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Spatial Search in Commercial Fishing:  
A Discrete Choice Dynamic Programming Approach 

 
 

I. Introduction 

In recent years, empirical models of space have become popular in resource economics. 

Many studies now use spatial econometrics to explore unobserved attributes of the resource base 

or unobserved attributes of decision-makers that are spatially autocorrelated. The foundation of 

the spatial econometric approach is the existence of continuous unobserved gradients that are 

economic, physical, biological, or some combination thereof. However, many renewable 

resources do not fit this description. Biological resources are often “patchy” and occur in discrete 

clumps [9]. In a patchy setting, breaks in habitat generate discontinuities such that the spatial 

structure may be very different from the continuous underpinnings of a geospatial model or a 

spatial econometric approach. Thus, a patchy resource warrants a different sort of empirical 

model. For this reason, discrete choice analysis has been a common approach to modeling spatial 

location choice in commercial fisheries [1,2,3,5,6,7,11,12,13,14].  

The results of discrete choice fisheries models are quite consistent across studies but 

leave substantial variation in spatial behavior unexplained. Studies generally find that higher 

expected revenues increase the probability of visiting a site, greater travel distances decrease this 

probability, and site-specific constants have considerable explanatory power. Several authors 

also find evidence of temporally autocorrelated spatial behavior [5,11,12]. This is not surprising 

given that individual harvesters inevitably have heterogeneous information sets about resource 

abundance and quality based on their own experiences. The existing literature focuses on 

expected revenues modeled as common knowledge. To date, no one has estimated a structural 

model that accounts for harvester habit persistence based on private information acquisition, nor 
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has anyone structurally accounted for the apparent unobserved spatial heterogeneity in the 

resource base as indicated by location-specific constants. In this paper, we address both of these 

shortcomings with an explicit model of how individual-specific information sets affect 

participation decisions and location choices. We also allow for active and purposeful information 

gathering by estimating a discrete choice dynamic programming (DCDP) model of spatial 

search.  

Similar approaches have been applied in the marketing literature in which consumers 

sample goods to learn about their characteristics [4]. Consumers have some common knowledge 

or public information about goods but do not know all characteristics of goods with certainty in 

the product “space.” Often consumers must purchase goods to learn more about them and thus 

generate private information. Similarly, resource harvesters have some public information about 

resource abundance and quality but inevitably gain private information about specific locations 

by visiting them. The two problems are isomorphic in that consumers receive some utility from 

consuming goods as they learn about their characteristics, just as harvesters catch some fish as 

they gather information. However, a significant complication exists in renewable resource 

harvesting that is absent in the product marketing context. In particular, spatially explicit 

information about the resource stock and quality decays over time [10].  This decay, which may 

be slow or rapid, is potentially due to migration of organisms, oceanographic factors, and the 

harvest activities of the fleet. Thus, harvesters face an interesting dilemma: is it worth devoting 

effort explicitly to spatial search or are harvesters better off simply incorporating information 

that they gain from whatever locations they would choose anyway? In essence, we are trying to 

uncover whether harvesters are forward-looking about information gathering. More specifically, 

is there evidence that harvesters forego short-run gains to pursue a long-run search strategy?   
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To assess the importance of private information and spatial search strategies, we analyze 

logbook and landings ticket data from the California red sea urchin fishery. This fishery is an 

ideal case study because urchin harvesters are owner-operators whom we observe on a daily 

basis over a long time period (some up to 10 years). Moreover, adult sea urchins occur in patches 

and are sedentary. Thus, private information is not necessarily so short-lived that forward-

looking search is futile.  

To model information sets, we use an updating framework in which expected revenues 

are distributed normally. This parametric assumption for trip revenues is analytically tractable 

and implicitly accounts for abundance and quality-based price effects. At the beginning of the 

sample period, the prior belief for each individual is the public information (backward-looking 

revenues averaged across the entire fleet) in each location. Then in each subsequent period, new 

public information combines with private information to update each harvester’s prior on each 

patch and produce an individual-specific posterior estimate of revenue distributions in each 

location. The posteriors enter into the harvester utility functions, and in turn, affect location 

choices. The estimation strategy follows Provencher and Bishop [8], which applied DCDP to 

recreation behavior. This allows us to consider explicitly the possibility of forward-looking 

search behavior. 

