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Abstract 

Using Kansas Farm data from 1973 to 1998, curvature restrictions are imposed on a 

translog cost function.  Using uninformative priors with indicator functions representing 

distribution and inequality constraints, a Markov Chain Monte Carlo Simulation method 

is used to estimate parameters and check curvature at each point. Comparison is made to 

the Cholesky factorization method commonly used with the normalized quadratic 

functional form. 
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     Introduction:      

      Estimating cost functions using flexible functional forms is common in that they offer 

advantages in terms of reducing specification errors, increasing deduction, and obtaining 

price elasticities at a point without imposing stringent restrictions on input elasticities.    

Symmetry, homogeneity and curvature conditions are required for a function to be 

consistent with economic theory.  But violation of curvature properties is one of the 

problems encountered with flexible functional forms.  Satisfying global curvature 

conditions that are consistent with economic theory are extremely important when 

estimating functional forms of cost, profit and production functions.  Further satisfying 

curvature restrictions without sacrificing the flexibility of the functional form is a 

challenging task.  Though, prior studies have dealt with satisfying curvature conditions 

on flexible functional forms (Terrell 1996, Featherstone and Moss 1994, Talpaz et.al 

1989, Gallant and Golub 1984) there are limited studies (Lau 1978, Geweke 1986, 

Griffiths et al. 2000) done to address the problem of imposing global curvature 

conditions without destroying the flexibility properties of the  functional form.    

         Curvature has often been imposed using the Cholesky decomposition method (Lau).  

Though this method satisfies global curvature restrictions for the normalized quadratic 

functional form, it poses problems for the translog functional form.  For the translog 

functional form, imposing curvature restrictions can only be done locally.   In this paper 

we address curvature conditions by employing a Markov chain Monte Carlo (MCMC) 

simulation approach. Using the Metropolis Hastings Algorithm, we estimate a translog 

system of cost and share equations for Kansas Farm data from 1973-1998.  Comparison 
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is also made to the Cholesky Factorization Normalized Quadratic method.  Thus, the 

main objectives of this paper are to: 

 

a)  empirically test the Markov Chain Monte Carlo Simulation Method for imposing  

curvature restrictions on a translog cost function. 

b)  compare estimates from the translog cost function with and without curvature  

restrictions imposed. 

c)  estimate a normalized quadratic cost function with curvature imposed using  the    

Cholesky decomposition approach. 

d)  compare the Cholesky factorization method with the Markov Chain Monte Carlo  

Simulation Method.  

e) compare economic estimates of the normalized quadratic cost function with the 

translog cost function.  

 
         The remainder of the paper is divided into six sections.  Section one discusses the 

normalized quadratic cost function and curvature imposition using the Cholesky 

factorization method.   Section two details the translog cost function used in this paper.  

Section three introduces the Markov chain Monte Carlo Simulation method to impose 

curvature restrictions.  Section four discusses the data sources used in this paper.  Section 

five compares the results obtained under different approaches while section six provides 

concluding comments. 
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1. The Normalized Quadratic Cost Function: 
 

         The normalized quadratic function estimated in this paper takes the following 

general form: 

C*’ = b0+ ∑ ∑∑∑ ∑ ∑∑∑
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where C*’ = C*/Wm and '
iW = WiWm  and Wi are the input prices  while Yi are the output 

quantities.  Using Shephard’s lemma we can obtain the factor demand equations as  

∂C/∂Wi = Xi 

Cross- equation symmetry restrictions are imposed by setting  

bij=bji for all i,j 

and  homogeneity is imposed by normalization.       

         Curvature retrictions on the input side are satisfied if the Hessian matrix of prices is 

negative semi-definite while on the output side curvature restrictions hold if  the Hessian 

matrix of quantities is positive semi-definite.  Curvature restrictions are first checked by 

calculating the eigen values for the Hessian matrix of input prices and output.    

Eigenvalues need to be negative for the matrix of prices to satisfy concavity and positive 

for the matrix of output to satisfy convexity. 

