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Abstract

Stochastic stability is applied to the problem of exchange. We analyze the stochas-

tic stability of two dynamic trading processes in a simple housing market. In both

models traders meet in pairs at random and exchange their houses when trade is

mutually beneficial, but occasionally they make mistakes. The models differ in the

probability of mistakes. When all mistakes are equally likely, the set of stochasti-

cally stable allocations contains the set of efficient allocations. When more serious

mistakes are less likely, the stochastically stable states are those allocations, always

efficient, with the lowest envy-level. Journal of Economic Literature Classification

Numbers: C7, D51, D61, D63.

Keywords: stochastic stability, exchange, housing problem, efficiency, envy.
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1 Introduction

Evolutionary game theory has proposed new interesting concepts and tools of analysis.

One of these concepts (see, for example, Freidlin and Wentzell [7] and Foster and Young

[6]) is known as stochastic stability. This differs from the notions of local stability in

dynamical systems or evolutionary stability in theoretical biology, which require from a

population to be immune to isolated random shocks or mutations. In contrast, stochastic

stability requires immunity against persistent random shocks.

There is a vast literature on stochastic stability. For example, the concept has been

successfully applied to learning processes in normal form games by Kandori, Mailath and

Rob [11], Young [15] and Ellison [4], and in extensive form games by Nöldeke and Samuel-

son [13] and later by Hart [9]. In addition, Young [16] uses the same methodology in a

cooperative bargaining problem, and Vega-Redondo [14] in an oligopoly of firms. Recently,

Jackson and Watts [10] study the stochastic stability of networks. As Young [17] stresses

and the above (incomplete) list of papers demonstrates, the stochastic stability approach

can be applied to the analysis of a wide variety of social interactions. Note, however, that

the literature is concerned mainly with the evolution of strategies in games.

In this paper we are interested in applying stochastic stability to general exchange

economies. As a first step of inquiry, we concentrate on the simple housing market in-

troduced by Shapley and Scarf [12]. This simple environment describes pure barter of

indivisible goods yet important issues concerning efficiency, envy and decentralization can

be analyzed. Specifically, a housing market consists of n traders, each of whom is charac-

terized by the only house he owns and by his preference relation over the set of houses. In

order to apply stochastic stability, we endow the housing market with a simple perturbed

stochastic dynamic process. The unperturbed process can be described as follows. At each

period a pair of traders is matched randomly and they trade their endowments if and only

if trade is mutually beneficial (therefore, myopia is a component of their behavior). In ad-

dition, this process is perturbed. The perturbation consists of allowing a small probability

of trade when it is not mutually beneficial. We shall refer to this event as a mistake. In

applying stochastic stability to such a market, we shall be concerned with the evolution of

its allocations, and not with the evolution of the agents’ actions. That is, we are interested

in understanding which allocations will be visited a positive proportion of time in the very
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long run.

As argued by Bergin and Lipman [2], the conclusions of the analysis are sensitive to

the particular perturbation chosen. We analyze two perturbed processes that seem very

natural. In the first, all mistakes made by a given agent are equally likely. In the second,

more serious mistakes are less likely than less serious ones.

Within the first dynamic model, we show that the efficient allocations are always

stochastically stable. Although there are economies where the inclusion is strict, we find

several interesting classes of housing problems where the set of stochastically stable states

and the set of efficient allocations coincide.2 The fact that every efficient allocation is

stochastically stable relies on the following interesting property of efficient allocations. For

any two efficient allocations it is possible to move from one to the other by means of a

sequence of bilateral trades, without ever passing through an inefficient allocation. This

“connectedness” property of efficient allocations allows us to prove also that it is always

possible to move from any allocation, not necessarily efficient, to any efficient allocation

by means of a sequence of bilateral trades, at each of which at most one trader makes

a mistake. More mistakes are needed, however, to end up at an allocation that is not

stochastically stable.

As for the second perturbed process, we show that stochastic stability always yields

a subset of efficient allocations. Indeed, the stochastically stable states are exactly those

allocations where the envy level in the economy is minimized. The intuition behind this

result relies on the tight connection existing between the difference in envy-levels of any

two “pairwise connected” allocations and the difference between the seriousness of the

mistakes made by the agents when moving from one allocation to the other. In addition,

the limit distribution of our process represents a random allocation that is ordinally efficient

(Bogomolnaia and Moulin [3]), i.e., it is not first-order stochastically dominated by any

other random allocation.

Therefore, in an exchange procedure subject to persistent small probability mistakes,

pairwise trade is not in conflict with Pareto efficiency. If all mistakes have the same

2For deterministic pairwise (and t-wise) trading processes that yield Pareto efficient allocations in a
pure exchange economy, see Feldman [5] and Goldman and Starr [8]. Agents in these processes trade in
pairs (or in groups of size t) if there are myopic gains from trade. However, they do not make mistakes in
our sense.
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probability, the economy spends a positive fraction of time in the long run on each efficient

allocation (and under some extra conditions, only on those). In the absence of those extra

conditions, inefficiencies are also selected in the long run. When agents are more careful of

avoiding serious mistakes, the economy spends a positive proportion of time in the long run

only on those allocations, always efficient, where the level of envy is the lowest possible.

We find it appealing that such concepts, of a strong normative flavor, receive support from

this novel approach to the problem.

