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Proposed Running Head: Risk Aversion and Bargaining

Abstract

We revisit the well-known result that asserts that an increase in the degree of one’s risk
aversion improves the position of one’s opponents. To this end, we apply Yaari’s dual theory of
choice under risk both to Nash’s bargaining problem and to Rubinstein’s game of alternating
offers. Under this theory, unlike under expected utility, risk aversion influences the bargaining
outcome only when this outcome is random, namely, when the players are risk-lovers. In this
case, an increase in one’s degree of risk aversion increases one’s share of the pie. Journal of
Economic Literature Classification Numbers: C70, C78.
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1 Introduction

One of the results most frequently quoted in the bargaining literature asserts that increasing risk

aversion reduces a player’s share in the bargaining outcome and increases that of his opponent.

This result1 has appeared in different variations including both the cooperative and the non-

cooperative frameworks. (See Kannai (1977), Khilstrom, Roth, and Schmeidler (1981), Sobel

(1981), Thomson (1988), Osborne (1984), Roth (1985), and Roth (1989).)

This result has gained popularity partly because it seems very intuitive. The assumptions un-

der which the result holds, however, are somewhat restrictive. For instance, Roth and Rothblum

(1982) (see also Safra, Zhou, and Zilcha (1990)) show that if the set of feasible agreements includes

lotteries, then an increase in one’s opponent’s risk aversion might be disadvantageous. Safra and

Zilcha (1993) show that if the agents’ risk-preferences belong to a wide family of non-expected

utility preferences, then the effect of changes in the degree of risk aversion on the bargaining

outcome is not conclusive. In particular, they show an example where an agent is hurt by an

increase of his opponent’s risk aversion.

Even under the assumptions where the result holds, there are some problems with its inter-

pretation. Risk aversion affects the bargaining outcome in cases (like the framework of the Nash

bargaining problem) where the underlying outcomes involve no lotteries and thus no risk at all.

Indeed, Roth (1985) uses the term “strategic risk” when referring to these cases. He interprets

this risk as arising from each player’s ignorance of his opponent’s actions, thus resulting in a

subjective probability that no agreement will be reached during the negotiations that are under-

way. But these probabilities are outside the model and their effect on the bargaining outcome is

therefore dubious.

When the underlying outcomes include lotteries, there is still a problem with the interpretation

of the result. Consider a situation where two risk-averse expected utility maximizers bargain over

one perfectly divisible dollar. Even when the agents can agree on a random division of the money,

the Nash bargaining solution selects a non-random division. Since the outcome in this case is not

random, one would expect that changes in the degree of the agents’ risk aversion did not affect

the outcome. As is well known, however, the Nash bargaining solution awards increasing shares

of the dollar to the agent whose opponent becomes more risk-averse. The result is even more

striking when we consider the case of two risk-loving agents who bargain over a dollar. In this

case, the Nash bargaining solution selects the random outcome that assigns the whole dollar to

each of the agents with probability 1/2, independently of their degree of risk loving. In this case,

1Henceforth we will refer to the result mentioned above as “the result.”
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even though the outcome is a non-degenerate lottery, changes in the degree of risk loving have

no effect whatsoever on the outcome.

Instead of considering, as Safra and Zilcha (1993) do, a large class of non-expected utility

preferences, this paper restricts attention to one particular model of choice under risk. Specifically,

we analyze the comparative statics of changes in risk aversion when agents’ preferences follow the

dual theory of choice under risk proposed by Yaari (1987). Under this theory, the objects of choice

are lotteries over monetary outcomes. The term dual refers to the feature that when this theory

is compared to the expected utility theory, the roles of monetary outcomes and probabilities are

reversed. In particular, while the expected utility functional is linear in probabilities and not

necessarily linear in monetary outcomes, the dual theory utility functional is linear in monetary

outcomes and not necessarily linear in probabilities.

By restricting attention to the dual theory we are able to obtain some positive results, which

can be compared to the predictions of the model with expected utility maximizers. Further,

these results do not suffer from the interpretational difficulties that we mentioned above. Another

reason for concentrating on the dual theory is that it proved to be useful in economic applications

(see for example Demers and Demers (1990), Hadar and Seo (1995) and Volij (1999)). We believe

that the prominence of expected utility theory is derived not only from the fact that it is supported

by an elegant axiomatic characterization (a property that is shared by the dual theory) but also

from its usefulness in economic applications.

Risk aversion is usually defined as aversion to mean-preserving spreads. Under expected

utility maximization, this is equivalent to the concavity of the von Neumann–Morgenstern utility

function. Under the dual theory, risk aversion is equivalent to the convexity of the “dual function”

with which probabilities are evaluated. As a result, the concept of risk aversion is not entangled

with the agent’s attitude towards wealth. In particular, preferences over sure outcomes give no

information about the agent’s degree of risk aversion. One immediate consequence is that if the

underlying set of allocations involves no lotteries, the bargaining solution will be invariant to

changes in risk attitude. As we pointed out earlier, this is not the case under the expected utility

framework.

If the dual theory resulted in essentially the same predictions concerning the relation between

risk aversion and bargaining outcomes, there would be little point in carrying out this exercise.

The same would be true if the predictions were ambiguous. The interesting message, however, is

that whenever changes in risk aversion affect the bargaining outcome according to the dual theory,

they affect it in precisely the opposite direction compared with expected utility theory. Namely,

more risk-loving reduces a player’s payoff and increases that of his opponent. Our analysis
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includes both Nash’s (cooperative) framework and Rubinstein’s non-cooperative framework. In

both cases, the set of underlying bargaining outcomes is defined in the standard way, i.e., as

consisting of all allocations of a divisible physical unit (money) plus lotteries on such allocations.

