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ABSTRACT 

The paper investigates the validity of Gibrat’s Law in Hungarian agriculture. Employing 
various specifications including OLS, two-step Heckman model and quantile regressions our 
results strongly reject Gibrat’s Law for full sample. Estimations suggest that small farms tend 
to grow faster than larger ones. However, splitting the sample into two subgroups (corporate 
and family farms) we found different results. For family farms however, only OLS regression 
results reject Gibrat’s Law, whilst the two-step Heckman models and quantile regression 
estimates support it. Finally, for corporate farms our results support the Law regardless of the 
method or size measure used. Our results indicate that there is no difference between family 
farms and corporate farms according to the growth trajectory. 
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1. INTRODUCTION  

There is a continuously growing literature on the agricultural transformation in Central an 
Eastern European countries (see survey BROOKS and NASH 2002; ROZELLE and SWINNEN 
2004). The research has focused on various aspects of transition, including land reform, farm 
restructuring, price and trade liberalisation and etc. All these economic policy issues have a 
significant influence upon farm growth in any country. Because of the inherent instabilities 
associated with the transition period, and the relatively short time (in most Central Eastern 
European countries the dismantling of the centralised economic structures began only 15 - 16 
years ago) farmers had to acquire much needed farm management skills, farm growth rates in 
a transition economy are expected to be more profoundly influenced by the economic 
environment. Most of the empirical studies on the farm growth and survival rates use 
GIBRAT’s (1931) as a theoretical departure point in their analysis. Gibrat’s Law of 
Proportionate Effect states that firm growth is a stochastic process resulting from many 
unobserved random variables; therefore the growth rate of firms (farms) is independent of 
their initial size at the beginning of the period. The purpose of this paper is to investigate 
whether Gibrat’s Law holds for various subpopulations of Hungarian farms. The farm 
structure in developed market economies where all similar studies were set is very different 
from that in the transition economies. The proportion of small farms in transition economies 
in general, and in Hungary in particular, is much higher, thus this empirical research provides 
new insights into the farm growth literature. This paper is organised as follows: section 2 
presents the theoretical background, section 3 discusses the methodology employed, section 4 
presents the dataset and the empirical analysis, and finally, section 5 concludes.  
 

2. L ITERATURE REVIEW  

Although there is a wealth of literature on whether Gibrat’s Law holds on various agricultural 
sectors, to date no one has studied the law of proportionate growth in a transition economy. 
Most of the literature (see the recent reviews of SUTTON, 1997 and LOTTI et al., 2003) focuses 
on the growth of firms and to a lesser extent on the growth of farms. Most studies are limited 
on testing whether Gibrat’s Law holds in a given sector or industry. The empirical research 
considering the agricultural sector, yielded rather contradictory results. WEISS (1999) focusing 
on part and full time farms in Upper Austria rejected Gibrat’s Law, and found that ‘age, 
schooling and sex of the farm operator, size of farm family, and off-farm employment as well 



as initial farm size, significantly influence farm growth and survival’. SHAPIRO et al. (1987) 
analysed the growth of Canadian farms using census data, and conclude that Gibrat’s Law 
does not hold, that is, small farms tend to grow faster than large ones. On the other hand, 
UPTON and HAWORTH (1987) using British Farm Business Survey data, BREMMER et al. 
(2002) using Farm Accountancy Data Network (FADN) data for Netherlands and KOSTOV et 
al. (2005) using farm census and structural survey data for dairy farms in Northern Ireland, 
found no evidence (except for the small farms in the case of KOSTOV et al.) to reject Gibrat’s 
Law.  

An important issue in the farm growth studies, is the way, the farm size is defined. These 
include: acreage farmed, livestock number, total capital value, gross sales, total gross margin 
and net income. Output value measures however, are subject to inflation, and changes in 
relative prices. The use of physical input measure may also cause difficulties, since farms are 
characterised by a non-linear production technology, this changes in size involve changes in 
the mix and proportions of inputs used.  
 