The plan of the paper is as follows. Section 2 presents the model and introduces pre-

liminaries. Section 3 studies the first perturbed process and contains a subsection devoted

to sufficient conditions guaranteeing that all stochastically stable states are efficient. The

second process is the subject of Section 4. Section 5 concludes.

2 The Model and Preliminaries

A house allocation problem is a triple 〈N, H, (ºi)i∈N〉 where N is a finite set of individuals,

H is a finite set of houses with |H| = |N |, and for each individual i ∈ N , ºi is a complete,

transitive and antisymmetric preference relation over H. The size of the problem is the

number of agents in it.

Let P be a house allocation problem. An allocation in P is a one to one function

x : N → H that assigns one house to each agent. An allocation x is efficient if there is no

allocation y such that yi ºi xi for all i ∈ N and yi Âi xi for some i ∈ N . We denote the set

of efficient allocations in P by E(P ). Let x be an allocation in P . We say that individual i

envies individual j at x whenever xj Âi xi. Define the envy-graph of allocation x to be the

directed graph whose vertices are the agents in the housing problem and there is an edge

from agent i to agent j if and only if i envies j. The envy-level of allocation x is defined

to be the number of edges in its envy graph. We denote the envy-level at x by e(x). It is

clear that allocation x is efficient if and only if the corresponding envy-graph is acyclic.

Let π : {1, . . . , n} → N be an ordering of the traders, i.e., π(1) is the first trader,

π(2) is the second trader and so on. We say that allocation x is the outcome of the serial

dictatorship mechanism with respect to π or that x is induced by π, for short, if

• xπ(1) is agent π(1)’s most preferred element in H, and
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• for t ∈ {2, . . . , n}, xπ(t) is agent π(t)’s most preferred element in H\{xπ(1), . . . , xπ(t−1)}.

It is known that allocation x is efficient if and only if it is the outcome of the serial

dictatorship mechanism with respect to some ordering of the traders (see, for example

Abdulkadiroglu and Sonmez [1], Lemma 1).

We shall define a dynamic process according to which agents perform bilateral trades.

These bilateral trades will allow us to transit from one allocation to another. Clearly, it

is not always possible to go from one allocation to another by means of a single bilateral

trade. When it is possible, we say that the allocations are pairwise connected. More

formally, we say that allocations x and y are pairwise connected if there is a pair i and j

of agents such that xi = yj, xj = yi and xk = yk for all k /∈ {i, j}. A (x, y)-path is a finite

sequence of allocations (z0, z1, . . . , zk) such that z0 = x, zk = y and for t = 0, 1, . . . , k − 1,

zt and zt+1 are pairwise connected.

The following proposition shows that the set of efficient allocations is “connected”.

This result, of interest in its own right, will be instrumental in the sequel.

Proposition 1 Let P = 〈N,H, (ºi)i∈N〉 be a house allocation problem and let x and y

be two efficient allocations in P . Then, there is an (x, y)-path consisting exclusively of

efficient allocations.

Proof : The proof is by induction on the size of the problem. If the problem consists of

one agent, there is nothing to prove because the only allocation is efficient. Assume that

the claim holds for all problems of size K, let P = 〈N, H, (ºi)i∈N〉 be a problem of size

K + 1 and let x and y be two efficient allocations in it.

Case 1: There is an agent, k ∈ N , who gets his most preferred house both at x and y.

Namely, xk = yk ºk h for all h ∈ H. Then, there are orderings π and σ of the traders,

both with trader k as their first element, which induce allocations x and y, respectively.

Let N ′ = N \ {k}, H ′ = H \ {xk} and consider the subproblem P ′ = 〈N ′, H ′, (ºi |H′)i∈N ′〉,
where ºi |H′ is the restriction of i’s preferences to H ′. The restricted allocations x|N ′

and y|N ′ are efficient in P ′ since they are induced by the orderings π and σ respectively,

restricted to the agents in N ′. Since P ′ is a problem of size K, by the induction hypothesis,

there is a path (x̂0, . . . , x̂m) of efficient allocations in P ′ from x|N ′ to y|N ′ . Define now the
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allocations (x0, . . . , xm) in P by

xt
i =

{
x̂t

i if i ∈ N ′

xk if i = k

for t = 0, . . . , m. The sequence (x0, . . . , xm) is a (x, y)-path of efficient allocations in P

since they are induced by the orderings that induce (x̂0, . . . , x̂m), respectively, after adding

agent k as their first element.

Case 2: There is no agent that gets his most preferred house both at x and at y. In

this case there are orderings π and σ of the traders which induce allocations x and y,

respectively. Let ` and k be the first agents in the orders π and σ, respectively. Namely

π(1) = ` and σ(1) = k. Clearly, ` 6= k.

Case 2.1: Agent `’s and agent k’s respective top ranked houses differ. This implies that

there is an allocation z, which is efficient in P , and at which both agent ` and agent k get

their respective most preferred houses. Since agent ` gets his most preferred house both at

the efficient allocation x and at the efficient allocation z, by case 1, there is a (x, z)-path

of efficient allocations. But since k gets his most preferred house both at z and at y, by

case 1 again there is a (z, y)-path of efficient allocations. Joining both paths, we conclude

that there is a (x, y)-path of efficient allocations.

