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Abstract 

    In this paper we attempt an intertemporal study of risk management decisions for wheat 

growers in the Pacific Northwest. We apply a generalized expected utility model (GEU) to 

examine the farmers’ optimal choices of hedging ratios and crop insurance coverage levels in the 

presence of government payment programs in a multi-period production environment. A stochastic 

trend model is used to identify the long-term time series patterns of annual wheat yields, cash 

prices, and futures prices from two counties in Washington. The fitted models are then used as the 

base for yield and price simulation over the next five years. The stochastic dynamic optimization 

problem is solved numerically based on simulated data. The optimal solutions indicate that the 

GEU model is feasible in modeling farmers’ intertemporal decisions regarding risk management. 

The comparison between GEU model and some commonly used expected utility models further 

implies the advantage of the GEU model in being flexible to specify farmers’ intertemporal 

preferences separately and completely.   

 

 

Keywords: intertemporal decision, generalized expected utility, dynamic optimization, risk 

management   

 



 2

Intertemporal Decisions of Farmers’ Risk Management: A Dynamic Optimization with 

Generalized Expected Utility 

 

 I. Introduction  

Agricultural production is a stochastic process that is greatly affected by unpredictable 

weather, technology, and price fluctuations in commodity markets. The risk management situation 

confronted by farmers is complicated with intra- and inter-temporal uncertainties when one crop 

cycle is taken as a period. Modeling farmers’ risk management has been commonly based on a 

static approach, although a stochastic dynamic approach is more consistent with reality. The 

complexity involved in stochastic dynamic modeling requires decision making to incorporate 

multi-dimensional uncertainties into one entirety, which is challenging for model development in 

both theoretical work and empirical work.  

Currently, U. S. farmers can use several risk management tools to reduce loss in bad years 

and save money in good years, and make long term strategic plans accordingly.  Futures contracts 

are traditionally used by farmers to hedge price risk, and have been available for a long time. 

Yield-based crop insurance programs were facilitated and subsidized by the U.S. federal 

government dating back to the 1930s. Now crop insurance products can be used to reduce both 

yield and price risk, and have become by far the most popular tool used by U.S. crop producers. 

Besides insurance programs, government payment programs provide direct cash compensation to 

farmers in bad years. The 2002 Farm Bill adds a new counter-cyclical payment program to the old 

direct payment program and loan deficiency payment program. With increased involvement, 

government allocates a significant amount of tax dollars to provide and subsidize all of these 

programs every year. Despite that, the risk management effectiveness and farmers’ participation 
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incentives have always been a concern (Brorsen, 1995; Ke and Wang, 2002).            

Expected utility maximization, commonly used as a standard framework in many studies 

including agricultural risk analysis, has been shown feasible in dynamic modeling. It allows a risk 

averse farmer to maximize a summarized discounted von Neumann-Morgenstern expected utility 

function of his/her stochastic income subject to a set of policy and resource constraints. Such a 

specification, however, assumes utility is additively separable and therefore implies the decision 

maker is intertemporally risk-neutral. A generalized expected utility (GEU) maximization model, 

developed by Epstein and Zin (1989, 1991), provides an alternative to study intertemporal 

decisions with further specification of decision maker’s preferences. The model utilizes a 

recursive utility function of constant elasticity of substitution (CES) form as the objective 

function.This approach incorporates the decision maker’s non-neutral intertemporal substitution 

preference through different levels of elasticity of substitution. In this sense the recursive model 

disentangles intertemporal substitutability from temporal risk aversion.  

The objective of this paper is to explore the feasibility of GEU as a framework in 

modeling farmers’ intertemporal risk management decisions. The farmer’s optimal risk 

management portfolios are examined under the GEU framework, where he/she chooses from price 

instruments, insurance products, and government payment programs to maximize utility.  

Specifically, the paper proceeds as follows: 1) Section II reviews literature in 

agricultural risk management modeling; 2) Section III discusses the model structure; 3) Section IV 

introduces data and the simulation of  yields and prices; 4) Section V discusses the optimization 

results based on GEU as well as some standard models; and 5) Section VI provides some 

conclusions.  
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II. Existing Literature 

Recent studies on risk management strategies have been extended from the earlier 

one-element models to portfolio models. They analyzed the effects of different combinations of 

instruments and interactions between each instrument. Among them are portfolios of crop yield 

insurance and futures contracts (Myers, 1988), futures market and government farm programs 

(Crain and Lee, 1996), crop yield insurance, futures, options and government programs (Wang, et 

al., 1998), and crop revenue insurance, futures and government programs (Zuniga, Coble, and 

Heifner, 2001; Wang, Hanson, and Black, 2003; Wang, Makus, and Chen, 2004).  

