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Environmental Regulation with Innovation and
Learning: Rules versus Discretion ∗

Abstract

We analyze a model of environmental regulation with learning about environmental
damages and endogenous choice of emissions abatement technology by a polluting firm.
We compare environmental policy under discretion, in which policy is updated upon
learning new information, versus under rules, in which policy is not updated. When
investment in abatement technology is made prior to the resolution of uncertainty,
neither discretion nor rules with either taxes or standards achieve an efficient solution.
When there is little uncertainty, rules are superior to discretion because discretionary
policy gives the firm an incentive to distort investment in order to influence future reg-
ulation. However, when uncertainty is large, discretion is superior to rules because it
allows regulation to incorporate new information. Under discretionary policy, taxes are
superior to standards regardless of the relative slopes of marginal costs and marginal
damages.
JEL Code: H23, Q2.
Key words: environmental regulation, emissions taxes and standards, rules versus dis-
cretion, technology adoption and innovation.
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1 Introduction

Virtually without exception, decisions about environmental policy are made without com-

plete information about either the benefits or the costs of environmental improvement. Set-

ting environmental policy under uncertainty in a static setting has been the subject of a

fairly large literature in economics beginning with Weitzman (1974). (See Lewis 1996 for

an excellent summary.) Setting environmental policy, however, is not a static proposition.

Results of new scientific studies can lead to updated beliefs on how much damage is caused

by emissions. New technologies or investment in new plant and equipment may make pol-

lution abatement easier and cheaper to accomplish. Such new information should lead a

welfare-maximizing regulator to adjust environmental policy. In fact, environmental regula-

tions are periodically adjusted based on updated understanding or new circumstances. For

example, the National Ambient Air Quality Standards for ozone and particulate matter were

tightened in 1997. EPA stated that “... many important new studies have been published

which show that breathing particulate matter at concentrations allowed by the current pri-

mary standard can likely cause significant health effects —including premature death and an

increase in respiratory illness.”1 More recently, the standards on arsenic in drinking water

were lowered from 50 parts per billion to 10 parts per billion. Yet knowing that regulations

may be adjusted may give regulated firms scope to adjust their behavior in order to try to

influence future regulation.

In this paper, we analyze environment regulation with learning about environmental

damages and endogenous choice of emissions abatement technology by a polluting firm. We

model the order of moves in a game between the regulator and the firm based on the ease or

speed with which a variable or decision can change. We assume that the most difficult deci-

sion to change in a short period of time is the form of the regulatory regime. The regulatory

1Cited from http://www.epa.gov/oar/oaqps/ozpmbro/partmat.htm.

1



regime is typically based on environmental statutes or administrative procedures that require

concerted effort to change. In our model, the regulatory regime determines whether regula-

tion occurs via emissions taxes or emissions standards. The regulatory regime also specifies

whether regulation is fixed (rules), or may change based on new information (discretion).

Given the regulatory regime, the firm chooses investment in technology where greater invest-

ment results in lower (expected) abatement costs. After the investment decision, uncertainty

about abatement costs and environmental damages is resolved. With discretion, the partic-

ular level of the tax or standard is then chosen. However, under rules, regulation is fixed in

the first stage. Finally the firm chooses its abatement level and payoffs are realized.

We consider two variants of the model: one with technology adoption and the other

with technology innovation by a polluting firm. In section 2, we analyze an adoption model

in which the firm chooses a technology from a menu of available existing technologies. Larger

investment leads to lower abatement costs with certainty. In section 3, the firm chooses its

expenditure on research and development for technology innovation where greater investment

results in a larger probability of finding a new technology with lower abatement costs. The

major difference between the innovation model and the adoption model is the stochastic

response of cost to investment.

The main question we investigate in this paper is whether it is better for a regulator

to commit to an emissions policy prior to learning about environmental damages and tech-

nology choice by firms (rules), or whether it is better to adjust policy after learning about

environmental damages and technology choice (discretion). In both variants (adoption and

innovation), we show that the regulator cannot achieve the first-best solution with taxes or

standards under either rules or discretion. Rules are not first best because regulation may

not reflect actual benefits or costs of abatement after technology choice and uncertainty is

resolved. As in Kydland and Prescott (1977), discretion is not first best because of the

strategic nature of the game. The investment decision of the firm will be distorted in order
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to influence regulation. Ideally, a regulator would like to make regulation conditional on the

resolution of uncertainty but not have regulation conditional on investment. This outcome

is not possible because investment occurs prior to resolution of uncertainty.

We also analyze whether taxes or standards are preferable. With rules, taxes and

standards yield exactly the same solution. The regulator sets regulation such that expected

marginal benefits of abatement equal expected marginal cost (post investment). This can be

accomplished with either taxes or standards. On the other hand, with a discretionary policy,

taxes and standards yield different outcomes. Under an emissions standard, discretionary

policy results in a lower incentive to invest because lower marginal emissions costs cause the

regulator to tighten the standard. Under an emissions tax, discretionary policy increases the

incentive to invest because lower marginal emissions costs cause the regulator to set a lower

tax rate (Kennedy and Laplante 1999, Karp and Zhang 2001, Moledina et al. 2003). In

section 4, we compare expected social costs (abatement costs plus pollution damages) under

rules, discretionary taxes and discretionary standards. When uncertainty about damages is

relatively small, rules are preferred to discretion because avoiding distortion of investment

incentives is more important than adjusting policy in light of new information. On the

other hand, with relatively large uncertainty about damages, discretion is preferred to rules.

Under discretion, we find that taxes are preferred to standards for a model with quadratic

costs and benefits regardless of the slopes of marginal cost and marginal benefit. This result

contrasts with Weitzman (1974) where taxes are preferred to standards if and only if the

absolute value of the slope of marginal benefits is smaller than the absolute value of the

slope of marginal cost.

These results have direct implications for the policy debate on the effectiveness of

technology forcing standards. Technology forcing standards are set at levels that cannot be

met by the regulated firms with current technology. The idea behind setting strict standards

is to stimulate research and development and force technological innovation. Technology
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forcing standards have been used in North America and Europe to regulate emissions of air

pollutants. For example, the U.S. Clean Air Act required a 90 percent reduction in emissions

when there were few means available to achieve the emissions reduction goal (Leone 1998).

Our results show that committing to standards (rules) when there is large uncertainty about

costs can lead to large expected losses. In such cases, discretionary policy is preferable, and

with discretion, taxes are preferred to standards (at least for quadratic costs and benefits).

There is a growing literature on dynamic environmental regulation, much of it inspired

by interest in climate change policy. Kolstad (1996) characterized optimal regulation with

learning about damages for a stock pollutant. Learning can delay the timing of irreversible

investment in abatement technology. Other papers that analyze learning and irreversible

investment in dynamic environmental contexts include Ulph and Ulph (1997), Kelly and

Kolstad (1999), Pindyck (2000) and Saphores (2002). These papers characterize optimal

regulation; they do not consider the strategic aspects of the game between the regulator

and the firm. Several other papers consider the problem of asymmetric information about

abatement cost in a dynamic setting (Benford 1998, Hoel and Karp 2001, Karp and Zhang

2001, 2002, Moledina et al. 2003, Newell and Pizer 1998). Of these papers, the three most

similar to ours are Karp and Zhang (2001, 2002) and Moledina et al. (2003). The two

papers by Karp and Zhang (2001, 2002) analyze a model with stock pollution and non-

strategic firms. Karp and Zhang (2001) analyze a model with investment while Karp and

Zhang (2002) analyze a model with learning about damages. In the model with learning,

they find that the relative efficiency of taxes over standards increases as the regulator has

more opportunities for learning. Moledina et al. (2003) analyze a model with strategic firms

that adjust their behavior to alter future regulation, but assume a näıve regulator. None of

these papers analyze a game in which both regulators and regulated firm(s) are strategic.