3. METHODOLOGY  

The simplest way to test Gibrat’s law is to run an OLS regression, and test the β1 coefficient 
associated with the logarithm of the lagged farm size (equation 1): 

εββ ++= −1,10, loglog titi SS
                       (1) 

where Si,t is the size of farm i at time t, Si,t-1 is the size of farm i at the previous period, and ε is 
a random variable, independent of Si,t-1. If β1 =1, than growth rate and initial size are 
independently distributed and Gibrat’s Law holds. If the coefficient is smaller than one, it 
follows that small farms tend to grow faster than large farms. On the other hand, a coefficient 
larger than one, means that larger farms grow faster than smaller farms do. The OLS analysis 
however is only capable to test whether Gibrat’s Law holds globally for all farms, regardless 
of their size. Following KOSTOV et al., (2005) we employ modern quantile regression methods 
in order to distinguish between farms of different sizes. An important issue in the empirical 
analysis is the sample selection problem. Since growth rate is only possible to be measured 
for surviving farms (still operating in period t), and since slow growing farms are most likely 
to exit, it is easy to see that small, fast growing farms can easily be overrepresented in the 
sample, thus introducing bias in the results. This problem is of a particular importance in the 
present paper, since the proportion of small farms in transition economies in general, and in 
Hungary in particular, is much higher than in developed economies. HECKMAN (1979) 
introduced a two-step procedure to control for the selection problem. In step one, a farm 
survival model for the full sample (both surviving and exiting farms) is estimated, using a 
probit regression. This equation is used to obtain a variable, the inverse of Mill’s Ratio for 
each observation (equation 2): 

µϕγδ +++== −−
2

1,1, loglog()1( titii SSFfP
         (2) 

where fi = 1 denotes survivor, fi = 0 exit, and µ is the disturbance. 

In the second step, this additional variable is introduced as a correcting factor into the quantile 
regression based on a sample that contains only the surviving farms.  

The BIERENS and GINTHER’s (2001) Integrated Conditional Moment (ICM) test is used to test 
the appropriateness of the quintile regression models’ functional form.  



4. EMPIRICAL ANALYSIS AND RESULTS  

4.1. Data 
The analysis is based on Hungarian Farm Accountancy Data Network (FADN) private farms 
database. In 2005, the Hungarian FADN system data were collected from 1940 farms above 2 
European Size Units based on representative stratified sampling according to four criteria: 
legal form, farm size, production type and geographic situation. The database contains data of 
1546 private farms and of 394 economic organizations, but the number of common 
observations decreased to 781 farms between 2001 and 2005. Empirical studies usually face 
the problem of farms exiting the business between the two time points. Dropping these farms 
from the sample introduces a sample selection bias against the small farms, which are most 
likely to exit. This issue may be crucial for Hungarian farm structure by dominating a large 
number of small farms. The farm size is measured by number of farm input or output 
variables, including total capital value, net income, gross sales, total gross margins, livestock 
numbers, and acreage farmed. In order to obtain robust results, we use 4 different measures of 
farm size: acreage, net total revenues, total capital and total labour. Net total revenue and total 
capital variables were deflated to 2000. 
 
4.2. Empirical results 

We present our results in following steps. First, closely related to farm growth issues is the 
bimodal farm size distribution hypothesis (see WOLF and SUMNER, 2001). The market 
economy institutions and structures in Hungary have fully developed by 2001 thus we test 
using Kernel density functions whether a shift towards a bimodal farm structure has taken 
place by 2005. Figure 1 shows that Kernel density function moved to right indicating a slight 
concentration in farm structure during analysed period, but the bimodality of Hungarian farm 
structure can be rejected independently from measures of size. 