Government programs have been studied either singularly (Miller, Barnett, and Coble, 

2001) or in a portfolio setting together with other instruments (Wang et al., 1998; Makki and 

Miranda, 1998; Zuniga, Coble, and Heifner, 2001). The new counter cyclical payment program in 

the 2002 Farm Bill is similar to the deficiency payment program in the 1990 Farm Bill. Although 

having been included in a study of farmers risk management strategy for the Pacific Northwest 

(PNW) region (Wang, Makus, and Chen, 2004), more thorough investigation is necessary.  

As a modeling framework, the expected utility (EU) maximization approach has been 

applied in producers’ risk analysis in both static and dynamic situations since 1970s.  However, 

unlike its counterparts in economics and finance, large amount of the existing works are still based 

on static scenarios, especially in agricultural economics (Nyambane et al., 2002).  Examples 

include all the aforementioned studies, with a few exceptions such as Vukina and Anderson (1993), 

Myers and Hanson (1996), Atwood et al. (1996), and Nyambane et al. (2002).  

In the standard specification of intertemporal EU maximization, it is common to assume 

an additive and homogeneous von Neumann-Morgenstern utility index. Such a specification, 

however, intertwines two distinct aspects of preference, intertemporal substitutability and relative 
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risk aversion (Epstein and Zin, 1989).  Additionally, these models did not perform well in 

empirical examinations (Hansen and Singleton, 1983; Mehra and Prescott, 1985). A more general 

and flexible framework, the generalized expected utility (GEU) model was developed 

independently by Epstein and Zin (1989, 1991) and Weil (1990). This new specification takes the 

CES form for the utility function and is based on a recursive structure. The CES form adds extra 

flexibility in identifying intertemporal substitution along the time span, and is able to disentangle 

the intertemporal substitution from the risk aversion.  

With the possible and testable separability of risk preference and intertemporal 

substitutability under the GEU framework, it is possible to estimate preference parameters 

separately and examine the form of objective function. Continuing on from their theoretical paper, 

Epstein and Zin (1991) empirically investigated the parameter estimation and the testable 

restrictions. Although favorable and seemingly consistent with theory, they found those estimates 

and test results are sensitive to consumption measures and instrumental variables.  As one of the 

earliest and very few agricultural economists who have applied this GEU model in agricultural 

production, Lence (2000) used 1936-1994 U.S. farm data to study the fitness of a GEU framework 

and farmers’ time and risk preferences. He found the estimated farmers’ utility parameters satisfy 

the theoretical restrictions of the GEU model.  The EU model is rejected in favor of the GEU 

model. Knapp and Olson (1996) used GEU to solve dynamic resource management problems.  

They found intertemporal substitution has a substantial effect while risk aversion has a very small 

effect on optimal solutions. Howitt et al. (2002) applied a GEU framework to stochastic water 

supply management. The empirical results underscore the importance of using this more general 

specification of intertemporal preferences.  
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III. Model  

Theoretical Framework 

The foundation of the GEU model for intertemporal analysis is built up on independent 

works of Epstein and Zin (1989, 1991), and Weil (1990). Since we use Epstein and Zin’s approach 

in this study, only Epstein and Zin’s work is outlined here. 

The representation of the general preference for a decision maker under risk can be 

identified as: 

(1)                                         ( ) ( )
1

11t t t tMaxU C E U
ρ ρ

ρ α αβ β +

   = − +    
 

where )(⋅tU  is the von-Neumann Morgenstern utility function indexed by time t ; tE is the 

expectation operator at current period t; the “~” above U indicates the stochastic property of utility. 