The other strand of relevant literature analyzes technological change and environmen-

tal regulation (see Jaffe et al. for a recent survey). Much of this literature analyzes incentives
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to adopt new technology when regulation is fixed, as in our model with rules, and there is

no uncertainty (see, for example, Milliman and Prince 1989). In a paper closer in spirit to

our paper, Kennedy and Laplante (1999) analyze a model in which regulation changes in

response to technology adoption decisions of firms. They consider a case with strategic firms

and show that firms over-invest when regulated via taxes and under-invest when regulated

via tradable emissions permits. Unlike our model, there is no uncertainty about either dam-

ages or costs, and they only consider discretionary policy rather than compare rules versus

discretion.

In Section 2, we describe a game with endogenous technology adoption. We define

the alternative policy schemes that we consider—rules and discretion—and define the corre-

sponding subgame perfect equilibria. Then we characterize the welfare consequence of each

scheme when the policy instrument consists of emissions taxes and emissions standards. Sec-

tion 3 introduces an alternative model with endogenous technology innovation. Section 4

compares the expected total cost under rules and discretion for taxes and standards using

numerical simulations. We analyze both the adoption model and the innovation model in

the simulations. Section 5 contains concluding remarks and comments on potential future

research.

2 A model with technology adoption

2.1 Model Environment

This subsection describes a game-theoretic model of pollution regulation with endogenous

technology adoption involving a regulator and a single polluting firm. At the outset of

the game, the regulator chooses the policy scheme to be employed. We consider two types

of policy schemes: 1) discretion, in which the regulator may update policy based on new

conditions or information, and 2) rules, in which policy chosen at the outset is fixed and
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cannot be updated. For each scheme we consider two alternative policy instruments: simple

(linear) emissions taxes and emissions standards.

In the next stage of the game, the firm chooses investment in adoption of emissions

abatement capital. Let e represent the level of emissions by the firm and let k represent

investment. Let r represent the unit cost of investment. The firm’s emissions abatement

cost is given by C(e, k). We assume that the emissions abatement cost function is decreasing

in emissions and abatement investment (Ce < 0, Ck < 0), convex (Cee > 0, Ckk > 0, CeeCkk−

C2
ek ≥ 0) and twice continuously differentiable. We also assume that marginal abatement

cost, −Ce, is decreasing in investment, Cek > 0.2

Emissions of pollution by the firm cause damages, which are external to the firm.

Initially there is uncertainty about the damage function. Let S represent the set of possible

states and let D(e; s) represent damages caused by emissions in state s ∈ S. Let π(s) be the

probability that state s occurs. Uncertainty about which state will occur is resolved after

the firm has chosen investment. We assume De(·; s) > 0, Dee(·; s) > 0 for all s ∈ S. We also

assume that De(e; s) > De(e; s
′) for all e ≥ 0 for some states s, s′ ∈ S with π(s), π(s′) > 0.

After uncertainty about damages is resolved, the regulator sets the tax or standard

if they are in a discretionary policy regime (otherwise taxes and standards are fixed and

cannot be changed). The firm then chooses emissions. Finally payoffs to the firm and the

regulator are realized. Payoffs to the firm are:

−rk −
∑
s∈S

π(s)C(e(s), k) under standards, and

−rk −
∑
s∈S

π(s)[C(e(s), k) + τ(s)e(s)] under taxes

where τ(s) is the per unit tax on emissions in state s. (Under rules, the tax rate τ is the

same across the states.) The regulator is assumed to care about minimizing the total cost

2Ci is the first-order partial derivative of C with respect to i(∈ {e, k}). Cij is the second-order derivative
of C with respect to i, j(∈ {e, k}).
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of pollution (abatement cost plus damages):

−rk −
∑
s∈S

π(s)[D(e(s); s) + C(e(s), k)].

The complete order of moves of the games is summarized in figure 1. In figure 1a, we

show the sequence of moves for the discretionary policy game. Figure 1b shows the sequence

of moves for the rules game. The difference between discretion and rules is that the tax or

standard is selected in the initial move in the rules game, but is chosen after investment and

uncertainty is resolved in the discretionary game.

2.2 Emissions taxes

2.2.1 Equilibrium of the tax subgame under rules

Given a tax τ on emissions, the firm solves

min
e,k≥0

rk + C(e, k) + τe.

The necessary and sufficient conditions for an interior solution are

r + Ck(e, k) = 0,

Ce(e, k) + τ = 0.

Denote the solution by e(τ), k(τ). Given e(τ), k(τ), the regulator solves

min
τ≥0

rk(τ) +
∑
s∈S

π(s)[C(e(τ), k(τ)) + D(e(τ); s)]

A subgame perfect equilibrium of tax subgame under rules is given by a strategy

profile (τRT , (kRT (τ), (eRT (τ))τ≥0)) that solves the above optimization problems by the firm

and the regulator. (Superscript RT denotes the rules tax scheme.)
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2.2.2 Equilibrium of the discretionary-tax subgame

With discretionary taxes, the regulator chooses a state- and investment-dependent tax plan.

Given investment k ≥ 0, state s ∈ S and tax τ , the firm chooses the level of emissions to

solve

min
e≥0

C(e, k) + τe

The necessary and sufficient condition for an interior solution is

Ce(e, k) + τ = 0.

Denote the solution by e(k, τ). Given the firm’s emissions plan (as functions of taxes and

investment) {e(k, τ)}s∈S, the regulator solves

min
τ≥0

C(e(k, τ), k) + D(e(k, τ); s)

for all s ∈ S given investment k. Denote the solution by {τ(k, s)}k≥0,s∈S.

Given the state- and investment-contingent tax schedule {τ(k, s)}k≥0,s∈S, the firm

solves

min
k≥0

rk +
∑
s∈S

π(s)[C(e(τ(k, s)), k) + τ(k, s)e(τ(k, s))].

A subgame perfect equilibrium of a discretionary-tax subgame is given by a strat-

egy profile ({(τDT (k, s))k≥0}s∈S, (kDT , {(eDT (τ, s))τ≥0}s∈S)) that solves the above optimiza-

tion problems by the firm and the regulator.(Superscript DT denotes the discretionary tax

scheme.)

2.3 Welfare properties of emissions taxes

Now we compare the alternative policy schemes—discretion and rules—in terms of efficiency.

First we characterize the optimal (socially least cost) investment/emissions plan. Then we

examine whether taxes, under either rules or discretion, can achieve efficiency.
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The optimal investment/emissions plan (k∗, {e∗(s)}s∈S) is given by a solution to

min
k,{e(s)}s∈S

rk +
∑
s∈S

π(s)[C(e(s), k) + D(e(s); s)]

s.t. k ≥ 0 and e(s) ≥ 0 for all s ∈ S.

Given the convexity of the functions, the following first order conditions are necessary and

sufficient for an interior solution:

Ce(e
∗(s), k∗) + De(e

∗(s)) = 0 for all s ∈ S, (1)

r +
∑
s∈S

π(s)Ck(e
∗(s), k∗) = 0. (2)

Throughout the paper, we assume that the optimal solution is interior.

Proposition 1 states that the regulator can implement the optimal investment/emissions

plan if the regulator can choose taxes that are contingent only on the realized state.

