is Ai-totally competitive for each i = 1, · · · , n. Assume that
there existed a nonempty subset C ⊂ A and a feasible stochastic transfer µ such that τ
is not C-competitive with respect to µ. Then, there exists j ∈ {1, · · · , n} such that some
of the agents in C ∩ Aj strictly prefer µ to τ . Define a feasible stochastic transfer θ to be
identical with µ for agents in C∩Aj. (which is possible as the decomposition is perfect), and
θ to be 0 outside C ∩ Aj . Then, τ becomes C ∩ Aj-subcompetitive under θ, contradicting
the fact that τ is Aj-totally competitive. Therefore, τ must be totally competitive.
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The proposition 4 shows that when a transfer network economy is decomposed into inde-
pendent parts, the competitiveness of the entire part simply reduces to the competitiveness
of each independent part. This simple result motivates us to investigate circumstances
under which the competitiveness of each part is equivalent to that of the entire economy
even when the entire graph cannot be decomposed in a perfect manner. It turns out that if
each decomposed part along with its linkage between the decomposed parts is competitive,
then the competitiveness of the entire part is obtained.

Given a directed graph (A, T ), a subset C is a path from a1 to an if C = {a1, a2, · · · , an}
with (ai, ai+1) ∈ T for i = 1, · · · , n − 1. If all a1, · · · , an are distinct, it is called a strict
path. A path C from a1 to an is a cycle if a1 = an and if {a1, a2, · · · , an−1} is a strict path.
In this case we also say that C is a cycle into a1 or an. A path C from a1 to an or a cycle
into a1 = an is called unilateral if (ai+1, ai) /∈ T for all i = 1, · · · , n−1. It is called bilateral
or a barter if (ai+1, ai) ∈ T for all i = 1, · · · , n − 1.

Let {(Ai, Ti)}i=1,··· ,n be a decomposition of a directed graph (A, T ). Define two subsets
Bij and Lij of Ai for each i = 1, · · · , n.

Lij ≡ {a ∈ Ai | (∃b ∈ Aj) (a, b) ∈ Tij},
Bij ≡ {a ∈ Ai | (∃b ∈ Aj) (a, b) ∈ Tij ∩ T −1

ij }.

An element a in Lij will be called a transfer linkage of Ai with respect to Aj. Similarly, an
element a in Bij will be called a barter linkage of Ai with respect to Aj . If, for any given
i, j = 1, · · · , j, a ∈ Ai, b ∈ Aj , there always exists a path from a to b, then the directed
graph is said to be irreducible.

We would like to extend proposition 4 to the case of a transfer network with an ir-
reducible directed graph. This will be done in a manner corresponding to proposition 3
where the directed graph is decomposed into two parts that has a barter linkage. We now
state a proposition which extends both proposition 3 and proposition 4 when the directed
graph is decomposed into two parts. Due to the irreducibility of the entire network of the
graph, the requirement of the competitiveness of decomposed parts alone is not enough.

Proposition 5 Let E = {(A, T ), e, (ua)a∈A, σ,P} be a transfer network economy and {(Ai, Ti)}i=1,2

be a decomposition of (A, T ) such that each Ai, i = 1, 2, is a unilateral cycle and Lij = Bij

for each i, j = 1, 2, i 6= j. Assume each agent’s utility function ua, a ∈ A, be locally non-
satiated. Let τ be a feasible stochastic transfer. Then, τ is totally competitive if and only
if the following conditions hold: τ is totally efficient, Ai ∪ Bji-totally competitive for each
i, j = 1, 2, i 6= j, and B12 ∪ B21-competitive.

Proof Assume τ is totally competitive. Then, it must satisfy the conditions by definition
and proposition 2.

Conversely, suppose that the decomposition {(Ai, Ti)}i=1,2 is such that each Ai is a
unilateral cycle. Assume τ is totally efficient, Ai ∪ Bji-totally competitive for each i, j =
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1, 2, i 6= j, and B12 ∪ B21-competitive. Suppose there existed another feasible stochastic
transfer µ for which τ were C-subcompetitive for some nonempty C ⊂ A.

Since τ is A1-and A2-totally competitive, one must have C ∩ Ai 6= ∅ for each i and
Bij ∩ C 6= ∅ for each i, j = 1, 2, i 6= j. Put Ci = C ∩ Ai and Cij = Bij ∩ C for each
i, j = 1, 2, i 6= j. As τ is totally efficient, we must have Ci 6= Ai for some i. Consider the
following two possible cases.