β ( 10 << β ) is the discount factor per period and implicitly defines the decision maker’s time 

preference. By consuming at 1+t , he/she only consumes a fraction (β ) of the utility that would 

have been consumed at t . α ( 10 <≠ α ) denotes the risk aversion parameter, and is equal to one 

minus the Arrow-Pratt constant relative risk aversion (CRRA) coefficient. A smallerα  indicates 

greater risk aversion. ρ ( 10 <≠ ρ ) denotes the intertemporal substitutability, equal 

to 1)1( −−σ withσ denoting elasticity of substitution. Early (late) resolution of risk would be 

preferred if ρα )(>< . tC denotes the current consumption which is a function of the risk 

management choice variables. The decision maker’s objective function is to maximize current 

utility, which comprehensively incorporates all of the lifetime expected future utilities.  

The recursive GEU specification realizes a separation of risk aversion from intertemporal 

substitution and the non-additive intertemporal preference relations, which is not usually shared by 

the EU specification. However, the GEU form nests the EU form as a special case. The recursive 
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CES EU (CES-EU) preferences, widely used in Finance, macroeconomics and intertemporal 

consumption analysis, are obtained when we impose the parametric restriction ρα = . 

(2)                                            ( ) ( ){ }1

1

t t t tMax U = 1- β C + β E Uα α α
+

                (CES-EU) 

Moreover, the standard multi-period recursive EU (MR-EU) preference is obtained when 

we further impose 1α ρ= = . As indicated in equation (3), when the utility function is defined as a 

linear combination of current and future consumption levels, the optimization of MR-EU becomes 

a decision maker maximizing the summarized discounted expected consumption over a lifetime 

(finite or infinite time periods). 

 (3)                                            ( ) ( )i
t t t t i

i

MaxU 1- C E Cβ β +
 = +  

∑                  (MR-EU) 

Here t iC +  denotes the consumption for the thi period in the future. The additive specification 

implicitly assumes preferences are homogeneous over time; each one of them carries the same 

weight when discounted to the current period. Such additivity is now well known to be too 

restrictive (Weil, 1990). Decision makers may have a clear preference for early resolution of risk 

compared to late resolution of risk (Kreps and Porteus, 1978).  

Application of GEU to Farmers’ Intertemporal Decisions in the PNW 

When applying the GEU framework to our optimization problem, current consumption is 

further defined as a net income from the farmer’s wheat production and risk management choices. 

The farmer uses futures contract, yield insurance, and government programs to construct risk 

management portfolios. Hedge ratios and insurance coverage ratios are endogenous choice 

variables to be determined at the optimum, based on information available at t: 

(4)            Ct = NCt + CIt + FIt + GIt  

         where  NCt = PtYt –PCt, 
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FIt = xt-1[Ft – Et-1(Ft)]-TCt, 

                           CIt = Pb max[0, zt-1 E t-1 (Yt) - Yt] -  Pret  

GIt = DPt + LDPt + CCPt 

Where DPt = 0.85PD× 0.9Et-1(Yt), 

LDPt = Et-1(Yt) max(0, LR - Pt), 

            CCPt = 0.85× 0.935 Et-1(Yt) max[0, PT - PD - max(Pt ,LR)] 

where NCt is the net income from producing and selling the crops in the cash market; CIt is the net 

income from purchasing crop insurance; FIt is the net income from hedging in the futures market; 

and GIt is the net income from government programs.  

Pt and Yt represent cash prices2 and yields for winter wheat at harvest time, with PCt as the 

production cost. Ft is the futures price at time t and the futures market is treated as unbiased.  xt-1 is 

the hedging amount determined at previous period which is positive for a long position and 

negative for a short position. xt-1  is in bold face to indicate its status as a choice variable. TCt is the 

transaction cost of trading futures. Pb is the base price used to calculate the indemnity from crop 

insurance with Pret as the premium3, and zt-1 is the coverage selection of the insurance and is also 

in bold face to indicate a choice variable. DP is direct payment program which gives a constant 

payment to farmers, LDP is the loan deficiency payment, and CCP is the counter cyclical payment; 

PD is the direct payment rate, LR is the loan rate, and PT is the target price.  The formulation of DP, 

LDP and CCP is specified according to the 2002 Farm Bill and calibrated to PNW wheat growers, 

the chosen area for the empirical analysis.  

Due to the nonlinearity in the objective function and complex random relationships 

                                                        
2 Cash price is a farm gate price after transportation cost is deducted from the spot market cash 
price. 
3 The premium of the current year’s crop insurance is paid at harvest time. 
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among variables, closed-form optimal solutions are unavailable in stochastic dynamic 

programming, so the empirical solutions are obtained by numerical methods. For the dynamic 

optimization, we simulate yields and prices for the next five years. Optimal levels of crop 

insurance coverage and hedge ratios are determined simultaneously and intertemporally in the 

presence of government programs.  