Second, we test the Gibrat’s Law employing various specifications including simple OLS 
estimates, two-step Heckman selection model and quantile regressions. Tables 1, 3 and 4 
present OLS, two-step Heckman and quantile regression estimates for the total population, 
family and corporate farms, according to the various size measures used (labour, land, capital, 
net sales). Third and fourth row of each table presents estimates of the β0 and β1 coefficients 
(see equation 1). Than the β1 = 1 null hypothesis (i.e. Gibrat’s Law holds) is tested. Rows 6 
and 7 of each table present the number of surviving and the number of total farms. Finally, the 
regression coefficient of determination is shown in the last row. β0 and β1 estimates are 
generally significant, and the R2 coefficients show that the regressions explain a relatively 
large part of the variation in the dependent variable. Regardless of the estimation procedure, 
empirical results provide strong evidence against Gibrat’s Law for total sample. In eleven of 
twelve specifications estimates of β1 significantly different from zero, and significantly less 
than one. This confirms that in general smaller farms grow faster than larger farms. Table 2 
shows the mean value of various size measures for family, corporate and total farms. Data 
reveal that the size of family farms is smaller than corporate farms. Interestingly, the average 
land size and number of labour decreased for corporate farms between 2001 and 2005. 
Empirical literature emphasise that smaller firms grow faster than larger firms, especially for 
small newborn firms (LOTTI et al. 2003). One may argue that the growth paths of family and 
corporate farms are different. Thus, we divide the full sample into two separate groups: family 
and corporate farms and re-estimate the models by organisation forms. 

Compared with the full sample, the picture is more mixed for the family and corporate farms 
(Tables 3 and 4). For family farms, OLS regression estimates of β1 are significantly smaller 
than unity, rejecting Gibrat’s Law. Two-step Heckman and quantile regression estimates of β1 



however, are not significantly different from 1, supporting Gibrat’s Law. This again provides 
empirical support for the hypothesis that OLS regression estimates are biased towards the 
small, fast growing farms, and thus they reject more often Gibrat’s Law. In eleven out of 
twelve cases, β1 regression estimates for corporate farms (Table 4), support the law of 
proportionate effects. 

Third, a useful tool to illustrate the β1 quantile regression estimates, is to plot the coefficient 
value across the range of quantiles. Figure 2 presents quantile regression estimates along with 
95% confidence intervals by size measures and organisational groups. Whenever the 
confidence intervals include the value of 1, Gibrat’s Law holds. Graph results are in line with 
tables 1, 3 and 4. For all farms, Gibrat’s Law is rejected. If family and corporate farms are 
taken separately, the unity is generally comprised in the 95% confidence intervals. 

Finally, we estimate the ICM test statistics to check the appropriateness of the quantile 
regressions’ functional form. Because of the considerable computational burden of estimating 
ICM statistics, Table 5. presents estimates for the 0.50 quantile only. Several c values are 
used, since the ICM test statistics is actually a ration of 2 probability measures estimated over 
a hypercube, whose dimensions are 2c. Asymptotically, any choice of c is equivalent, 
however the choice of c has strong influence on the small sample properties (see KOSTOV et 
al., 2005; BIERENS and GINTHER, 2001 for further details on the test).  None of the test 
statistics computed for the four size measures is significant at 5%, supporting the estimated 
quantile regression and its conclusions.  

5. CONCLUSIONS 

In this paper we analyse the concentration process in the Hungarian farms sector, and test the 
validity of the Law of Proportionate Effects (Gibrat’s Law) for Hungarian farms between 
2001 and 2005, using four different measures of size. Previous studies found that Gibrat’s 
Law holds when larger farms, but fails to hold when smaller farms are considered. This is 
mostly due to methodological and sample issues. We used OLS and two additional methods 
to overcome the bias introduced by small and exiting farms. Our results strongly reject 
Gibrat’s Law if all farms (corporate and family) are considered together, regardless of the size 
measure used. In line with previous studies our estimations suggest that small farms tend to 
grow faster than larger ones. However, splitting the full sample into two subgroups yields 
different results. For family farms however, only OLS regression results reject Gibrat’s Law, 
whilst two-step Heckman and quantile regression estimates support it. Finally, for corporate 
farms, the Law holds regardless of the method or size measure used. Apart from testing 
whether Hungarian farms grow independently of their initial size, our study also emphasises 
the importance of the applied methodology in getting sound results. Our research contributes 
in some aspects to family farm debate. RIZOV and MATHIJS (2003) using cross section data 
show that older and larger farms are more likely to survive, farm growth decreases with farm 
age when farm size is held constant and that learning considerations are important. Our 
estimations indicate that when farm structure is already stabilised there is no difference 
between family and corporate farms in terms of growth. However, further research is needed 
to identify factors explaining the survival and growth across farm types. 
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Figure 1 Kernel density function by measure of size 
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Figure 2 Quantile regression estimates by size measures and organisation groups 
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Table 1 OLS, Two-Step Heckmann and Quantile Regression estimates for total sample by measures of size 
 Labour Land Capital Net Sales 
 OLS Heckmann Quantile OLS Heckmann Quantile OLS Heckmann Quantile OLS Heckmann Quantile 
β0 0.5532*** -2.950 -3.39*** 0.496*** 0.945* 0.620 1.608*** 0.915** 0.940** 1.224*** -0.293 0.354 
β1 0.717*** 0.8601*** 0.917*** 0.921*** 0.909*** 0.944***  0.884*** 0.908*** 0.933***  0.887*** 0.927*** 0.922***  
H0: β1=1 158.01*** 0.99 17.43*** 45.12*** 19.95*** 10.19***  34.48*** 15.81*** 15.64***  47.10*** 6.87*** 25.27***  
N surv 775 775 775 752 752 752 776 776 776 778 778 778 
N total  1748   1684   1749   1750  
R2 0.5792  0.3651 0.8659  0.6912 0.7584  0.5636 0.7959  0.5895 
 