Case 2.2: Agents ` and k have the same top ranked house. In this case, x awards agent

` this house. Consider an ordering µ of the agents in which agent ` is first and agent k

is last and let z be the efficient allocation induced by that ordering. Since agent ` gets

his most preferred house both at x and at z, by case 1, there is a (x, z)-path of efficient

allocations. Let z′ be the allocation that is obtained from z after agents ` and k switch

houses. Allocation z′ is efficient because it is induced by the ordering that is obtained

from µ after ` and k switch their places. Therefore, z and z′ are two pairwise connected

efficient allocations. Clearly, z′ awards agent k his most preferred house. Therefore, by

case 1 again, there is a (z′, y)-path of efficient allocations. We have built then a path of

efficient allocations that connects x with y. 2

Given a house allocation problem we want to define a perturbed Markov process as

in Young [17]. The states of the process are the allocations of the housing problem. In
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each period one pair of agents is selected at random and the system moves from one state

to another when the matched agents trade. In the unperturbed Markov process, agents

do not make mistakes in each meeting: they trade if and only if there are mutual gains

from trade in the match. In the perturbed process, agents will make mistakes with a small

probability. We denote a generic perturbed process by M ε.

It is often the case that the unperturbed Markov process has many stationary distri-

butions. On the other hand for all ε ∈ (0, 1), the perturbed process M ε is ergodic, which

implies that it has a unique stationary distribution. Denote the unique stationary dis-

tribution of M ε by µε. This stationary distribution, which is independent of the intimal

allocation, represents the proportion of time that the system will spend on each of its states

in the long run. It also represents the long run probability that the process will be at each

allocation. In order to define the stochastically stable states, we check the behavior of the

stationary distribution µε as ε goes to 0. It is known that limε→0 µε exists and further it

is one of the stationary distributions of the unperturbed process. The stochastically stable

states of the system M ε are defined to be those states that are assigned positive probability

by this limit distribution. These are the allocations that are expected to be observed in

the long run ‘most of the time’.

3 All Mistakes Are Equally Likely

Given a house allocation problem, consider first the following stochastic process, whose

states are the allocations of the problem. In each period one pair of agents is selected

at random. Each pair is chosen with arbitrary positive probability. Consider a pair of

individuals, say i and j. The probability that they trade depends on the degree of ad-

vantageousness of the trade. If this is mutually beneficial, then it takes place with high

probability, say 1. If the trade is not mutually beneficial, then it takes place with a very

low probability. Specifically, assume that if the trade is advantageous for only one trader,

it takes place with probability ε and if the trade is disadvantageous for both traders, it

takes place with probability ε2. We denote this process by M ε
1.

Define the unperturbed process M0 to be the one just specified, but where the proba-

bility of making mistakes is zero. It can be checked that a state of the unperturbed process

M0 is absorbing if and only if there is no pair of agents that envy each other. As shown in
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the next proposition, it turns out that the absorbing states constitute the only recurrent

classes of the process.

Proposition 2 The recurrent classes of the unperturbed process M0 are the singletons

containing the absorbing states.

Proof : It is clear that a singleton containing an absorbing state is a recurrent class.

Conversely, assume that x is an allocation where there are at least two agents i and j that

envy each other. Then, with positive probability they will meet and trade. As a result,

allocation x′ arises, where x′i = xj Âi xi, x′j = xi Âj xj, and xk = x′k for every k 6= i, j.

Thus, the envy-level at x is higher than the envy-level at x′. Since, by the law of motion

of the unperturbed process, the envy-level cannot increase, once the process arrives at x′,

there is zero probability that it will return to x, which shows that x does not belong to a

recurrent class. 2

Note that each efficient allocation is an absorbing state of the unperturbed Markov

process M0, but in principle so are many other inefficient allocations. Note also that if the

problem has more than one absorbing state, then M0 has many stationary distributions.

Let P be a house allocation problem. We are interested in the stochastically stable

states S1(P ) of the perturbed Markov process M ε
1 defined above. In order to calculate them,

we will use the characterization of the stochastically stable states provided by Young [15]

and Kandori, Mailath and Rob [11], based on the techniques developed by Freidlin and

Wentzell [7].

For any two allocations x and y, define the resistance of the transition x → y as follows:

if x and y are pairwise connected, then the resistance is the number of agents (0, 1, or

2) that find the bilateral trade unprofitable. Otherwise define the resistance to be ∞.

Similarly, let ξ = (z1, . . . , zk) be an (x, y)-path. The resistance of the path ξ is the sum of

the resistances of its transitions.

Let Z0 = {z1, . . . , zq} be the set of absorbing states of the unperturbed process and

consider the complete directed graph with vertex set Z0, which is denoted by Γ. We want

to define the resistance of each one of the edges in this graph. For this, let zi and zj be

two elements of Z0. The resistance of the edge (zi, zj) in Γ is the minimum resistance over
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all the resistances of the (zi, zj)-paths. Note that while zi and zj are two absorbing states,

(zi, zj)-paths are typically composed of any kind of allocations, not necessarily absorbing.

Let zi be an absorbing state. A zi-tree is a tree with vertex set Z0 such that from

every vertex different from zi, there is a unique directed path in the tree to zi.3 The

resistance of the zi-tree is the sum of the resistances of the edges that compose it. The

stochastic potential of the absorbing state zi is the minimum resistance over all the zi-

trees. Young [15] showed that the set of stochastically stable states of the process consists

of those states with minimum stochastic potential.