  

IV. Data, Simulation and Model Calibration 

Data Source 

We select a representative farmer from each of the two counties in Washington State, 

Whitman County and Grant County.   Although both are in a typical dryland farming region in the 

Pacific Northwest (PNW) and grow soft white wheat, these two counties have different levels of 

precipitation. Whitman County sits on the east central border of Washington and is part of the 

highest yield area for soft white wheat in the state. Whitman County is a non-irrigated area in the 

state with an average annual precipitation around 14 inches. In comparison, Grant County is 

located in the center of the state  and does not border Whitman County. Grant is a much dryer 

county with an average annual rainfall of 5 inches in 2002. Wheat production is riskier in Grant 

County. However, since there is some irrigation system in Grant County, the yield is not much 

lower than that in Whitman County (Figure 1).  

Historical data for soft white wheat yield, cash price and futures price for Whitman 

County and Grant County, Washington are collected and examined to identify time series patterns 

for simulation. The yield data for Whitman County and Grant County in Washington State are 

obtained from the U.S. Department of Agricultural National Agricultural Statistics Service 

(http://www.usda.gov/nass/) and Risk Management Agency (RMA) at a yearly base for 1939-2003 
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and 1972-2003, respectively.  

Annual September wheat cash and futures prices from 1973 to 2003 are selected to 

represent harvest prices.  September is also the time the farmer makes decisions on the following 

year’s hedging and insurance participation and prepares for the planting year’s next winter wheat 

crop. For cash price, we use the monthly average of daily September prices at the Portland spot 

market. They are taken from the USDA-ERS Wheat Yearbook 

(http://www.ers.usda.gov/publications/so/view.asp?f=field/whs-bb/). Since the PNW region 

grows soft white wheat which has no actively traded futures contract, the Chicago Board of Trade 

(CBOT) September wheat futures contact is chosen for farmers’ hedging. We pick the mid-week 

price of the first week (Wednesday or Thursday) of September to develop our dataset.  

Deterministic Trend vs. Stochastic Trend 

Because of the multi-dimensions involved in GEU specification and dynamic 

programming, simulation of yield data could affect the final optimization results to a large extent. 

Specifying a pattern that is consistent with real processes is critical in this study.  

Since we have long-term annual data, the time variation is mainly reflected in the mean 

level due to the low-frequency feature of the data. From the time series plots of Whitman County 

and Grant County yield (Figure 1) for 1972 to 2003, an upward trend is visible for the last 32 years. 

As yield is influenced jointly by the stochastic weather and technology changes, it is important to 

carefully examine the yield distribution before applying any deterministic or stochastic trend 

models. Similarly for wheat cash and futures prices (Figure 2), the unpredictable balance of supply 

and demand determines the price levels and inflation associated with the macroeconomic trends 

further influences prices.   

For multi-period analysis, we need to model the long-run inter-year randomness as well as 
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the short-run random effects. A stochastic trend model would be more appropriate in that it 

incorporates both types of randomness. Moss and Shonkwiler (1993) developed a single 

time-dependent stochastic trend model.  Their model transforms the error term rather than the 

dependent variable to incorporate the possibility of both non-stationary data and non-normal errors 

in corn yield variation. The model is general enough to include both the standard deterministic 

time trend and normal errors as special cases.  

Their model follows a Kalman Filter process and consists of a measurement equation; 

(5)                                                                 ttty εµ +=  

and two transition equations; 

(6)                                                                 tttt ηβµµ ++= −− 11  

                                                                      ttt ςββ += −1  

where ty is the independent variable indexed by time t ; 








t

t

β
µ

 is the state vector; tε is the random 

error describing the short run randomness with mean zero and variance 2
εσ ; 
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t  is the error vector describing the long run randomness in the 

transition equation that governs the evolution of the state vector. Both of the errors in the 

measurement equation follow normal distributions and are independent of each other.  

In the basic specification, tµ , the mean component of the dependent variable, is shown as 

a random walk with a drift. Therefore the final generalization shows that the mean of the 

dependent variable grows at a random rate.  