Proposition 1 A state-contingent and investment-independent tax plan {τ(s)}s∈S achieves

the socially minimum cost if τ(s) ≡ De(e
∗(s); s) for all s ∈ S where e∗(s) denotes the optimal

emissions in state s.

(See Appendix A for the proof.) A state-contingent, investment-independent tax scheme

allows taxes to be adjusted to reflect actual conditions allowing marginal abatement costs to

equal marginal damages. However, since taxes are not a function of investment, there is no

scope for the firm to manipulate the tax through its investment decision. The optimal policy

is not available to the regulator in the game because the firm chooses investment prior to the

realization of the state. Hence, if the regulator minimizes the total cost after resolution of

damage uncertainty, then the regulator needs to specify the tax rate depending on the firm’s

technology choice. Once the regulator makes the taxes state-dependent, a time-consistent

regulator cannot make the taxes investment-independent.
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We now show that the two policy schemes—discretion and rules—cannot achieve ef-

ficiency. As a first step to prove that discretionary policy will be inefficient, we use the

following lemma.

Lemma 1 The equilibrium discretionary tax rates are decreasing functions of k.

(See Appendix A for the proof.) The lemma shows that the regulator will choose a lower tax

rate if higher investment is observed, Therefore, the firm will have an incentive to invest in

order to manipulate the regulator into setting a lower tax. This is the source of inefficiency

in discretionary policies. Using this lemma, we show that discretionary tax policies lead to

suboptimal technology adoption and emissions choices. In addition, under the assumption

that the firm’s cost function, given how the regulator adjusts taxes, is convex in investment,

a discretionary tax scheme will result in over-investment relative to the optimal investment

(Proposition 2).

Proposition 2 In equilibrium, the discretionary tax scheme does not achieve the efficient

solution (socially minimum cost). Furthermore, if the firm’s objective function is convex

in investment given that taxes depend on investment, then the equilibrium investment in a

discretionary-tax subgame kDT is larger than the optimal investment k∗.

(See Appendix A for the proof.) The firm’s investment optimization problem under discre-

tionary tax policies, where the firm takes into account the effect of its investment on the tax,

is not necessarily convex in investment even if the functions C and {D(·; s)}s∈S are convex.

As discussed in Appendix B, the convexity assumption holds if the functions C and D are

second-order polynomials of emissions and investment.

The following proposition states that a tax rule also fails to achieve the efficient

solution as long as S is non-degenerate.
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Proposition 3 The equilibrium tax rate under rules does not achieve the socially minimum

cost.

(See Appendix A for the proof.)

2.4 Emissions standards

Here we describe the subgame perfect equilibria for the emissions-standard subgames. With

emissions standard q(s) ≥ 0 in state s, the firm is restricted to choose emissions e(s) so that

e(s) ≤ q(s). Alternatively, one could assume that e(s) can exceed q(s) but that this would

invoke a large fine such that the firm would never find it optimal to choose e(s) > q(s).

2.4.1 Equilibrium of the standard subgame under rules

Given a standard q on emissions, the firm solves

min
e,k≥0

rk + C(e, k)

s.t. 0 ≤ e ≤ q.

Given the emissions abatement cost is decreasing in emissions, the firm will choose e = q.

Then the necessary conditions for an interior solution are

r + Ck(q, k) = 0,

e = q.

Denote the solution by q, k(q). Given that the firm’s choice q and k(q), the regulator solves

min
q≥0

rk(q) +
∑
s∈S

π(s)[C(q, k(q)) + D(q; s)]

A subgame perfect equilibrium of a standard subgame under rules is given by a strat-

egy profile (qRS, (kRS(q), eRS(q))q≥0) that solves the above optimization problems by the

regulator and the firm. (Superscript RS denotes the rules standard scheme.)
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2.4.2 Equilibrium of the discretionary-standard subgame

Given investment k ≥ 0 and state s ∈ S, under standard q(k, s) the firm chooses the level

of emissions e(k, s) = q(k, s). Given the firm’s emissions plan, the regulator solves

min
q≥0

C(q, k) + D(q; s)

for all s ∈ S given investment k. Denote the solution by {q(k, s)}k≥0,s∈S.

Given a state- and investment-contingent standard plan {q(k, s)}k≥0,s∈S, the firm

solves

min
k≥0

rk +
∑
s∈S

π(s)[C(q(k, s), k)]

A subgame perfect equilibrium of a discretionary-standard subgame is given by a

strategy profile ({(qDS(k, s))k≥0}s∈S, (kDS, {(eDS(q, s))q≥0}s∈S)) that solves the above opti-

mization problems by the regulator and the firm. (Superscript DS denotes the discretionary

standard scheme.)

2.5 Welfare properties of emissions standards

Here we consider the welfare properties of emissions standards under discretion and rules.

Fact 1 A state-contingent standard scheme achieves the socially minimum cost if, for all

s ∈ S, the emissions standard q(s) in state s is equal to e∗(s), the optimal emissions in state

s.

Fact 1 immediately follows from the assumption that the abatement cost function C is

strictly decreasing in emissions (and hence the constraint on emissions induced by a standard

is binding). As in the proof for Proposition 1, given that the emissions level in each state is

optimal, the firm’s investment choice is equal to k∗, the optimal investment level.
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If the standard is contingent on both the state and the investment by the firm, then

the regulator cannot achieve efficiency. To show this, first we prove that the regulator has

an incentive to strengthen the standard if a higher level of investment is observed (Lemma

2).

Lemma 2 The equilibrium discretionary emissions standards {q(s)}s∈S are decreasing func-

tions of k.

(See Appendix A for the proof.) The firm, therefore, has an incentive to reduce investment

to get a more lenient standard. This result leads to the following proposition.

Proposition 4 The equilibrium discretionary standards do not achieve the socially mini-

mum cost. Furthermore, if the firm’s objective function is convex in investment given that

standards depend on investment, then the equilibrium investment in a discretionary-standard

subgame kDS is smaller than the optimal investment k∗.

(See Appendix A for the proof.) It is worthwhile noting that discretionary taxes and dis-

cretionary standards are both suboptimal, but they are suboptimal in different ways. The

discretionary emissions tax results in over-investment whereas the discretionary emissions

standard causes the firm to under-invest.

As with taxes, emissions standards under rules are suboptimal. When standards are

set prior to the resolution of uncertainty, the standard set may not achieve an efficient result

given the realized damage function.

2.6 Comparison of Taxes versus Standards

Here we compare the relative efficiency of taxes versus standards under both rules and

discretion. We begin by comparing taxes and standards under rules.

Proposition 5 Equilibrium standard rules and equilibrium tax rules result in the same ex-

pected social cost in equilibrium.
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(See Appendix A for the proof.) Because the regulator has committed to a policy (tax

or standard), the firm faces no uncertainty when it makes its choice of investment and

emissions level. Therefore, the regulator can induce the firm to choose a given investment

and emissions choice via either a standard or a tax. The regulator will then choose policy

such that it attains minimum ex-ante expected social cost from the set of possible induced

investment and emissions responses of the firm. Note that this result is not optimal because

in fact the firm’s emissions choice should reflect the true state of damages.

Next, we compare the relative performance of taxes versus standards under discre-

tionary policy. Because investment levels differ under taxes and standards, causing differ-

ences in resulting regulatory policy and emissions, comparing performance is complicated. To

simplify the task, we restrict attention for the following proposition to a case with quadratic

costs and benefits. Suppose the emissions abatement cost function is given by

C(e, k) =
1

2
c(ē− e− ak)2 for e, k such that 0 ≤ e ≤ ē− ak, k ≥ 0 (3)

where c, ē and a are positive scalars. Suppose the damage function is given by

D(e; s) =
de2

2
+ f(s)e for e ≥ 0 (4)

where d > 0 and f(s) ≥ 0 for all s ∈ S, and the mean of f(s) is given by
∑

s∈S π(s)f(s) = f

for some f > 0. These functions satisfy all of the properties assumed for cost and benefit

functions. With this specification, we have the following proposition.

