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The centipede game is perhaps the best example of what is known as �paradoxes

of backward induction.�These paradoxes involve sequential games all of whose cor-

related equilibria, and a fortiori all its Nash equilibria, imply a very counterintuitive

play.

A particular instance of the centipede game can be described as follows. A pile

of $4 and a pile of $1 are lying on a table. Player I has two options, either to �stop�

or to �continue.�If he stops, the game ends and he gets $4 while Player II gets the

remaining dollar. If he continues, the two piles are doubled to $8 and $2, and Player

II is faced with a similar decision: either to take the larger pile ($8), thus ending the

game and leaving the smaller pile ($2) for Player I, or to let the piles double again and

let Player I decide. The game continues for at most six rounds. If by then neither of

the players have stopped, Player I gets $256 and Player II gets $64. Figure 1 depicts

this situation.

[Figure 1 here]
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Although this game o¤ers both players a very pro�table opportunity, all stan-

dard game theoretic solution concepts predict that Player I will stop at the �rst

opportunity, and win just $4. Despite this unambiguous prediction, game theorists

often �wonder if it really re�ects the way in which anyone would play such a game�

(Richard D. McKelvey and Thomas R. Palfrey, 1992, p. 804, italics added).

The game theoretic prescription for this kind of sequential games goes so much

against intuition that it induced Robert W. Rosenthal (1981), in the same paper

in which he introduced the centipede game, to propose an alternative to the game

theoretic approach in the hope of obtaining predictions more in line with intuition.1

Robert J. Aumann (1992) contends that the backward induction outcome in these

games is so disturbing to some people, that �if this is rationality, they want none of

it�(p. 218).

The apparent con�ict between the theoretical prediction and intuitively reasonable

behavior in the centipede game prompted some researchers to argue that there may

not be any con�ict between rationality and the failure of backward induction. In

a very convincing example, Aumann (1992) shows that in the centipede game it is

possible for rationality to be mutually known to a high degree (in fact, the rationality

of one of the players may even be commonly known) and still for both players to

�continue�for several rounds. Phil J. Reny (1992) also eloquently demonstrates how

violating backward induction may be perfectly rational. Elhanan Ben-Porath (1997)

shows that several rounds of �continuation�are consistent with common certainty of

rationality.2 Therefore, rationality alone does not imply the pessimistic and rather

unpro�table behavior prescribed by the game-theoretic solution concepts.

It actually turns out that it is not rationality, or even mutual knowledge of ra-

tionality, but common knowledge of rationality that implies the backward induction

outcome. Indeed, Aumann (1995) formalizes a notion of rationality in perfect infor-

mation games that allows him to make this statement precise.3 However, he also

concedes that common knowledge of rationality �is an ideal condition that is rarely

1While Rosenthal�s proposal did not catch on in the literature, his centipede game has become a
cornerstone example of the con�ict between theory and intuition.

2See also Geir B. Asheim and Martin Dufwenberg (1993) for a re�nement of this result.
3Using a di¤erent formalization, Reny (1993) shows that the backward induction outcome may

fail to occur even if there is common knowledge of rationality at the beginning of the game. See also
Ben-Porath (1997) and Asheim and Dufwenberg (1993).
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met in practice� (p. 18), and further contends that if this condition is absent the

backward induction outcome need not emerge. In particular, he stresses that in the

centipede game even the smallest departure from common knowledge of rationality

may induce rational players to depart signi�cantly from equilibrium play.

In the next section we review the empirical evidence in this game. Consistent

with intuition a number of experimental studies conducted with college students have

documented systematic departures from the backward induction outcome, typically

�nding that almost no subjects stop at the �rst opportunity even after they have

played several repetitions of the game. Further, these studies often conjecture that

various forms of social preferences, limited cognition or failures of backward induction

reasoning play an important role as to why the equilibrium outcome is rarely observed

in the lab.

In this paper we depart from previous experimental studies in the subject pool

we consider. We �rst identify subjects who are very likely characterized by a high

degree of rationality, namely expert chess players. These players devote a large part

of their life to �nding optimal strategies for innumerable chess positions using back-

ward induction reasoning. More importantly, one can safely say that it is common

knowledge among most humans that chess players are highly familiar with backward

induction reasoning. Our purpose is to use these subjects to study the extent to

which knowledge of an opponent�s rationality is a key determinant of the predictive

power of subgame perfect equilibrium in this game. By varying the �closeness� to

common knowledge of rationality across di¤erent experimental treatments, we design

a test that can separate the hypothesis of epistemic literature on rationality from

that of social preferences. More precisely, social preferences would imply the results

to be roughly the same across di¤erent treatments, while the epistemic approach

would suggest the results to be closer to equilibrium the �closer�we are to common

knowledge of rationality. We investigate this question both in a �eld and in a lab

experiment.

Our �rst experiment takes place in the �eld, where chess players were matched

with each other at various chess tournaments. Each chess player participated in the

experiment only once playing only one round of the centipede game. Our second and

main experiment takes place in a lab setting where both chess players and students

were matched with either chess players or students in four treatments. These treat-

ments di¤er in the order of play of these two types of subjects. In this experiment
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subjects play ten rounds of centipede game, and no subject plays against the same

opponent twice.

Our main �ndings are the following:

(i) Both in the �eld and in the lab, when chess players play against chess players,

the outcome is very close to the subgame perfect equilibrium prediction. In the �eld

experiment with chess players playing a one shot centipede game, 69% of the games

ended at the initial node. When we restrict attention to games where the �rst player

was a Grandmaster, this percentage escalates to 100%. In the laboratory experiment,

when chess players play ten repetitions of the centipede game against chess players,

more than 70% of the games ended at the �rst node. More importantly, we �nd that

every chess player converges fully to equilibrium play already at the �fth repetition.

