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Abstract 

A stated choice model is used to estimate wetland mitigation preferences.  In a split sample mail survey,

a main effects design is compared to a randomized design.  Although randomized designs estimate main

effects less efficiently, several policy relevant interactions were found to be significant, suggesting some

merits of randomized designs.
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Introduction

Stated choice methods aimed at valuing the attributes of non-market goods, rather than the goods and

services themselves, are increasingly popular among valuation researchers.  Stated choice techniques

(sometimes referred to as choice experiments or conjoint) can be thought of as an extension of the

contingent valuation method for nonmarket goods.  Both approaches ask respondents to state a preference

over alternatives.  Stated choice models are also widely used in marketing applications to estimate

preferences over products with attributes that are not currently available and researchable through market

data (Carson et al, 1994). 

In stated choice studies, respondents are typically presented with descriptions of two or more

recreation sites, environmental goods, or environmental programs and asked to indicate which of the

alternatives they prefer.  By varying the attributes of the alternatives, econometric methods can be used to

estimate respondents´ preferences for the attributes.  Typically, this is done by estimating a logit or probit

model within the framework of a random utility model.  This paper uses a study of wetland restoration to

address the question of how to define attribute levels and combine the attributes that make up the

alternatives that enter a stated choice study.  

Experimental Designs

In implementing a stated choice study, one of the fundamental decisions a researcher faces is how

to arrange the attributes of the goods to be presented to respondent?  This is essentially a question of what

experimental design to use.  The experimental design is the set of attribute levels, how these are then

bundled into alternative goods or programs, and how the alternatives are combined into the choice set
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presented to a respondent.   To fix concepts, refer to Table 1 which depicts a stylized binary choice

question.  The two alternatives, A and B, are made up of the attributes and are combinations of the

available attribute levels.  The columns represent the alternatives, and the rows represent attributes.  For

each attribute, there is a set of attribute levels that are pre-defined by the researchers.  The matrix of the

pairs of alternatives across all the respondents in referred to as the experimental design.  

A typical stated choice study will select the attributes to be valued, and then select the levels of

attributes that will be used in the study.  While alternatives can then be formed by taking the full factorial

combination of each of the levels, this often results in a very large number of alternatives.  To reduce the

number of alternatives, some researchers rely on fractional factorial designs such as a main-effects plan.

An main-effects plan, wherein each of the attributes are combined into alternatives such that the attributes

are orthogonal, permits the estimation of the independent effect of each attribute.  While such designs are

reasonably efficient, they do not permit the estimation of higher order effects such an interactions among

variables (Lazari and Anderson, 1994).  Estimation of interaction effects requires more complex designs

that increase in size.  Potential interaction effects might be very important for a policy analysis.  In addition,

if a researcher is interested in examining non-linear effects for a single variable (attribute) in the utility

function, then one must include multiple levels for that variable.  While feasible in a main-effects design plan,

this too, increases the size of the resulting design plan.  The research reported here uses a split-sample

survey to assess two alternative experimental designs:  1) a typical main-effects design, and 2) a fully

randomized design that permits nonlinear marginal utility and interaction effects.  

To generate the fixed design plan, we treat the attribute vectors for alternative A and for alternative

B as separate design variables (this approach is discussed by numerous choice modelers including on page
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133 of Louviere, Hensher and Swait 2000).  In essence, this design approach draws a main-effects plan

on the vector of attributes, X=XA |XB, defined by “stacking” the vectors for each alternative – see Figure

1.  For the other sub-sample of individuals, the stated choice questions consisted of independent random

draws from a joint uniform distribution over the integer values spanning the range of attribute levels used

in the fixed design.  Each draw resulted in a distinct set of attribute levels so that each of the choice

scenarios in this sub-sample was unique.  

Binary Choice Models: Logit or Probit

Stated choice models and the theory underlying them is well developed in the literature.  We briefly

review it here.  In a typical specification of a random utility model, utility is a function of the attribute values

that make up an alternative, and the utility function is assumed to have random errors.  When the underlying

errors have an extreme value distribution, the probability of a respondent choosing alternative A among the

alternatives A and B in choice scenario j is given by:

The vector of attributes, q, enter the utility function linearly and thus: 
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where  represents the difference in the level of site attribute m between the two alternatives A(x A
mj&x B

mj)

and B in choice scenario j.  Similarly, had the underlying errors been normally distributed we would define

the binary choice model using a probit model as a function of D.  