Proposition 6 Under a discretionary policy regime and quadratic cost and benefit functions

(given by equations 3 and 4), the expected total costs are lower in equilibrium with emissions

taxes compared to the expected total costs in equilibrium with emissions standards.

(See Appendix A for the proof). Proposition 6 states that emissions taxes are more efficient

than emissions standards, at least under assumptions of quadratic costs and benefits. This
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result contrasts with the results of Weitzman (1974) in which taxes are preferred to standards

if an only if the marginal benefits curve is flatter than the marginal cost curve. Proposition

6 holds regardless of the slopes of marginal benefit and marginal cost. Under discretionary

policy, equilibrium results under standards and taxes would both be optimal conditional on

investment being set optimally. Inefficiency occurs because investment is distorted: over-

investment with taxes and under-investment with standards. The degree to which investment

is distorted away from the optimal level is greater under standards than under taxes, which

generates the result that taxes are preferred to standards.

One comparison that cannot be made unambiguously is the comparison between rules

and discretion. Whether rules are preferred to discretion, or vice-versa, depends upon the

degree of uncertainty about damages. We will illustrate this point and the magnitudes of

the inefficiency of various policy schemes with a numerical example in section 4.

3 A model with technology innovation

In this section, we modify the model of section 2 from one of adoption of existing technology

to one of innovation to discover new technology. The key modelling difference between inno-

vation and adoption is that the results of innovation are stochastic while those of adoption

are deterministic. We assume that greater investment results in a larger probability of find-

ing a new technology with lower abatement costs. Otherwise, we retain the model structure

of section 2.

3.1 Model Environment

Denote the probability of innovation success by λ. Obtaining a higher probability of success

can be achieved through increased investment. Let G(λ) be the cost of innovation with

success probability λ. The function G is strictly increasing, convex and twice continuously

differentiable in success probability: G′(λ) > 0 and G′′(λ) > 0 for λ ∈ [0, 1). Further assume
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that the cost of innovation is zero when the success probability is zero and the cost tends to

infinity as the success probability goes to one: G(0) = 0 and limλ→1 G(λ) = +∞. Because

G is monotonic, we can think of λ as representing the level of investment as well as the

probability of success.

If the firm is unsuccessful in innovating, then it retains the status-quo emissions re-

duction cost function C(e; H). (H stands for ‘high’ marginal abatement costs.) If the firm

is successful, then the cost function is C(e; L). (L stands for ‘low’ marginal abatement

costs.) We assume Ce(e; ·) < 0, Cee(e; ·) > 0 for all e ≥ 0 for both H and L. Further,

−Ce(e; H) > −Ce(e, L) for all e ≥ 0, i.e., marginal abatement costs are higher when innova-

tion is not successful

The ex ante expected total cost of pollution is given by

G(λ)+λ
∑
s∈S

π(s)[C(e(s, L); L)+D(e(s, L); s)]+(1−λ)
∑
s∈S

π(s)[C(e(s, H); H)+D(e(s, H); H)]

where e(s, L) (e(s, H)) is the amount of emissions in state s when innovation was successful

(failed).

3.2 Welfare properties of emissions taxes with technology innova-
tion

The optimal investment/emissions plan (λ∗, {e∗(s, H), e∗(s, L)}s∈S) is given by a solution to

min
λ,{e(s,H),e(s,L)}s∈S

G(λ) + λ
∑
s∈S

π(s)[C(e(s, L); L) + D(e(s, L); s)]

+(1− λ)
∑
s∈S

π(s)[C(e(s, H); H) + D(e(s, H); s)]

s.t. λ ∈ [0, 1], e(s, H) ≥ 0 and e(s, L) ≥ 0 for all s ∈ S.

Given the convexity of functions C and D, the following first order conditions are necessary

and sufficient for an interior solution:

Ce(e
∗(s, L); L) + De(e

∗(s, L); s) = 0 for all s ∈ S, (5)

16



Ce(e
∗(s, H); H) + De(e

∗(s, H); s) = 0 for all s ∈ S (6)

and

G′(λ∗)+
∑
s∈S

π(s)[C(e∗(s, L); L)+D(e∗(s, L); s)]−
∑
s∈S

π(s)[C(e∗(s, H); H)+D(e∗(s, H); s)] = 0.

(7)

The next two propositions (6 and 7) show that emissions taxes under both discretion

and rules fail to achieve an efficient outcome.

Proposition 7 Equilibrium discretionary taxes do not achieve the socially minimum cost.

Furthermore, the equilibrium success probability λDT is larger than the optimal level proba-

bility λ∗.

(See Appendix A for the proof.)

Proposition 8 The equilibrium tax rule does not achieve socially minimum cost.

Proposition 8 follows from the fact that the tax rule does not induce the firm to choose

different emissions levels for different realizations of states nor does the tax rate change for

different results of innovation.

3.3 Welfare properties of emissions standards with technology in-
novation

If the standard is contingent on both the state and the investment by the firm, the regulator

cannot achieve efficiency because the firm’s innovation effort is lower than optimal.

Proposition 9 The equilibrium discretionary standards do not achieve the socially mini-

mum cost. Furthermore, the equilibrium success probability λDS is lower than the optimal

probability λ∗.
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(See Appendix A for the proof.) As in the case with technology adoption, the standard

under rules and the taxes under rules do equally well in terms of efficiency (Proposition 10).

Proposition 10 Equilibrium standard rules and equilibrium tax rules result in the same

expected social cost in equilibrium.

The proof is similar to the proof for Proposition 5 and 3.

In sum, the results of the innovation model are qualitatively similar to the results in

the adoption model of section 2. Under rules, taxes and standards yield the same result. This

result is inefficient because it does not reflect actual conditions of damages. Under discretion,

taxes result in over-investment while standards result in under-investment. Hence, discre-

tionary emissions taxes result in over-investment whereas discretionary emissions standards

causes the firm to under-invest in technology innovation.

4 Numerical Examples

In the previous two sections we showed that neither discretion or rules, taxes or standards,

achieves an efficient result. In this section we use numerical simulation to investigate the

relative efficiency of these alternative regulatory schemes. Since taxes and standards yield

the same outcome under rules, we compare rules with discretionary taxes and discretionary

standards. We begin by analyzing the adoption model (4.1) and then analyze the innovation

model (4.2).

4.1 Simulation with technology adoption

In what follows we use simple quadratic cost and damage functions to illustrate the relative

efficiency of rules versus discretionary taxes versus discretionary standards. The emissions

abatement cost function and the damage function are given by equations (3) and (4) in-

troduced in subsection 2.6. For the random variable f(s), we assume P (f(s) = f + ε) =
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P (f(s) = f − ε) = 1
2

for some ε > 0. These functions satisfy the properties assumed in sec-

tion 2. With this specification, the firm’s objective function is concave under discretionary

schemes. Parameters c, ē, a, d, f, ε and the unit price of investment r are chosen so that all

the equilibrium solutions are interior. Hence, Propositions 1- 6 apply to this example.

In figure 2 we show the effect of increased uncertainty on the relative efficiency of

alternative policy schemes. With no uncertainty (ε = 0), rules result in an efficient solution.