These results suggest that the ideal condition of common knowledge of rationality

seems to be approached closely when chess players play the centipede game.

(ii) When students play against chess players in our laboratory experiment, the

outcome is much closer to the subgame-perfect equilibrium than when students play

against students. More precisely, when students played against students their behav-

ior was consistent with previous experimental results. Only 3% of the games ended at

the initial node, and there was no sign of convergence to equilibrium play as the rep-

etitions progressed. In the treatments where students faced chess players and acted

as Player 1, the proportion of games that ended at the �rst node increased tenfold,

to 30%. Furthermore, when we restrict attention to the last two repetitions, this

proportion grows to 70%. Lastly, when chess players acted as Player 1 and students

acted as Player 2, 37.5% of the games ended in the �rst node.

We view these �ndings as being highly consistent with the predictions of the the-

oretical literature in that the predictive power of subgame perfect equilibrium hinges

mainly on knowledge of players�rationality, and not on altruism or social preferences.

Hence, the results o¤er strong support for standard approaches to economic modeling

based on the principles of self-interested rational economic agents and their assess-

ments of the behavior of their opponents in a game. Thus, at a moment when there is

much discussion about non-standard assumptions on players�preferences, the results

in this paper suggest that such assumptions might be neither a realistic nor even a

necessary modeling device.

The rest of the paper is organized as follows. Section I brie�y reviews the experi-

mental literature on the centipede game and backward induction. Sections II and III
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describe our �eld and laboratory experiments, respectively, and their results. Section

IV concludes.

I. Literature Review

Uneasiness with the backward induction outcome arose long before the �rst exper-

imental study of the centipede game was performed. Indeed, Richard D. McKelvey

and Thomas R. Palfrey (1992) begin their pioneering paper by stating that they

report on experimental games whose Nash equilibrium predictions �are widely ac-

knowledged to be unsatisfactory.�These experiments resulted in outcomes so distant

from the game theoretic predictions that the intuition against the backward induc-

tion outcome seemed to be conclusively vindicated: fewer than 1.5% of the games

played in McKelvey-Palfrey�s centipede game experiment resulted in the backward

induction outcome, even after subjects played several repetitions of the game, and

these �ndings have been con�rmed in other studies.4

There were some later attempts to experimentally test the backward induction

prediction in centipede-like games. One is based on the idea that since the pie to be

divided between the players in these games grows as play advances to later nodes, the

tendency not to exit at early nodes could be explained by means of a small measure

of altruism. Mark Fey et al. (1996) ran a series of experiments with constant-sum

centipede games. These are games where the amount to be divided is constant, and

only its distribution among the players becomes more and more unequal as play moves

forward. As in the regular centipede game, this constant-sum game has a unique

Nash equilibrium outcome, which results in an immediate �stop.� Since moderate

altruism cannot induce players to �continue�at their respective decision nodes, one

would expect a high proportion of these games to result in the backward induction

outcome.5 Indeed, when two kinds of constant-sum centipede games were run, one

with ten nodes and a second one with six nodes, the proportion of games that resulted

in the backward induction outcome was 45% and 59%, respectively. Although this is

4For instance, Rosemarie Nagel and Fang Fang Tang (1998) implement an experiment on the
centipede game played in reduced normal form. Even after subjects repeat the game one hundred
times against randomly selected opponents, fewer than 1% of the games end in the backward induc-
tion outcome. Gary Bornstein, Tamar Kugler and Anthony Ziegelmeyer (2004) �nd in their sample
that even if individuals play in groups, no games end in any of the �rst two nodes.

5By moderate altruism we mean other-regarding preferences according to which a dollar to oneself
is preferable to the same dollar belonging to the other.
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a dramatic increase in the performance of the theoretical prediction, Fey et al. (1996)

still regarded backward induction as inadequate for explaining players�behavior.

Another attempt at achieving the backward induction outcome was more recently

implemented by Amnon Rapoport et al. (2003). They ran a series of three-person

centipede games with substantially higher payo¤s and many more repetitions than

in the original McKelvey and Palfrey (1992) experiment (60 rounds rather than 10).

Here again, the backward induction outcome was observed to be played more often

(46% of the trials) than in McKelvey-Palfrey�s experiment, but nonetheless was not

enough to support the theoretical predictions. Interestingly, in the last �ve repetitions

of this 60-round, three-player, high stakes experiment, 75% of the games ended in the

initial node. This seems to be consistent with the idea that substantial experience

from repeated play in stable settings, especially in high stakes situations, may lead

to the backward induction outcome.

The experiments we implement in this paper are quite di¤erent from the ones

described above. Our experiment in the �eld represents a novel strategic situation

in which subjects only play once. Thus the design suppresses learning and repeated-

game e¤ects, and elicits subjects��initial responses.� As in Miguel A. Costa-Gomes

and Vincent P. Crawford (2006), this allows us to study strategic thinking �uncon-

taminated�by learning. On the other hand, in our laboratory experiment learning

is not the main focus of the analysis and hence we allow a standard small number

of repetitions. As indicated earlier, by simply introducing subjects who are likely

characterized by a high degree of rationality into an otherwise standard design with

college students, our purpose is to study the extent to which knowledge of opponent�s

rationality is a key determinant of the predictive power of subgame perfect equilib-

rium. Put di¤erently, we are interested in the comparative statics suggested by the

epistemic approach.