In section II, we develop a dynamic programming model for discrete fishing decisions 

that accounts for learning about resource abundance. In Section III, we discuss the California sea 

urchin fishery background, our unique data set, and the empirical model. Finally, in Section IV 

we discuss our estimation strategy. 
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II. A Model of Fishing Search Behavior 

A.  The information problem 

For now we assume that net revenues associated with a trip to site j are distributed 

normally with mean jµ  and variance 2
jσ .  We assume that the time scale of change in the fishery 

is sufficiently long that the distribution of revenue is constant over the observation period of the 

study.  Suppose a boat does not know the distribution of revenues at site j.  Let S t  denote 

the total trips taken to site j by all boats, up until time t-1, and let r

( 1j − )

j(t-1) denote an associated 

vector of trip revenues (it has dimension ( )1jS t − ), with revenues from the sth trip denoted by 

.  The relevant likelihood function for the mean revenue associated with a trip to site j 

at time t is then, 

( 1jsr t − )
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The relevant maximum likelihood statistics are simply, 
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One might imagine that any boat k uses the statistics in (1.2) in its decision about where to fish; 

each trip adds information about a site, and this additional information is relevant to future trip 
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decisions, and so this information-gathering aspect of a trip makes the decision problem 

dynamic.  Yet if these were the statistics actually used by boats in their calculations of the 

distribution of revenues, the search motive would be quite small so long as is 

reasonably large; each trip influences the estimate of the distribution of revenues to such a small 

degree that the dynamic aspects of the trip decision are slight, and probably undetectable by an 

outside observer.   

( )1jS t −

  It seems reasonable, though, that in evaluating its distribution of revenues associated with 

site j, boat k will modify its evaluation of the distribution of net revenues to reflect private 

information from its past trips to site j.  A useful way to present this modification is via a 

weighting scheme in which boat k differentially weights observations of net revenue from its 

own history of trips to site j and observations of net revenue from trips taken to site j by other 

boats.  Let denote all trips taken by boat k to site j up until time t-1, and let 

denote the total number of trips taken by all other boats to site j up until time t-1.  We 

partition the vector of revenues associated with trips in a similar fashion.  Suppose the boat 

applies the following weighting scheme: 

( 1k
jS t −
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where kω is the weight the boat assigns to the likelihood function associated with its own past 

revenues.  In this case the relevant statistics are (where we drop the time index on revenues to 

reduce the notational clutter):    
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Note that the means used to estimate the variance of net revenues are groupwise means.  Note 

too that the weighting parameter is individual-specific, but one could assert that this parameter is 

the same for all boats. 

B. Illustration of the decision problem 

Now consider the decision problem faced by a boat.  We wish to demonstrate two points 

using a simple two-period, two-site model.  The first is that, for the usual random utility model in 

which revenues enter linearly, only the calculation of mean revenues jr is relevant.1 And the 

second is that the decision problem is dynamic because boats understand that information on 

mean revenues collected today influence expected future returns.   

We consider a boat with three choices: to fish at either site 1 or site 2, or to stay in port.  

Setting the baseline systematic portion of utility associated with staying in port equal to zero, we 

denote the expected utility associated with a trip to site j by the boat on day t as 
                                                 
1 Note that for a repeated choice model such as the one considered here, it seems reasonable to argue that only 
expected net revenues enter the utility function. 
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 ( ) ( )1j j jU x t r tβ= + − , (1.5) 

 

where xj(t) denotes exogenous variables relevant to the day t decision. Note that we have not 

appended the usual variable contemporaneously observed by the boat but unobserved by the 

analyst; at this point we are simply illuminating the essential nature of the search problem.  In the 

last period of our model (period T), the boat merely maximizes current expected utility: 