The following lemma, an equivalent version of which is stated in Nöldeke and Samuelson

[13] (see their Lemma 4) will be useful in later proofs.

Lemma 1 Let x be a stochastically stable state and let y be an absorbing state such that

the edge (x, y) has resistance 1. Then, y is a stochastically stable state.

Proof : Let T be an x-tree with minimum resistance over all the x-trees. Let s(y) denote

the immediate successor of y in the unique path in T that connects y to x. Consider the

tree T ′ that is built by deleting from T the edge (y, s(y)) and adding the edge (x, y). It can

be seen that T ′ is a y-tree. Indeed, if there was a directed path in T from z to y, the same

path connects z to y in T ′. And if there was a directed path in T from z to x that did not

go through y, now the path that is obtained from that path by adding the edge (x, y), is

a directed path in T ′ that connects z to y. The tree T ′ is a y-tree that is obtained from

T by adding an edge of resistance 1 and deleting one edge of resistance greater or equal

1. Therefore, the resistance of T ′ is no greater than the resistance of T . But since T is an

x-tree with minimum resistance over all the x-trees and since x is a stochastically stable

state, the resistance of T ′ equals the resistance of T and therefore y is a stochastically

stable state. 2

The following corollary is an application of Proposition 1 in Nöldeke and Samuelson

3It will be convenient to distinguish between a path in a tree that connects x to y, and a (x, y)-path.
The former is a sequence of edges in a tree (with vertex set Z0), and the latter is a sequence of allocations,
as defined in the previous section.
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[13].4

Corollary 1 If there is an efficient allocation that is stochastically stable in M ε
1, then so

are all efficient allocations.

Proof : Let x be an efficient allocation that is stochastically stable and let y be another

efficient allocation. By Proposition 1, there is a (x, y)-path of efficient allocations. By the

definition of M ε
1, every edge along this path has resistance 1. By Lemma 1, all the efficient

allocations along this path, and in particular allocation y, are in S1(P ). 2

Corollary 1 still leaves the door open to no efficient allocation being stochastically

stable. The following theorem, our first main result, shows that this is not the case. Thus,

all efficient allocations are visited a positive proportion of time by the process M ε
1 in the

long run.

Theorem 1 Let P be a house allocation problem. The set of stochastically stable alloca-

tions S1(P ) contains the set of efficient allocations E(P ).

Proof : Given Corollary 1, it is enough to show that there is one efficient allocation that

is stochastically stable. Pick a stochastically stable allocation x. If x is efficient, we are

done. Therefore, assume x is not efficient. It suffices to show that there is a path from x

to an efficient allocation such that each of its transitions has resistance less or equal to 1,

because, by Lemma 1, the efficient allocation will be stochastically stable. The existence

of the required path is an immediate consequence of the next lemma. Prior to it, some

definitions are required.

For any allocation z, let A1(z) be the set of agents that are allocated their most preferred

house under allocation z and let B1(z) be its complement:

A1(z) = {i ∈ N : zi ºi zj ∀j ∈ N}
B1(z) = N \ A1(z).

4To see this, note that our Proposition 1 says that all the efficient allocations belong to the same
component.
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Define recursively the following sets of agents: for k = 1, 2, . . .

Ak+1(z) = {i ∈ Bk(z) : zi ºi zj ∀j ∈ Bk(z)}
Bk+1(z) = Bk(z) \ Ak+1(z).

Let A(z) = ∪∞k=1Ak(z) and B(z) = N \ A(z).

For any allocation z, it is immediate that the agents in A(z) do not belong to any cycle

of the envy-graph of z. It is also clear that no agent in A(z) envies any agent in B(z).

Finally, note that B(z) = ∅ if and only if z is efficient.

Lemma 2 Let x be an absorbing state that is not efficient and let |B(x)| = m. Then,

there is an absorbing state y such that the edge (x, y) has resistance 1 and for which

|B(y)| < m.

Proof : Let x be an inefficient absorbing state with |B(x)| = m. (Note that m ≥ 3).

Let i ∈ B(x). Then there is an agent in B(x) who is envied by i. Let j be the agent who

owns the ºi-maximal house in the set of houses that belong to agents in B(x). That is,

xj ºi xt for all t ∈ B(x). Let x′ be the allocation that is obtained from x after i and j

trade. At this allocation, no agent in A(x) ∪ {i} envies any agent in B(x) \ {i}. In fact,

A(x) ∪ {i} ⊆ A(x′), and therefore, |B(x′)| < m. If x′ is absorbing, then we are done:

let y = x′. If x′ is not absorbing, there is a (x′, y)-path of resistance 0 from x′ to some

absorbing state y. Clearly, |B(y)| ≤ |B(x′)| < m. 2

By repeated applications of Lemma 2, we can build a path from x to an absorbing state z

with B(z) = ∅, which means that z is efficient. This completes the proof of the theorem.

2

As a consequence of Lemma 2 we get the following characterization of the z-trees that

attain the minimum stochastic potential.

Lemma 3 Assume that a house allocation problem has k > 1 absorbing states and let

z be a stochastically stable allocation in S1(P ). Any z-tree whose resistance attains the

stochastic potential of z is composed of k vertices and k − 1 edges of resistance 1.
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Proof : Any z-tree with the set of absorbing states as vertex set has k vertices and

k− 1 edges. Therefore we need to show that each of the edges of a z-tree that attains the

stochastic potential has resistance 1. Let z be a stochastically stable allocation.

