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Economics of Managing Invasive Pest Species: Exclusion and Control 

C.S. Kim and Jan Lewandrowski 

There has been a surge of interest in improving our understanding of - and our responses 

to - the economic threats invasive pest species pose to our food and fiber production systems.1 

Much of this interest has been driven by the recent outbreak of foot-and-mouth disease in the 

United Kingdom and the desire to avoid the economic costs that a similar type of outbreak could 

inflict on U.S. livestock producers and taxpayers.2 A second motivation has been the sharp 

increase in spending by USDA’s Animal and Plant Health Inspection Service (APHIS) on 

emergency programs to eradicate outbreaks of new invasive pests – particularly Karnal bunt, 

citrus canker, plum pox, and avian influenza. Between 1991 and 1995 expenditures on APHIS’s 

emergency programs averaged about $10.4 million per year. Between 1999 and 2001, these 

expenditures averaged over $232 million per year. 

Invasive pests can be grouped into those that are already present in the U.S. and those 

that have yet to arrive. 3 An important policy problem then is deciding how to allocate limited 

invasive species management resources between activities aimed at preventing the arrival of new 

pests (including additional arrivals of existing pests) and activities aimed at eliminating or 

reducing the damages done by species that are already here. In this paper we present a dynamic 

model for managing a generic invasive pest with an uncertain arrival date. We use the model to 

derive economic properties of the optimal allocation of resources between exclusionary and 

control measures. Our framework builds on studies by Shogren and by Kaiser and Roumasset.  

                                                 
1 By “invasive pest species” we mean non-native species that pose an actual, or a potential, economic threat to some 
set of crop and livestock producers.  
2 In 1999 and 2000, U.K. slaughtered over 4 million FMD infected cattle, sheep, and pigs. Another 2 million animals 
were slaughtered to reduce the economic burden on farmers related to restrictions on moving livestock off farms.  
3 By “arrive” we mean, known to exist in either natural or agricultural ecosystems. Arrival can occur through natural 
or human assisted migration, escape, or intentional introduction. Species that have “arrived” may or may not be 
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Shogren presents a bioeconomic model for analyzing the risks invasive species pose to 

the economy and the environment.4 The problem of managing invasive species, however, 

combines exclusionary activities before establishment and control activities after establishment, 

as ex-ante measures. Shogren’s model, however, cannot distinguish actions taken before and 

after establishment as distinct economic problems. Kaiser and Roumasset extend Shogren’s 

framework by integrating exclusion and control measures in a potentially cyclical optimal 

control model for a comprehensive strategy to minimize the social costs associated with invasive 

species.  These authors, however, assume that additional arrivals of a pest after establishment do 

not affect the total pest population or the magnitude of pest related damages. 

Our framework distinguishes between pre- and post-arrival exclusion activities and 

between post-arrival exclusion and control activities. That is, exclusionary measures – such as 

trade restrictions, border inspections, and pest eradication programs in foreign countries – occur 

before and after arrival but are distinct resource allocation decisions. Control measures on the 

other hand – such as, restrictions on domestic movement of commodities, seizure and destruction 

of infested or infected commodities, and biological control measures – are only applicable after 

arrival. We assume that arrival occurs stochastically but the likelihood of arrival can be reduced 

by the implementation of exclusion activities. Hence, uncertainty enters our framework with 

respect to the timing of species arrival. Finally, we assume that both the species’ population 

growth rate and the rate of additional – or subsequent - arrivals are known. We use the model to 

look at the allocation of a budget to control an invasive pest between exclusion and control 

                                                                                                                                                             
considered “established” – meaning having attained a self-sustaining population. For policy purposes, arrival and/or 
establishment may coincide with when we first become aware that a species poses a serious economic threat. 
4The models developed by Shogren and by Kaiser and Roumasset consider pre- and post- establishment 
periods (see footnote 3). While suitable for many invasive pests, this delineation of time is needlessly 
vague with respect to species that are considered so dangerous that control measures are implemented 
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measures. More explicitly, we look at the budget allocation for exclusion measures in the periods 

before and after arrival, and, the budget allocation between control measures and exclusion 

measures in the period after arrival.   

Before developing our model, we note that assuming known rates for population growth  

(denote this rate as g) and subsequent arrivals (denote this rate as k) imposes nothing in the way 

of restrictions on our model. Specifically, one can think of g and k fixed for given levels of 

relevant biological, environmental, and economic conditions. When one or more of these 

variables change, then so too may g and/or k. In fact, knowing how g and k are affected by 

economic, biological, and environmental factors significantly extends the applicability of our 

model.   