That the above parameter vector is estimated on the difference of the attribute vectors for the two

alternatives is one of the key features distinguishing designs for binary choice models from designs for the

typical linear  models with continuous dependent variables.  The distinction is worth noting because most

of the available design plans are actually derived based on the assumption that good designs for standard

linear models are also good designs for binary choice models (Kuhfeld).   A main-effects design for the logit

model, i.e., a design that sought to minimize the number of distinct scenario combinations for identifying the

main effects in (1), would need to be based on these attribute differences (Kaninnen).  Alternatively, the

commonly used main-effect plans we examine for the “stacked” design based on X=XA |XB are constructed

for identifying the main-effects of X in a simple linear model, but in the context of a logit defined on the

difference XA -XB, such designs are actually somewhat redundant in terms of minimally identifying the main

effects of (1).

Data

We estimated the effects of using alternative design plans within a study of preferences over wetland

mitigation projects.  In our mail survey, we elicited a choice between an impaired and a restored wetland

that were described by attributes which include wetland acreage and wetland habitat quality for various

species of flora and fauna.  The choice question asked people if a restrored wetland offset the loss of the

impaired wetland, and the choice questions and context are the same as presented in Lupi et al. (2002).
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In the survey, each respondent was given five wetland choice questions.  Our stated choice survey was

implemented via the mail and received a 46% response rate (despite being conducted during the anthrax

attack of late 2001).  The survey was sent to a statified random sample of Michigan residents drawn from

the state drivers license data base.  The stratification ensured that the geographic distribution across

counties for the sample matched that of the state population.  Our focus here is on the analysis of the split

sample test of the two experimental designs.  One subset of individuals was sent a survey booklet with the

stated choice questions based on a main-effects design plan for X, while the other subset was sent an

individually produced survey booklet with distinct alternatives constructed of random attribute levels. 

The variables used in the wetland mitigation choices are presented in Table 2.  The variables took

between three and five levels each.  As a result, our fixed design involves selecting a main-effects

orthogonal plan from the full factorial for the “stacked” X with 4^2 by 3^12 possibilities.  The full factorial

design for this set of attributes and levels contains over eight million alternatives.  Using Addelman’s classic

set of design plans, the resulting main-effects plan contains 64 distinct choice scenarios.  The resulting data

from the fixed-design sub-sample contains 1,463 binary choices over alternative wetland mitigation

projects.   

The other sub-sample of individuals was sent a survey booklet in which the stated choice questions

consisted of independent random draws from a joint uniform distribution over the integer values spanning

the range of attribute levels used in the fixed design.  Each draw resulted in a distinct set of attribute levels

so that each of the choice scenarios in this sub-sample was unique.  The surveys for this group were

custom-produced on a color laser printer by creating a spreadsheet with thousands of draws from the

uniform distribution over the joint parameter values, and using the spreadsheet in a merge file to individually
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create each distinct randomized booklet.  The data resulting from this fully randomized design contains

1,146 binary choices over alternative wetland mitigation projects.  

Estimation Results

For the basic main-effects specification of preferences, Table 3 presents the estimated wetland

mitigation preference parameters from a random effects probit on the pooled dataset.  The negative

parameter on the constant indicates that all else equal, people tend not to find that the restored wetland

offsets the loss.  However, the positive parameter on the acres variable indicates that if the restored wetland

was larger people were more likely to choose the restored wetland.  The wetland “type” variables did not

have a significant effect on mitigation choices.  Gaining public access and trails at the restored wetland made

people more likely to favor it, although the effect for trails is not significant at the 5% level.  The “Low_1”

to “Low_4” variables represent the low habitat quality for the habitat attributes listed in Table 2 while the

“Hi” variables represent the excellent habitat quality for these same attributes.  If a restored wetland

lowered habitat quality people were less likely to find it acceptable.  Conversely, if a restored wetland

increased habitat quality, people were more likely to find it acceptable.  Put differently, people require an

additional acreage premium to compensate them for any declines in habitat quality.  The above results are

consistent with previous findings from a pilot survey (Lupi et al, 2002).  The rho parameter indicates a

significant correlation across choices made by an individual.  

Interestingly, the habitat variables seem to exhibit a form of non-linearity in their effects.  That is,

for all of the habitat attributes, the effect of moving from the low habitat quality to the medium quality is

about double the benefit of moving from the medium level to the high level.  These effects are graphed by
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the bold lines in Figure 2.  However, we must note that the habitat quality variables are not based on an

underlying cardinal scale.  That is, there is no reason to assume that respondents perceive the distance

between the low and medium levels to be the same as the distance between the medium and high levels.

For example, in the horizontal axis of Figure 2, when considering the scale from“poor” to “excellent,”

individuals may simply place “good” closer to “excellent” than to “poor.”  This effect is plotted in Figure

2 and illustrates the difficulty of discerning non-linear effects when dealing with qualitative discrete variables.