Case 1: z is efficient. We shall build a z-tree whose edges have resistance 1. For this, we

first draw one outgoing edge of resistance 1 from each absorbing state z′ different from z as

follows. If z′ is an absorbing and inefficient state, then by Lemma 2, there is an absorbing

state z′′ such that the transition z′ → z′′ has resistance 1 and |B(z′′)| < |B(z′)|. By adding

the edge (z′, z′′) and possibly proceeding in the same way if z′′ is inefficient, we construct a

directed graph such that each one of its connected components is a tree that has a unique

efficient allocation. Further, this unique efficient allocation is the root of that tree. In

order to complete the z-tree we need to connect the efficient allocations to z using one

outgoing edge from each efficient allocation different from z. But by Proposition 1 this

can be done.

Case 2: z is inefficient. By case 1 and Theorem 1, the minimum stochastic potential is

k − 1. Since z stochastically stable, its stochastic potential is also k − 1. Further, any

z-tree has k−1 edges with resistance greater or equal 1. Therefore, each edge of any z-tree

that attains z’s stochastic potential has resistance 1. 2

As we have established in Theorem 1, all efficient allocations are selected by stochastic

stability when applied to the bilateral trading process M ε
1. It is important, though, to point

out that there are house allocation problems where the inclusion reported in Theorem 1 is

strict, as the following example shows.

Example 1 Consider the following 4-agent problem:

h1 º1 h4 º1 h2 º1 h3

h1 º2 h2 º2 h3 º2 h4

h2 º3 h3 º3 h4 º3 h1

h3 º4 h4 º4 h1 º4 h2

Consider the following allocations.

11



Agents

Allocation 1 2 3 4

z0 h1 h2 h3 h4

z1 h2 h1 h3 h4

Table 1: Two absorbing states

It can be easily checked that allocation z0 is an efficient allocation: it is induced by

the natural ordering of the players. Therefore, by Theorem 1, z0 is stochastically stable.

On the other hand, z1 is an inefficient absorbing state: the only cycle in its envy-graph

consists of all the agents except agent 2 (see Figure 1).
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Figure 1

But since z0 and z1 are pairwise connected (with agents 1 and 2 trading), the transition

z0 → z1 has resistance 1. Therefore, by Lemma 1 z1 is stochastically stable.

As the previous example shows, there are house allocation problems where the set of

stochastically stable allocations contains strictly the set of efficient allocations. In the

next subsection, we investigate restrictions on the house allocation problems that assure
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that every stochastically stable allocation is efficient. It may be skipped without loss of

understanding of the sequel.

3.1 When Stochastic Stability Implies Efficiency

This subsection identifies three sufficient conditions that render equality between S1(P )

and E(P ). It closes with a more general result that suggests a procedure to generate

housing problems where the same property holds.

Proposition 3 Let P be a house allocation problem with a unique efficient allocation.

There is only one stochastically stable state in S1(P ), the efficient allocation.

Proof : Note that if there is a unique efficient allocation x, then at x each agent gets

his top-ranked house. Therefore, any edge that exits x has resistance 2. By Lemma 3, no

allocation other than x is stochastically stable. 2

Thus, if preferences are sufficiently diverse so that each agent has a different top-ranked

house, our pairwise procedure with mistakes selects only efficient allocations. A second

simple class of problems with the same property is the following:

Proposition 4 Let P be a problem with at most 3 agents. The set of stochastically stable

allocations S1(P ) is the set of efficient allocations E(P ).

Proof : For problems with one or two agents, the statement is trivially true. Let P be a

problem with 3 agents, and let z be an inefficient absorbing state in it. Therefore z’s envy

graph must look as follows:
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Namely, there are no two agents with the same top-ranked house. But this means that

in this economy, there is a unique efficient allocation. By Proposition 3, it is the only

stochastically stable one. 2

In order to provide another class of problems where there is equality between S1(P )

and E(P ), we need the following definition.

Definition 1 Let P = 〈N,H, (ºi)i∈N〉 be a house allocation problem and let < be a

complete order of the houses in H. We say that P has the single-peak property with

respect to < if for every i ∈ N there is a house h(ºi) ∈ H such that for all h, h′ ∈ H,

[h < h′ ≤ h(ºi) or h(ºi) ≤ h′ < h] implies h′ Âi h.

An example of a problem with the single-peak property is one where all agents have

identical preferences, but one could think of many other examples. Now we state the

following:

Proposition 5 Let P = 〈N,H, (ºi)i∈N〉 be a house allocation problem that has the single-

peak property. Then, the set of stochastically stable allocations S1(P ) is the set of efficient

allocations E(P ).

Proof : Since the set of absorbing states is a superset of the set of stochastically stable

states, which in turn contains the set of efficient allocations, it suffices to show that all

absorbing states are efficient. Hence, consider an inefficient allocation z. We shall show

that it is not absorbing. The envy graph of z has at least one cycle. Choose a cycle with

a minimal number of agents. Without loss of generality assume that the minimal cycle
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is composed of NK = {1, 2, . . . , K} ⊆ N and that agent 2 envies 1, . . . , agent K envies

K − 1, and agent 1 envies K. Since there is no smaller subcycle, each trader in the cycle

has its second best house out of the houses in z(NK) = {z1, . . . , zK}. Assume that P has

the single-peak property and let < be the corresponding ordering of H. Let zk be the first

house in z(NK) according to <. That is, zk < zj for all j 6= k. Restricting attention to

houses in z(NK), agent k’s top-ranked house is zk−1 (modulo K) and his second best house

is zk. Therefore, we must have that zk−1 is zk’s immediate successor in z(NK) according

to <. Also, zk is k + 1’s (modulo K) top-ranked house while zk+1 is his second best house.