 
The Model 

 Let F(t) be the probability that arrival of an invasive species has occurred by time t with 

F(t=0) = 0.  The conditional probability of arrival at time t, h(t), which is often called the hazard 

rate, is the probability that arrival will occur during the next ∆t time unit, given that arrival has 

not occurred at time t.  Following Kamien and Schwartz, we incorporate a hazard function into 

an optimal control framework. Our hazard function is given by:  

(1) h(t,Q|Z,x) = [∂F(t)/∂t] / [1 – F(t)],  h(0,Q|Z,x) = 0,   ∂h(t,Q|Z,x)/∂Q < 0,  

                                               ∂2h(t,Q|Z,x)/ ∂Q2 >=< 0, 

where: ∂F(t)/∂t = f(t) is the probability density function, Q represents all exclusion 

measures, Z is the stock of invasive species, ∂h(t,Q|Z,x)/∂Z > 0, and x represents all other 

variables.  

                                                                                                                                                             
immediately upon discovery – and hopefully before establishment. Examples include medfly, screw 
worm, citrus canker, plum pox and foot and mouth disease.  
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 Before arrival, exclusion measures aim to keep our representative pest species out – that 

is to reduce the hazard rate shown in equation 1. After arrival, exclusion measures aim to reduce 

or eliminate the incidence of subsequent arrivals. Following Huffaker and Cooper, and Vargas 

and Ramadan, the change in the pest population, after arrival is given by:  

(2) [∂Z(t)/∂t] = g(S)[1+ k(Q)]Z,                 (∂g/∂S) < 0;      (∂k/∂Q) < 0, 

where: Z is the pest population, S is control effort, and g and k are as defined above. 

 The economic objective is to minimize the present value of the expected social costs 

associated with exclusion and control measures. The dynamic optimization problem is stated as:  

(3) Max L = - ∫
∞

−
0

)exp( rt [(1-F(t)) C1(Q) + F(t) (C2(Q,S) + D(Z))]δt, 

subject to equations (1) and (2),   

where: C represents the costs associated with exclusion and/or control measures, 

subscripts 1 and 2 represent, respectively, before and after arrival, and D is the damage 

function.  

 The Hamiltonian equation is given by: 

(4) H= - e-rt[(1-F(t))C1(Q)+F(t)(C2(Q,S)+D(Z))]+λ1h(t,Q|Z,x)[1–F(t)]+ λ2 g(S)[1+k(Q)]Z, 

where: Q and S are control variables, F and Z are state variables, and λ1 and λ2 are costate 

variables.   

The necessary conditions for optimality are: 

(5) ∂H/∂Q = - e-rt [(1-F) (∂C1/∂Q) + F (∂C2/∂Q)] + λ1(1–F(t))(∂h/∂Q) 

+ λ2 g(S)Z(∂k/∂Q) = 0, 

(6) ∂H/∂S = - e-rt F(∂C2/∂S) + λ2(1+k)Z(∂g/∂S) = 0, 

(7) (∂λ1/∂t) = hλ1 - e-rt [C1 - C2 - D(Z)], 
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(8) (∂λ2/∂t) = e-rt F(∂D/∂Z) - g(1+k)λ2,   

(9) (∂H/∂λ1) = h[1–F(t)] = ∂F/∂t, 

(10) (∂H/∂λ2) = g(1 + k)Z = ∂Z/∂t, 

(11) lim λ1F(t) = 0 and  lim λ2Z(t) = 0. 
                  t→ ∞                                     t→ ∞ 

 
 To derive economic properties of the optimal solutions, the first-order differential 

equations in (7), (8) and (9) are solved and presented as follows: 

(12) λ1 =  e--rt (C1 - C2 - D(Z)) / (r+h),  

(13) λ2 = - e-rt F(t)(∂D/∂Z) / [r- g(1+k)],  

(14) F(t) = 1 – exp(-h(t,Q|Z,x))t, 

where: a constant associated with the derivation of equation (13) is assumed to be zero.   

Inserting equations 12 and 13 into equation 5, and equation 13 into equation 6 results in, 

respectively, the following: 

 (15) [(1-F) (∂C1/∂Q) + F (∂C2/∂Q)] = (1-F(t))[(C1 - C2 - D(Z))(∂h/∂Q)] / (r+h) 

- F(t)[(∂D/∂Z)gZ(∂k/∂Q) / (r-g(1+k))]. 