In the case when the dependent series contain non-normal errors, tε  is assumed to be 

generated by an inverse hyperbolic sine transformation from normality. Specifically,  
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(6)                                                   ( ) ~ (0,1)t te Nτ δ= − , 

    ( ){ }
1

21 2ln 1t t tτ θ θε θε−
 

= + +  
 

 

where δ  is the non-centrality parameter; )0(0 <>δ  denotes the distribution is skewed to the 

right (left) and if 0=δ  the distribution is symmetric. θ  is associated with the degree of kurtosis 

with 0≠θ  denoting a kurtotic distribution.  

Solving for tε , we get 
2

t t

t
e eθτ θτ

ε
θ

−−
= . 

The stochastic trend model reduces to a deterministic time trend model if 0 0β ≠  

and 022 == ςη σσ ; if furthermore 00 =β  then it reduces to a constant mean regression model.  

Estimation and Simulation for Yields and Prices 

Applying the stochastic trend model to our yield and price data using maximum 

likelihood estimation programmed in GAUSS, we find there is no stochastic trend in the yield for 

Whitman County but there is one for Grant County. The stochastic trend also exists in the Portland 

cash prices and CBOT futures prices (Table 1).  

For Grant County yield, cash price and futures price, the significance of estimated ησ  

confirms the existence of a random walk in the mean component, but the insignificance of 

estimated ςσ  shows such stochastic variation doesn’t exist within the trend. For Whitman County 

yield, however, the trend is generally a deterministic time trend and there is no randomness in the 

slope of the time trend. We further test for autocorrelation within the series before applying the 

time trend and find no evidence. The simple linear regression model with a deterministic time 
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trend appears to be a good model for Whitman County yield4. 

The plots of predicted values versus actual values show that in general the stochastic trend 

models fit the data well by capturing the long-run variation in the trend for wheat yield in Grant 

County (Figure 3) and prices (Figure 4). The 95 percent confidence intervals include nearly all of 

the realizations.     

For the distributions of yield and prices, we conduct normality tests first on the detrended 

data. Results fail to reject the null hypothesis of normality. We also estimate the stochastic model 

including non-normal errors. The estimates of the non-normal parameters δ  and θ  are not 

statistically different from zero, confirming that the data follow a normal distribution.  

We use the fitted linear time trend model to simulate annual wheat yields in Whitman 

County for the next five years, and use the fitted stochastic trend models to simulate Grant County 

yield, Portland Cash price, and CBOT futures price. An empirical distribution with 2000 samples 

is simulated for each of the next five years and for each series. All the series are first simulated 

independently without autocorrelations or contemporaneous correlations. For the cash and futures 

prices, we then impose a correlation of 0.871 and keep yields and prices uncorrelated based on 

historical data. Table 2 gives the descriptive statistics of the simulated data.  

Parameter Calibration 

Identification of farmers’ risk preferences and time preferences has been attempted in 

previous studies using different models (Saha, Shumway and Talpaz, 1994; Chavaz and Holt, 1996; 

Epstein and Zin, 1990; Lence, 2000).  Among them, Lence used a similar dynamic GEU model to 

estimate US farmers’ preference parameters based on aggregated consumption and asset return 

data from 1966-1994. We use these values, 13.0−=α , 0.89β =  and 0.9493ρ = , as the base for 

                                                        
4 Results are available upon request. 
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the representative farmers and assume they are constant over time. 

In the determination of current consumption (or net income) level, transportation cost 

between the Portland spot market and the two counties is set at $0.50 per bushel; production cost is 

determined as $203 per acre for Whitman County and $200 for Grant County (Hinman and 

Baldree, 2004); transaction cost associated with hedging is set at $0.017/bushel. The price used to 

indemnify crop loss in the insurance programs is the CBOT September wheat futures price plus a 

Portland basis of $0.45 per bushel. The insurance coverage levels are restricted to be either zero or 

from 50% to 85% with an increment of 5%. The insurance premium is computed as the product of 

the expected indemnity (actuarially fair premium level) and 1 minus the regressive subsidy rate 

specified in current policies.   

For government programs, the direct payment rate PD is set at $0.52 per bushel. The base 

yield used to calculate a per acre payment is set at 90 percent of the expected yield. The loan rate 

(LR) for the LDP is $2.86 per bushel for soft white wheat in Whitman County and $2.91 per bushel 

in Grant County. The target price (PT) for CCP is $3.86 per bushel. These parameters are based on 

current US farm policies. 

