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METHODS FOR ANALYSIS OF NATURALISTIC DRIVING DATA  
IN DRIVER BEHAVIOR RESEARCH  

From crash-causation analysis using expert assessment to quantitative assessment 
of the effect of driver behavior on safety using counterfactual simulation  

 
JONAS BÄRGMAN 

Department of Applied Mechanics 
Chalmers University of Technology 

Abstract 

In the last several years, the focus of traffic safety research—especially when performed in 
association with the automotive industry—has shifted from preventing injury during a crash to 
avoiding the crash altogether or mitigating its effects. Pre-crash safety measures include 
intelligent safety systems (e.g., different levels of automated driving), infrastructure design, 
behavior-based safety, and policy-making. Understanding driver behavior is crucial in the 
development and evaluation of such measures. Naturalistic driving data (NDD) can facilitate 
this understanding by providing information about crash causation and contribute to the 
evaluation of pre-crash safety measures and the effects of driver behavior on safety. 
However, NDD’s complexity calls for new and better methods to fully exploit its advantages.  

This thesis, together with the five included papers, addresses several gaps in current 
scientific knowledge by presenting novel methods for analyzing NDD that address multiple 
aspects of the development process for pre-crash safety measures. The chunking method 
(Paper I) helps to identify and overcome common biases in analysis of everyday-driving time-
series data, while the expert-assessment-based crash-causation analysis method (Paper II, 
supported by Paper III) is a novel approach to studying crash causation through the analysis 
of NDD with video. Product and prototype development can be improved by utilizing 
counterfactual simulations, for which the choice of driver behavior model is shown to be 
crucial (Paper IV)—an awareness that was previously lacking. Being able to compare the 
effects of drivers’ specific behaviors (e.g., driver-vehicle interactions or in-vehicle secondary 
tasks) on safety could both speed up development of safety measures and improve vehicle 
designs and design guidelines. Methods to perform such comparisons through the 
combination of counterfactual glance behavior and pre-crash kinematics had been missing 
(but are provided in Paper V). This thesis further improves the evaluation of pre-crash safety 
measures by providing more robust analyses of everyday driving data (Paper I) and by 
demonstrating the importance of good mathematical models of driver behavior in virtual 
evaluation (Paper IV).  

In summary, these new methods fill important research gaps and have the potential to 
improve the design of pre-crash safety measures through the use of NDD. Using NDD can 
augment our understanding of driver behavior and crash causation, important aspects of 
improving traffic safety and fulfilling Sweden’s Vision Zero. 

Keywords: naturalistic driving data, driver behavior analysis, safety measures, ADAS, 
automated driving, safety benefit evaluation, crash causation, counterfactual simulations 
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Scientific contrib.:  A method to extract lead-vehicle distance from forward video was 
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data. 

Scientific contrib.:  This paper demonstrates the importance of the choice of driver model in 
counterfactual simulations. It further shows how glance behavior and 
reaction process models and their parameters can affect the safety 
benefit estimate, allowing counterfactual simulations to benefit (in new 
ways) from detailed naturalistic driving data. 

Paper V Bärgman, J., Lisovskaja, V., Victor, T., Flannagan, C., & Dozza, M. 
(2015). How does glance behavior influence crash and injury risk? A 
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Research gap:  Glance behavior is critical to safe driving, and secondary tasks and in-
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kinematics have been lacking. The research community has also lacked 
knowledge on the (dis)similarities of pre-crash kinematics for crashes 
and near-crashes. 

Scientific contrib.:  This paper presents a novel method to estimate how glance behavior 
affects safety in critical situations, using pre-crash kinematics from 
naturalistic crashes and near-crashes to determine how glance behavior 
may change the nature (from crash to near-crash) and the severity 
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(impact speed and delta-v) of a crash. The paper further demonstrates 
that there are only small differences in the pre-crash kinematics between 
crashes and near-crashes—up until the driver starts to perform an 
evasive maneuver. 

Figure 1 shows the Papers I-V in relation to the context of pre-crash safety measure 
development: 

 

Figure 1: The light blue circles at the center describe Volvo’s development process (the 
‘circle of life’) used at the Volvo Car Group since the 1980s (Jakobsson, Lindman, Svanberg, 
& Carlsson, 2010). Papers I-V are framed around this development process for safety 
systems. An extended version of this figure, with information on the individual papers’ 
contributions to the development process, is also presented in the Discussion (Section 4).  
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Definitions and acronyms used in this thesis 

Actual severity – The actual outcome of an event, for example: the impact speed with 
corresponding injury for crashes, and time-to-collision in near-crashes. 

AIS – Abbreviated injury scale. 

ARIMA – Autoregressive integrated moving average. 

Baseline – a term subsuming both the term controls in epidemiology, and segments 
of everyday driving data in NDD.  

CAN – Controller area network. 

CNDD – Commercially collected NDD, where (a) the origin of the data is a 
commercial entity (company), (b) a main incentive of their collection is 
commercial (making roads safer and saving lives are also important 
incentives), and (c) the deployment of more instrumented (customer) 
vehicles impacts company’s revenue positively (contrary to NDS of 
NFOT, where each new unit incurs additional cost). 

Counterfactual simulations for safety benefit analysis – Mathematical simulations of 
counterfactual time-series data of traffic events (often based on real 
crash kinematics), typically performed both with and without one or 
several ISS (algorithms and virtual actuators) applied. 

Data – Information collected on-road in a naturalistic setting, including quasi-
experimental studies (NFOT), observational studies (NDS), and studies 
using commercially collected NDD.  

Delta-V – The change in velocity of a vehicle during a crash event. 