         If curvature restrictions do not hold, curvature is imposed using the Cholesky 

decomposition method.  A negative semi-definite Hessian matrix ensures that appropriate 

curvature restrictions are met on the input side.  We can ensure negative-semidefiniteness 

of the Hessian matrix by letting  

B ≡ -AAT 
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where B represents matrices of the parameters of the system we wish to estimate and A is 

a n*n lower triangular matrix.  Using Cholesky decomposition we reparameterize the 

model and estimate the parameters in A instead of the parameters in B.  This ensures that 

the Hessian matrix  B ≡-AAT  is negative semi-definite. (Featherstone and Moss 1994). A 

similar approach is used to ensure positive semi-definiteness on the output side. 

Own price elasticities are calculated as follows  

Zii = ( ∂Xi / ∂Wi )(Wi /Xi) 

while cross price elasticities are calculated as follows 
 

Zii = ( ∂Xi/Wj  )(Wj /Xi) 

          
 
2. The Translog Cost Function: 
 
         We next estimate the translog cost function without curvature restrictions  

imposed.  Letting  w denote the price of input i and y denote the output j. Thus the 

general form for the translog cost function with n inputs is as follows: 
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ija  ensures that homogeneity of degree one in factor prices is imposed in the 

translog cost function.  Symmetry is imposed by setting aij=aji for all i,j.   The parameters 
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of the translog cost function are estimated as a system of equations which includes the 

log cost function and n-1 share equations.  By applying Shepherds lemma, the n share 

equations in the translog cost function are as follows: 

si (w,q) =ai + yawa iyj

n

j
ij lnln

1
+

=
∑  

                Monotonicity in input prices for the translog cost function requires non-

negative shares.  Concavity restrictions on the input side can be checked by ensuring that 

the Hessian matrix is negative semi-definite.  Alternatively, the Allen partial matrix can 

be used to check whether curvature restrictions hold.  The Allen partial matrix is defined 

as follows: 

Zij /sj 

where Zij is the elasticity and sj is the share equation. 

           If the Allen partial matrix is concave, then the Hessian matrix is also concave.  

Curvature on the output side is checked by ensuring that the Hessian matrix is positive 

semi-definite.  For the translog cost function curvature needs to be checked at each point. 

own price elasticities are calculated as: 

Zii = Bii / si +si -1 

where Zii is the own price elasticity and si is the ith share equation. 

Cross price elasticities are calculated as: 

Zii = Bij / si + sj  

 

           In this paper we estimate a system of  7 share equations and the log cost function.  

The 8th share equation and the resulting parameters are recovered by homogeneity.   
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3. Markov Chain Monte Carlo Simulation Approach (MCMC):  
 
          Due to the highly non-linear nature of the translog cost function, it is necessary to 

check curvature at each point.  We use the Bayesian methodology to impose curvature 

restrictions on the translog cost function.  The Bayesian approach is being increasingly 

used in the recent years.  This method uses uninformative priors with indicator functions 

representing distribution and inequality constraints.  Using a Markov Chain Monte Carlo 

simulation method, parameters are estimated.  Curvature can then be checked at each 

point.  If curvature restrictions hold, the parameter estimates are retained otherwise they 

are discarded and re-sampling is done.  This approach can be extremely useful in 

obtaining reliable elasticity estimates for studies that require the use of flexible functional 

forms.   It is further useful to test the robustness of the estimates within the observed data 

range as well as outside the data range.  

           The Bayesian Approach is based on Bayes Theorem which states that 

f(β,∑|Y,X)∝  L(Y,X|β,∑)p(β,∑) 

where ∝ denotes ‘proportional to’, f(β,∑|Y,X) represents the posterior joint density 

function for β and ∑ given Y and X, L(Y,X| β,∑) is  the likelihood function and p(β,∑) 

the prior density function for β and ∑. 

           Using this approach and assuming that the distribution of residuals is multivariate 

normal, the likelihood function can be written as: 

L(Y,X| β,∑)∝ |∑|-N/2exp[-0.5tr(R∑-1) 

where R denotes the a symmetric matrix and N is the number of observations.  

           In addition, a non-informative prior is also used to permit better comparison of 

maximum likelihood results with Bayesian results irrespective of availability of 
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information on monotonicity and concavity (Griffiths et al. 2000).  Further, using a non-

informative prior allows for a consistent algebraic form of the prior density function.  