Lastly, the failure of the equilibrium model to predict the outcomes of past ex-

periments prompted researchers to propose and test alternative models of strategic

behavior in this game. Two of these approaches, both of which involve the intro-

duction of a slight perturbation to the original game, are the following. The �rst

one transforms the original centipede game into a game of imperfect information by

introducing an altruistic type with small but positive probability, and then calculates

its sequential equilibrium.6 In this modi�ed game, each player assigns a positive

6The concept of sequential equilibrium, introduced by David M. Kreps and Robert Wilson (1982),
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probability that his opponent is an altruistic type who continues at every node. The

resulting game has a unique sequential equilibrium, which depends on the prior prob-

ability of the altruistic type. This equilibrium requires the non-altruistic players to

continue with positive probability at every node, except for the last one. The reason

for this behavior is that the mere possibility of the existence of altruistic players allows

the non-altruistic players to mimic the altruistic behavior.7 McKelvey and Palfrey

(1992) used a version of this model to account for most features of their experimental

data.

The second approach is based on the quantal response equilibrium concept in-

troduced by McKelvey and Palfrey (1995) for the analysis of normal form games,

or rather its version for extensive form games of perfect information known as the

agent quantal response equilibrium (AQRE) introduced by McKelvey and Palfrey

(1998). The AQRE model is a generalization of the standard equilibrium model in

which agents evaluate the payo¤s of each possible strategy combination according

to random perturbations of the original payo¤s. Speci�cally, the AQRE is a Nash

equilibrium of the perturbation of the original game and coincides with it when the

perturbation vanishes.

McKelvey and Palfrey (1998) use this model for the analysis of their 1992 exper-

imental data. A very similar speci�cation is used by Klaus G. Zauner (1999). Fey et

al. (1996) use the AQRE model in their analysis of constant-sum centipede games.

These papers show that this model captures a key feature of the data, namely that

as the end of the game approaches the probabilities of stopping the game increase.

Consistent with experimental research on the centipede game, research on perfect

information games in general typically fails to lend support to equilibrium theories

based on self-interested rational individuals with unlimited cognitive capabilities. As

a result, various alternatives have been proposed. Theories of limited cognition, for

instance, contend that individuals may not have unlimited computational capabilities

and that they are not prone to game-theoretic reasoning. Other explanations main-

tain that subjects may reason game-theoretically, but that their preferences not only

depend on their own monetary payo¤s but also on those of others. In other words,

these theories allow for social or payo¤-interdependent preferences. For instance, Eric

is the main generalization of the subgame perfect equilibrium concept to extensive games with
imperfect information.

7For an excellent explanation of the logic behind this equilibrium see Kreps (1990, pp. 537�43).
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E. Johnson et al. (2002) investigate the extent to which limited cognition and social

preferences can help explain departures from the backward induction outcome in a

three-round alternating-o¤ers bargaining game. They test for these competing expla-

nations by conducting sessions in which players bargain with self-interested robots

and by measuring patterns of information search using a computerized information

display. They �nd that social preferences and limited cognition both play a role in

detecting failures of backward induction. At the same time, they also �nd that back-

ward induction could be taught rapidly although, they argue, backward induction is

�simply not natural�and �presumably evolutionary adaptation did not equip people

to do it.� Ken Binmore et al. (2002) report experiments on one-stage and two-stage

alternating-o¤ers games, and �nd systematic violations of backward induction which

cannot be explained by payo¤-interdependent preferences. They argue that attention

must turn �either to alternative formulations of preferences or to models of behavior

that do not depend upon backward induction.�

II. The Field Experiment

Backward induction reasoning is second nature to expert chess players. They

devote a large part of their life to �nding optimal strategies for innumerable chess

positions using this reasoning. Further, it is common knowledge among them that

they are all highly familiar with backward induction reasoning. Consequently, for two

chess players playing a centipede game, it seems reasonable to think that they may

not satisfy even the minimal departures from common knowledge of rationality that

may induce rational players to depart from backward induction. Thus, Judit Polgar

and Viswanathan Anand, currently ranked the top female and male chess players in

the world, may very well play di¤erently from Alice and Bob in Aumann�s (1992)

example.8

In this �rst experiment we ask highly-ranked chess players to play the one-shot

version of the centipede game in an international open chess tournament. An ad-

vantage of this �eld setting is that it allows easy access to many highly ranked chess
8Aumann considers a three-round (six node) game, where the initial payo¤s of $10 and $0.50

are multiplied by 10 in each round that subjects may choose to stop. If after six rounds no player
has stopped, the game ends, with both players getting 0. In his example, if there is a small ex
ante probability (about 6.48�10�10) that Alice consciously and deliberately chooses to get $50,000
instead of $100,000 in her last decision node, it is then rational for Bob to continue up to that point.
Although this probability is very low, we would not bet on Judit Polgar making such a blunder.
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players. Hence, our �eld experiment is easier to implement than a corresponding

laboratory experiment. A second advantage, at least potentially, is that a chess tour-

nament may represent a more familiar and comfortable environment for chess players

than the unfamiliar setting of a laboratory. One disadvantage, however, is the im-

possibility of implementing a carefully designed experiment with repetitions. This is

important because without repetitions no theory can be fully rejected. The reason

is that theories are predictions of steady state behavior and not of initial responses.

Nevertheless, as Costa-Gomes and Crawford (2006) emphasize, modeling initial re-

sponses more accurately promises several bene�ts including obtaining insights into

cognition that elucidate important aspects of strategic behavior. Thus, the results of

the experiment are useful for modelling the initial responses of an interesting class of

subjects, those who are likely characterized by a high degree of rationality. Further,

and perhaps more importantly, initial responses that appear broadly consistent with

equilibrium behavior certainly boost our con�dence in such theory.