 ( )( ) ( ) ( ) ( ) ( )1 1 1 2max 0, 1 , 1V T x T r T x T r Tβ β= + − +  r 2 − . (1.6) 

The dynamic decision problem faced by the boat in period T-1 is then,  
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The subscripts on the expectation operator in (1.7) indicate that the expectation is conditional on 

current information held by boat, as embodied in the vectors of sufficient statistics ( 2T )−r  and 

. To grasp the dynamic nature of the problem, suppose that the current (time T-1) 

expected utility of all three choices is zero, and that the site-specific values of x do not change 

over time.  Which option would be preferred?  The answer turns on the effect of a trip on the 

expected value of future returns.  Under the no-trip choice at time T-1, the value of a trip at time 

T is known, and is zero by the assumptions just stated:

(2 2T −s )

                                                

2  

 

 
2 To reduced notational clutter, for the remainder of the discussion we suppress the subscripts indicating that the 
expectation is conditional on the state variables. 
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where to simplify the illustration we assume that the boat uses the statistics in (1.2).  By contrast, 

given the decision to take a trip to site 1 at time T-1, with net revenues denoted by  the 

expected value function at time T is, 

(1 1Tr − )
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Here is the logic behind this expression.  There is a .5 probability that a trip to site 1 in period T 

will generate net revenue lower than the mean net revenues generated from previous trips to site 
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1, 1( 1) 1( 2Tr r T− < − ) .  In this case, the new estimate of mean revenues to site 1 are lower than 

before, 1 1,k T k Tr r −< 1 ,and a repeat trip is not made to site 1 in period T, because the updated 

expected utility from a trip to site 1 is less than zero (recall that by assumption, at time T-1 the 

expected utility of a trip is zero); the expected utility in period T is then zero (which is the 

expected utility from either staying in port or going to site 2).  On the other hand, there is a .5 

probability that the net revenue from a trip to site 1 at time T-1 is greater than the mean of net 

revenues generated from previous trips to site 1.  In this case the expected utility from a trip to 

site 1 at time T is greater than zero, reflecting the updated information about net revenues 

engendered by the trip to site 1 at time T-1.  The increase in the utility is merely the difference 

between the expected net revenues at time T and the expected net revenues at time T-1, 

1k Tr − 1, 1k Tr − ; this difference is positive because net revenue from a trip to site 1 at time T-1 is 

“greater than average”.  To calculate the expected gain from a trip to site 1 at time T, conditional 

on finding that a trip to site 1 at time T-1 yields net revenue greater than expected, we integrate 

the net revenue difference from 1, 1k Tr −  to infinity, weighted by the prior normal probability 

distribution, ( )2
1 1, 1, k Ts− −1,k TN r . 

The upshot is that given current expected utility is the same for staying in port and going 

to site 1, and that exogenous variables x are not changing over time, the boat will choose to take 

a trip to site 1, because there is a positive payoff to learning; in particular, the boat may find that 

it is underestimating the mean net revenues associated with site 1.  A similar situation applies to 

site 2, and it is not difficult to understand how the choice will be made between visiting sites 1 

and 2 at time T-1:  the site with greater variance will be the preferred site, because this is the site 

for which the boat has the most to learn from a trip.  Indeed, from the last two lines of (1.9) it is 
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easy to see why the standard error is included as a state variable: it is necessary in the calculation 

of the expected future gain associated with a current trip.  Moreover, it is not too difficult to 

imagine that if we extend this model to more than two periods, the information updated by a trip 

is not only the mean revenue, but the variance in revenues as well, and it follows that this 

influences the current trip decision.  Nonetheless, this example illustrates that updating the 

estimate of the variance is of second-order importance, and this has implications for developing 

an estimable model of the boat’s decision process, as discussed below.    