The regulator can set standards or taxes to induce the firm to choose the correct levels

of investment and emissions. Discretionary policy, however, does not result in an efficient

solution even with no uncertainty. This result occurs because of the distortion in investment

incentives. With increasing uncertainty, rules become relatively less efficient. Rules may be

set in ways that are far from optimal given actual conditions. Inefficiency of rules increases

in a quadratic fashion with increases in ε. On the other hand, the relative inefficiency of

discretionary policy is hardly affected by increased uncertainty because policy will be set

to reflect actual conditions. Inefficiency arises because of distortion of investment, which

is affected little by changes in uncertainty. As shown in figure 2, discretionary policy is

preferred to rules for high levels of uncertainty.

As shown in figure 2, discretionary taxes are more efficient than standards for the

complete range of uncertainty (see Proposition 6). Note that, in Weitzman (1974), taxes are

preferred to standards if and only if the marginal benefits curve is flatter than the marginal

cost curve. In figures 3 and 4 we show the effect of changes in the slopes of marginal damages

and marginal abatement cost on the relative superiority of discretionary taxes compared to

standards. In figure 3, we fix the slope of marginal damages equal to 1 and vary the slope

of the marginal abatement cost function (parameter c). As shown in figure 3, taxes become

increasingly favorable as c increases. In figure 4, we fix the slope of the marginal abatement

cost equal to 1 and vary the slope of marginal damages (parameter d). Taxes become

increasingly superior to standards as d decreases. The advantage of taxes over standards
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under discretionary policy increases as the marginal benefits curve becomes flatter compared

to the marginal cost curve, consistent with Weitzman (1974). However, in our model with

quadratic costs and benefit functions, taxes are superior to standards regardless of the slopes

of the marginal cost and marginal benefit functions.

In figure 5, we show the effect of varying the cost of investment (parameter r). As the

cost of investment becomes larger, the ratio of deadweight loss to the first-best level of cost

under each scheme becomes larger.

4.2 Simulation with technology innovation

For the innovation cost function G, assume G(λ) = A( 1
1−λ

− 1 − λ) where A is a positive

constant. We assume the abatement cost function C is given by

C(e,H) =
c(ēH − e)2

2
for 0 ≤ e ≤ ēH , C(e, L) =

c(ēL − e)2

2
for 0 ≤ e ≤ ēL

where ēL = αēH with 0 < α < 1. (The smaller α, the larger improvement in abatement

technology when innovation is successful.) The damage function is identical with that given

in section 4.1. Parameters A, c, ēH , ēL, d, f and ε are positive and chosen so that all the

equilibrium solutions are interior. These functions satisfy the properties assumed in section

3 and hence Propositions 7 - 10 apply to this example.

In figure 6, we show results for a case where there is little difference in costs with

and without successful innovation. When the difference between the two abatement cost

functions, C(·, H) and C(·, L), is small (α = 0.95), there is little uncertainty about abatement

costs, making this model quite similar to the adoption model. In fact, we observe much the

same pattern in the rankings between rules, discretionary taxes and discretionary standards

as shown in figure 2 with the adoption model. When uncertainty about damages is low, rules

are preferable to discretion. With high uncertainty about damages, discretion is preferable

to rules.
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In figure 7 we show results for a case where there is a substantial cost reduction (50

percent, or α = 0.5) with successful innovation. In this case, discretionary policy is preferable

to rules even when there is little to no uncertainty about damages. In cases where there is

great uncertainty about the state of future technology, there is large risk in committing to

technology forcing standards. If it turns out that innovation is unsuccessful, the emissions

standard will be far more stringent ex post than conditions warrant. On the other hand, if

innovation is successful, then standards should be tightened further. Even factoring in the

distortion to innovation incentives, discretionary policies yield far lower expected costs than

do rule when there is large uncertainty about the state of future technology.

5 Discussion

In this paper we compared environmental policy under discretion, in which policy is updated

upon learning new information, versus under rules, in which policy is not updated. When

investment in abatement technology is made prior to the resolution of uncertainty, neither

discretion nor rules with either linear taxes or standards achieve an efficient solution. When

uncertainty about damages or the results of investment are small, rules are superior discre-

tion, because discretionary policy schemes give the firm an incentive to distort investment in

order to influence future regulation. However, when uncertainty about either damages or the

results of investment is large, discretion is superior to rules because it allows regulation to

incorporate new information. We found that with discretionary policy, taxes are superior to

standards even in cases where marginal costs are flatter than marginal damages, in contrast

to Weitzman (1974).

The inefficiency of environmental policy under both rules and discretion is caused by

the fact that investment occurs prior to the resolution of uncertainty. If it were possible

to reverse the order so that all uncertainty were resolved prior to investment, the regulator
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could make policy dependent on actual conditions but not dependent upon investment. This

would avoid distorting investment incentives while still allowing regulation to reflect actual

conditions. That this order cannot be reversed is clearest in the innovation model where

investment in R&D must take place prior to realizing the results of such activity. Even

with adoption, investments tend to be long-lived while new information is learned on a fairly

frequent basis.

Even with timing fixed as in this model, the inefficiency of environmental policy with

learning and innovation under both rules and discretion could be overcome with sufficiently

sophisticated regulatory policy. One way to achieve an efficient result is for the regulator to

set non-linear taxes. An efficient result will occur if the regulator sets a tax schedule equal to

realized marginal damages. In this case, the firm always faces the social costs of its actions

and it will choose efficient levels of emissions abatement and investment. By definition, fully

internalizing all external costs will correct externalities, but such solutions cannot typically

be implemented in practice.

Another possible route to overcome inefficiency in cases with learning and innovation

is to consider the introduction of an environmental investment policy in addition to tra-

ditional environmental policy targeted to emissions. Innovation policies would need to be

coordinated with emissions policy. Under discretionary emissions standards, the firm will

tend to investment too little. This distortion could be corrected by subsidizing investment

in emissions abatement equipment. On the other hand, under discretionary emissions taxes,

the firm will tend to invest too much. Therefore, somewhat paradoxically, with a discre-

tionary emission tax scheme, investment in emissions abatement equipment should also be

taxed.

We assumed there is only one polluting firm in our model to highlight the strategic

aspects of the regulator-regulated firm interaction. At the other extreme, a large number of

small firms might each believe that their own actions have no influence on future regulation.
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In this case, there would be no distortion of investment incentives and discretionary policy

would be the optimal approach. In the more interesting intermediate case with a small

number of strategic firms, each firm must consider the effect of their investment on rival

firms as well as on the regulator opening up numerous possible results. In addition, having

more than one firm raises the issue of appropriability of rents from successful innovation

among firms (see Fischer et al. 2003 for analysis of this issue).

In this model we focused on symmetric uncertainty about damages in the adoption

model and symmetric uncertainty about the result of R&D in the innovation model. An

alternative formulation of the innovation model would be to assume that the results of

innovation are private information to the firm, which would then make the model one of

regulation under asymmetric information. In addition to firms’ private information about

costs, the regulator’s type may be another source of asymmetric information. For example,

perhaps the commitment to rules is somewhat less than categorical. The firm may be

uncertain whether a regulator really can or cannot commit to rules. The firm will form a

belief on the regulator’s type (the ability of the regulator to commit rules) and the firm’s

response will depend on such beliefs. We leave analysis of asymmetric information models

to future research.
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Appendix A

Proof of Proposition 1

The socially optimal (i.e. least cost) emissions levels and investment are given by the solution

to

min
k,{e(s)}s∈S

rk +
∑
s∈S

π(s)[C(e(s), k) + D(e(s); s)]

s.t. k ≥ 0, e(s) ≥ 0 for all s ∈ S.