(16) (∂C2/∂S) = - Z(1+k)(∂g/∂S))/(r- g(1+k)). 

Equations 15 and 16 have straightforward economic interpretations. Equation 15 states 

that the expected marginal costs of exclusion measures before and after the first arrival of an 

invasive species must equal the expected marginal economic benefits resulting from the 

reductions of the hazard rate and the rate of additional subsequent arrivals.  Equation 16 states 

that the marginal costs of control measures must equal the marginal benefits resulting from the 

reduction of the species’ population growth rate.  
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Optimal Budget Allocation: Exclusion vs. Control 

 To develop criteria for evaluating economically efficient budget allocations for 

exclusionary measures in the pre- and post-arrival periods, we insert equation 14 into  

equation 3 (the objective function) and integrate. The resulting function is represented by:  

 
(17) L = [(C1 - C2 - D(Z)) / (r+h)] + [(C2 + D(Z)) / r].   

The first term of the right-hand side of equation (17) represents the transient costs 

capitalized at the sum of the rate of time preference (r) and the hazard rate (h). The second term 

represents costs of both exclusion and control activities capitalized at the rate of time preference 

for the period after arrival. Equation 17 says that expenditures for invasive species management 

– that is for exclusion measures - are discounted at a higher rate before arrival (i.e., r+h) than for 

both exclusion and control measures after arrival (i.e., r). To investigate whether this has any 

implications for the allocation of invasive pest management resources, we return to equation 15 

and separate it into two parts reflecting the periods before and after arrival and differentiate each 

part with respect to exclusion effort (i.e., Q). We get:  

(18) (∂C1/∂Q) = (C1 - C2 - D(Z))(∂h/∂Q) / (r+h)            for     0 ≤ t < T,            

(19) (∂C2/∂Q) = - Z(∂D/∂Z)g(∂k/∂Q) / (r-g(1+k))         for T ≤ t < ∞, 

where: T is the time of species initial arrival.   

Equation 18 states that before arrival, the marginal costs of exclusion measures are 

capitalized at the sum of the rate of time preference and the hazard rates for the pre-arrival 

period. Equation 19 states that after arrival, the marginal costs of exclusion measures are 

capitalized at the rate of time preference, adjusted by the rate of population growth and the rate 

of additional subsequent arrivals (equation 19)). Hence, from the standpoint of minimizing the 

total cost of managing this invasive pest, resources for exclusion activities should put more 
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emphasis on pushing the arrival date further into the future than on preventing additional arrivals 

once it is already here. For the post-arrival period, however, the optimal allocation of 

expenditures between exclusion and control measures depends on the relative magnitudes of the 

marginal impact of control measures on the species population growth rate (equation 16) and the 

marginal impact of exclusion measures on the rate of new arrivals (equation19). 

 
Comparative Dynamic and Static Analyses 

 This section conducts a comparative dynamic analysis of λ1 and λ2   and a comparative 

static analysis on T with respect to changes in three variables with important implications for the 

design of economically efficient invasive pest policies – specifically g, k, and Z.  

Mathematically, the costate variable λ1 measures the marginal contribution of the state variable 

F(t) to objective function.  Similarly, the costate variable λ2 represents the marginal contribution 

of the state variable Z(t) to the objective function. From an economic perspective then, these are 

the shadow costs of, respectively, an increase in the probability of arrival and an increase in the 

stock of a species that has already arrived. Assuming that arrival of the invasive pest occurs at 

time t=T, total differentiation of equations 2, 5, and 6 are represented by: 

 
 
 
(20)          (1-F)(∂h/∂Q)           gZ(∂k/∂Q)          re-rT[(1-F)(∂C1/∂Q)+F(∂C2/∂Q)]            δλ1 
 
 
                              0                  Z(1+k)(∂g/∂S)          re-rT F(∂C2/∂S)                                    δλ2 
 
       
                   0                             0                      (∂Z/∂T)                                              δT 

 

 



 8

 

             

                 - λ2Z (∂k/∂Q)                  0                    - λ2g (∂k/∂Q)                 δg                                               

       =                0                  - λ2Z (∂g/∂S)            - λ2(1+k)(∂g/∂S)            δk                                 

                              - (∂Z/∂g)                   - (∂Z/∂k)                          1                      δZ 

 