In this simple model we have two state variables associated with each site (the mean and 

standard error of net revenues).  If we distinguish the fleet mean and standard error from the 

boat’s private mean and standard error, we end up with four state variables per site, although 

only the boat’s private mean and standard error have implications for what Bellman calls the 

“curse of dimensionality”, because only private variables are affected by the boat’s current trip 

decision (here we assume that the net revenue data for the fleet is sufficiently large that the 

boat’s own data has an imperceptible effect on them, and so fleet state variables are treated as 

exogenous to the decision problem).  Of course, the mean and variance of the boat’s revenues are 

calculated statistics, and so in a practical application the dimensionality of the problem depends 

on the underlying “primitive” state variables –that is, the variables necessary to calculate these 

statistics.  These are (1) the number of trips, (2) the aggregate net revenue across these trips, and 

(3) squared aggregate net revenues.  This suggests that the model is practical only if the choice 

set is small, say 2 or at most 3 sites.  There are two alternatives that would ease the burden of the 

dimensionality problem.   

The first is to abandon the formal structure of the boat’s forecasting problem, and to 

instead include in the site-specific utility function an unobserved state variable that evolves 
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according to a transition equation (to be estimated) affected by the trip decision.  In this approach 

each site is associated with at most a single state variable.  Alternatively, we might capture the 

dynamics with several state variables that enter the utility functions of all sites.  The point here is 

that such a formulation allows us to manage the curse of dimensionality while still accounting 

for decision dynamics, albeit without a clear interpretation of the dynamics. 

The second approach –one that we employ in this paper–is to simply assert that the agent 

knows the variance in revenues.  Insofar as we do not actually observe 2σ , we can represent this 

variable in our modeling as the sample variance  as calculated from the entire sample (i.e., 

from the trips taken by the entire fleet).  In this case the only state variable relevant to the agent 

is the mean revenue –the agent takes trips to learn only about the true mean of net revenues, not 

to learn about the variance of revenues –and every trip taken by the agent reduces the standard 

error around the mean of net revenues (because this variance is ).  Note that in the simple 

two-period example considered above, it is this problem that concerns the boat; the issue of a 

better estimate of the variance itself does not “kick in” until the model reaches three periods, 

which is why we refer to the matter of improving estimates of 

2s

2 / Nσ

2σ  as “second-order”.  In a sense, 

then, this model proposes that the typical fisher accepts that variability of revenues is the same 

for all boats, but searches to determine whether, when it comes to generating revenues from 

patch j, his boat is “better than average”.  It follows of course that a boat may find itself better 

than average in some patches and worse than average in others.     

We now construct the estimable dynamic structural model for such a problem.  The 

boat’s expected utility at time t from a trip to site j is (with a slight change in notation): 

 jt jt jt jtU x rβ ε= + +  (1.10) 
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where the mean net revenue is calculated from the weighting of past trips, as in (1.4), and the 

disturbance term is iid Gumbel distributed.  The boat’s dynamic decision problem is then to 

choose the site (patch) to solve   

 ( ) ( ){ }{ }2
, | , 1 1max ;

j t tt t jt jt jt r t t J
V x r E Vεβ ε δ + +

 = + + + R Nr r σ  (1.11) 

subject to the evolution of means as described above.  The parameter δ  is a discount factor 

which we use in the estimation to test whether anglers are forward-looking; failure to reject the 

hypothesis 0δ =  suggests behavior is static.  The subscript on the expectation operator indicates 

that the expectation of the seasonal value of fishing at time t+1 is taken over the random variable 

ε  and current trip revenues , conditional on the current state of total revenues across all sites, 

R

jr

t and total trips across all sites, Nt.   In particular, the observation of current trip revenues for 

site j affects the estimate of mean revenues tomorrow at site j, , 1j tr + .  For notational convenience, 

we define  

 ( ){ } ( )2 2
, | , 1 1 1; , ,

j t tr t t t t tE V v jε + + +=R N r σ R N σ,  ; (1.12) 

expected future returns depend upon the current trip decision j and the current states of aggregate 

revenues and total trips.   We restate the boat’s problem,  

 ( ) ( ) ( ){ }2
1, max , , ,t t t t t jt jt jt t t tj

V V x r v jβ ε δ += = + + +r R N R N σ   . (1.13) 