Consequently zk+1 also must be zk’s immediate successor in z(NK). Therefore zk−1 = zk+1

which implies that K = 2. Namely, NK = {1, 2} and agents 1 and 2 envy each other at z.

Hence, z is not absorbing. 2

In order to get a more general result of constructive nature, consider the following

definition.

Definition 2 Let P 1 = 〈N1, H1, (ºi)i∈N1〉 and P 2 = 〈N2, H2, (ºi)i∈N2〉 be two house

allocation problems such that N1 ∩ N2 = ∅ and H1 ∩ H2 = ∅. Define P 1 ∗ P 2 to be the

family of problems 〈N,H, (º′i)i∈N〉 such that:

• N = N1 ∪N2;

• H = H1 ∪H2;

• for each i ∈ N and for `, k ∈ {1, 2}, if i ∈ N ` then for all h ∈ H` and h′ ∈ Hk:

{
h º′i h′ if k 6= `

h º′i h′ ⇔ h ºi h′ if k = `.

The essential feature of a problem in P 1 ∗ P 2 is that every agent in N `, for ` = 1, 2,

prefers any house in H` to any house in Hk, for k 6= ` and that ºi is the restriction

of º′i to H`. The following proposition suggests a technique to generate larger problems

satisfying S1(P ) = E(P ) by “composing” simpler problems where the same equality holds.

For example, this can be done by combining housing problems, each satisfying one of the

three sufficient conditions identified earlier in this subsection.
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Proposition 6 Let P 1 = 〈N1, H1, (ºi)i∈N1〉 and P 2 = 〈N2, H2, (ºi)i∈N2〉 be two house

allocation problems such that N1 ∩ N2 = ∅ and H1 ∩ H2 = ∅. Assume that for both

problems, the set of stochastically stable allocations of M ε
1 coincides with the set of efficient

allocations. Then the same is true for every problem in P1 ∗ P2.

Proof : Let P = 〈N,H, (º′i)i∈N〉 ∈ P 1 ∗ P 2.

Lemma 4 Let z = (z1, z2) = ((zi)i∈N1 , (zj)j∈N2) be an allocation in P . Then, z is efficient

in P if and only if z1 = (zi)i∈N1 and z2 = (zj)j∈N2 are efficient allocations in P 1 and P 2,

respectively.

Proof : Note first that if z1 ∈ E(P 1) and z2 ∈ E(P 2) are efficient allocations induced

by π and σ respectively, then z is induced by the ordering (π, σ) of N where the agents

in N1, ordered according to π, are followed by the agents in N2, ordered according to σ.

Secondly, if z is an efficient allocation in P induced by an ordering τ , then by the way the

preferences (º′i)i∈N are defined (see Definition 2), it is clear that z(N t) = H t for t = 1, 2.

That is, z1 and z2 are allocations in P 1 and P 2, respectively. Moreover, they are efficient

since they are induced by τ restricted to each subproblem. 2

We need to show that every stochastically stable allocation in P is also efficient in P . So

let y = (y1, y2) be a stochastically stable allocation in P and let Γy be a y-tree that attains

the minimum stochastic potential. Assume by contradiction that y is not efficient and let

x = (x1, x2) be an efficient allocation in P . By lemma 4, x(N1) = H1 and x(N2) = H2.

Consider the unique (x, y)-path in Γy. We claim that at each allocation along this path

every agent in N1 gets a house in H1 and every agent in N2 gets a house in H2. For if

there was an edge (z, z′) in this path from allocation z to allocation z′, where z(Nk) = Hk

for k = 1, 2 but z′(Nk) 6= Hk for k = 1, 2, this edge would have a resistance grater than

1, which by Lemma 3 contradicts the fact that y is stochastically stable. As a result,

the (x, y)-path induces a (x1, y1)-path and a (x2, y2)-path in the subproblems P 1 and P 2,

respectively. But this paths are composed by edges of resistance 1. Therefore, since x1 and

x2 are stochastically stable in P 1 and P 2 respectively, by Lemma 1 allocations y1 and y2

are stochastically stable in P 1 and P 2, respectively. But by assumption, E(P k) = S(P k)
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for k = 1, 2 which implies that y1 and y2 are efficient allocations in P 1 and P 2, respectively.

By Lemma 4 then, y = (y1, y2) is efficient in P . 2

4 Serious Mistakes Are Less Likely

We now turn to a second perturbed dynamic process, denoted by M ε
2, of the same unper-

turbed process M0. In order to define the transition probabilities we need some notation.

Consider the pair consisting of agents i and j, and let hi and hj be their houses before

they trade. Define

ni = |{h ∈ H : hi Âi h ºi hj}|,

and

nj = |{h ∈ H : hj Âj h ºj hi}|.