A. Subjects

Chess players were recruited from three international open chess tournaments in

the summer of 2006 in Spain: the XXII Open International Chess Tournament of

Sestao (June 17-18), the X Open International Chess Tournament of León (June 24-

25), and the XXVI Open International Chess Tournament Villa de Benasque (July

6-15). In addition we also recruited subjects from the Rapid Chess Tournament of

Cerler (July 10), a tournament held in conjuction with the Tournament Villa de

Benasque.

Four types of players participate in a typical tournament: Grandmasters, Inter-

national Masters, Federation Masters, and players with no o¢ cial chess title. The

title Grandmaster (henceforth GM) is awarded to world-class chess players by the

World Chess Federation FIDE. It is the highest title a chess player can achieve. The

title International Master (IM) ranks below the GM title, and the Federation Master

(FM) is also a top title awarded by FIDE, ranking below the titles of GM and IM.

In addition, all chess players are ranked according to the o¢ cial ELO rating method.

The di¤erence between two players�ELO ratings is functionally related to an estimate

of the probability that one of the players will beat the other should they play a chess

game. The requirements for achieving a GM, IM or FM title are somewhat complex.

They involve achieving a pre-speci�ed ELO rating and obtaining certain outcomes in
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certain tournaments.9 Typically GMs have an ELO rating above 2,500, IMs above

2,400 and FMs above 2,300. Strong club players have an ELO in the neighborhood

of 1,800.

Our sample consists of 422 chess players (211 pairs): 41 GMs, 45 IMs, 29 FMs

and 307 players with no chess title. They were all recruited at the international

chess tournaments at the time they were taking place. The �rst movers consisted of

26 GMs, 29 IMs, 15 FMs and 141 players with no chess title. Our players with no

chess title may still be considered superb chess players, as they spend several hours

a week playing and studying chess, often play in regional, national and international

tournaments, and typically have a very high ELO rating. As a matter of fact, we

only recruited players that have an o¢ cial rating above 2,000.

For comparison purposes we also implement the same one-shot version of the cen-

tipede game for a standard pool of college student subjects in a laboratory setting.

The college students were recruited from the Universidad del País Vasco in Bilbao

(Spain) through campus ads and by visiting di¤erent undergraduate classes. No

individual majoring in economics and mathematics was recruited. The sample con-

sisted of forty pairs of students. The experiments with chess players were conducted

at the international open chess tournaments, while those with college students were

conducted at the Universidad del País Vasco.

B. Experimental Design

We ran the three-round (six-node) version of the centipede game depicted in Fig-

ure 1, where the units were euros.10 Each game involves two players who had never

played the centipede game before. An experimenter read the instructions on the rules

and payo¤s of the game to each of the players separately, thus barring them from

any opportunity to interact with each other or anyone else. Players were then placed

in di¤erent rooms. Each player was informed that his opponent, who was referred

to as a �player,� had been read the same instructions, and that he was currently

in a separate location in the same building where the experiment was taking place.

Players, therefore, did not see each other and did not know each other�s identity.

Nonetheless, it seems reasonable to assume that in an international chess open tour-

nament with hundreds of chess players, subjects would surmise that their opponents

9Current regulations may be found in the o¢ cial FIDE Handbook (2008).
10At the time the experiments took place 1 euro = 1.25 US dollars.
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were also chess players. Likewise, for the students recruited through campus ads and

in di¤erent undergraduate classes, it seems reasonable to assume that they believed

their opponents were students.

The games were conducted through SMS messages using either a cell telephone or

a blackberry by which the subjects entered their decisions, sent their decisions to the

opponent, and received information on the decisions of the opponent. One subject

was assigned the role of Player I, and the other the role of Player II.11 They then

participated in only one centipede game. Each player recorded his decisions and the

decisions of the opponent as they occured in a drawing of the centipede game that

was similar to the �gure given in the instructions. That is, players recorded the moves

as they were taking place. They did not record their strategy in advance. When the

game was over each player signed his name and handed in the drawing where the joint

decisions had been recorded to the experimenter. Players were payed their earnings

immediately after the game was played.12

C. Results

Tables 1 and 2, and Figures 2 and 3 summarize our �ndings. They show the

proportion fn of games that ended at each of the seven possible terminal nodes

n = 1; 2; : : : ; 7.

Table 1 and Figure 2 show the results for the 40 pairs of students.

[Table 1 here]

Consistent with previous experiments, we �nd that the large majority of players

do not stop immediately. Only 3 of the 40 players who played the role of Player I

chose to stop in the �rst node, while close to two thirds of the games ended in nodes 3

and 4. For comparison, the bottom panel of the table shows the results for the college

11Given the strict anonimity with which the experiment was designed, we were free to choose how
to form pairs. Thus, we assigned the role of Player I in the Benasque tournament only to participants
in that tournament, with the exception of two subjects with no chess title, and the role of Player
II to participants in that tournament and/or in the Cerler Rapid Chess Tournament. In the Sestao
and Leon tournaments, the role of Player I was assigned only to participants, again except for two
subjects with no title, whereas the role of Player II to both participants and non-participants. At
the aggregate level, 91.7 percent of all our sample subjects were participants in one of the four
tournaments. As indicated earlier, in all cases chess players had an o¢ cial ELO rating above 2,000.
12The instructions given to the subjects can be found in an appendix posted on the AER Web

site.
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students in the McKelvey-Palfrey experiment. Although they implement the same

version of the game that we study, their experiment is di¤erent from ours in that they

use one tenth lower stakes and their students play ten repetitions. Nonetheless, the

patterns they �nd are similar to ours. Even after having played several repetitions,

very few students stop in the �rst node and about 60% of their sample end in nodes

3 and 4.