Thus, the algebraic form does not alter upon availability of information on monotonicity 

and concavity despite the fact that the region over which the prior density function is 

defined varies.  This also holds for the joint posterior density.  We use the following non-

informative prior: 

p(β,∑) = p(β)p(∑)I(β∈hs) 

where I(.) denotes an indicator function which resumes a value of 1 if the argument holds 

and hs  represents the set of permissible parameter values when information on 

monotonicity and curvature (s = 2) is available and when (s = 1) it is not.  

           Thus, the posterior density assuming non-informative priors can be expressed as 

follows: 

F(β,∑|Y,X) ∝  [|∑|]-(N+I+1)/2 EXP[0.5tr(R*∑-1)]I(β∈hs)  s = 1,2. 

            We use the Metropolis-Hastings Algorithm to do the Bayesian estimation.  This 

method has the advantage of drawing finite samples indirectly from the marginal 

probability density without derivation of the density itself.  This approach allows us to 

impose monotonicity and curvature restrictions at a given set of prices.  The procedure 

for the Metropolis-Hastings algorithm proposed by Griffiths et al. is described below: 

Step 1: Specify an arbitrary starting value k0 which satisfies the constraints of the translog 

cost function. and set the iteration level at i=0. 

Step 2: Use the current value of ki and a symmetric transition density transition density to 

generate the next candidate value in the sequence kc. 
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Step 3: Use the candidate value generated kc to test the monotonicity and curvature 

restrictions imposed. If any of the restrictions are violated then set u(ki,kc) = 0 and go to 

step five. 

Step 4: Estimate  u(ki,kc)=min(g(kc)/g(ki)),1) where g(k) is the kernel of f(k|Y,X). The 

kernel g(k) is acquired by integrating ∑ out of the joint posterior density function. Thus, 

g(k) is as follows (see Judge et al. 2000 for details): 

f(k|Y,X) ∝  |R|-N/2 I (k∈h2) = g(k) 

Step 5: Generate an independent uniform random variable U from the interval [0,1]. 

Step 6: Set ki+1= {kc if U < U(ki,kc) 

Step 7: Set i = i+1 and go back to step 2. 

           This iteration results in a chain k1, k2,…,which has a property that for a large i, 

ki+1 is a sample point from f(k|Y,X).  Thus, f(k|Y,X) can be regarded as the posterior 

joint density for k given Y and X which gives us all required information about k after Y 

and X have been observed from the sample.  Essentially, the sequence ki+1,.. kk+m can be 

regarded as a sample for f(k|Y,X) which satisfies monotonicity and curvature constraints.                           

Curvature restrictions are checked in step 3 by using the maximum eigen value of the 

Hessian matrix evaluated.  We chose starting values of αi = 0.125 (i= 1,….,7) and αij = 0 

for all i≠j.  The starting values were chosen such that they satisfied monotonicity and 

curvature restrictions. The transition density we use q(ki,kc) is arbitrary.  The usual 

procedure is to assume multivariate normal distribution for the transition density which 

has mean ki and a covariance matrix equal to the estimated covariance matrix of the 

restricted SUR estimator.  In order to determine the rate at which the initial candidate 

value is accepted as the next value in the sequence, the covariance matrix is multiplied by 
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a tuning constant h.   This tuning constant was set at h=0.001.  The value of h was chosen 

by trial and error.  We found that a smaller tuning generally raises the acceptance.  With 

the tuning constant set at h= 0.001 we obtained an acceptance rate of approximately 64 

percent.   

           . 

4. Data Sources:      

        Kansas farm data for a period from 1973-1998 is used in this analysis. The data 

comprises of observations for 106 farms over a period of 26 years amounting to 2756 

observations.  In the translog model zero output quantities for livestock were substituted 

with a value of 10 percent of the mean to eliminate missing observations and estimation 

problems when taking the natural logarithm.   There are eight inputs (seed, fertilizer, 

pesticides, seed, energy, labor, land and machinery) and two output quantities for crop 

and livestock production. The normalized quadratic cost function was estimated for the 

entire sample size, i.e. 2756 observations.  The estimation was done in SHAZAM  9.0.  

The translog cost function was estimated for a subset of the sample due to the size of the 

data set and the length of time involved to run the entire data set.  Only 200 observations 

were used in the estimation. This estimation was done in GAUSS 3.2.    