Namely, ni is the number of houses that agent i considers at least as good as house hj and

worse than hi, and nj is the number of houses that agent j considers at least as good as

house hi and worse than hj. At a transaction between agents i and j, we shall say that

agent i makes a mistake of order ni and agent j of order nj. Notice that if as a result of

this trade, agent k gains (k = i, j), nk = 0.

The dynamic process is described as follows. As before, each pair is chosen with

arbitrary positive probability. Once they are chosen, the probability that agents i and

j trade is εni+nj . In words, if trade is mutually beneficial, it takes place with probability

1. If it is not, then it takes place with a probability that depends on the seriousness of the

mistakes made. An individual is much more careful of not making bad mistakes.

Note again that the unperturbed process, i.e., the version of this process when ε = 0, is

the same unperturbed process M0 as before. Therefore, Proposition 2 continues to apply

here.

Within the new perturbed dynamic process M ε
2, the resistance of a transition x → y

should be redefined as follows: If x and y are pairwise connected, then the resistance

is ni + nj where i and j are the agents who trade houses. If x and y are not pairwise

connected, then, as before, the resistance is defined to be ∞.

Note that if x and y are pairwise connected, then the resistance of the transition x → y
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is the number of directed edges in the envy-graph of y that are not in the envy-graph of x:

if, in going from x to y, agent i makes a mistake of order ni and agent j of order nj, there

will be ni + nj additional directed edges in the envy-graph of y that were not present in

the envy-graph of x. This observation allows us to prove the following useful result.

Lemma 5 Let z, z′ ∈ Z0 be two absorbing states and let r(z, z′) and r(z′, z) be the

resistance of the edges (z, z′) and (z′, z), respectively. Then, r(z′, z)−r(z, z′) = e(z)−e(z′).

Proof : Let (z0, z1, . . . , zK) be a (z, z′)-path of minimum resistance. That is, r(z, z′) =∑K−1
k=0 r(zk, zk+1), where r(zk, zk+1) denotes the resistance of the transition zk → zk+1.

Similarly, consider the (z′, z)-path (zK , . . . , z1, z0) and denote the resistance of the transi-

tion zk+1 → zk by r(zk+1, zk). By definition of resistance of an edge,

r(z′, z)− r(z, z′) ≤
K−1∑

k=0

[r(zk+1, zk)− r(zk, zk+1)],

where the inequality follows because, in going from z′ to z, we are following the reverse

path of going from z to z′ (while in principle there could exist a cheaper path). Now,

since for k = 0, . . . , K − 1, zk and zk+1 are pairwise connected, the resistance r(zk, zk+1)

is exactly the number of directed edges in the envy-graph of zk+1 which are not in the

envy-graph of zk, and similarly for r(zk+1, zk). Hence, we have that

e(zk)− e(zk+1) = r(zk+1, zk)− r(zk, zk+1), k = 0, 1, . . . K − 1.

Therefore,

r(z′, z)− r(z, z′) ≤
K−1∑

k=0

[e(zk)− e(zk+1)] = e(z)− e(z′).

By an analogous argument, if z0, z1, . . . , zJ is a (z′, z)-path of minimum resistance and

using the reverse to go from z to z′, we have

r(z, z′)− r(z′, z) ≤
J−1∑

k=0

[e(zk+1)− e(zk)] = e(z′)− e(z).

The above two inequalities imply that r(z′, z)− r(z, z′) = e(z)− e(z′). 2
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The following theorem characterizes the set S2(P ) of stochastically stable allocations

of the process M ε
2.

Theorem 2 Let P be a house allocation problem. The set of stochastically stable alloca-

tions S2(P ) is the set of allocations with minimum envy level. Furthermore, it is a subset

of the set of efficient allocations E(P ).

Proof : Let x be stochastically stable in the process M ε
2 and let y 6= x be an allocation

with minimum envy level (if there is no such y, then x is the only allocation with minimum

envy-level and we are done). Therefore e(y) ≤ e(x). Since x is stochastically stable, there is

an x-tree with minimum stochastic potential. We shall construct a y-tree with a resistance

no greater than that of the x-tree.

The y-tree consists of the following directed edges. If edge (z, z′) is an edge in the

x-tree that does not belong to the unique directed path in that tree that connects y to x,

then (z, z′) also belongs to the y-tree. If edge (z, z′) does belong to the unique path that

connects y to x in the x-tree, then (z, z′) is deleted and replaced with (z′, z), that is, the

edge is reversed. Note that the graph so constructed is indeed a y-tree: it is a tree because

it is a connected graph with the same number of edges as the x-tree; it is a y-tree because

if a (z, y)-path was in the x-tree, it remains in the y-tree, whereas if it was not, there is

now a (z, y)-path either via x or as a subpath of the (x, y) path just built. We are going

to show that the resistance of this y-tree, denoted by R(y), is no greater than that of the

x-tree, denoted by R(x). Let {(z0, z1), . . . , (zk−1, zK)} be the unique path in the x-tree

that connects y to x (where z0 = y and zK = x). Letting r(z, z′) be the resistance of the

edge (z, z′), by the construction of the y-tree we have

R(y)−R(x) =
K−1∑

k=0

[r(zk+1, zk)− r(zk, zk+1)].

By Lemma 5 we have that r(zk+1, zk)− r(zk, zk+1) = e(zk)− e(zk+1). Therefore,

R(y)−R(x) =
K−1∑

k=0

[e(zk)− e(zk+1)] = e(y)− e(x) ≤ 0.
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But R(y)−R(x) ≥ 0 because x has minimum stochastic potential. Hence, R(y)−R(x) =

e(y)− e(x) = 0, from which it follows that:

(i) y has minimum stochastic potential, and that

(ii) x has minimum envy level.