 

V. Results 

We implement the stochastic dynamic optimization programming using GAUSS and 

numerically solve for the optimal hedge ratios and crop insurance coverage ratios for our 

representative farmers in two Washington State counties (Whitman and Grant). Results are shown 

in Table 3. Note that all the hedge ratios are negatively signed, which indicates hedging is in short 

position in all cases. 

As we can see, the specification of the GEU model gives us extra flexibility in the 
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parameterization of the objective function, with which we are able to explore the feasibility of the 

GEU model as well as to compare the results from GEU optimization with those from other widely 

used expected utility optimization models. The base scenario ( 13.0−=α , 0.89β =  and 

0.9493ρ = ) represents the farmer who is risk averse ( 1α < ) and prefers an early resolution of the 

risk to a late resolution (α ρ< ). The farmer discounts future consumption by a factor of 89% and 

is making a decision for the next five years based on all available information as of today.  

Other scenarios of interest in our study include the two special cases of the GEU base 

model, CES-EU optimization with 1α ρ= = −  and 0.89β = , and MR-EU optimization with 

1α ρ= =  and 0.89β = . The former refers to the case where the farmer is more risk averse and 

has smaller intertemporal substitution preference in consumption, while the latter refers to the case 

when he/she is risk neutral and has perfect intertemporal substitution preference. Besides the 

CES-EU and MR-EU, a multi-period additive EU (MA-EU) optimization is also included. The 

utility function in this case is the standard constant relative risk aversion utility function t
t

CU
α

α
=  

assuming 1α = − , which implied a relative risk aversion coefficient equal to 2. This utility function 

has been widely used in static single-period risk analyses (Mahul, 2003; Wang, Hanson, and Black, 

2003; Coble, Heifner, and Zuniga, 2000). It is also easy to extend the model from single-period to 

multi-period as in (7), but note that this multi-period version has a static nature. 

(7)                                                         i t i
t t

i

CMaxU E
α

β
α
+

  
=   

  
∑                    (MA-EU) 

Table 3 lists results of the Whitman County farmer’s optimal choice on risk management 

portfolios using the four different models. In general, we see that model specification is very 

important in modeling farmer’s risk management behavior and finding the optimal portfolios for 
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farmers’ intertemporal decision.  

For the optimal choice of crop insurance, the highest coverage of 85% is favored in all 

cases. This result is consistent with the model setting since the insurance is subsidized by the 

government and no premium loading is charged. The farmer purchases the highest available level 

so as to enjoy the most protection against yield risk and receives the highest subsidy. Also, the 

government commodity programs provide free price protection with a sizable expected income 

transfer.  The farmer will always participate, which reduces the need for futures hedging. 

From the hedge ratios, we can see the hedging levels are always below 32% due to the 

government program participation, but the pattern is different from the GEU base model relative to 

the other models, and the level of hedging is slightly higher in the GEU full optimization. With the 

flexibility to specify risk aversion, time preference, and intertemporal substitution separately, the 

GEU full model shows the farmer’s optimal hedge ratios should be increasing over the first four 

years, which is consistent with the increasing price volatility. The generally higher level of 

hedging implies he/she prefers to resolve the risk earlier rather than later. Although the farmer 

prefers an early resolution of risk, his/her relatively high intertemporal substitutability of 

consumption may balance the preference in a way that hedging would be kept at a slightly 

increasing rate to meet the increasing price volatility. In the fifth and final year, the farmer would 

reduce spending on hedging and accept more risk.  

In the CES-EU model when the farmer’s risk aversion and intertemporal substitution of 

consumption is integrated as one preference, the optimal hedge ratio is higher in the first year and 

then becomes lower in the second through the fifth years compared to the corresponding ratios in 

GEU full model. The CES-EU model displays a decreasing pattern over the five years. The higher 

level of hedging in the first year is consistent with the farmer’s higher risk aversion. The pattern 
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switches for the second year, however. Since the risk aversion and substitution preference are 

mixed together in this case, the effects of the two preferences are hard to differentiate in a 

cross-year setting. They may be competing against or reconciling with each other, which is not 

observable.   

The CES-EU results are comparable to the MA-EU results in that they both share the 

same risk aversion. Interestingly, these two models yield nearly the same optimal hedge ratios. We 

have further checked with other risk aversion values including 2α = −  and 0.5α = , and get 

similar results. The comparison gives the impression that these two models work very similarly in 

modeling the optimization behavior for the decision maker’s risk management. As the MA-EU 

model has a much simpler specification, it is probably easier to implement this model than the 

CES-EU in empirical work. 