 Shifting (1.13) forward one period, and assuming that the disturbance terms are iid Gumbel-

distributed with location parameter equal to zero and scale parameter µ , we have,  

 ( ){ } ( )2 2
1 1 1 , 1 , 1 2 1 1

0

1, ; ln exp , , ,
J

t t t j t j t t t t
j

E V x r v jε µ β δ
µ+ + + + + + + +

=

 
 = + +  

 
∑R N σ R N σ (1.14) 

substituting (1.14) into (1.12) yields, 
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which states that, given we know ( )2t+v ⋅  from the previous stage of the recursion, calculation of 

 is a fairly straightforward affair involving integration over the random variable r( )1tv + ⋅ j, which 

has distribution ( )2
, 1, /j t j jtN r Nσ+ .   

Solution of the dynamic problem represented by (1.13)-(1.15) is the greatest obstacle to 

the estimation problem.  With  known, maximum likelihood estimation of the dynamic 

problem is analogous to that for static multinomial logit models.  The probability that a boat 

visits site k at time t is given by: 

( )tv ⋅

   ( ) ( )
( )

2
, 1 , 1 2 1 1

2
, 1 , 1 2 1 1

0

exp , , ,
Pr | , ; , , ,

exp , , ,

k t k t t t t
t t J

j t j t t t t
j

x r v k
k

x r v j

µ β δ
µ δ

µ β δ

+ + + + +

+ + + + +
=

 + + =
 + + ∑

2 R N σ
R N β σ

R N σ
 (1.16) 

Letting ymt denote the trip decision of boat n on day t, with m=1,…M, the likelihood of the 

sample is  

 ( )ln Pr | , ; , , ,mt mt mt
M T

L y µ δ= ∑∑ 2R N β σ  (1.17) 

Finally, note that we can introduce heterogeneity not only in preferences, but also in forward-

looking behavior using either latent class analysis or mixed logit. 

 

III. Empirical Setting and Data 

 This work draws on a data set that was constructed to trace participation and location 

choice behavior in the northern California red sea urchin fishery. Sea urchins are harvested for 

their roe, which is a delicacy in Japanese cuisine called ‘uni.’ The complete data set tracks the 

daily decisions of about 1000 harvesters over a ten-year period. The data set used in this paper 
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consists of daily observations on individual California sea urchin divers from 1988 to 1990, 

including departing port location, diving location, and revenues. The focus is on the northern 

California fishery, since regulators have shown more concern about its potential collapse than the 

southern California fishery, and as a result, future spatial management in the north is more likely.  

The sea urchin fishery is an ideal setting in which to explore sequences of discrete 

participation and location choices using a dynamic model. As a dive fishery composed mostly of 

owner-operators, fishing equipment and skills are not easily substituted into other fisheries. 

Moreover, there is virtually no variation in observable characteristics because vessels and gear 

are nearly uniform across divers. In this fishery, harvesters make day trips from each of four 

northern California ports to locations offshore in waters up to 60 feet deep. Thus, choice 

occasions are easy to define, avoiding complications of multi-day trips that might occur in other 

fisheries. Connected through a hookah to an air compressor on the vessel, harvesters dive for the 

urchins, scrape them from the bottom using hand-held rakes, collect them in mesh bags, and then 

deliver the urchins to processing facilities at the port of landing. Urchins are processed 

immediately, packaged, and shipped to the Tokyo Central Wholesale Market for sale in the fresh 

market. In earlier work, the data were divided into eleven geographically distinct harvest zones 

or patches [11,12,13,14]. The patches are not of equal size, but instead they reflect spatial breaks 

in harvest activity that suggest natural divisions between patches. With the exception of patch 0 

(the Farallon Islands), all patches are contiguous along the northern California coast, beginning 

in Half Moon Bay and stretching north to the Oregon border.  Thus, the relevant spatial choices 

can be thought of as occurring in one dimension rather than in two. 