The optimal plan (k∗, {e∗(s)}s∈S) is characterized in the text by equations (1) and (2). On

the other hand, the firm chooses state-s emissions given investment k and tax rate τ(s) to

solve

min
e(s)

C(e(s), k) + τ(s)e(s)

for all s ∈ S. The necessary and sufficient conditions are

Ce(e(s), k) + τ(s) = 0 for all s ∈ S.

Denote the solutions by {e(k, s)}s∈S. At the investment stage, the firm solves

min
k≥0

rk +
∑
s∈S

π(s)[C(e(k, s), k) + τ(s)e(k, s)].

The necessary and sufficient condition for an interior solution is

r +
∑
s∈S

π(s)Ck(e(k, s), k) = 0.

With τ(s) ≡ De(e
∗(k, s); s) for all s ∈ S, the equilibrium emissions and investment are the

same as the unique optimal solution.
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Proof of Lemma 1

Denote the optimal emissions given investment k and state s ∈ S by e∗(k, s). The optimal

emissions satisfy, for all s ∈ S,

Ce(e
∗(k, s), k) + De(e

∗(k, s); s) = 0.

Totally differentiating with respect to investment and emissions, we have

∂e∗(k, s)

∂k
= − Cek(·, ·)

Cee(·, ·) + Dee(·; s)
< 0.

The equilibrium tax rate τ(k, s) given investment k and state s ∈ S must satisfy

τ(k, s) = De(e
∗(k, s); s).

Differentiating both sides with respect to k, we have

∂τ(k, s)

∂k
= Dee(e

∗(k, s); s) · ∂e∗(k, s)

∂k
< 0

for all k ≥ 0 since D(·; s) is strictly convex in emissions. Hence, the equilibrium discretionary

tax rate is strictly decreasing in investment k.

Proof of Proposition 2

Given investment k, a realized state s ∈ S and a tax τ , the firm chooses emissions to solve

min
e≥0

C(e, k) + τe.

The necessary and sufficient condition for an interior solution is

Ce(e, k) + τ = 0. (8)

Let e(k, τ) represent the emissions level that solves this problem. Holding τ constant, the

partial derivative of e with respect to k is given by

∂e(k, τ)

∂k
= −Cee

Cek

. (9)
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Holding k constant, the partial derivative of e with respect to τ is given by

∂e(k, τ)

∂τ
= − 1

Cee

. (10)

As in Lemma 1, the regulator will set taxes such that τ(k, s) = De(e
∗(k, s); s). From Lemma

1, we have ∂τ(·,s)
∂k

< 0. At the investment stage, the firm’s objective function is

VDT (k) = rk +
∑
s∈S

π(s)[C(e(k, τ(k, s)), k) + τ(k, s)e(k, τ(k, s))].

The subscript DT stands for discretionary taxes. The derivative of VDT evaluated at the

optimal investment k∗ is

V ′
DT (k∗) = r +

∑
s∈S

π(s)[Ce(e(k
∗, τ(k∗, s)), k∗){∂e

∂k
+

∂e

∂τ
· ∂τ

∂k
}+ Ck(e(k

∗, τ(k∗, s)), k∗)

+
∂τ(k∗, s)

∂k
e(k∗, τ(k∗, s)) + τ(k∗, s){∂e

∂k
+

∂e

∂τ
· ∂τ

∂k
}]

= r +
∑
s∈S

π(s)[Ck(e(k
∗, τ(k∗, s)), k∗) +

∂τ(k∗, s)

∂k
e(k∗, τ(k∗, s))]

where the second equality follows from condition (8), and e(k∗, τ(k∗, s)) = e∗(s), the op-

timal state-s emissions. Note that r +
∑

s∈S π(s)Ck(e
∗
s, k

∗) = 0 by equation (2). Since

∂τ(k∗,s)
∂k

e(τ(k∗, s)) < 0, it follows that V ′
DT (k∗) < 0. Assuming that VDT is convex in invest-

ment k, this implies that the equilibrium investment by the firm is larger than the optimal

investment. Therefore, the discretionary tax scheme fails to achieve the social cost minimum

outcome characterized by (1) and (2). (We discuss the assumption of convexity of VDT fur-

ther in Appendix B.)

Proof of Proposition 3

A state-independent tax induces the firm to choose the same amount of emissions across

different states. As long as the marginal cost function varies across states, the optimal emis-

sions will differ across states. Hence, a tax scheme where the tax rate is uniform across states
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does not achieve the optimal outcome.

Proof of Lemma 2

Denote the optimal standard given investment k and state s ∈ S by q(k, s). It must satisfy

Ce(q(k, s), k) + De(q(k, s)) = 0.

Totally differentiating with respect to investment and emissions yields:

∂q(k, s)

∂k
= − Cek(·, ·)

Cee(·, ·) + Dee(·; s)
< 0

for all k ≥ 0 and s ∈ S. Hence, the equilibrium discretionary standard level is strictly

decreasing in investment k.

Proof of Proposition 4

Given investment k and an emissions standard plan {(q(k, s))k≥0}s∈S, the firm chooses emis-

sions to minimize cost. From Lemma 2, we know that the optimal discretionary standard

level is decreasing in investment. At the investment stage, the firm solves

min
k≥0

VDS(k) = rk +
∑
s∈S

π(s)[C(q(k, s), k)].

The subscript DS stands for discretionary standards. The first-order derivative is

V ′
DS(k) = r +

∑
s∈S

π(s)[Ce(q(k, s), k) · ∂q(k, s)

∂k
+ Ck].

Evaluating this expression at the optimal solution, we have:

V ′
DS(k∗) = r +

∑
s∈S

π(s)[Ce(q(k
∗, s), k∗) · ∂q(k∗, s)

∂k
+ Ck(e(k

∗, s), k∗)]
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where q(k∗, s) = e∗(s), the optimal state-s emissions. Note that r+
∑

s∈S π(s)Ck(e
∗(s), k∗) =

0 by equation (2). Since Ce(q(k
∗, s), k∗) · ∂q(k∗,s)

∂k
> 0, it follows that V ′(k∗) > 0. Given the

convexity of VDS, this implies that the equilibrium investment by the firm is less than the

optimal investment. Therefore, the discretionary standard scheme fails to achieve the social

cost minimum outcome characterized by equations (1) and (2).

Proof of Proposition 5

With rules, the regulator sets a single tax or a single standard so that the firm faces the same

regulation no matter which state s ∈ S occurs. In the tax case, the firm facing emissions

tax τ will choose emissions level and investment given by the following equations:

r + Ck(e, k) = 0, (11)

Ce(e, k) + τ = 0.

Denote the solution by e(τ), k(τ). The regulator will choose the tax rate in order to minimize

social cost knowing the firm’s emissions and investment choices as a function of τ :

min
τ≥0

rk(τ) + C(e(τ), k(τ)) +
∑
s∈S

π(s)D(e(τ); s).

The necessary and sufficient condition for solving this minimization problem is

rk′(τ) + Cee
′(τ) + Ckk

′(τ) + e′(τ)
∑
s∈S

π(s)De(e(τ); s) = 0.

Using equation (11) and the fact that e′(t) 6= 0, we have

Ce(e, k) +
∑
s∈S

π(s)De(e; s) = 0.