[Figure 2 here]

Table 2 and Figure 3 show the results for each type of chess player (GM, IM, FM,

and others) who take the role of Player I. The second column reports the range of

their ELO rating.

[Table 2 here]

We �nd that the overall proportion of games that resulted in the backward induc-

tion outcome is 69%, almost ten times greater than the proportion of college students

who made that choice. For the participants holding no chess titles the proportion is

61%. For Federation Masters and International Masters the proportions are 73% and

76%, respectively. If we restrict our attention to Grandmasters, the proportion is a

remarkable 100%. It is interesting to note that these proportions increase with the

ELO rating of the players. A possible interpretation of this pattern is that the ideal

condition of common knowledge of rationality is more closely approximated as the

quality of the chess players increases.

An increase in the implied stop probabilities with the rating of the players is also

found for those Players II for whom we observe their behavior. There are 48 players

with no title, 3 FMs, 10 IMs and 5 GMs that were given the chance to take an action

in node 2. Table 3 shows that the proportion that stop immediately (that is, in node

2) is 58.3%, 66.6%, 90% and 100%, respectively.

[Table 3 and Figure 3 here]

The main conclusions that we can draw from our �eld experiments are that (i)

chess players tend to play very di¤erently from college students, and that (ii) a sig-

ni�cant majority of chess players chose the only action that is consistent with equi-
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librium.13 These results are consistent with the idea that chess players represent a

unique subject pool with many levels of mutual knowledge of rationality. Further,

the fact that their initial responses are so close to equilibrium certainly boosts our

con�dence in a theory that gives a central role to the principles of self-interested ra-

tional economic agents and in their assessments of the rationality of their opponents.

Motivated by these �ndings we turn next to our main experiment.

III. The Laboratory Experiment

The objective of this experiment is to study whether players�assessments of their

opponents�rationality is a key determinant of whether the subgame perfect equilib-

rium is a good predictor of behavior. The experiment takes place in a laboratory

setting where we match both chess players and students with either chess players or

students in four di¤erent treatments, depending on the order of play. The treatment

where we match students with students is useful simply to replicate the main results

obtained in previous experiments. The treatment where we have chess players facing

chess players is a complement of the initial �eld experiment studied earlier since, by al-

lowing learning and experimentation, one can observe whether chess players converge

to the equilibrium outcome. The two treatments where we have students vis-a-vis

chess players are the most important ones. The fact that most people should not

be surprised that chess players are good at backward induction, and that indeed, as

evidenced by the previous section, they tend to play according to it, is what renders

the matching between students and chess players a powerful tool. If knowledge of

opponent�s rationality is an important determinant of one�s behavior, then students

should alter their behavior compared to the situation where they face another student.

Likewise, to the extent that chess players may be less con�dent on the rationality of

students than on the one displayed by other chess players, they should also alter their

behavior relative to the situation where they face another chess player.14

13Equilibrium predictions are about stationary situations, and not about initial responses. Thus,
not surprisingly, the equilibrium strategies are not best responses to the observed behavior. Player
I�s best response to the population frequencies is to continue in the �rst two nodes, and Player II�s
best response is to continue in his �rst node and to stop in his second node.
14Although chess players conform rather closely to the equilibrium predictions in the �eld experi-

ment, it is certainly possible that they were playing a di¤erent game than the one the experimenter
has created. Perhaps they do not intend so much to maximize their monetary reward as to �beat�
their opponent. That is, chess players may like to win, and one way to win is to obtain a higher
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A. Subjects

College students were recruited from the Universidad del País Vasco in Bilbao,

Spain. None of the participating students were majoring in mathematics or eco-

nomics. Chess players were recruited from a number of chess clubs from the Bilbao

area a¢ liated with the Spanish Chess Federation. None of the players had an o¢ cial

chess title and their average ELO rating is 2,007, ranging from 1,817 to 2,205. That

is, their ratings are in the range of the lowest ranked chess players that participated

in the �eld experiment studied in the previous section.

B. Experimental Design

The experimental design is very similar to that in McKelvey and Palfrey (1992).

Each experiment consisted of two sessions of ten repetitions of the centipede game

depicted in Figure 1. In each session twenty subjects, none of whom had previously

played a centipede game, were divided into two equally-sized groups which we called

the White group and the Black group. White players played the role of Player I,

and Black players played the role of Player II. Each white (black) player played one

instance of the centipede game with each one of the black (white) players, without

knowing his identity. No subject participated in more than one session. We followed

McKelvey and Palfrey�s design as much as possible, including their matching algo-

rithm which is meant to prevent supergame or cooperative behavior. We deviate

from their design in that we used the same payo¤s we used in the �eld, which after

adjusting for in�ation are about ten times larger than theirs, and in that after the in-

structions were read, players were located in individual rooms with no visual contact

with each other. As in the �eld experiment, players sent their move choices through

SMS messages rather than though computer terminals.15

The only feature that di¤erentiates the four experiments is the nature of the pool

of subjects in each of the groups. In Treatment I, both groups consisted of college

students. In Treatment II, the White group consisted of college students and the

Black group of chess players. In Treatment III, the White group was composed of

payo¤ than their opponent. Another alternative could be that chess players cannot allow themselves
to give an �incorrect� answer to a (chess) puzzle, no matter how much money they lose by doing
so. These alternatives suggest that chess players should not alter their behavior much when facing
a student relative to the situation when they play another chess player.
15The instructions given to the players can be found in the appendix posted on the AER Web

site.
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chess players and the Black group of college students. Finally, in Treatment IV, chess

players faced chess payers. Most importantly, in all the treatments the composition

of the two groups (though not the identity of its members) was common knowledge

among the players.16 The sessions were conducted at the Universidad del País Vasco

in February 2007. Table 4 summarizes the experimental design.