 To reduce the state space to a manageable size, we focus on divers fishing from only 

the Fort Bragg port and divide the locations choices into four total patches. Three of these 
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patches are patches from earlier work of Smith and Wilen, specifically the ones closest to Fort 

Bragg. The fourth patch represents all other spatial locations so that the choice set completely 

partitions the set of possible actions. To create a manageable sized data set, we first selected only 

records prior to 1991, which gives us 3 years of data. This cuts down the size of the data set and 

focuses on the period in which we see a lot more mobility. For fleet-wide totals, we include all 

observations in this time period. For individuals, we choose only individuals with at least 20 

dives over the 3-year period. This leaves us with 69 individual divers. A unique new diver index 

(from 1 to 69) combined with a unique open season day index identifies individual-specific 

choice occasions. For each diver, we identify their first fishing observation as their first choice 

occasion. We also exclude choice occasions after their last observation in the full data set. For 

most individuals, this occurs after 1990, so no choice occasions are dropped.  

 Open season days are restricted by partial season closures. In 1989, the season was 

shut down for nine months. In 1990, fishing was not permitted in the month of July. In later 

years, partial season closures were expanded significantly, but we focus on just 1988-90. There 

are a total of #### observations. Of these, 3127 are choice occasions on which a trip occurred. 

That averages out to about 45 trips per person, but there is substantial heterogeneity in 

participation rates. 

 The main focus of our paper is on fishing search behavior and how fishers update 

spatially explicit information on returns. In our model we treat gross fishing revenue as 

stochastic but not independent across time and individuals. Stochastic revenues are driven by 

abundance uncertainty and price uncertainty, the latter of which may be spatially explicit as a 

result of quality differences over space. The other feature of spatially explicit returns is the cost 

of travel. For patches 1-3, the corresponding distances are: 0.18, 0.00, and 0.22 degrees of 
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latitude (there are 60 nautical miles per degree). For patch 4, since this location represents all 

other fishing locations, we compute a trip weighted average travel distance, which is 0.46 

degrees of latitude. These distances (DISTANCE) do not vary over time, so the time index in 

(1.10) can be dropped from xjt. Travel costs are simply a fixed marginal cost of travel multiplied 

by distance. While theoretically these costs could vary across individuals and time, we assume 

that they do not. Thus, we can estimate a single parameter on distance to patch that represents 

marginal cost of travel.  

 The factors that influence the decision to not fish are somewhat different in nature. In 

Section II.B, we assumed that utility from not fishing is simply 0 as a normalization. However, 

this utility varies across time due to market institutions, changing weather conditions, and 

changing economic opportunities outside of fishing. Following Smith [14] and Smith and Wilen 

[13], we use a dummy variable for Friday, Saturday, or Sunday (DWEEKEND) to capture the 

downturn in fishing activity as a result processor closures on Saturdays and Sundays as well as 

the Tokyo Central Wholesale Market closures on Sundays. Also, we use the same weather 

variables: 12-hour daily averages of wave height (WH), wind speed (WS), and wave period 

(WP) measured from a NOAA buoy off the coast of Point Arena. All of these factors increase the 

physical risk of sea urchin diving and, ceteris paribus, increases in them ought to decrease the 

probability of fishing. Unlike previous work with these data, introducing a dynamic framework 

requires an additional assumption about responsiveness to weather. Since we are testing whether 

urchin divers are forward-looking about their fishing decisions, we require that they have some 

forward-looking assessment about the weather. As a first step, we assume that they have perfect 

foresight about the 12-hour averages on wave height, wind speed, and wave period. 
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 With the choice of not fishing, there are a total of five possible choices on each open 

season day (j=1, ... 5). We denote choice-specific constants as αj. Given the independent 

variables that we identify above and the model of revenue updating, following (1.10) the 

empirical specification for expected utility is as follows: 
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where i indexes individuals. For identification, we restrict one of the αj’s to zero. 