Table 2 Mean of size variables by organistion forms 

 Sale (HUF) Capital (HUF) Labour (man) Land (hectares) 
 2001 2005 2001 2005 2001 2005 2001 2005 
family farms 10974,6 14528,1 20409,3 35320,7 5,0 5,7 72,7 91,9 
corporate farms 280300,8 273396,5 175150,7 233395,6 46,9 37,0 905,1 886,9 
total farms 62356,9 63915,3 49931,1 73109,6 13,0 11,7 231,5 243,5 
 
Table 3 OLS, Two-Step Heckmann and Quantile Regression estimates for family farms by measures of size 
 Labour Land Capital Net Sales 
 OLS Heckmann Quantile OLS Heckmann Quantile OLS Heckmann Quantile OLS Heckmann Quantile 
β0 0.784*** 5.917 -2.464 0.493*** -2.454 -3.216* 1.410*** 0.650 0.529 1.717*** -1.520 1.076 
β1 0.495*** 0.998 0.785*** 0.926*** 1.115** 1.192*** 0.906*** 0.949*** 0.964***  0.830*** 1.031*** 0.900***  
H0: β1=1 165.47*** 0.00 0.1990 14.47*** 0.06 2.92* 11.87*** 1.58 0.73 23.38*** 0.04 1.72 
N surv 632 632 632 617 617 617 631 631 631 629 629 629 
N total  1386   1348   1384   1380  
R2 0.230  0.1264 0.7757  0.6093 0.7126  0.5059 0.5534  0.4055 
 
 
 
 
 



Table 4 OLS, Two-Step Heckmann and Quantile Regression estimates for corporate farms by measures of size 
 Labour Land Capital Net Sales 
 OLS Heckmann Quantile OLS Heckmann Quantile OLS Heckmann Quantile OLS Heckmann Quantile 
β0 0.680 -0.629 -1.028 0.050 1.258 0.405 1.372* -2.405 0.491 0.804 4.044 0.625 
β1 0.757*** 0.856*** 0.943***  0.983*** 0.935*** 0.965***  0.899*** 1.034*** 0.968***  0.927*** 0.807*** 0.965***  
H0: β1=1 18.52*** 1.57 0.72 0.64 0.24 0.29 2.29 0.06 0.38 1.72 1.77 0.94 
N surv 143 143 143 135 135 135 145 145 145 149 149 149 
N total  362   336   365   370  
R2 0.7075  0.5440 0.9061  0.7478 0.6791  0.5321 0.8477  0.6767 
 
 
 
Table 5  ICM tests by size of measures and organisation types for quantile n=0.50 
 total   family   corporate   

c 1 5 10 1 5 10 1 5 10 
Labour 3.643 2.378 1.941 4.300 2.691 1.999 0.050 0.286  0.448 
Land 0.149 1.805 0.935 0.045 0.4406 0.305 0.106 0.323 0.910 
Capital 0.104 0.643 0.636 0.093 0.552 0.555 0.145 0.521 1.009 
Net sales 0.094 1.269 1.897 0.123 1.228 1.596 0.125 0.953 1.138 
Note: critical values 10 per cent: 3.23; 5 per cent: 4.26 
 
 
 
 
 
 