In the case of standards, the firm will set emissions equal to the standard: e = q. The firm

will choose investment k(q) to satisfy

r + Ck(q, k(q)) = 0. (12)
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The regulator will choose the standard in order to minimize social cost knowing the firm’

emissions and investment choices as a function of standard:

min
q≥0

rk + C(q, k(q)) +
∑
s∈S

π(s)D(q; s).

The necessary and sufficient condition for solving this minimization problem is

rk′(q) + Ce + Ckk
′(q) +

∑
s∈S

π(s)De(q; s) = 0.

Using (12) we can simply this equation:

Ce(q, k(q)) +
∑
s∈S

π(s)De(q; s) = 0.

Noting that e = q, we therefore have the same equilibrium emissions and investment under

the tax rule and the standard rule.

Proof of Proposition 6

Let ∆ be the expected total costs in the equilibrium under discretionary standards minus

the expected total costs in the equilibrium under discretionary taxes. We want to show that

∆ > 0. First, for discretionary standards, we derive the equilibrium standards and emissions

as functions of investment. Then we derive the equilibrium investment under discretionary

standards. We follow the same steps for deriving equilibrium tax rates, emissions and in-

vestment under discretionary taxes. Then we show that ∆ > 0.

i) Discretionary standards

Given state s and investment k, the regulator sets the standard q(k, s) to solve

min
q≥0

c(ē− ak − q)2

2
+

de2

2
+ f(s)e.

Solving this problem, we obtain q(k, s) = c(ē−ak)−f(s)
c+d

. Given standards {(q(k, s))k≥0}s∈S, in

the investment stage the firm solves

min
k≥0

rk +
∑
s∈S

π(s)
c(ē− ak − q(k, s))2

2
.
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The solution kDS is given by

kDS =
−r(c + d)2 + acd(dē + f)

a2cd2
.

(Note that f ≡ ∑
s∈S π(s)f(s).)

ii) Discretionary taxes

In the emissions abatement stage, given investment k and a tax τ , the firm chooses emissions

e(k, τ) to solve

min
e≥0

c(ē− ak − e)2

2
+ τe.

The solution is given by e(k, τ) = c(ē−ak)−τ
c

. Hence, in state s, given investment k the

regulator sets the tax rate τ(k, s) to solve

min
τ≥0

c(ē− ak − e(k, τ))2

2
+

de(k, τ)2

2
+ f(s)e(k, τ).

The solution is given by τ(k, s) = cd(ē−ak)+cf
c+d

, and hence e(k, τ(k, s)) = c(ē−ak)−f(s)
c+d

(note that

e(k, τ(k, s)) = q(k, s)). In the investment stage, the firm chooses investment kDT to solve

min
k≥0

rk +
∑
s∈S

π(s)[
c(ē− ak − e(k, τ(k, s)))2

2
+ τ(k, s)e(k, τ(k, s))].

The solution kDT is given by

kDS =
−r(c + d)2 + 2ac2dē + acd2ē + ac2f

a2cd(2c + d)
.

iii) Comparison of equilibrium costs

Given the equilibrium quantities found above, we have

∆ = rkDS +
∑
s∈S

π(s)[
c

2
{ē− akDS − q(kDS, s)}2 +

d

2
{q(kDS, s)}2 + f(s)q(kDS, s)]

−
[
rkDT +

∑
s∈S

π(s)[
c

2
{ē− akDT − e(kDT , τ(kDT , s))}2

+
d

2
{e(kDT , τ(kDT , s))}2 + f(s)e(kDT , τ(kDT , s))]

]

= [−r +
ac(dē + f)

c + d
− a2cd(kDT + kDS)

2(c + d)
](kDT − kDS).
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In the last equation, the expression inside the square bracket is

−r +
ac(dē + f)

c + d
− a2cd(kDT + kDS)

2(c + d)
=

c(2cr + adf)

2d(2c + d)
> 0.

We have kDT − kDS > 0 by Propositions 2 and 4. Hence, we have ∆ > 0. We conclude that

the expected total cost under taxes is less than the expected total cost under standards.

Proof of Proposition 7

Denote the equilibrium success probability under discretionary taxes by λDT . We will show

that λDT > λ∗.

Given technology (H or L) and tax rate τ , the firm sets emissions to minimize cost,

which occurs where marginal abatement cost equals the tax rate. Denote e(τ,H) and e(τ, L)

as the emissions level chosen by the firm given tax rate τ and technology H and L, respec-

tively.

Given state s and technology H or L, the regulator chooses a tax rate τ(s, H) or

τ(s, L)). Denote e∗(s, H) and e∗(s, L) as the optimal emissions in state (s, H) and (s, L),

respectively. The equilibrium discretionary tax rates are given by

τ(s, H) = De(e
∗(s, H); s), τ(s, L) = De(e

∗(s, L); s) for all s ∈ S.

Given {τ(s, H), τ(s, L)}s∈S, the firm chooses emissions {e∗(s, H), e∗(s, L)}s∈S.

At the investment stage, the firm’s objective function given the regulator’s optimal

discretionary tax rates is

VDT (λ) = G(λ) + λ
∑
s∈S

π(s)[C(e∗(s, L); L) + τ(s, L)e∗(s, L)]

+(1− λ)
∑
s∈S

π(s)[C(e∗(s, H); H) + τ(s, H)e∗(s, H)].

We have V ′′
DT (λ) = G′′(λ) < 0, so VDT is strictly concave in λ. Hence, V ′

DT (λ) = 0 is the

necessary and sufficient condition for the cost minimization. The first-order derivative of
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VDT evaluated at λ∗ is

V ′
DT (λ∗) = G′(λ∗) +

∑
s∈S

π(s)[C(e∗(s, L); L) + τ(s, L)e∗(s, L)]

−
∑
s∈S

π(s)[C(e∗(s, H); H) + τ(s, H)e∗(s, H)].

Adding and subtracting
∑

s∈S π(s)τ(s, H)e∗(s, L), we have

V ′
DT (λ∗) = G′(λ∗) +

∑
s∈S

π(s)[C(e∗(s, L); L) + τ(s, L)e∗(s, L)− τ(s, H)e∗(s, L)]

−
∑
s∈S

π(s)[C(e∗(s, H); H) + τ(s, H)e∗(s, H)− τ(s, H)e∗(s, L)].

Note that τ(s, L) < τ(s, H), and it follows from convexity of D(·; s) that τ(s, H)e∗(s, H)−

τ(s, H)e∗(s, L) > D(e∗(s, H); s)−D(e∗(s, L); s). Therefore

V ′
DT (λ∗) < G′(λ∗) +

∑
s∈S

π(s)[C(e∗(s, L); L)]

−
∑
s∈S

π(s)[C(e∗(s, H); H) + D(e∗(s, H); s)−D(e∗(s, L); s)]

= 0 (13)

where the equality in the last line of (13) follows from the first order condition for optimality

shown in equation (7) in section 3. This result along with the concavity of VDT implies that

the equilibrium effort λDT is larger than the optimal effort λ∗. Therefore, the discretionary

tax scheme fails to achieve the social cost minimum outcome characterized by (5), (6) and

(7).

Proof of Proposition 9

Denote the equilibrium success probability under discretionary standards by λDS. We will

show that λDS < λ∗.

The firm facing emissions standard q will set emissions equal to q. Therefore, given

state s and technology H or L, the regulator chooses an emissions standard q(s, H) = e∗(s, H)
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and q(s, L) = e∗(s, L), where ∗(s, H) and e∗(s, L) are the optimal emissions in state (s, H) and

(s, L), respectively. Then the firm’s problem given the regulator’s equilibrium discretionary

standards is

min
λ≥0

VDS(λ) = G(λ) + λ
∑
s∈S

π(s)[C(e∗(s, L); L)] + (1− λ)
∑
s∈S

π(s)[C(e∗(s, H); H)].