Design Performance for Estimating Main Effects  

The effectiveness of the two designs for estimating the main-effects was compared.  To assess

design efficiency, one usually takes some function of estimated covariance matrix to measure the

performance of a design.  For example, D-optimal designs minimize the determinant of the Fisher

information matrix (i.e., the inverse of the covariance matrix evaluated at the estimated parameters).  Here,

we follow this approach and compare the designs using the ratio of the determinant of the information

matrix, I, evaluated using , for each of the two design matrices.  The ratio of the measures is, ß̂

where X represents the design matrix for the design being evaluated (the main-effects plan, M, or the

randomized plan, R).  Both matrices must be evaluated at a parameter vector so the estimated parameter

vector was selected as this is our best estimate of the true parameters.  The resulting ratio equals 0.79

suggesting that the efficiency loss of using the randomized design plan to estimate the main effects is not

pronounced.  
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Interaction Effects

The randomized design provides an opportunity to investigate the importance of interaction effects.

For our application, there are 62 possible interactions in this model.  When all of these interactions were

run at once, none of the interactions were significant by themselves.  A variety of models were then run to

see if subsets of the variables mattered.  Across all model runs, we observed that the main effect

parameters are robust to interactions, both in term of sign, magnitude, and significance levels.  Moreover,

only four of the interaction effects were found to be significant at p<0.1 across a variety of models.  Of

these, two involve an interaction between “type” and “habitat.” Since wetland “type” was not a significant

variable by itself, these could be policy relevant interactions.  Of course, without the more general designs,

one could not test for such interactions.

Discussion

How practical is it to implement a fully randomized design?  The answer depends on the mode for

collecting the survey data.  For internet surveys, which are increasingly popular, the added complexity and

cost of the fully randomized design is trivial.  The same is true for face-to-face interviews conducted using

computer assisted interviewing software.  Randomized designs are even feasible with simple paper

instruments (An et al., 2002).  Although we´ve shown it is feasible in the context of a mail survey, we judge

the difficulty of using the randomized design to be the highest when a survey is implemented via the mail.

The reason for this is that the randomized design requires individualized survey instruments for each person

in the survey.  We accomplished this task by using the merge feature of our wordprocessor, and then
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printing batches of the surveys on a high speed laser-printer.  None the less, this approach is labor and time

intensive, and can cost more than standard photocopying.  We experienced paper and cartridge costs in

the range of 10 cents a page.  Our survey included several pictures of wetlands, and image quality from the

laser printer was superior to standard photocopies.  Factoring in the labor, the resulting production costs

for the randomized design are somewhat higher than the costs of a high quality print-job for the 64 versions

of the main-effects design.   

In our results, as expected, the randomized design was strictly less efficient than the main effects

plan for estimating a model with only main effects. However, our results also found a few significant

interaction effects among the habitat quality variables.  These interaction effects cannot be identified in the

main-effects plan.  Thus, while less efficient, the randomized designs might be preferred due to their to

ability to detect such interaction effects – effects which would be difficult to guess at a priori.  Moreover,

the fully randomized design approach is particularly tractable and extremely simple to implement for internet

and computer-based collection of stated choice data.
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Table 1:  Stylized Binary Stated Choice Question

Alternative A Alternative B

Attribute X1   X A
1 X B

1

Attribute X2 X A
2 X B

2

! !

Attribute XK X A
K X B

K

Which is Best? T
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Table 2:  Wetland Attributes and Levels

Variable Levels #

Baseline acres 5, 7, 9, 12, 15 5

Restored acres (multiple of baseline) 0.8, 1, 1¼, 1½, 2 5

Public assess/trails No, yes, yes with trails 3

Habitat: Frogs/turtles poor, good, excellent 3

Habitat: Song birds poor, good, excellent 3

Habitat: Wading birds poor, good, excellent 3

Habitat: Wild flowers poor, good, excellent 3
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Table 3: Estimated Wetland Mitigation Preference Parameters from Random
Effects Probit

Variable Parameter p-value

Constant -0.199 0.0009

Acres 0.056 0.0000

Marsh -0.059 0.3240

Wooded -0.058 0.3277

Public 0.262 0.0000

Trails 0.096 0.0882

Low_1 -0.349 0.0000

Low_2 -0.327 0.0000

Low_3 -0.365 0.0000

Low_4 -0.190 0.0008

Hi_1 0.151 0.0112

Hi_2 -0.177 0.0025

Hi_3 0.180 0.0031

Hi_4 0.088 0.1129

Rho 0.475 0.0000

N = 532; Choices = 2,609; 

Overall, 61% predicted correctly; 59% “yes” predicted correctly; 65% “no” predicted correctly. 
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Figure 1: Illustration of What is Meant by “Stacking” the X’s and Then Drawing a Main

Effects Plan for X = XA * XB
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Figure 2:  Non-Linear Habitat Variables