• Case 1: Ci 6= Ai for each i.

Since Ai is a unilateral cycle, Ci is not a cycle and hence, for each i, there is a∗
i

who cannot receive any commodities from other agents under the transfer µ. Thus,
under µ, no agents in Ci\Cij can transfer endowment goods to other agents without
violating the individual rationality. This means that only agents who would strictly
prefer µ over τ are restricted to those belonging to C12 ∪ C21 only. Since agents
in Ci\Cij just consume their own endowment goods under µ, it follows that τ is
C12 ∪ C21-subcompetitive with respect to µ, contradicting to the hypothesis.

• Case 2: Ci = Ai for some i.

Without loss of generality, assume C1 = A1 and C2 6= A2. Since A2 is a unilateral
cycle, the agents in C2\C21 must consume only their endowments goods under the
transfer µ as τ is individually rational. Therefore, only agents who would strictly
prefer µ over τ are restricted to those belonging to A1 ∪C21 only. It follows that τ is
A1 ∪ C21-subcompetitive with respect to µ, contradicting to the hypothesis.

We thus proved that τ must be totally competitive.

The above proposition 5 essentially shows that even when the entire graph cannot be
decomposed in a perfect manner, when a transfer network economy is decomposed into
parts, the competitiveness of the entire part reduces to the competitiveness wihtin each
decomposed part along with its barter linkage between the decomposed parts.

4 Competitive Stochastic Transfers in the Wicksell

Triangle plus a Simple Barter

4.1 A further specification

Given a transfer network economy E = {(A, T ), e, (ua)a∈A, σ,P}, we are interested in giving
a more specific characterization of totally competitive stochastic transfers. For this purpose,
we shall go back to a very specific model of the Wicksell triangle plus a simple barter which
was presented in the subsection 3.4. Thus, throughout this section we take the directed
graph to be given by the following (A, T ):
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• A = {a1, a2, a3, a4}

• T = {(a1, a2), (a2, a3), (a3, a1), (a3, a4), (a4, a3), (a1, a1), (a2, a2), (a3, a3), (a4, a4)}

The transfer network economy E = {(A, T ), e, (ua)a∈A, σ,P} is further specified by letting:

• ai = i, i = 1, . . . , 4

• L = R4

• e(i) = (0, . . . ,
i

1, . . . , 0)

• P1 = {Ω}, P2 = {S, F}, Pr(S) = σ

• Transfer technology σ = (σ1, σ2) is given by:

– For t = (2, 3), (∀ω ∈ Ω)σ1(ω, t) = χS(ω).

– For all other t ∈T, (∀ω ∈ Ω)σ1(ω, t) = 1.

– For all t ∈T, (∀ω ∈ Ω)σ2(ω, t) = ρ.

– 1 > σ > ρ ≥ 1
2

• We specify the agents’ utilities as follows.

u1(x) = ln(x1 + βx3)

u2(x) = ln(x2 + βx1)

u3(x) = ln(x3 + βx2 + ψx 4)

u4(x) = ln(x4 + ϕx3)

with β > max{σ−1, ρ−1}, 0 < ϕψ < 1.

(4.3)

Here, goods received in trade are “better” substitutes for endowment goods for essential
participants 1,2,3. Agent 4 considers agent 3’s good to be a “worse” substitute for his own
endowment good, and agent 3 considers 4’s good to be a “worse” substitute for agent 2’s
good or even for his own endowment good.

4.2 Interpretation

Motivation of introducing a model described in the previous subsection 4.1 is discussed in
[2]. Here, let us give a brief description of an interpretation of the model in an economic
context.

It is a model of a network or an arrangement of transactions that involve a risky transfer
of assets. Transactions are generated endogenously. There is a risk in asset transfers and
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one is concerned with the question of optimal risk management in such a network. Assets
may well be usual commodities and not limited to financial assets. Some specific questions
regarding risk management in a network of transactions are the following. If there is some
risk of failure in a transfer from one party to another, should the transfer be done through
that arrangement? If so, then what considerations are relevant to determining whether
third parties ought to share that risk? Are there conditions under which the general public
or the government (in the case of a private arrangement) ought to bear some risk and,
if so, what level of compensation would it be appropriate for them to receive? One can
address these questions by analyzing a schematic, formal, model of a stochastic transfer
introduced above. The particular model of the Wicksell triangle plus a simple barter has
been motivated as a simplest model to analyze the questions posed.