 

5. Results 

         Parameter estimates and  elasticities for the normalized quadratic cost function with 

curvature imposed for a system of eight inputs and two outputs are presented in table 1.               

After imposing curvature all restrictions are satisfied.  Except for the own price 

elasticities for labor and machinery all own price elasticities are inelastic. 
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        The price elasticties and the bootstrapped confidence intervals for the elasticity 

estimates from the Bayesian approach are presented in table 2.   The confidence intervals 

were constructed after the burn in period.  All own price elasticities are inelastic expect 

for the elasticities for the labor and land input. 

         Parameter estimates from the Bayesian approach are presented in table 3.  Of the 

output parameters only γ22 is statistically significant. Of the own price input parameters 

only β22, β33 and  β77 are significant at the 1 percent level.  

                

6. Conclusions: 
 
         A Markov Chain Monte Carlo Simulation was used to impose curvature restrictions 

on a translog cost function.  A normalized quadratic cost function was also estimated and 

curvature restrictions were imposed using the Cholesky factorization method.  Under 

both approaches curvature restrictions were met after imposing curvature.  The own-price 

elasticity estimates were smaller for the normalized quadratic cost function.  Except for 

two all other own price elasticities were inelastic under both the approaches.  All cross 

price elasticities were inelastic for the translog cost function approach while for the 

normalized quadratic cost function expect for two, all other cross price elasticities were 

also inelastic.  Of the 55 parameters estimated using the Bayesian approach 26 were 

significant at the 1 percent level.   
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Table 1: Price Elasticities at Mean for the Normalized Quadratic Cost Function with curvature 
               imposed. 
 SEED FERT CHEM FEED FUEL WAGE RENT MACH 
SEED -0.224118 0.01932235 -0.010715 -0.093368 -0.091567 -0.2570446 0.3411748 0.2424159 
FERT 0.0488438 -0.1969666 0.1081472 0.2450214 -0.101205 -0.2255655 0.2241054 -0.102380 
CHEM -0.010730 0.2067133 -0.320122 -0.230893 0.0059759 0.1670780 -0.039108 0.2210881 
FEED -0.022380 0.1120929 -0.055262 -0.248595 0.0626132 0.1234789 -0.383366 0.4114198 
FUEL -0.061153 -0.1290037 0.0039852 0.1744573 -0.275801 -0.5216861 0.5571043 0.2520977 
WAGE -0.219786 -0.3681126 0.1426508 0.4404802 -0.667912 -1.374704 1.337485 0.7099008 
 RENT 0.0703081 0.08814477 -0.008047 -0.329597 0.1719030 0.3223481 -0.860611 0.5455527 
MACH 0.0474346 -0.03823534 0.0431978 0.3358620 0.0738620 0.1624575 0.5180150 -1.142594 
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 Table 2  Elasticity Estimates for the Translog Model with Bootstrapped 90% Percentile  
               Confidence Intervals by Bayesian Method. 
 Price Elasticities 
 SEED FERT CHEM FEED FUEL WAGE RENT MACH 
SEED -0.956627 0.129004 0.079331 0.166465 0.060682 0.273167 -0.024394 0.264637 
FERT 0.127824 -0.589615 0.018666 0.221481 0.043515 0.015552 -0.15690 -0.165327 
CHEM 0.079907 0.018975 -0.744174 0.105662 -0.082558 -0.007192 0.403942 0.235596 
FEED 0.171593 0.230410 0.108131 -0.905899 0.147298 0.330716 -0.227245 0.166589 
FUEL 0.060648 0.043892 -0.081916 0.142816 -0.680574 0.017341 0.284463 0.214841 
WAGE 0.275672 0.015840 -0.007206 0.323776 0.017510 -1.135494 0.670095 -0.146072 
 RENT -0.023908 -0.015520 0.393047 -0.216068 0.278959 0.650792 -1.059589 -0.030924 
MACH 0.264891 0.167013 0.234120 0.161766 0.215168 -0.144883 -0.031582 -0.869994 