The paper is organized as follows. Section 2 gives a brief review of Yaari’s dual theory. After

presenting a simple bargaining situation in Section 3, Section 4 formulates the corresponding

Nash bargaining problem in terms of this theory. Our first result argues that if both players are

risk-averse, then changes in risk aversion do not affect the Nash bargaining allocation. Then we

take up the case of risk-loving players. We show that if both players are risk-loving, players who

become more risk-loving are worse off while their opponents are better off. Section 5 considers the

strategic framework where two impatient players play a game of alternating offers. The outcome

of this game is consistent with the results of the cooperative approach. Finally, Section 6 shows

that another commonly used strategic model, one where the players are not impatient but face

a probability of a negotiations breakdown, yields very different results. Moreover, its predictions

are not consistent with the outcomes of the cooperative approach. One should note that, in

contrast, the two strategic models are strategically equivalent if the players satisfy the expected

utility axioms.

2 A Short Review of the Dual Theory of Choice under Risk

Let r be a random variable that takes values in the unit interval. Denote by Gr its decumulative

distribution function (DDF), which is defined by

Gr(x) = Pr{r > x}, 0 ≤ x ≤ 1.

It is known that Gr is non-increasing, right-continuous and satisfies Gr(1) = 0. The random

variable r represents a lottery over monetary outcomes. Two random variables, r and s, are

comonotonic if for every pair of states, ω and ω′, (r(ω) − r(ω′)) (s(ω) − s(ω′)) ≥ 0. In words,

r and s are comonotonic if, when going from state ω to ω′ in Ω, both random variables move

(weakly) in the same direction.

The primitive of the dual theory is the set ∆ of all non-increasing, right-continuous functions

G : [0, 1]→ [0, 1] that satisfy G(1) = 0. This set is interpreted as the set of all DDF’s associated

with some random variable defined on some sufficiently rich probability space Ω and taking values

in [0, 1].

Let � be a complete preference relation on ∆. Yaari (1987) imposes the following axioms on
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�:

1. continuity (with respect to L1-convergence),

2. monotonicity: if Gr ≥ Gs then Gr � Gs, and

3. dual independence: if r, s and t are pairwise comonotonic and Gr � Gs, then Gαr+(1−α)t �
Gαs+(1−α)t.

Continuity is a technical requirement. Monotonicity requires that if Gr stochastically dom-

inates Gs then Gr � Gs. The dual independence axiom is where the dual theory departs from

the traditional expected utility theory. It deals with portfolios of comonotonic random variables.

Dual independence requires that whenever r, s, and t are pairwise comonotonic and Gr � Gs,

then any portfolio containing a proportion α of r and 1− α of t should be weakly preferred to a

portfolio containing α of s and 1− α of t.

Yaari (1987) uses the above axioms in the following representation theorem.

Theorem 1 A complete preference relation � satisfies continuity, monotonicity, and dual inde-

pendence if and only if there exists a continuous and non-decreasing real function g, defined on

the unit interval, such that for all Gr and Gs belonging to ∆,

Gr � Gs ⇔
∫ 1

0
g(Gr(t)) dt ≥

∫ 1

0
g(Gs(t)) dt.

Moreover, the function g is unique up to a positive affine transformation.

The function g is analogous to the von Neumann–Morgenstern utility function and, in a sense,

we can say that g “represents” the agent’s preferences. Graphically, an agent whose preferences

are described by the dual theory evaluates random variables according to the area under a suitable

transformation (the function g) of their DDF.

Given a function g that represents an agent’s preference, for any random variable r, let

U(r) =
∫ 1

0
g(Gr(x)) dx.

Theorem 1 says that agents will choose among random variables so as to maximize U . Further,

Yaari (1987) also shows that U is “linear” in payments. Formally, let a > 0 and b be two real

numbers and let v and av + b be two random variables taking values in the unit interval. Then

U(av + b) = aU(v) + b.
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One of the appealing features of the dual theory is that, unlike expected utility theory, the

agent’s attitude towards risk is not entangled with his attitude towards wealth. More specifically,

under the dual theory, marginal utility of wealth is constant and this feature is consistent with any

attitude towards risk. In particular, Yaari (1987) shows that a preference relation � that satisfies

the dual theory’s axioms exhibits risk aversion if and only if the function g that represents � is

convex. In this paper, we will be interested in the effect of changes in the degree of an agent’s risk

aversion on bargaining outcomes. For this purpose, it is necessary to understand what it means

for one agent to be more risk-averse than another. Following Yaari (1986), since risk aversion

is characterized by the convexity of the function g, it would be natural to define an agent to be

more risk-averse than another if and only if the former’s g is more convex than the latter’s.

Definition 1 Let �1 and �2 be two preference relations that satisfy the dual theory’s axioms

and that are represented by the functions g1 and g2, respectively. We say that �1 is more risk

averse than �2 if and only if there exists a convex function h, defined on the unit interval, such

that g1 = h ◦ g2.

For p ∈ [0, 1] let 〈1, p〉 denote the lottery that assigns 1 with probability p and 0 with proba-
bility 1 − p. The above definition is equivalent to requiring that for every random variable r, if

〈1, p1〉 ∼1 r and 〈1, p2〉 ∼2 r, then p1 ≥ p2. In words, for every lottery r, 1’s “probability equiv-

alent” is at least as high as 2’s “probability equivalent.” Under the dual theory, this is stronger

than requiring that for all lotteries, 1’s certainty equivalent be lower than 2’s certainty equivalent.

Under expected utility, however, this is a weaker requirement.2

The characterization of the risk attitude by means of the convexity of a univariate non-

decreasing function makes it relatively easy to analyze the effect of risk aversion on the outcome

of bargaining situations. This is done in the following sections.

3 The Bargaining Situation

Two individuals bargain over one unit of a single commodity (money). Assume that both bar-

gainers’ preferences over risky prospects satisfy the axioms of the dual theory of choice under

risk and are represented by the functions f and g, respectively. Without loss of generality f and

g are chosen so that f(0) = g(0) = 0 and f(1) = g(1) = 1.

2The interested reader should consult Yaari (1986) for various and equivalent interpretations of Definition 1.
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Any non-negative division of the single commodity is feasible if both agents agree on it.

Otherwise they get 0. As a result, the set of physical outcomes is

X = {(x1, x2) : x1 + x2 ≤ 1, x1, x2 ≥ 0},

and the disagreement physical outcome is D = (0, 0).