Equation (20) can be rewritten more compactly as follow: 

     δλ1          A11     A12     A13         δg        

(20)   δλ2     = M-1   A21     A22      A23        δk 

  δT               A31     A32     A33         δZ  , 

 
where,  M = Z(1+k)(1-F)(∂Z/∂T)(∂g/∂S)(∂h/∂Q) < 0, 

A11 = -λ2Z2(1+k)(∂g/∂S)(∂k/∂Q)(∂Z/∂T) - re-rTFgZ(∂Z/∂g)(∂C2/∂S)(∂k/∂Q) 

+ re-rTZ(1+k)(∂Z/∂g)(∂g/∂S)[(1-F)(∂C1/∂Q)+F(∂C2/∂Q)], 

A21 = re-rT F(1-F)(∂Z/∂g)(∂C2/∂S)(∂h/∂Q), 

A31 = -Z (1-F)(1+k)(∂Z/∂g)(∂g/∂S)(∂h/∂Q), 

A12 =  λ2Z2g(∂g/∂S)(∂k/∂Q)(∂Z/∂T) - re-rTFgZ(∂Z/∂k)(∂C2/∂S)(∂k/∂Q) 

+re-rTZ(1+k)(∂Z/∂k)(∂g/∂S)[(1-F)(∂C1/∂Q)+F(∂C2/∂Q)], 

A22 = -λ2Z(1-F)(∂g/∂S)(∂Z/∂T)(∂h/∂Q) + re-rTF(1-F)(∂Z/∂k)(∂h/∂Q)(∂C2/∂S) 

        =  e-rTF(1-F)(∂h/∂Q){r(∂C2/∂S)(∂Z/∂k) + Z(∂D/∂Z)(∂Z/∂T)(∂g/∂S) / [r-g(1+k)]},         

A32 = -Z (1-F)(1+k)(∂Z/∂k)(∂g/∂S) (∂h/∂Q), 
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A13 = re-rT FgZ(∂k/∂Q)(∂C2/∂S) - re-rT Z(1+k)(∂g/∂S)[(1-F)(∂C1/∂Q)+F(∂C2/∂Q)],  

A23 = - λ2
 (1+k)(1-F)(∂Z/∂T)(∂g/∂S)(∂h/∂Q) - re-rTF(1-F)(∂ h/∂Q)(∂C2/∂S), 

        =  e-rTF(1-F)(∂h/∂Q){(∂D/∂Z)(∂g/∂S)[(1+k)(∂Z/∂T) / (r-g(1+k)) – rZ]},    

A33 = Z (1+k)(1-F)(∂g/∂S)(∂h/∂Q). 

 The comparative dynamic and comparative static results that follow from equation 20 are 

listed below. Each has an unambiguous sign except for λ1.  

(21)   ∂T/∂Z = (1/M)Z (1-F)(1+k)(∂g/∂S)(∂h/∂Q) < 0, 

(22) ∂T/∂g = (1/M){-Z (1-F)(1+k)(∂Z/∂g)(∂g/∂S)(∂h/∂Q)} > 0, 

(23)     ∂T/∂k = (1/M){-Z (1-F)(1+k)(∂Z/∂k)(∂g/∂S) (∂h/∂Q)} > 0, 

(24) ∂λ2/∂g = (1/M)re-rT F(1-F)(∂Z/∂g)(∂C2/∂S)(∂h/∂Q) > 0, 

(25) ∂λ2/∂k= (1/M)e-rTF(1-F)(∂h/∂Q){r(∂C2/∂S)(∂Z/∂k)  

+ Z(∂D/∂Z)(∂Z/∂T)(∂g/∂S) / [r-g(1+k)]} > 0, 

(26) ∂λ2 /∂Z= (1/M)e-rTF(1-F)(∂h/∂Q){(∂D/∂Z)(∂g/∂S)[(1+k)(∂Z/∂T) / (r-g(1+k)) – rZ]} > 0,   

(27) ∂λ1/∂g= (1/M){-λ2Z2(1+k)(∂g/∂S)(∂k/∂Q)(∂Z/∂T) - re-rTFgZ(∂Z/∂g)(∂C2/∂S)(∂k/∂Q) 

+ re-rTZ(1+k)(∂Z/∂g)(∂g/∂S)[(1-F)(∂C1/∂Q)+F(∂C2/∂Q)]} >=< 0, 

(28) ∂λ1/∂k = (1/M){λ2Z2g(∂g/∂S)(∂k/∂Q)(∂Z/∂T) - re-rTFgZ(∂Z/∂k)(∂C2/∂S)(∂k/∂Q) 