We have V ′′
DS(λ) = G′′(λ) < 0, so VDS is strictly concave in λ. Hence, V ′

DS(λ) = 0 is the

necessary and sufficient condition for the cost minimization. The first-order derivative of

VDS evaluated at λ∗ is

V ′
DS(λ∗) = G′(λ∗) +

∑
s∈S

π(s)[C(e∗(s, L); L)]−
∑
s∈S

π(s)[C(e∗(s, H); H)]

> G′(λ∗) +
∑
s∈S

π(s)[C(e∗(s, L); L)− C(e∗(s, H); H)]

+
∑
s∈S

π(s)[D(e∗(s, L); s)−D(e∗(s, H); s)] (14)

= 0 (15)

where the inequality in (14) follows from D(e∗(s, L); s) < D(e∗(s, H); s), and the equality in

(15) is from the first order condition for optimality shown in equation (7) in section 3. This

implies that the equilibrium effort λDS is smaller than the optimal effort λ∗. Therefore, the

discretionary standard scheme fails to achieve the social cost minimum outcome character-

ized by (5), (6) and (7).

Appendix B: Convexity of the firm’s objective function

Here we discuss the conditions under which the firm’s objective, as a function of investment,

is convex under discretionary policies in the technology adoption model.
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Firm’s objective function under discretionary taxes

As in proposition 2, let e(k, τ) be the cost-minimizing choice of emissions by the firm given

investment k and tax rate τ . Let {(τ(k, s))k≥0}s∈S be the equilibrium discretionary tax rates

by the regulator. Given {(τ(k, s))k≥0}s∈S, the firm solves, in the investment stage,

min
k≥0

VDT (k) = rk +
∑
s∈S

π(s)[C(e(k, s), k) + τ(k, s)e(k, s)].

The first-order derivative is

V ′
DT (k) = r +

∑
s∈S

π(s)[Ce · {
∂e(k, τ(k, s))

∂k
+

∂e(k, τ(k, s))

∂τ
· ∂τ(k, s)

∂k
}+ Ck

+
∂τ(k, s)

∂k
· e(k, τ(k, s)) + τ(k, s) · {∂e(k, τ(k, s))

∂k
+

∂e(k, τ(k, s))

∂τ
· ∂τ(k, s)

∂k
}]

= r +
∑
s∈S

π(s)[Ck +
∂τ(k, s)

∂k
· e(k, s)]

where the second equality follows from equation (8) in the proof of proposition 2. The

second-order derivative is

V ′′
DT (k) =

∑
s∈S

π(s)[Cke · {
∂e(k, τ(k, s))

∂k
+

∂e(k, τ(k, s))

∂τ
· ∂τ(k, s)

∂k
}+ Ckk

+
∂2τ(k, s)

∂k2
· e(k, τ(k, s)) +

∂τ(k, s)

∂k
· {∂e(k, τ(k, s))

∂k
+

∂e(k, τ(k, s))

∂τ
· ∂τ(k, s)

∂k
}]

=
∑
s∈S

π(s)[{Cke +
∂τ(k, s)

∂k
} · {∂e(k, τ(k, s))

∂k
+

∂e(k, τ(k, s))

∂τ
· ∂τ(k, s)

∂k
}+ Ckk

+
∂2τ(k, s)

∂k2
· e(k, τ(k, s))].

From lemma 1, we have

∂τ(k, s)

∂k
= − DeeCek

Cee + Dee

.

From equations (9) and (10) in the proof of Proposition 2, we have

∂e(k, τ(k, s))

∂k
+

∂e(k, τ(k, s))

∂τ
· ∂τ(k, s)

∂k
= −Cek

Cee

+
1

Cee

· DeeCek

Cee + Dee

=
−Cek

Cee + Dee

.

34



Hence,

V ′′
DT (k) =

∑
s∈S

π(s)[{Cke −
DeeCek

Cee + Dee

} · −Cek

Cee + Dee

+ Ckk +
∂2τ(k, s)

∂k2
· e(k, τ(k, s))]

where the terms inside the square brackets are, for all s ∈ S,

{Cke −
DeeCek

Cee + Dee

} · −Cek

Cee + Dee

+ Ckk +
∂2τ(k, s)

∂k2
· e(k, τ(k, s))

= [
CeeCek

Cee + Dee

][− Cek

Cee + Dee

] +
Ckk(Cee + Dee)

2

(Cee + Dee)2
+

∂2τ

∂k2
e(k, τ(k, s))

=
−CeeC

2
ek + Ckk(C

2
ee + 2CeeDee + (Dee)

2)

(Cee + Dee)2
+

∂2τ

∂k2
e(k, τ(k, s))

=
Cee[CeeCkk − C2

ek] + Ckk(2CeeDee + (Dee)
2)

(Cee + Dee)2
+

∂2τ

∂k2
e(k, τ(k, s))

where CeeCkk−C2
ek ≥ 0 since C is convex. Therefore, the first term is positive. In the second

term, we have

∂2τ(k, s)

∂k2
=

∂

∂k
[Dee(e

∗(k, s); s)·∂e∗(k, s)

∂k
] = Deee(e

∗(k, s); s)·[∂e∗(k, s)

∂k
]2+Dee(e; s)·

∂2e∗(k, s)

∂k2
,

which involves the third-order derivatives of C and D. Therefore, the sign of V ′′
DT is indeter-

minate. However, if we assume that the absolute values of these third-order derivatives are

zero or small enough, then V ′′
DT is positive and hence VDT is strictly convex.

Firm’s objective function under discretionary standards

By Lemma 2, the optimal discretionary standard is decreasing in investment k:

∂q(k, s)

∂k
= − Cek(·, ·)

Cee(·, ·) + Dee(·)
< 0.

Given {(q(k, s))k≥0}s∈S, in the investment stage the firm solves

min
k≥0

V (k) = rk +
∑
s∈S

π(s)[C(q(k, s), k)].

The first-order derivative is

V ′
DS(k) = r +

∑
s∈S

π(s)[Ce ·
∂q

∂k
+ Ck].
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The second-order derivative is

V ′′
DS(k) =

∑
s∈S

π(s)[(Cee
∂q

∂k
+ Cek)

∂q

∂k
+ Ce

∂2q

∂k2
+ Cke

∂q

∂k
+ Ckk)].

Arrange the terms inside the square brackets to have, for all s ∈ S,

(Cee
∂q

∂k
+ Cek)

∂q

∂k
+ Ce

∂2q

∂k2
+ Cke

∂q

∂k
+ Ckk)

= (− CeeCek

Cee + Dee

+ Cek)(
−Cek

Cee + Dee

)− C2
ek

Cee + Dee

+ Ckk + Ce
∂2q

∂k2

=
CeeC

2
ek − 2C2

ek(Cee + Dee) + Ckk(Cee + Dee)
2

(Cee + Dee)2
+ Ce

∂2q

∂k2

=
(Cee + 2Dee)(CeeCkk − C2

ek) + CkkD
2
ee

(Cee + Dee)2
+ Ce

∂2q

∂k2

where CeeCkk − C2
ek ≥ 0 since C is convex, and hence the first term is positive. The second

term includes the second-order derivative of q, which involves the third-order derivatives

of C and D. Therefore, the sign of V ′′
DS is indeterminate. However, if we assume that the

absolute values of these third-order derivatives are zero or small enough, then V ′′
DS is positive

and hence VDS is strictly convex.
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