We shall assume that the bargainers are not constrained to agree on certain (as opposed to

random) outcomes, but that they can agree upon any lottery over elements of X. Let (Ω,B, λ) be
the probability space that consists of the unit square, its Borel sets and the Lebesgue measure. A

lottery is an random variable � : Ω→ X that assigns one physical outcome to each element ω ∈ Ω.
Note that we can think of a lottery � as two random variables (�1, �2) such that �i : Ω → [0, 1]

and �1(ω) + �2(ω) ≤ 1 for all ω ∈ Ω. These are the random variables of each of the agent’s

payoffs. We shall denote by F� the decumulative distribution function of the first agent’s payoffs

and by G� the DDF of the second agent’s payoffs. Formally, F�(t) = λ({ω ∈ Ω : �1(ω) > t}) and
G�(t) = λ({ω ∈ Ω : �2(ω) > t}). The set of lotteries will be denoted by L. Consequently, the
utility levels that the agents get from lottery � are given, respectively, by

U1(�) =
∫ 1

0
f [F�(t)] dt and U2(�) =

∫ 1

0
g[G�(t)] dt. (1)

A lottery � ∈ L is efficient if there is no other lottery �′ ∈ L that is weakly preferred to � by both
agents and strictly preferred to � by at least one agent. For the record, note that agent 1’s and

2’s expected monetary payoffs associated with a given lottery, �, are given by∫ 1

0
F�(t) dt and

∫ 1

0
G�(t) dt,

respectively. Moreover, if � is an efficient lottery, then
∫ 1
0 F�(t) dt+

∫ 1
0 G�(t) dt = 1.

4 The Cooperative Approach

In this section, we analyze the effect of changes in the agents’ degree of risk aversion on the

outcome of a simple bargaining problem, when the agents’ preferences satisfy the axioms of the

dual theory of choice under risk. Recall that Nash (1950) defined a bargaining problem to be

a pair 〈S, d〉 where S is a compact convex subset of IR2 such that d ∈ S and there is a point

s ∈ S such that s � d. The set S is the set of feasible utility pairs and d is the utility pair that

coresponds to the disagreement outcome. In our case the bargaining problem is given by the pair
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〈S, d〉 where

S = {(U1(�), U2(�)) : � ∈ L}, and d = (U1(0, 0), U2(0, 0)) = (0, 0).

It follows from the linearity and monotonicity of preferences in payments that the set S is

comprehensive, that is, if s ∈ S and 0 ≤ s′ ≤ s then s′ ∈ S. Also, since Ui(�) ∈ [0, 1] for i = 1, 2,
S is bounded. Using Helly’s selection theorem and the fact that f and g are continuous functions,

it can be shown that S is closed as well. Further, given two lotteries �1 = (�11, �
1
2) and �

2 = (�21, �
2
2),

we can find two lotteries �̂1 = (�̂11, �̂
1
2) and �̂

2 = (�̂21, �̂
2
2) such that �̂

1
i and �̂

2
i are comonotonic, for

i = 1, 2 and such that F�j = F�̂j and G�j = G�̂j , for j = 1, 2. Therefore, Ui(�̂j) = Ui(�j), for

i, j = 1, 2. Consider the lottery �∗ = α�̂1 + (1− α)�̂2. Since �̂1 and �̂2 are comonotonic, we have

Ui(�∗) = αUi(�̂1) + (1 − α)Ui(�̂2). This shows that S is convex. Therefore, 〈S, d〉 is indeed a
bargaining problem.

A bargaining solution is a function that takes a bargaining problem 〈S, d〉 as an input and
returns a point in S. The Nash bargaining solution is the function N that returns the point

s∗ = (s∗1, s∗2) ∈ S that satisfies s∗ � d and (s∗1 − d1)(s∗2 − d2) ≥ (s1 − d1)(s2 − d2) for all

s = (s1, s2) ∈ S with s � d. Nash (1950) shows that N is the only bargaining solution that

satisfies the properties of Pareto optimality, symmetry, independence of irrelevant alternatives,

and invariance with respect to positive affine transformations. Pareto optimality requires that

no feasible agreement is preferred by both agents to the selected agreement. Symmetry dictates

that the selected outcome yield the same utility level for both agents whenever the problem is

symmetric, namely whenever one cannot distinguish one agent from the other by just looking at

the problem 〈S, d〉. Independence of irrelevant alternatives requires that the selected outcome
not change if the feasible alternatives are reduced to a smaller set that still contains the selected

outcome. Lastly, invariance requires that if 〈S′, d′〉 is obtained from 〈S, d〉 by means of the
transformations si → αisi + βi, for i = 1, 2, where αi > 0 and βi ∈ IR, then s∗i ′ = αis

∗
i + βi, for

i = 1, 2, where s∗′ and s∗ are the points selected for 〈S′, d′〉 and 〈S, d〉, respectively. This axiom
is motivated by the idea that the selected outcome should depend only on the preferences of

the players and not on their utility representations. Recall that two von Neumann-Morgenstern

utility functions represent the same expected utility preferences if and only if one is a positive

affine transformation of the other. Therefore 〈S, d〉 and 〈S′, d′〉 can be interpreted as the images
of the feasible agreements and disagreement outcomes, under two pairs (one for each agent)

of equivalent utility representations. Note, however, that the invariance axiom dictates that

s∗i
′ = αis

∗
i + βi, for i = 1, 2, even if the transition from 〈S, d〉 to 〈S′, d′〉 is not due to a change
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in the utility representations but to a more significant change in the feasible agreements. We

shall elaborate on this soon after we give the motivation of the invariance axiom under the dual

preferences.

The axioms of Pareto optimality, symmetry and independence of irrelevant alternatives are

uncontroversial, in the sense that if they are reasonable when agents’ risk preferences satisfy the

von Neumann-Morgenstern axioms, they are also reasonable when agents satisfy Yaari’s axioms.