+ re-rTZ(1+k)(∂Z/∂k)(∂g/∂S)[(1-F)(∂C1/∂Q)+F(∂C2/∂Q)]} >=< 0, 

(29) ∂λ1 /∂Z = (1/M){re-rT FgZ(∂k/∂Q)(∂C2/∂S)  

- re-rT Z(1+k)(∂g/∂S)[(1-F)(∂C1/∂Q)+F(∂C2/∂Q)]}>=< 0.  
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 Equation (21) states that arrival time T moves closer to the present as the stock of an 

invasive pest species increases. This result follows from our population growth function 

(equation 2) but also makes sense biologically. That is, the probability of a pest arriving in our 

environment – and for that matter ultimately reaching a self-sustaining population - increases as 

the number individuals in the initial migration, escape, or introduction increases. Extending the 

logic to policy responses to invasive pests suggests relatively drastic measures may be justified 

when isolated occurrences of pests known particularly damaging are found but are not yet 

numerous enough to be considered established (e.g., screwworm or the prion that causes mad 

cow disease). Equations 22 and 23 state that the arrival date can be pushed further into the future 

by increasing measures that reduce either the population growth rate or the rate of new arrivals. 

Using these relationships along with knowledge of how economic activities, biological factors, 

environmental conditions affect g and k for different species can suggest where to focus 

exclusion and control resources. 

 Equations 24, 25, and 26 describe how the shadow cost of an increase in the stock  - or 

population- of species that are already here changes with changes in, respectively, population 

growth rate, the rate of new arrivals, and the existing stock of the invasive pest. In each case, the 

shadow cost associated with an increase in the population rises with an increase in the variable in 

question (i.e., g, k, or Z).  Again, using these relationships along with knowledge of how 

economic activities, biological factors, environmental conditions affect g, k, and Z for different 

species can suggest how to allocate exclusion and control resources. 

Equations 27, 28, and 29 describe how the shadow cost of an increase in the probability 

of arrival in the next time period changes with changes in, respectively, population growth rate, 

the rate of subsequent arrivals, and the initial stock of the invasive pest.  The signs of these 
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expressions are all inconclusive, meaning it is not possible to generalize about how this shadow 

cost will move in response to changes in g, k, and Z.  These could well be anticipated. The 

costate variable λ1 measures the marginal contribution of the state variable F(t), which covers the 

period before arrival, while the characteristics of invasive species cover the period after arrival.   

 
Conclusions 

 
 In this paper we have developed a conceptual model for managing resources allocated to 

the exclusion and control of invasive pest species. We assume that exclusion measures occur 

through time while control measures are only implemented after a species has been found in the 

environment. Hence, exclusionary measures before and after arrival are distinct economic 

decisions, as are exclusion and control measures after arrival.   

We assume that arrival occurs stochastically but the probability of arrival is reduced by 

implementing exclusion activities. For any given application, we assume that both the species’ 

population growth rate and the rate of subsequent arrivals are known. Using comparative 

dynamic analysis we show how knowledge of these rates, as well as how they are affected by 

relevant biological, environmental, and economic conditions, can significantly extend the 

applicability of our model.   

 The optimal conditions reveal that it is generally economically more efficient to spend a 

larger share of outlays for exclusion activities before a species arrives than after it is known to be 

here. They also show that outlays should be allocated such that the marginal costs of control 

measures equal the benefits from the marginal reduction of the population growth rate, and the 

marginal costs of exclusion measures equal the benefits from the marginal reduction of the rate 

of subsequent arrivals. 
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From a policy standpoint, it is important to develop conceptual frameworks for thinking 

about invasive pests (and invasive species generally). First, as noted in the introduction, the 

incidence of invasive pest outbreaks and the costs of responding to them have both increased 

dramatically in the last few years. Hence the need to respond to these pests is increasing rapidly. 

Second, empirical analysis of invasive pest is often hampered by a lack of data – especially for 

cases where the pest is not yet present – or a lack of general applicability. That is, many 

problems related to invasive pests and their possible remedies are very case specific. Conceptual 

models like ours, then, can help to formalize the process of thinking about invasive pests (and 

invasive species generally) and help to ensure that policies for prioritizing and addressing 

invasive pest problems are consistent and make economic sense.  
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