To complete the proof, we need to show that if x has minimum envy level, it is efficient.

If it were not efficient, its envy-graph would contain a cycle. Eliminating the cycle by letting

its agents trade leads to an allocation with a lower envy level. 2

Remark: As shown in Theorem 2, the support of the limit distribution of the process M ε
2

consists of the set of allocations of minimum envy level, itself a subset of the set of efficient

allocations. The limit distribution can be regarded as a random allocation: the distribution

represents the likelihood of being at each of the states in the long run. Although the

support of this distribution consists solely of efficient allocations, one may ask whether the

distribution itself is ordinally efficient in the sense defined by Bogomolnaia and Moulin [3].

That is, it may happen that another random allocation first-order stochastically dominates

the limit distribution of the process; in this case, all agents whose preferences over lotteries

satisfy monotonicity in first-order stochastic dominance would prefer the former random

allocation to the latter.

To understand the concept of ordinal efficiency, consider the following 4-agent example:

h1 º1 h2 º1 h3 º1 h4

h1 º2 h2 º2 h3 º2 h4

h2 º3 h1 º3 h4 º3 h3

h2 º4 h1 º4 h4 º4 h3

Consider the random allocation that results from the following mechanism: each of the

24 possible serial dictatorship mechanisms is chosen with equal probability. Note that

the support of the resulting random allocation is the set of efficient allocations. One

can check that in this random allocation each agent receives his top ranked house with

probability 5/12, his second ranked house with 1/12, his third ranked house with 5/12 and

his fourth ranked house with probability 1/12. But this random allocation is not ordinally
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efficient, because it is first-order stochastically dominated by the random allocation that

assigns (h1, h3, h2, h4) and (h3, h1, h4, h2), each with equal probability: under this random

allocation, each agent receives his top ranked and third ranked houses with probability

1/2.

It follows from Theorem 2 that the limit distribution of the process M ε
2 is ordinally

efficient, namely it is not first-order stochastically dominated by any other random alloca-

tion. This is so because it assigns positive probability only to allocations with minimum

envy level. That is, the resulting lottery minimizes the expected envy, i.e., maximizes the

sum of the agents’ expected utilities, where each agent is endowed with the von Neumann-

Morgenstern utility function given by the negative of his envy.

If one endows the agents with a cardinal utility that associates to each allocation

the negative of his envy, then Theorem 2 shows that the stochastically stable allocations

are those that maximize the sum of the utilities. One may wonder whether this result

continues to hold under different cardinal representations of the same preferences. The

answer is negative, because under alternative cardinalizations of preferences, the analog of

Lemma 5 will generally fail to hold. On the other hand, Theorem 2 and its interpretation

in terms of selecting the maximizers of the sum of utilities would still go through for

utility representations fi(ni), as long as they satisfy that ni + nj ≥ n′i + n′j if and only if

fi(ni) + fj(nj) ≥ fi(n
′
i) + fj(n

′
j).

5 Conclusion

The first welfare theorem states that competitive allocations are efficient. Further, it is also

known that competitive allocations from equal division are envy-free. We can interpret

these results as saying that when rational agents have equal endowments and trade with

an anonymous market, the resulting outcome is efficient and envy-free. Our results show

that, in some models of exchange, pairwise trade where agents make mistakes with small

probability leads the economy to efficiency and minimum envy in the long run. It is good

news, we believe, to find this very different underpinning of such well established concepts.

An open question. On the other hand, another leading solution concept in this

problem is the competitive equilibrium (which always yields a unique allocation in this

context, and coincides with the core). An important question, raised first by Vega-Redondo
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[14], is whether one can find evolutionary support to Walrasian allocations. He succeeds in

doing this in an imitation process applied to the Cournot oligopoly model, a game in normal

form. In an exchange economy, though, the competitive equilibrium is obviously sensitive

to the initial endowments. As a result, it is not clear how a solution with this property

could be selected by a methodology based on ergodic processes, which are independent of

initial conditions. Nonetheless, this is an important question that deserves further thought.

The speed of adjustment. For every ε > 0, the invariant distribution of M ε
1 and that

of M ε
2 represent the long run behavior of the two systems. An important question concerns

the speed of adjustment of each system to these long run predictions. A related issue is

the average waiting time for the system to reach one of the stochastically stable states. In

particular, how the average waiting time depends on the size of the housing problem. The

answer to these questions is not simple because the set of allocations changes fundamentally

with the size of the problem. Not only does the number of allocations increase but also

the number of absorbing states typically goes along with it. However, Lemma 3 allows us

to say that, for M ε
1, the average time that it takes for the system to leave any absorbing

allocation, whether stochastically stable or not, is independent of the number of agents

in the problem and it depends linearly on 1/ε. This is not the case for M ε
2, where the

average time to leave some non-stochastically stable absorbing states may be of the order

1/εni+nj for high values of ni and nj. Thus, we can conclude that the average time that

takes the system to reach a stochastically stable state is smaller in the first model than

in the second. Further, we can say that this average time depends polynomically on the

number of non-stochastically absorbing states of the problem. We do not know, however,

how this number grows with the size of the problem.
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