For instance, if it is reasonable that a bargaining solution should not select inefficient outcomes

in general, the same requirement remains reasonable when the agents’ risk preferences satisfy

the dual theory axioms. The invariance axiom is the only one that requires some justification

under the dual theory. Recall that according to Yaari’s representation theorem, the agents’ dual

functions f and g are unique up to positive affine transformations. Further, if f ′ = a1f + b1 and

g′ = a2g + b2 where a1 and a2 are positive reals and, b1 and b2 are arbitrary numbers, then

U ′
1(�) =

∫ 1

0
f ′(F�(t)) dt = a1

∫ 1

0
f(F�(t)) dt+ b1 = a1U1(�) + b1

and

U ′
2(�) =

∫ 1

0
g′(G�(t)) dt = a2

∫ 1

0
g(G�(t)) dt+ b2 = a2U2(�) + b2.

As a result, the bargaining problem 〈S′, d′〉 where

S′ = {(U ′
1(�), U

′
2(�)) : � ∈ L}, and d′ = (U ′

1(0, 0), U
′
2(0, 0))

is obtained from 〈S, d〉 where

S = {(U1(�), U2(�)) : � ∈ L}, and d = (U1(0, 0), U2(0, 0))

by means of the transformations s → ais+ bi for i = 1, 2. In other words, 〈S, d〉 and 〈S′, d′〉 can
be interpreted as the images of the feasible agreements and disagreement outcomes, under two

pairs (one for each agent) of equivalent cardinal representations. Therefore, if we would like a

bargaining solution to depend on the agents’ risk preferences but not on their respective cardinal

representations, the bargaining solution should satisfy the axiom of invariance to positive affine

transformations.

We said above that the invariance axiom dictates that s∗i
′ = αis

∗
i + βi, for i = 1, 2, even

if the transition from 〈S, d〉 to 〈S′, d′〉 is not due to a change in the utility representations but
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to a more significant change in the feasible agreements.3 To be specific, consider a situation

in which two agents bargain over 50 (perfectly divisible) poker “chips”. Assume that each chip

awards its owner $0.01, and that both agents’ preferences satisfy the dual theory axioms. In

case of disagreement, both agents get no chips. This situation induces a bargaining problem

〈S, d〉. Consider now a similar situation where both agents bargain over the same 50 chips but
now, agent 2 gets $0.02 for each chip while agent 1 still gets $0.01 per chip. Given that the dual

preferences are linear in money, the new situation induces a bargaining problem 〈S′, d′〉 where
S′ = {(s′1, s′2) : (s′1, s′2) = (s1, 2s2), for some (s1, s2) ∈ S} and (d′1, d′2) = (d1, 2d2). Since the

bargaining problem 〈S′, d′〉 is obtained from 〈S, d〉 by means of a positive affine transformation,
any bargaining solution that satisfies the invariance axiom selects the same division of chips in

both situations. One could argue that this result is reasonable because preferences are linear in

money prices. The motivation of the invariance axiom, however, has nothing to do with the above

change in the bargaining situation because in both situations the same cardinal representations

of the agents’ preferences were used. In any case, the invariance axiom implies that in both

situations the division of the chips be the same.

This feature of the invariance axiom, of having stronger implications than just the ones

suggested by its motivation, is not related to the fact that in the above example agents have

dual preferences. One can easily build a dual example that shows that the invariance axiom has

analogous consequences under expected utility. To see this, assume again that 2 agents bargain

over the same 50 chips. Now, as opposed to the previous situation, both agents are expected

utility maximizers. Further, each chip awards its owner not $0.01 but a 1% chance of winning $1.

That is, if an agent gets x chips, he is awarded a lottery that awards $1 with probability x/100

and $0 with the complementary probability. Normalizing utility so that ui(0) = 0 and ui(1) = 1,

for i = 1, 2, we get that the set of feasible utilities is S = {(s1, s2) : s1 + s2 ≤ 0.50} and that the
disagreement point is d = (0, 0). Now, consider a similar situation where agent 2 gets a 2% chance

of winning the dollar for each chip he gets while agent 1 gets 1% as before. The corresponding

utilities possibilities set is S′ = {(s′1, s′2) : (s′1, s′2) = (s1, 2s2), for some (s1, s2) ∈ S} and again,
any bargaining solution that satisfies invariance should select the same division of the chips in

both situations. One could argue that this result is reasonable because preferences are linear in

probabilities. The above change in the bargaining situation, however, has nothing to do with the

motivation of the axiom because there has been no change in the cardinal representations of the

agents’ preferences.

3We thank an anonymous referee for suggesting this discussion.
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Summarizing, the axiomatic foundation of the Nash bargaining solution is as justified in the

context of the dual theory as it is in the context of expected utility. Therefore, we can now turn

to the analysis of changes in risk aversion on the bargaining outcomes.

The case of risk-averse agents

When the agents are risk-averse, both f and g are convex functions. As a result, we have the

following:

Proposition 1 Assume that both agents are risk-averse. Then S = X. Further, if in addition

one agent is strictly risk-averse, then a lottery is efficient only if it assigns probability one to a

certain outcome.

Proof : By definition X ⊆ S. We shall show that S ⊆ X as well. Let (s1, s2) ∈ S. Then there

is a lottery � ∈ L such that

s1 =
∫ 1

0
f(F�(t)) dt and s2 =

∫ 1

0
g(G�(t)) dt.

Since f ≥ 0 and g ≥ 0, we have that (s1, s2) ≥ (0, 0). Let

s′1 =
∫ 1

0
F�(t) dt and s′2 =

∫ 1

0
G�(t) dt.

Namely, s′1 and s′2 are the expected monetary payoffs that lottery � awards to agent 1 and agent

2, respectively. Therefore, (s′1, s′2) ∈ X. But since both agents are risk-averse, f and g are convex

functions, which implies that s1 ≤ s′1 and s2 ≤ s′2. Since X is comprehensive, (s1, s2) ∈ X. This

proves the first part of the claim.

Assume now that � is an efficient lottery. Then, since S = X we have

1 = s′1 + s′2 ≥ s1 + s2 = 1.