[Table 4 here]

C. Results

Table 5, Panel A shows the proportion of games in each session that ended up in

each of the seven possible terminal nodes, and Panel B reports the implied probabil-

ities of stopping, conditional on having reached a given node.

[Table 5 here]

As can be observed, when students play against other students the distribution of

observations resembles that in previous experiments of similar six-node exponential

centipede games. Very few subjects (3 percent) stop immediately, and over sixty

percent stop at nodes 3 or 4.17 The way that students play, however, drastically

changes when they are informed that they are playing against chess players. When

they take up the role of Player I (treatment II), the proportion of observations ending

in terminal node 1 (30 percent) is ten times greater than when they play against a

student, and even after two moves the implied stop probability, 0.61, is �fty percent

greater than when they play against students, 0.42. Likewise, when they take up

the role of Player II (treatment III) the distribution of games across the resulting

terminal nodes is stochastically dominated by the distribution corresponding to the

�rst treatment.

The main observation one can infer from these results is that college students�

behavior depends on whether they face a highly rational opponent or a fellow stu-

dent. This dependance raises the question of whether or not students are unaware of

backward induction reasoning. It seems that they may or may not subscribe to such

16To further preclude the possibility of cooperation we made sure that no students of the same
entering class and major played in di¤erent groups in treatment I, that no chess players belonging to
the same chess club played in di¤erent groups in treatment IV, and that chess players participating
in treatments II and III were not college students.
17Perhaps not surprisingly, as we use much greater payo¤s than in past experiments, the distrib-

ution is slightly to the left of the corresponding McKelvey-Palfrey (1992) distribution.
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reasoning depending on their beliefs about the assessed sophistication and experience

of their opponent.

We now turn our attention to the chess players. First we �nd that when they

play against other chess players the aggregate distribution of observations is not

much di¤erent from what we found in the �eld: about 70 percent of the games end

immediately. Yet, chess players, like the students, play drastically di¤erent when told

that they are playing against a student. The proportion of observations ending in

the �rst node in treatment IV is almost twice that observed in treatment III, and the

implied stop probabilities are greater in every node in treatment IV relative to the

case when they play against a student (nodes 1 and 3 in treatment III, and nodes 2

and 4 in treatment II).

The di¤erences in stop probabilities are such that the distributions of the pro-

portion of observations in both treatments II and III are stochastically dominated

by that in treatment I, while the distribution in treatment IV is dominated by those

in treatments II and III. Comparing the latter two treatments, chess players have a

greater implied stop probability than students in three of the �rst four nodes, and the

implied stop probabilities tend to increase monotonically with the stage of the game

in every treatment and, for treatments II and III, also for a given type of player.18

Tables 6 disaggregates the data into �early�plays (games 1-5) and �late�plays

(games 6-10).

[Table 6 here]

Consistent with past experiments, we �nd that for each treatment the distribution

of observations in the early plays stochastically dominates that in the late plays. As in

the aggregate data, implied stop probabilities tend to increase as we get closer to the

last move in each of the treatments, for both early and late plays. The only exception

to this pattern occurs in the last node of the late plays in the �rst treatment, where

the probability drops from .76 to .66. But these probabilities are based on only three

subjects, one of whom decided to continue rather than stop in the sixth node.

Treatments II and III show that when students and chess players play against each

other, they do not behave very di¤erently from each other. Although chess players

18The one possible exception to this pattern is the second node in the treatment IV, although as
it will be noted later this is actually the result of aggregating across rounds with very di¤erent stop
probabilities.
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tend to have a greater implied stop probability at every node, the magnitude of the

di¤erences is not large, and in both treatments the probability of stopping reaches 1

in node 5 in the early plays and in node 4 for the late plays.

As in the aggregate data, both for early and late plays, the distributions of ob-

servations in treatments II and III are stochastically dominated by that in treatment

I, while they dominate the distribution corresponding to treatment IV. More impor-

tantly, all the late games of treatment IV ended at the �rst terminal node.19 This

result indicates that chess players need just a small number of repetitions to learn

to correctly predict other chess players� behavior and to converge to equilibrium.

Their behavior, therefore, is not inconsistent with the hypothesis that they satisfy

the condition of common knowledge of rationality.

Finally, Figure 4 reports the proportion of games that ended in the �rst node at

each round and for each treatment. Panel A represents the behavior of students and

Panel B the behavior of chess players.

[Figure 4 here]

These round-by-round data show in more detail the reactions of college students

and chess players to the di¤erent types of opponents they face.20 The evidence from

treatments II and III reveals that they are not very di¤erent from each other. More

importantly, in rounds 9 and 10 of treatment II, 70 percent of students stop im-

mediately, whereas in the same rounds of treatment III, 75 and 85 percent of chess

players stop immediately. Hence, these mixed treatments show a substantial degree

of convergence towards equilibrium.