 

IV.  Estimation Strategy 

Estimation of the likelihood function (1.17) involves a nested inner algorithm in which a 

stochastic dynamic programming (SDP) algorithm approximates the value function vt for each 

day of the season, and an outer gradient algorithm that searches for the values of { }, , ,µ δ2β σ  

that maximizes the likelihood function.  With vt known for each day of the season, the gradient 

algorithm is routine.  Nonetheless, because an SDP must be solved at each iteration of the 

gradient algorithm, a premium is placed on parsimony in both the specification of the model –in 

particular, the number of parameters in the utility function –and the approximation of the value 

function. 

 Four factors effectively determine the size of the estimation problem: the number of 

parameters to be estimated, the number of fishers in the sample, the number of time periods in 

the SDP problem, and the number of state variables in the SDP problem.  The first three of these 

have an essentially linear effect on the size of the problem.  The fourth has an exponential effect, 

and thus deserves especially close scrutiny in the development of the estimation algorithm.      

 17



 The value function depends on 26 state variables: the five exogenous state variables 

directly entering the utility function; the binary state concerning whether the fishery is closed on 

day t; the fleet-wide standard deviation of revenues associated with patch j on day t (four state 

variables, one for each patch, approximated from the complete data set for the fishery); the fleet-

wide average revenues associated with patch j on day t (four state variables, one for each patch, 

approximated from the complete data set for the fishery); the random component of utility (four 

state variables, one for each patch); the number of trips taken by the boat to patch j (four state 

variables, one for each patch); and total revenues generated by the boat in patch j (four state 

variables, one for each patch).  Fortunately, the first fourteen state variables are not affected by a 

fisher’s trip decision, and therefore can be treated as conditioning variables that do not contribute 

to the dimensionality problem associated with SDP problems (though see below for a discussion 

of a negative implication of this treatment of these variables), and the state variables concerning 

the random component of utility, by virtue of their time independence and assumptions on their 

distributional form, are addressed in the estimation with relatively little computational effort.  

This still leaves eight state variables (which are necessary to calculate average revenues for each 

patch) contributing to a formidable computational challenge.  Four of these state variables –those 

concerning the number of trips to a patch –are integer-valued, and so, insofar as the maximum 

number of trips to any patch in the sample is relatively small, the value function in the dimension 

of these state variables can be calculated exactly.  The other four state variables are continuous, 

and in the dimension of these state variables the value function must be approximated. 

   For the case at hand Chebychev projection methods are the preferred approach to 

approximating the value function in the dimensions of the four continuous state variables (the 

state variables concerning the fisher’s total revenue in each of the four patches).  The advantages 
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of using Chebyshev polynomials to approximate functions are well-known.  Not only do 

Chebyshev polynomials satisfy certain minimax theorems of approximation (theorems concerned 

with whether a polynomial minimizes the maximum approximation error), but coefficients of the 

polynomials are obtained by exceptionally rapid algorithms.   

 The SDP problem is solved via backward recursion, and with regard to the recursion, two 

observations with implications for the estimation strategy deserve comment.  The first is that at 

each stage of the recursion, and for each patch j, the expectation of the value function in the 

previous stage (that is, the expectation of the value function at time t+1) must be taken (see 

equation (1.15)).  This requires numerical quadrature over the distribution of revenues, which 

increases the size of the estimation problem by the number of quadrature points.  Second 

convergence on an infinite-horizon solution is not possible because the value function for any 

day t is implicitly conditioned by exogenous variables such as wave height (WH) and fleet-wide 

mean revenues for patch j.  This means that the SDP recursion proceeds completely from the last 

day of the sample period to the first day, though on the many days when the season is closed the 

decision space is empty and so the algorithm is considerably smaller than indicated by the total 

number of days in the sample.  Moreover, it is clear that the value function does converge to a 

fixed point as the number of trips to each patch increases; intuition suggests, for instance, that 

when the number of trips to all patches is, say, 1000, the value function is essentially a set of 

constants equal in number to the number of patches and independent of the trip decision at time t.  

This strongly suggests that the SDP problem at hand has convergent properties that can be 

exploited in estimation.          
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