Suppose that our task is to formulate a model of a transaction that involves a risky asset
transfer. The model should be rich enough to describe such a transaction recognizably, but
simple enough to be analytically tractable. Consider what sort of model could satisfy both
the requirements of richness and simplicity. A transaction is a related set of asset transfers
between agents. An asset transfer involves two agents, the donor and the recipient, but
a transaction can generally involve more than two agents. Therefore, at the very least,
a model of a transaction involving a risky transfer should include three agents, so that a
distinction can be drawn between a participant in the broad transaction and a participant
(that is, the donor or the recipient) in the specific transfer where the risk occurs. In order
for the third-party participant in the transaction — that is, the participant who is neither
the donor nor the recipient of the risky transfer — to be essential to making a mutually
beneficial transaction, there should be no “double coincidence of wants” between the donor
and the receiver. This consideration suggests modeling the three participants as a “Wicksell
triangle.”

There is a distinction between two types of third party (or potential third party) that
a model ought to capture. A third party to risky transfer in a Wicksell triangle might
be intrinsically necessary in the sense that the donor and recipient of the risky transfer
would have no double coincidence of wants, even if the transfer did not involve risk. For
characterizing the differences between the roles of these two types of third parties, a four-
trader model (including both an intrinsic third party and a trader whose only involvement
would be to share risk) can be useful. On the basis of these considerations, one is lead
to the four-agents model of the Wicksell triangle plus a simple barter, where agent 1 is
assumed to be essential to a mutually beneficial transaction but that agent 2 is the donor
and agent 3 is the recipient of the risky transfer. The attributes of agent 4, who constitutes
to be the potential partner of the essential participants, is specified in such a way that
agent 4 can only participate in a risk-sharing capacity. This should be clearly seen from
the specification of the agents’ utilities in (4.3).
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4.3 Some notation

Given a stochastic transfer τ , we shall write for convenience

τ1(ω, t1, t2) =





τ 1
i , i = t1 for t1 = 1,2, 4

τ 1
3 for t1 = 3, t2 = 1

τ 1
5 for t1 = 3, t2 = 4

for all ω ∈ Ω,

τ2(ω, t1, t2) =





τE
i , i = t1 for t1 = 1, 2, 4

τE
3 for t1 = 3, t2 = 1

τE
5 for t1 = 3, t2 = 4

for ω ∈ E ∈ P2 = {S, F}.

When a stochastic transfer τ is clear from the context, we may write for simplicity

CS
i = 1 − τ 1

i − τS
i + ai−1(τ

1
i−1 + ρτS

i−1),

CF
i = 1 − τ 1

i − τF
i + ai−1(τ

1
i−1 + ρτF

i−1) (4.4)

for i = 1, 2, 4 where i − 1 = 3 for i = 1 and i − 1 = 5 for i = 4, and ai = β for i = 1, 2, 3,
a4 = γ, and a5 = ϕ. For i = 3, we have

CS
3 = 1 − τ1

3 − τS
3 + β(τ1

2 + ρτS
2 ) − τ1

5 − τS
5 + γ(τ1

4 + ρτS
4 ),

CF
3 = 1 − τ1

3 − τF
3 + βρτF

2 − τ1
5 − τF

5 + γ(τ 1
4 + ρτF

4 ). (4.5)

CE
i is interpreted as “real” consumption level of agent i in event E in the sense that it

directly determines i’s utility level in event E ∈ P2.

Given a stochastic transfer µ, a net transfer gap of agent i is defined by:

gi(µ) = 1 − µ1
i − χ{3}µ

1
5 − max{µS

i + χ{3}µ
S
5 , µF

i + χ{3}µ
F
5 }.

It represents the maximal amount that agent i can further transfer to other agents. Here,
χ{3} = 1 for i = 3 and = 0 otherwise.

We may view the Wicksell triangle as a transfer system, in which case we may refer to
the agents belonging to the Wicksell triangle as essential participants to the system and
agent 4 as the inessential participant. Then, the amount gi(µ) is the maximal amount that
agent i can further transfer to other agents including the inessential participant. Hence, if
we define transfer gap ḡi(µ) by setting

• ḡi(µ) = gi(µ) for i = 1, 2, and

• ḡ3(µ) = 1 − µ1
3 − max{µS

3 , µF
3 },
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then ḡi’s represent the maximal amount that agent i can transfer to other agents among
essential participants.

4.4 Assumption on parameter values

We shall require conditions which guarantee to generate nontrivial stochastic transfer in the
given transfer network economy E = {(A, T ), e, (ua)a∈A, σ,P}. We assume the following
conditions on parameter values:

• ϕγ >

(
1 − σ

ρ

)
1

1 − ρ
, and

• βρ >
3
√

2 , ρ >
3
√

2/2.