 SEED FERT CHEM FEED FUEL WAGE RENT MACH 
SEED -0.873034 0.234028 0.169424 0.236886 0.161836 0.363469 -0.044980 0.315040 
FERT 0.233444 -0.486349 0.048240 0.253641 0.172457 0.171226 0.247076 0.185062 
CHEM 0.171334 0.048073 -0.685772 0.229992 0.033320 0.043450 0.537439 0.268365 
FEED 0.242064 0.260243 0.225158 -0.801435 0.208938 0.335444 0.167871 0.243274 
FUEL 0.160097 0.169242 0.033006 0.205441 -0.662257 0.171024 0.286307 0.266982 
WAGE 0.378119 0.175654 0.044322 0.337895 0.178244 -0.789256 0.764069 -0.053672 
 RENT -0.044425 0.236511 0.515565 0.161908 0.280454 0.724267 -0.970022 0.271734 
MACH 0.305260 0.188346 0.256982 0.238910 0.262254 -0.050691 0.271889 -0.790628 

 SEED FERT CHEM FEED FUEL WAGE RENT MACH 
SEED -1.151637 0.130613 0.026019 0.103490 0.063144 0.259840 -0.221659 0.205197 
FERT 0.128977 -0.661072 -0.160225 -0.015629 -0.031951 -0.048408 -0.022567 -0.041567 
CHEM 0.026338 -0.162282 -0.845017 0.105547 -0.056209 -0.072312 0.240630 0.145352 
FEED 0.102352 -0.015432 0.104761 -1.137286 0.051420 0.058307 -0.020313 0.074611 
FUEL 0.063269 -0.032158 -0.055832 0.049255 -0.864193 0.015377 0.087518 0.151681 
WAGE 0.268511 -0.049455 -0.074891 0.059364 0.016195 -1.197084 0.371130 -0.337549 
 RENT -0.212764 -0.021693 0.229834 -0.197365 0.085133 0.349765 -1.463842 0.047275 
MACH 0.207045 -0.040506 0.144113 0.070699 0.148341 -0.327453 0.047067 -1.031926 
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Table 3: Parameter Estimates from the Bayesian Approach 
 Parameter Standard Error 

α0 -39.0723* 0.517638 
α1 0.073781* 0.014301 
α2 0.133218* 0.023053 
α3 0.202415* 0.02332 
α4 0.051473 0.041825 
α5 0.126489* 0.017575 
α6 0.177866* 0.015272 
α7 0.129551* 0.03366 
α8 0.020451 0.043209 
α9 -0.36586* 0.170293 
β11 -0.01393 0.010498 
β12 0.007832* 0.003641 
β13 -0.00523 0.005229 
β14 0.004792 0.004361 
β15 -0.00263 0.004015 
β16 0.023855* 0.003826 
β17 -0.03045* 0.006026 
β22 0.036498* 0.006318 
β23 -0.02347* 0.007731 
β24 0.004091 0.012694 
β25 -0.01013 0.008841 
β26 -0.0075 0.008907 
β27 -0.00494 0.010225 
β33 0.014957* 0.006481 
β34 0.003579 0.004464 
β35 -0.01783 0.003302 
β36 -0.01724 0.004316 
β37 0.036297 0.011686 
β44 -0.01419 0.014033 
β45 0.003108 0.005771 
β46 0.009176 0.010852 
β47 -0.0181 0.014619 
β55 0.013297 0.009003 
β56 -0.00592 0.006777 
β57 0.008789 0.007771 
β66 -0.01291 0.014879 
β67     0.051968* 0.014617 
β77 -0.04709* 0.01883 
β18 0.002277 0.001332 
β19 -0.00319 0.001622 
β28 0.000506 0.001223 
β29 -0.00259* 0.00095 
β38 0.001992 0.00115 



 16

Table 3: Parameter Estimates from the Bayesian Approach (con't) 
 Parameter Standard Error 

β39 -0.0031* 0.001085 
β48 -0.01065 0.005757 
β49 0.015919* 0.007717 
β58 -0.0003 0.000995 
β59 0.001496 0.001255 
β68 0.00328 0.003643 
β69 0.004557* 0.002131 
β78 -0.00641* 0.002279 
β79 -0.00876* 0.003187 
γ11 0.001685 0.004459 
γ22 0.062805* 0.027085 
γ12 -0.00434 0.006479 

* indicates significance at the 1 percent level 
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