It is interesting that chess players playing against chess players seem to �experi-

ment�during the �rst few repetitions by choosing to �continue�much more frequently

than when playing a one-shot game in the �eld. In Panel B, the proportion of treat-

ment IV games that ended at the �rst node steadily increases from 10 percent in

the �rst games to 100 percent in the �fth repetition. Hence, although the aggregate

distribution reported in Panel A of Table 5 is similar to the distribution obtained in

19The fact that in the late games all subjects stop in the �rst node explains why in Table 5, Panel
B, the implied stop probabilities, where the data are aggregated over all games, decrease from node
1 to node 2.
20The fact that chess players play very di¤erently when matched to other chess players than

when matched with students also means that they are not simply trying to beat their opponent by
obtaining a higher payo¤ or that they do not require themselves to give �the correct answer� to
what they could perceive as a chess puzzle.
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the �eld, chess players drastically alter their behavior in the laboratory initially when

they know they will play ten repetitions of the same game, and then they all quickly

converge to equilibrium.

IV. Conclusions

Aumann (1998) showed that if the backward induction outcome is not played at

some state of the world, then at that state there must be a node in the path of play

at which the player whose turn it is to move deliberately chooses an action that he

knows yields him a lower payo¤ than the one he would get by choosing an alternative

action. Speci�cally, at that state there is a node that is reached along the path of play

at which a player chooses to continue even though he knows at the time of his choice

that stopping is more pro�table. Although this irrational behavior is by no means

impossible among humans, our working hypothesis is that it is less likely to occur

among chess players, who are familiar with backward induction reasoning. Further,

their familiarity with this form of reasoning is common knowledge among many, if

not all, humans.

In this paper we have used chess players in two experiments. Our �rst experiment

takes place in a �eld setting where we just elicit their �initial responses,� that is

where we study their strategic thinking having suppressed learning and repeated game

e¤ects. We �nd that even at the level of initial responses chess players�behavior is

remarkably close to equilibrium. Our laboratory experiment then lends conclusive

support to the equilibrium hypothesis by further showing that chess players, when

allowed minimal opportunities to experiment and learn, converge very rapidly to

equilibrium behavior. These results suggest that the �ideal� condition of common

knowledge of rationality seems to be approached closely when chess players play the

centipede game.

Our main �ndings concern the standard pool of subjects in the laboratory ex-

periments. In games that involved one college student vis-a-vis one chess player the

backward induction outcome occurred more than ten times more often than in games

involving college students only, and already by the tenth repetition college students

approached it quite closely. We view these �ndings as being highly consistent with

the predictions of the theoretical literature. It is the rationality of a subject and his

assessment of the opponent�s rationality, rather than altruism or other forms of social

preferences, that seems to be key to predicting the outcome of perfect information
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games. Thus, in the context of the extensive recent discussion in the literature about

non-standard assumptions on players�preferences as a realistic and necessary model-

ing device, this paper suggests that such assumptions might be neither. With respect

to future research, our �ndings can also be interpreted as representing a sensible shift

away from limited cognition and learning backward induction, towards deciding when

to apply equilibrium theory.
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TABLE 1 – COLLEGE STUDENTS  

Proportion of Observations fi at Each Terminal Node  
 

 
       N     f1   f2    f3    f4    f5    f6   f7     
 
Panel A: UPV college students 

       40  0.075 0.150 0.350 0.300 0.100 0.025 0.000 
 
Panel B: McKelvey and Palfrey (1992) students 

   Repetitions 1-5  145  0.000 0.055 0.172 0.331 0.331 0.090 0.021 
   Repetitions 6-10  136  0.015 0.074 0.228 0.441 0.169 0.066 0.007  

   Total   281  0.007 0.064 0.199 0.384 0.253 0.078 0.014 

 
Note: The McKelvey and Palfrey students played ten repetitions a six-node centipede game with about 
one tenth lower stakes than the game played by the Universidad del País Vasco (UPV) students, who 
played it just once. 

 
 



 
TABLE 2 – CHESS PLAYERS  

 
Proportion of Observations fi  at Each Terminal Node 

 
 
   Player I     N ELO range   f1   f2   f3   f4   f5   f6   f7     
 
Grandmasters    26 2378-2671 1.00   0   0   0   0   0   0 

International Masters 29   2183-2521 0.76 0.17 0.07   0   0   0   0 

Federation Masters    15 2153-2441 0.73 0.20 0.07   0   0   0   0 

Other chess players  141 2001-2392 0.61 0.26 0.10 0.03 0.01   0   0 

All pairs   211 2001-2671 0.687 0.208 0.080 0.018 0.004   0   0 

 

 

 

TABLE 3 – CHESS PLAYERS  
 

Implied Stop Probabilities pi at Each Terminal Node 
 
 
            p1         p2   p3         p4  p5     p6       p7     
 
Grandmasters    1.00       1.00    -          -    -      -        - 
     (26)         (5)   

International Masters  0.76       0.90 1.00          -    -      -        - 
     (29)       (10)   (2)  

Federation Masters   0.73       0.66 1.00          -    -      -        - 
     (15)         (3)   (1) 

Other chess players  0.61       0.58 0.73       0.80 1.00      -        -  
    (141)       (48) (19)         (5)  (1) 
 
 
Note: In parentheses is the number of players observed making a decision (stop or continue) at each node. 
 