The first inequality is satisfied, if, for example, ϕγ > 0.63 when σ = 0.9 and ρ = 0.8.
It is also satisfied whenever ϕγ > rσρ where

rσρ ≡
(

1 − σ

σ

)(
ρ

1 − ρ

)
.

The second and the third inequalities are to ensure that second round transfers are not
too costly to make such transfers.

4.5 Specific results

Finally, let us present two specific results concerning the efficiency and optimality properties
of stochastic transfers in the model of the present section which have been proved elsewhere
(see, e.g., [2]). These properties are stated in terms of total competitiveness of transfers.

Proposition 6 A totally competitive stochastic transfer µ always specifies state contingent
transfers. A typical totally competitive stochastic transfer µ satisfies:

µ1
i > 0 for i = 1, 2, 3, 5, µ1

4 = 0 ,

µF
1 > 0, µF

2 > 0, µF
3 > 0, µF

4 > 0, µF
5 = 0 ,

µS
1 = µS

3 = µS
4 = µS

5 = 0, µS
2 > 0 ,
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in which case we have:

CF
2

CS
2

=
CF

3

CS
3

= rσρ

CF
1

CS
1

≥
(

1 − σ

σ

)
1

1 − ρ
> rσρ

with equality holding when g1(µ) > 0

CF
4

CS
4

=
1 − σ

σ

(
1

ϕγρ(1 − ρ)
− 1

)
>

(
1 − σ

σ

)
1

1 − ρ
.

One may note the extent to which agents’ consumptions that a typical totally compet-
itive stochastic transfer induces are state contingent. Given a typical totally competitive
stochastic transfer as in the beginning of the statement of the proposition above, for agent
2 and agent 3 the consumption level in event F relative to that in event S is rσρ, which is
less than 1 but approaches 1 as the value of ρ becomes closer to σ. This may be interpreted
to say that the failure of receipt by agent 3 is compensated by other agents by the factor of
(ρ/(1−ρ))−1. Agent 2 is as responsible as agent 3 for the loss as his relative consumption
level in event F is reduced to the level of agent 3. Agent 1 in turn compensates agent 2
but extent to which he joins in the compensation is less than that of agent 2 so that his
relative consumption in event F exceeds rσρ. It is very instructive to note that agent 4 also
participates in this compensation scheme but extent to which he does compensate agent 3
is much less than those of other agents in the sense that his relative consumption level in
event F is higher than those of all the essential participants.

Proposition 7 Let µ be a totally competitive stochastic transfer. Then:

1. At least one essential participant must be sending all his endowment to other agents
in some event. That is,

(∃i ∈ {1, 2, 3})gi(µ) = 0.

2. Suppose that agent 3 is not sending all of his endowment to other essential participants
so that ḡ3(µ) > 0. Then, µ is a totally competitive stochastic transfer if and only if
agent 3 is making a transfer to agent 4 either by the amount of his transfer gap or
by the amount of “feasibility bound” given by

v(ϕγ, σ, ρ, β) =
(1 − σ) (1 − ϕγρ(1 − ρ))

β [ϕγρ(1 − ρ) − (1 − σ)]
,

whichever is smaller, i.e.,

µ1
5 = min{ḡ3(µ), v(ϕγ, σ, ρ, β)},

17



and agent 4 in turn is making a state contingent transfer in event F at most the
amount given by

τF
4 =

(
ϕγρ(1 − ρ) − (1 − σ)

σϕγρ(1 − ρ)

)
(1 + βτ 1

5 ) . (4.6)

The first part of the proposition 7 is due to our specification of preferences of essential
participants that they prefer the endowment of another agent to his own. The second part
results from two factors. One is that a totally competitive stochastic transfer in general
specifies positive second round transfers in both events F and S as well as a positive
first round state non-contingent transfer from agent 2 to agent 3. This ensures agent 3’s
consumption in event F relative to that in event S, CF

3 /CS
3 , to be given by rσρ. Second

is that under this circumstance, the expected utility of both of the agents 3 and 4 can be
increased whenever first round state non-contingent transfer from 3 to 4 and second round
state contingent transfer in event F from 4 to 3 can be increased. For a first round state
non-contingent transfer from 3 to 4, τ 1

5 , the maximal amount that agent 4 would be just
willing to send to 3 is given by the amount shown in (4.6). For details, one is referred to
[2].
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