Consequently, as s1 ≤ s′1 and s2 ≤ s′2, we have

s1 =
∫ 1

0
f(F�(t)) dt =

∫ 1

0
F�(t) dt = s′1 (2)

and

s2 =
∫ 1

0
g(G�(t)) dt =

∫ 1

0
G�(t) dt = s′2.
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Assume now that one agent is strictly risk-averse. Without loss of generality, assume that it is

agent 1. Then it follows from equation (2) that f(F�(t)) = F�(t) for all t ∈ [0, 1], which in turn
implies that F�(t) is either 0 or 1, that is, � is a degenerate lottery. ✷

As an immediate corollary of Proposition 1, we obtain the following:

Theorem 2 Let 〈S, d〉 be the bargaining problem induced by two risk-averse agents. The Nash

bargaining solution awards a utility level of 1/2 to each agent. In particular, changes in the

degree of risk aversion do not affect the outcome.

Note that when both players are risk-averse, the only agreement that yields the utility pair

(1/2, 1/2) is equal division with certainty. Since the outcome recommended by the Nash bargain-

ing solution does not involve randomness, it is perfectly reasonable that the degree of agents’ risk

aversion has no influence. An increase in the agents’ risk aversion means that lotteries are less

attractive. But since, by Proposition 1, when agents are risk-averse every utility pair that can

be obtained by means of a lottery can also be obtained by means of a certain outcome, changes

in risk aversion cannot have any effect on the final agreement.

Theorem 2 should be compared with Theorem 1 in Khilstrom, Roth, and Schmeidler (1981)

where it is shown that when the two agents are risk-averse expected utility maximizers, an

increase in the degree of risk aversion of one agent is beneficial to the opponent. This is true

even though the utility pair singled out by the Nash bargaining solution always corresponds to a

certain outcome.

The case of risk-loving agents

As soon as one of the agents is not risk-averse, efficient outcomes may involve nondegenerate

lotteries. In this case, an increase in the degree of risk loving (a decrease in the degree of risk

aversion) of one agent may affect the outcome selected by the Nash bargaining solution, as the

following theorem shows.

Theorem 3 Let 〈S, d〉 be a bargaining problem and let �∗ be a lottery that attains the utility

levels determined by the Nash bargaining solution. Assume further that �∗ assigns probability

p to the outcome (1, 0) and probability (1 − p) to the outcome (0, 1). The utility which the

Nash bargaining solution assigns to a player does not decrease as his opponent becomes more
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risk-loving. That is N2(S̃, d) ≥ N2(S, d) where 〈S̃, d〉 is obtained from 〈S, d〉 by replacing agent
1 with a more risk-loving agent.

Proof : Since agent 1 has become more risk-loving, there is a concave and non-decreasing

function h, defined on the unit interval, such that agent 1’s new preferences are represented by

the function h ◦ f and, therefore, his new utility function is given by V1(�) =
∫ 1
0 h(f [F�(t)]) dt.

Further, since �∗ is a lottery that assigns probability p to the outcome (1, 0) and probability

(1− p) to the outcome (0, 1), we have that U1(�∗) = f(p) and

V1(�∗) = h[f(p)] = h[U1(�∗)]. (3)

Now let �̃ be a lottery such that U2(�̃) < U2(�∗). We need to show that �̃ cannot attain the utility

levels selected by the Nash bargaining solution for the bargaining problem 〈S̃, d〉. By the way �∗
was selected, we have U1(�∗)U2(�∗) > U1(�̃)U2(�̃). Therefore,

U1(�∗) > U1(�̃)
U2(�̃)
U2(�∗)

.

Since h is non-decreasing,

h[U1(�∗)] ≥ h[U1(�̃)
U2(�̃)
U2(�∗)

].

By the concavity of h,

h[U1(�∗)] ≥ h[U1(�̃)]
U2(�̃)
U2(�∗)

.

By Jensen’s inequality,

h[U1(�∗)] ≥ V1(�̃)
U2(�̃)
U2(�∗)

,

which, together with (3) implies that V1(�∗)U2(�∗) ≥ V1(�̃)U2(�̃). Since (V1(�∗), U2(�∗)) �= (V1(�̃), U2(�̃))

we conclude that (V1(�̃), U2(�̃)) �= N (S̃, d). ✷

Note that the above theorem does not assume anything about the agents’ risk-loving except for

the fact that it should be enough to induce the Nash bargaining solution to select a non-degenerate

lottery whose prices are only the two extreme outcomes. The next result shows that a sufficient

condition for this kind of lottery to be selected is that both agents be risk-loving. Specifically, it

is shown that the utility possibilities frontier corresponds to lotteries that assign some probability

to the outcome (1, 0) ∈ X and the remaining probability to the outcome (0, 1) ∈ X.
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Proposition 2 Assume both agents are risk-lovers and let � be an efficient lottery. Then there

exists p ∈ [0, 1] such that a lottery, denoted by �∗, that assigns probability p to the outcome (1, 0)
and probability (1 − p) to the outcome (0, 1) is utility-equivalent to �. If in addition one of the

agents is strictly risk-loving, then � = �∗.

Proof : Let � be an efficient lottery. Therefore, we have∫ 1

0
F�(t) dt+

∫ 1

0
G�(t) dt = 1.

Let p =
∫ 1
0 F�(t) dt and consequently (1− p) =

∫ 1
0 G�(t) dt. Consider a lottery �∗ that awards the

commodity to agent 1 with probability p and to agent 2 with probability 1− p. By construction:

∫ 1

0
F�∗(t) dt =

∫ 1

0
F�(t) dt (4)∫ 1

0
G�∗(t) dt =

∫ 1

0
G�(t) dt. (5)

Also by construction:

∫ T

0
F�∗(t) dt ≥

∫ T

0
F�(t) dt, ∀T ∈ [0, 1] (6)∫ T

0
G�∗(t) dt ≥

∫ T

0
G�(t) dt, ∀T ∈ [0, 1]. (7)

Since both agents are risk-loving, equations (4)-(5) and inequalities (6)-(7) imply that

U1(�∗) ≥ U1(�) and U2(�∗) ≥ U2(�).