As a very special case of the GEU model, the MR-EU model applies to a farmer who is 

risk neutral and has perfect intertemporal substitutability in consumption. Consistent with these 

risk preferences, the optimal hedging ratio is zero for each year, reinforcing that the decision 

maker does not care about risks and has no specific concerns regarding consumptions across years.  

Optimal choices for the representative farmer in Grant County are very similar to 

Whitman County. The farmer prefers slightly less hedging than the Whitman farmer but still buys 

the same coverage of crop insurance. Although the production is riskier in Grant County because 

yield is a bit more stochastic, there is no huge gap between the yield levels as shown in the 

historical data (Figure 1). Also we assume both farmers face the same prices, so both farmers face 

the same price risks. The hedge ratios are very close to those in Whitman County under the same 

preference set.  

In summary, the comparisons between the four models for Whitman County and Grant 



 18

County in Washington State show that the GEU model is feasible in giving reasonable results on 

optimal risk management portfolios. For a farm planning on multi-period management, GEU 

shows an optimal strategy that is more consistent with reality on hedging and crop insurance for 

the decision maker, who wants to maximize utility over the whole time span. The GEU model 

framework is also flexible enough to account for separate risk, time, and substitution preferences, 

and is able to incorporate other commonly used EU models that have either ignored intertemporal 

substitution preference or integrated such substitution with risk preference. 

 

VI. Summary and Conclusions 

In this study we attempt a generalized expected utility maximization framework to a risk 

management problem in agricultural production. A representative soft white wheat grower in 

Whitman County and Grant County, Washington, maximizes his/her utility by selecting an optimal 

portfolio of risk management tools including hedging in the futures market, purchasing crop 

insurance, and participating in government commodity programs. The GEU model allows the 

decision maker to clearly specify risk preference, time preference, and intertemporal substitution 

preference. It also incorporates the commonly used expected utility maximization models like 

MR-EU models as special cases. 

We solve the maximization problem numerically by stochastic dynamic programming 

based on simulated yield and price data for the next five years. In simulating the data, we apply a 

stochastic trend model which is able to capture stochastic properties within the long-run trend in 

addition to those from the disturbances. It is also general enough to include the deterministic time 

trend regression model as a special case. Stochastic trends are found in the historical Grant County 

yield, Portland cash price, and CBOT futures price.  
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We find optimal solutions for farmers in both Whitman and Grant County under not only 

the GEU model, but also its special cases; the CES-EU model and the MR-EU model. This step is 

easy to implement due to the flexibility of GEU in parameterization. A different type of static 

MA-EU model is also included as one of the four cases for comparison purposes. Results vary with 

model specifications more so than across locations. The GEU model is feasible in modeling 

farmers’ risk management decisions in both counties by giving more reasonable results, and the 

general specification form of GEU has advantages in incorporating more preference information 

about the decision maker.   

The commonly used MA-EU model gives almost the same results when the risk aversion 

is specified at the same level as in the CES-EU, indicating that these two types of models probably 

are interchangeable if applied to empirical optimization problems.  However, the results are 

different for the GEU model when the preferences parameters are set at different levels.  The 

results are completely different for the risk neutral and perfect substitution setting by the MR-GEU.  

The optimal choice of the crop insurance purchase is always 85% under all four models and in both 

counties, and the hedging ratios are around 30%. These levels are in line with the existing static 

one period studies. 

Although we have obtained favorable results concerning the feasibility and flexibility of 

the GEU model, further research on the GEU framework and its applicability in modeling and 

explaining dynamic agricultural risk management issues is still important and necessary. First, 

sensitivity analyses of the optimal solutions in response to the preference changes and to changes 

in risk management tools  may provide information on farmers’ preference dynamics and policy 

impact issues. Such sensitivity analyses will help us further explore the advantages of the GEU 

optimization model. Second, our results so far only focus on the two counties which are 
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geographically close to each other. It will be interesting to extend the research to other locations 

where there is more heterogeneity in farmers’ preferences and yield.  Third, other instruments such 

as revenue insurance products should be investigated to make additional contributions in policy 

analysis.   
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Figure 1. Historical Soft White Wheat Yields in Whitman and Grant (1972-2003)        
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Figure 2.  Historical Wheat Cash and Futures Prices (1973-2003) 
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Figure 3. Stochastic Trend Model Fitting for Grant Wheat Yield (1972-2003) 