 

TABLE 4 –EXPERIMENTAL DESIGN FOR LABORATORY EXPERIMENT 

 
 
Treatment Subject pool     Subject pool        Session   Subjects     Games/     Total #  
      Player I (White)   Player II (Black)     #          subject      games 
 
      I   Students     Students  1    20  10       100 

       2    20  10       100 

      II   Students     Chess Players 3    20  10       100 

           4    20  10       100 

      III   Chess Players   Students     5    20  10       100 

             6    20  10       100 

      IV   Chess Players   Chess Players     7    20  10       100 

       8    20  10       100 

 

 



TABLE 5 - PROPORTION OF OBSERVATIONS AND IMPLIED STOP 
PROBABILITIES AT EACH TERMINAL NODE  

 
Panel A - Proportion of Observations fi   

  Session N f1 f2 f3 f4 f5 f6 f7 
I. Students vs 1 100 0.04 0.15 0.40 0.27 0.13 0.01 0 

Students 2 100 0.02 0.18 0.28 0.33 0.14 0.04 0.01 
  Total 1-2 200 0.030 0.165 0.340 0.300 0.135 0.025 0.005 
                    

II. Students vs 3 100 0.28 0.36 0.19 0.11 0.06 0 0 
Chess Players 4 100 0.32 0.37 0.22 0.07 0.02 0 0 

  Total 3-4 200 0.300 0.365 0.205 0.090 0.040 0 0 
          

III. Chess Players 5 100 0.37 0.26 0.22 0.09 0.06 0 0 
vs Students 6 100 0.38 0.29 0.17 0.10 0.06 0 0 

  Total 5-6 200 0.375 0.275 0.195 0.095 0.060 0 0 
          

IV. Chess Players 7 100 0.69 0.19 0.11 0.01 0 0 0 
vs Chess Players 8 100 0.76 0.16 0.07 0.01 0 0 0 

  Total 7-8 200 0.725 0.175 0.090 0.010 0 0 0 

 
Panel B - Implied Stop Probability pi   

  Session   p1 p2 p3 p4 p5 p6 
I. Students vs 1  0.04 0.16 0.49 0.66 0.93 1.00 

Students   100 96 81 41 14 1 
 2  0.02 0.18 0.35 0.63 0.74 0.80 
   100 98 80 52 19 5 
 Total 1-2   0.03 0.17 0.42 0.65 0.82 0.83 
   200 194 161 93 33 6 
         

II. Students vs 3   0.28 0.50 0.53 0.65 1.00 - 
Chess Players   100 72 36 17 6 0 

 4  0.32 0.54 0.71 0.78 1.00 - 
   100 68 31 9 2 0 
 Total 3-4   0.3 0.52 0.61 0.69 1.00 - 
   200 140 67 26 8 0 
         

III. Chess Players 5   0.37 0.41 0.59 0.60 1.00 - 
vs Students   100 63 37 15 6 0 

 6  0.38 0.47 0.52 0.63 1.00 - 
   100 62 33 16 6 0 
 Total 5-6   0.375 0.44 0.56 0.61 1.00 - 
   200 125 70 31 12 0 
         

IV. Chess Players 7   0.69 0.61 0.92 1.00 - - 
vs Chess Players   100 31 12 1 0 0 

 8  0.76 0.67 0.88 1.00 - - 
   100 24 8 1 0 0 
 Total 7-8   0.725 0.64 0.90 1.00 - - 
   200 55 20 2 0 0 



 

TABLE 6 - PROPORTION OF OBSERVATIONS AND IMPLIED STOP 
PROBABILITIES IN EARLY (“1-5”) AND LATE (“6-10”) GAMES AT 

EACH TERMINAL NODE 
 

Panel A - Proportion of Observations fi  
 

Treatment Game N f1 f2 f3 f4 f5 f6 f7 
I. Students vs "1-5" 100 0.01 0.06 0.37 0.36 0.17 0.03 0 

Students "6-10" 100 0.05 0.27 0.31 0.24 0.10 0.02 0.01 
II. Students vs "1-5" 100 0.13 0.41 0.21 0.17 0.08 0 0 
Chess Players "6-10" 100 0.47 0.32 0.20 0.01 0 0 0 

III. Chess Players "1-5" 100 0.15 0.32 0.24 0.17 0.12 0 0 
vs Students "6-10" 100 0.60 0.23 0.15 0.02 0 0 0 

IV. Chess Players "1-5" 100 0.45 0.35 0.18 0.02 0 0 0 
vs Chess Players "6-10" 100 1.00 0 0 0 0 0 0 

 

     Panel B - Implied Stop Probability pi   
 

  Games   p1 p2 p3 p4 p5 p6 p7 
I. Students vs "1-5"  0.01 0.06 0.40 0.64 0.85 1.00 - 

Students   100 99 93 56 20 3 0 
 "6-10"  0.05 0.28 0.46 0.64 0.76 0.66 1.00 
     100 95 68 37 13 3 1 

          
II. Students vs "1-5"  0.13 0.47 0.46 0.68 1.00 - - 
Chess Players   100 87 46 25 8 0 0 

 "6-10"  0.47 0.60 0.95 1.00 - - - 
     100 53 21 1 0 0 0 

          
III. Chess Players "1-5"  0.15 0.38 0.45 0.58 1 - - 

vs Students   100 85 53 29 12 0 0 
 "6-10"  0.60 0.58 0.88 1.00 - - - 
     100 40 17 2 0 0 0 

          
IV. Chess Players "1-5"  0.45 0.64 0.90 1.00 - - - 
vs Chess Players   100 55 20 2 0 0 0 

 "6-10"  1.00 - - - - - - 
     100 0 0 0 0 0 0 

 



 
 
 
 

 
 
 

 
 
 

FIGURE 1 – A CENTIPEDE GAME 
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FIGURE 2. COLLEGE STUDENTS 

PROPORTION OF OBSERVATIONS AT EACH TERMINAL NODE 
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FIGURE 3. CHESS PLAYERS 
PROPORTION OF OBSERVATIONS AT EACH TERMINAL NODE 

BY TYPE OF PLAYER I IN THE PAIR 



FIGURE 4. PERCENTAGE OF “STOP” IN NODE 1 PER ROUND 
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