But since � is efficient we conclude that �∗ and � are utility-equivalent, which proves the first

part of the proposition. If one of the agents, say agent 1, is strictly risk-loving, then �∗ �= �,

equation (4) and inequality (7) would imply that U1(�∗) > U1(�), which is impossible. Therefore,

�∗ = �. ✷

The following result is an immediate corollary of the above proposition and Theorem 3.
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Corollary 1 Let 〈S, d〉 be a bargaining problem where both agents are risk-lovers. The utility

which the Nash bargaining solution assigns to a player increases as his opponent becomes more

risk-loving. That is N1(S̃, d) ≥ N1(S, d) where 〈S̃, d〉 is obtained from 〈S, d〉 by replacing agent
2 with a more risk-loving agent.

When the agents are risk-lovers, the Nash bargaining solution awards a utility pair that can

be achieved only by a non-degenerate lottery. Consequently, it is reasonable that changes in the

agents’ risk loving affect the outcome. The reason why an increase in the degree of risk loving of

one’s opponent is beneficial is analogous to the reason why, under expected utility maximization,

an increase in the degree of risk aversion of one’s opponent is beneficial. Under expected utility

maximization, an increase in one agent’s degree of risk aversion increases his utility from any

certain outcome in such a way that the equality-mindedness of the Nash bargaining solution has

no other choice but to “tax” him and transfer some of the surplus to the other agent. This

transfer of utility is implemented by means of a bigger share of the pie. Similarly, under the

dual theory an increase in one agent’s degree of risk loving increases his utility from any given

lottery in such a way that the equality-mindedness of the Nash bargaining solution has no other

choice but to “tax” the agent who benefits from the increased utility and to make some stochastic

transfer to the other agent.

Again, it is instructive to compare Corollary 1 to the case of two risk-loving expected utility

maximizers. In this case, by choosing von Neumann–Morgenstern utility functions such that

ui(0) = 0 and ui(1) = 1 for i = 1, 2, the utility possibilities set is given by X. As a result, the

Nash bargaining solution assigns an expected utility of 1/2 to each of the bargainers, independently

of their degree of risk loving. This utility pair can be achieved, however, only by the lottery that

assigns the whole pie to each agent with probability 1/2.

Summarizing, Theorem 2 and Theorem 3 show that according to the dual theory the Nash

bargaining solution is sensitive to changes in risk attitude only when the Pareto-efficient agree-

ments (and thus also the Nash solution) involve lotteries. This is in contrast to the expected

utility theory, where the solution is sensitive to changes in the players’ risk attitudes precisely in

cases where Pareto efficiency implies no lotteries.

5 The Strategic Approach

In this section, we analyze the effect of risk aversion on the outcome of the well-known game of

alternating offers. Consider the following game, denoted by Γ. Time is divided into periods. In
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odd-numbered periods, player 1 proposes a lottery � ∈ L to which player 2 responds either by

accepting it or rejecting it. In even-numbered periods, player 2 proposes a lottery and player 1

responds. Payoffs are as follows. If proposal � is accepted in period t, then player 1 gets U1(�)δt−1
1

and player 2 gets U2(�)δt−1
2 , where for i = 1, 2, δi ∈ (0, 1) is player i’s discount factor, and Ui is

defined in equation 1. If no player ever accepts, they both get 0.

The utility functions used here deserve a comment. Within periods, the function Ui represents

agent i’s risk-preferences. Across periods, the function Ui together with the discount factor δi
represent agent i’s time-preferences. In Rubinstein (1982), the set of feasible agreements is an

abstract set of outcomes, which are not necessarily lotteries. Hence, the issue of changes in risk

aversion does not arise. There, changes in Ui affect player i’s time preferences. Here, since

the set of feasible agreements consists of lotteries, changes in the utility function also affect the

within periods risk preferences. We are not deriving these joint preferences from basic axioms on

individual behavior but, as can be easily checked, the within periods risk-preferences satisfy all

the dual theory axioms and the across periods time-preferences satisfy all the properties required

by Rubinstein (1982). In particular, preferences are stationary and exhibit impatience.

We can state now the following result.

Proposition 3 Assume either that both players are risk-averse, with at least one of them strictly

so, or that both are risk-lovers, with at least one of them strictly so. Then, the game Γ has a

subgame perfect equilibrium. Further, there is a unique pair of efficient lotteries �̂1 and �̂2 such

that in every subgame perfect equilibrium:

1. player 1 proposes �̂1, accepts �̂2 and all lotteries � such that U1(�) > U1(�̂2) and rejects all

lotteries � such that U1(�) < U1(�̂2);

2. player 2 proposes �̂2, accepts �̂1 and all lotteries � such that U2(�) > U2(�̂1) and rejects all

lotteries � such that U2(�) < U2(�̂1).

The pair (�̂1, �̂2) is the only pair of efficient lotteries that solves the system

U1(�2) = δ1U1(�1) and U2(�1) = δ2U2(�2). (8)

Proof : Consider the system of equations (8). Proposition 1 tells us that when both agents are

risk-averse, system (8) becomes

{
y = δ1(1− x)

x = δ2(1− y)
(9)
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where x is the share of the pie that player 1 offers to player 2 and y is the share of the pie that

player 2 offers to player 1. It is immediately apparent that system (9) has a unique solution.

Similarly, when both agents are risk-lovers, it follows from Proposition 2 that system (8) becomes

{
f(q) = f(1− p)δ1
g(p) = g(1− q)δ2,

(10)

where p is the probability with which player 2 gets the whole object and 1− p is the probability

with which player 1 gets the whole object, according to player 1’s equilibrium proposal, and

similarly q and 1− q are the probabilities with which player 1 and 2 get the whole object, respec-

tively, according to player 2’s proposal. Since both f and g are concave functions, the system

of equations (10) has a unique solution as well. Therefore, under the proposition’s premises,

our game satisfies the assumptions of Osborne and Rubinstein (1994), Proposition 122.1, which

guarantees that the statement of our proposition is true.4 ✷

Theorem 4 If both players are risk-averse, with one strictly so, then an increase in the risk

aversion of one player does not have any influence on the outcome.

Proof : If both players are risk-averse, the unique equilibrium outcome is the solution to (9),

which is independent of the players’ degree of risk aversion. ✷

Recall that if the players were risk-averse expected utility maximizers, a player’s equilibrium

share of the object increases as his opponent becomes more risk-averse.