Predicted vs. Actual 
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Figure 4. Stochastic Trend Model Fitting of Wheat Cash Prices 

Predicted Vs. Actual 1973 to 2003 
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Table 1.  Stochastic Trend Estimation of Yield and Price Distributions 

         (Normal distribution) 

 

Parameter 
 

Whitman Yield 
 

Grant Yield 
 

Cash Price 

 

Futures Price 

 

0µ  
 

27.29**(3.63) 
 

44.22**(6.29) 
 

515.06**(72.91) 

 

463.89**(70.12) 

0β  0.73 (1.00) 0.94 (1.16) -3.92 (11.64) -3.40 (12.67) 

εσ  7.13**(0.63) 6.92**(1.46) 27.06 (33.23) 0.01 (0.46) 

ησ  0.00 (0.15) 3.10*(2.04) 62.24**(25.56) 68.90**(8.75) 

ςσ  0.00 (0.03) 0.00 (0.25) 0.00 (0.37) 0.00 (0.36) 

 

Note: 1. Standard errors of the estimates are included in the parentheses. 

2. “*” denotes the estimate is statistically significant at 0.10 level, and “**” denotes the 

significance at 0.05 level. 
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Table 2. Descriptive Statistics of the Simulation 

 

Statistics 

 

2004 
 

2005 
 

2006 

 

2007 

 

2008 

 

2004 
 

2005 
 

2006 

 

2007 

 

2008 

 
 

Whitman Simulated Yield (bushel/acre) 

 

Grant Simulated Yield (bushel/acre) 

Mean 75.28 75.93 76.77 77.36 78.24 75.19 76.27 76.30 77.34 78.02 

Std Dev. 7.26 7.22 7.28 7.06 7.23 7.49 8.15 8.36 9.46 9.65 

Skewness -0.01 -0.03 0.02 0.07 -0.04 -0.08 -0.02 0.03 -0.05 0.02 

Kurtosis 0.24 0.14 -0.03 0.07 -0.005 0.08 0.26 -0.09 0.16 -0.4 

 

 

 

Portland Cash Price (cents/bushel) 
 

CBOT Futures Price (cents/bushel) 

 

Mean 
 

392.68 
 

386.16 
 

382.32 
 

379.39 
 

376.59 
 

356.02 
 

350.67 
 

349.39 
 

345.95 
 

343.92 

Std Dev. 66.42 91.02 106.55 121.22 133.68 68.18 95.80 114.89 128.62 143.83 

Skewness 0.02 0.02 0.06 0.10 0.06 -0.04 0.02 0.10 0.07 0.05 

Kurtosis -0.05 0.06 -0.06 0.20 -0.12 0.03 0.01 -0.20 -0.26 -0.31 
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Table 3. Optimal Risk Management Portfolio  

 

 
Alternative Model  Hedge Ratio 

  

Crop Ins. 
Cov. Ratio 

Specifications 
 

X0 
 

X1 
 

X2 
 

X3 
 

X4  
 

Z0-Z4 

Whitman County        

 

GEU full 
(α= -0.13, β = 0.89, ρ = 0.9493) 
 

0.25 0.31 0.32 0.32 0.26  0.85 

CES-EU 
(α = ρ = -1, β = 0.89) 
 

0.29 0.27 0.25 0.25 0.22  0.85 

MR-EU 
(α = ρ = 1, β = 0.89) 
 

0 0 0 0 0  0.85 

MA-EU 
(α = -1, U(C) = -1/C, β = 0.89) 
 

0.29 0.27 0.25 0.25 0.22  0.85 

Grant County        

 

GEU full 
(α= -0.13, β = 0.89, ρ = 0.9493) 
 

0.25 0.30 0.31 0.31 0.23  0.85 

CES-EU 
(α = ρ = -1, β = 0.89) 
 

0.29 0.26 0.24 0.23 0.20  0.85 

MR-EU 
(α = ρ = 1, β = 0.89) 
 

0 0 0 0 0  0.85 

MA-EU 
(α = -1, U(C) = -1/C, β = 0.89) 
 

0.29 0.26 0.24 0.23 0.20  0.85 

 