Theorem 5 Let Γ be a game of alternating offers where both players are risk-lovers (one of them

strictly so) and let Γ̂ be the game of alternating offers that is obtained from Γ by replacing player

2 with a more risk-loving player. Denote by � and �̂ the corresponding equilibrium lotteries.

Then F�̂ ≥ F�. Namely, player 1’s payoff distribution when his opponent is more risk-loving

stochastically dominates player 1’s payoffs when his opponent is less risk-loving.

4Our game does not satisfy Osborne and Rubinstein’s Assumption A1 but it does satisfy a weaker version of it,
which is all that is needed for their proof to work.
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Proof : If both players are risk-lovers, the unique equilibrium outcome of Γ is the solution to{
f(q) = f(1− p)δ1
g(p) = g(1− q)δ2,

where both f and g are concave functions. Similarly, the unique equilibrium outcome of Γ̂ is the

solution to {
f(q) = f(1− p)δ1
ĝ(p) = ĝ(1− q)δ2,

where ĝ = h ◦ g for some concave function h : [0, 1] → [0, 1]. Letting (p, q) and (p̂, q̂) be the

solutions to the above two systems of equations, respectively, it is well known that p > p̂. See for

example Roth (1985) or Roth (1989). Recalling that the subgame perfect equilibrium outcome

of Γ (Γ̂) is a lottery that assigns the whole object to player 1 and player 2 with probability 1− p

(1 − p̂) and p (p̂), respectively (see Proposition 3), the random variable of player 1’s payoffs

stochastically increases when player 2 is replaced by a more risk-loving player. ✷

Note that if the agents were risk-loving expected utility maximizers, then an increase in the

players’ risk loving would have no effect whatsoever on the equilibrium of the game of alternating

offers.

6 On the Relation between the Strategic and the Cooperative

Approaches

6.1 A limit result

When the players are expected utility maximizers, the predictions of the cooperative and the

strategic approaches are related in the following sense: In the limit, as the players’ impatience

disappears, the subgame perfect equilibrium outcome of the game of alternating offers converges

to the Nash solution of the associated cooperative bargaining problem. See for example Binmore

(1987) and Binmore, Rubinstein, and Wolinsky (1986). Not surprisingly, the same result holds

when the players’ risk preferences satisfy the dual theory axioms. This is stated formally by the

following proposition.

Proposition 4 Consider two agents whose preferences over lotteries are represented by the dual

theory and assume that either both agents are risk-averse or both are risk-lovers. Let 〈S, d〉 be
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the bargaining problem induced by these two agents and let (�̂1(δ), �̂2(δ)) be the pair of lotteries

identified in Proposition 3 for the variant of the game where both agents share the same discount

factor δ. Then, limδ→1(U1(�̂i(δ)), U2(�̂i(δ))) = N (S, d), for i = 1, 2.

The proof is standard (see Osborne and Rubinstein (1994), Proposition 310.3 for instance)

and thus it is omitted.

6.2 A model with exogenous risk of breakdown

In Section 5, we analyzed a game of alternating offers where the players have a degree of time

preference represented by a discount factor. Binmore, Rubinstein, and Wolinsky (1986) discuss

an alternative to this game, where agents do not present time preference but there is a fixed

probability of breakdown after a player rejects a proposal. Specifically, consider a modification

of the game presented in Section 5, such that there is no discount factor but after every rejection

there is a probability, 1− δ, that the game ends, in which case each bargainer receives 0. Thus,

a typical path of play consists of rejections until period t (which can be ∞), at which point
there will be agreement on the division (x1, x2), unless the game ended before. This path of play

generates the lottery that assigns probability δt−1 to the division (x1, x2) and probability 1−δt−1

to the outcome (0, 0). The corresponding utility levels for players 1 and 2 are, respectively,

x1f(δt−1) and x2g(δt−1), where again f and g are the “probability-evaluation” functions which

represent player 1’s and 2’s preferences, respectively. It is well known that if the players were

risk averse expected utility maximizers, this game would be strategically identical to the one

in which players have a common discount factor δ. As a consequence, both games would have

the same comparative statics properties with respect to changes in the degree of risk aversion.

Further, the subgame-perfect equilibrium agreement converges to the Nash agreement as δ goes

to 1. In our case, however, when players behave according to the dual theory of choice under risk,

the two games are no longer strategically equivalent. First of all, players’ preferences will not be

stationary in general, which means that one of Rubinstein’s (1982) basic assumptions fails to hold.

If one wants the preferences to be stationary, one needs to assume that the functions f and g are

of the form pα. Second, even if both players’ preferences are represented by the same potential

function, namely f(p) = g(p) = pα, still the subgame perfect equilibrium of the game exhibits

comparative statics properties that are opposite to those of the strategic game with discount

factor as well as to those of the Nash bargaining solution. Moreover, as δ tends to 1, the subgame

perfect equilibrium of this game does not converge to the Nash outcome of the corresponding

Nash bargaining problem. To see this, assume that both players have the same preferences over

20



lotteries, that are represented by the function f(p) = g(p) = pα. For concreteness, assume

that agents are risk-averse, namely α > 1. As pointed out above, every pair of strategies in

the game of alternating offers yields a lottery that assigns probability δt−1 to a division (x1, x2)

and probability 1 − δt−1 to the outcome (0, 0). Denote this lottery by [t, (x1, x2)]. Note now

that player 1 prefers [t, (x1, x2)] to [t′, (y1, y2)] if and only if x1(δt−1)α > y1(δt′−1)α, if and only

if x1/α
1 δt−1 > y

1/α
1 δt′−1. But this means that player 1’s behavior is identical to the behavior

of a risk-averse expected utility maximizer whose von Neumann–Morgenstern utility function is

u(x) = x1/α. A similar reasoning shows the same conclusion for player 2. Since we have shown

that the predictions of the Nash bargaining solution for agents whose preferences satisfy Yaari’s

axioms are different from the predictions for expected utility maximizers, we conclude that the

game of alternating offers with a fixed probability of breakdown is essentially different from the

game with impatient players. In particular, while an increase in one agent’s degree of risk aversion

does not influence the outcome predicted by the Nash bargaining solution when both agents are

risk-averse, it does reduce that player’s share in the subgame perfect equilibrium of the game

with a fixed probability of breakdown.

7 The Ordinal Nash Solution

The primitives of our model consist of a set of physical outcomes X, preferences over the set

of lotteries on X and the disagreement outcome D. Rubinstein, Safra, and Thomson (1992)

propose a solution concept that is intended to be applied to bargaining problems, like ours, that

are described in physical terms. They call their solution concept the ordinal Nash bargaining

solution for the good reason that when agents’ risk preferences satisfy the expected utility axioms,

it induces the (cardinal) Nash bargaining solution on the induced cardinal bargaining problem.

It is only natural then to inquire on the relation between the ordinal Nash bargaining solution

and the cardinal Nash bargaining solution as we applied it to our problem.

Let 〈p, �〉 be the compound lottery that assigns lottery � with probability p and the disagree-
ment outcome, D, with probability 1 − p. An ordinal Nash outcome is defined to be a lottery

�∗ ∈ L such that for all p ∈ [0, 1], for all � ∈ L, and for i = 1, 2 and j = 3− i, it satisfies that if

〈p, �〉 �i �
∗ then 〈p, �∗〉 �j �. The interpretation is as follows. If a player is willing to run a risk of

negotiations breakdown in order to get lottery � instead of �∗ with certainty, then his opponent

is willing to run the same risk of breakdown in negotiations to get �∗ rather than getting � with

certainty. Rubinstein, Safra, and Thomson (1992) call their solution the ordinal Nash bargaining

solution for the good reason that when the agents’ risk preferences satisfy the expected utility
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axioms, and therefore can be represented by von Neumann-Morgenstern utility functions ui for

i = 1, 2, then �∗ is such that

E�∗(u1)E�∗(u2) ≥ E�(u1)E�(u2) ∀� ∈ L,

where E�(ui) is agent i’s expected utility of lottery �.

When agents’ preferences satisfy the dual theory axioms, the ordinal Nash solution does not

induce the Nash bargaining solution on our induced cardinal problem 〈S, d〉. Namely, it is not
true that

U1(�∗)U2(�∗) ≥ U1(�)U2(�), ∀� ∈ L.

One would like to know if there is an ordinal dual solution that induces the Nash bargaining

solution in our framework. The solution we are looking for is defined as follows:

Definition 2 A lottery �∗ ∈ L is said to be a dual ordinal Nash outcome if for all α ∈ [0, 1], for
all � ∈ L, and for i = 1, 2 and j = 3− i, we have

if α� �i �
∗, then α�∗ �j �.

The interpretation is as follows. If a player prefers a proportion α of lottery � to lottery �∗,

then his opponent prefers the same proportion of lottery �∗ to the whole lottery �. An argument

similar to the one used by Rubinstein, Safra, and Thomson (1992) shows that if both agents’

preferences satisfy the dual theory axioms, then a dual ordinal Nash outcome �∗ is such that

U1(�∗)U2(�∗) ≥ U1(�)U2(�), ∀� ∈ L.

Therefore, the dual ordinal Nash solution induces the Nash bargaining solution when the agents’

preferences satisfy the dual theory axioms.

The difference between the two ordinal solution concepts lies on the basic mixture operations

used in their respective definitions. The ordinal Nash solution is defined by means of probability

mixtures — the ones that appear in the independence axiom. The dual ordinal Nash solution on

the other hand, is defined by means of wealth mixtures or portfolios —the ones that appear in

the dual independence axiom.

Following the insights of Binmore, Rubinstein, and Wolinsky (1986) and the idea behind the

dual ordinal Nash solution, Dagan, Volij, and Winter (2001) define the time-preference Nash

solution, which turns out to be closely related to the cardinal Nash bargaining solution. Further,
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the time-preference Nash solution places no constraint on the risk preferences of the agents and

the comparative statics properties of the temporal Nash solution are consistent with the results

of this paper.

As a corollary of Section 5, we see that there is a discrepancy between the ordinal Nash

solution and the subgame perfect equilibrium outcome of the game of alternating offers. In

particular, as the discount factor approaches 1, the equilibrium outcomes do not converge to the

Nash ordinal solution. In fact, it can be shown that they converge to the dual ordinal Nash

solution. It is interesting to note that Rubinstein Safra and Thomson’s ordinal solution is the

limit of the subgame perfect equilibrium outcome of the strategic game with a risk of breakdown

analyzed in Section 6.2.

8 Conclusions

We have shown that under the dual theory of choice under risk, standard comparative static

results on risk attitude in bargaining are reversed. Further, within the strategic approach, we

showed that the very details of the game may drastically affect the comparative statics properties

of the subgame perfect equilibrium.

This paper does not argue that one theory is more relevant than the other in the context of

bargaining. This is an empirical question that can be answered only by means of empirical or

experimental research. Unfortunately, this evidence is very small and weak. Murnighan, Roth,

and Schoumaker (1988) for example, report results on several experiments that try to check the

effects of risk aversion on bargaining outcomes. The results give mild support to the idea that

risk aversion is disadvantageous. While the strategic game they used allows agents to bargain

freely over a simple class of lotteries, it has a strict deadline after which a disagreement outcome

is implemented. This deadline makes the game very similar to the one analyzed in Section 6.2.

At the very last phases of the game, a player who must respond to an offer knows that if he gives

a counteroffer there is a chance that the deadline is reached. As shown in Section 6.2, when there

is a risk of breakdown, the comparative statics of the model with expected utility maximizers

and with dual utility maximizers are qualitatively the same.
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1. Henceforth we will refer to the result mentioned above as “the result.”

2. The interested reader should consult Yaari (1986) for various and equivalent interpretations

of Definition 1.

3. We thank an anonymous referee for suggesting this discussion.

4. Our game does not satisfy Osborne and Rubinstein’s Assumption A1 but it does satisfy a

weaker version of it, which is all that is needed for their proof to work.
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