DVI – Driver-vehicle interface. 

EDR – Event data recorder. “An event data recorder (EDR) is a function or device 
installed in a motor vehicle to record technical information about the 
status and operation of vehicle systems for a very brief period of time 
(i.e., a few seconds) and in very limited circumstances (immediately 
before and during a crash), primarily for the purpose of post-crash 
assessment of vehicle safety system performance” (NHTSA, 2012a, p. 
74145). 

Everyday driving – When drivers go about their everyday lives. Typically recorded in 
NDD.  
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FOT – Field operational test. Typically the same as an NFOT (but commonly misused 
to mean any data collection in real traffic).  

FV – Following vehicle 

GPS – Global positioning system. 

Harm – A metric quantifying the outcome of a crash based on the monetary cost of 
injuries. 

ISS – Intelligent safety systems. The term ISS subsumes all forms of in-vehicle 
technologies that are active before a crash, and that directly or indirectly 
are intended to avoid or reduce the severity of crashes. ISS include 
advance driver assistance systems, active safety systems, cooperative 
systems, and different levels of automated vehicles. 

LV – Lead vehicle 

Naturalistic – in a natural setting, without constraints imposed. 

NDD – Naturalistic driving data. Data collected unobtrusively in drivers’ vehicles. 

NDS – Naturalistic driving study. A study where data is collected unobtrusively in 
drivers’ vehicles as they go about their everyday lives. Typically an NDS 
aims to reveal correlations between traffic events, driver behavior and 
crash causation.  

NFOT – Naturalistic field operational test: A quasi-experimental field study with a 
treatment/control design, aimed at evaluating one or more (safety) 
measures by unobtrusively collecting data during participating drivers’ 
everyday driving. 

NHTSA – (US) National highway traffic safety administration. 

PET – Post-encroachment time.  

Potential severity – The potential outcome of an event: what could have happened 
had something been different. Both crashes and non-crashes have 
potential severities, for example in terms of estimated crash or injury 
risk. 

Pre-crash safety measure – Physical device or rule that aims to reduce the number of 
crashes and injury outcomes in traffic by acting before a crash occurs. 
These include infrastructure design, legislation, policy-making, and 
intelligent safety systems. 
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Prospective safety benefit analysis – analysis which estimates the future benefit of 
safety measures (e.g., ISS) before they have been deployed (e.g., 
systems in development, or prototype systems)—when statistical data 
from on-road crashes are not available. 

Qualitative analysis of crash causation – The use of human experts who utilize 
(consider) all available information for a specific event (e.g., crash or 
near-crash) as a basis for identification of crash causation factors. 

Range – The relative distance between two objects on the road. Typically, the 
distance between a following and a lead vehicle. 

Range-rate – The relative speed between two objects on the road. Typically, the 
relative speed between a following and a lead vehicle. 

Retrospective safety benefit analysis – Analysis estimating the safety benefit for 
safety measures that are already deployed (on market), typically using 
statistical data found in, for example, crash databases or insurance 
data.  

SCE – safety-critical event (SCE). Events in traffic hypothesized to pose an 
increased level of risk of a crash, typically including several levels of 
outcome, such as crashes, near-crashes, and crash-relevant conflicts. 

SHRP2 – The second Strategic Highway Research Program. A large US government 
program (2006-2015) aimed at finding strategic solutions to national 
transportation challenges. A large naturalistic driving study was 
conducted in a subprogram on highway safety.  

SDLP – Standard deviation of lane position. 

Time-series data – Data available at discrete intervals (e.g., 10 Hz) for a segment of 
time (seconds, minutes or entire trips), including: sensor (e.g., 
accelerometer), video collected continuously/automatically, and 
manually annotated video.  

TTC – Time to collision. 
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1 Introduction 

1.1 Background 

Crashes in traffic accounted for over 1.24 million fatalities world-wide in 2010. They 
stand out as the ninth leading cause of death, and the first for men between 15 and 
29 years old (WHO, 2013). 
 
Several studies have shown that driver behavior in the pre-crash phase (before 
impact) is a main contributing factor to traffic crashes. In a comprehensive review of 
US crashes, Treat et al. (1977) concluded: “Thus, conservatively stated, the study 
indicates human errors and deficiencies were the cause in at least 64% of crashes, 
and were the probable cause in about 90-93% of crashes investigated” (p. 28). More 
recent work has focused on identifying the exact nature of the driver behaviors that 
end in crashes (Carney, McGehee, Harland, Weiss, & Raby, 2015; Dunn, Hickman, & 
Hanowski, 2014; Markkula, Engström, Lodin, Bärgman, & Victor, 2016; Victor et al., 
2015). Studies of driver behavior are typically aimed at facilitating safer traffic by 
informing the design of pre-crash safety measures1.  
 
Pre-crash traffic safety measures include infrastructure design (Andersson et al., 
2005; Theeuwes & Godthelp, 1995), driver training (Christie, 2001; McGehee, Raby, 
Carney, Lee, & Reyes, 2007a), legislation and policy-making (Bronrott, 2010; 
NHTSA, 2013, 2016), and intelligent safety systems (Brännström, Sjöberg, & 
Coelingh, 2008; Distner, Bengtsson, Broberg, & Jakobsson, 2009). In this thesis the 
term intelligent safety systems (ISS) for traffic safety subsumes all forms of in-
vehicle technologies that are active before a crash, which directly or indirectly are 
intended to avoid crashes or reduce their severity. ISS include advance driver 
assistance systems, active safety systems, cooperative systems, and different levels 
of automated vehicles.  

1.1.1 Four approaches to studying driver behavior 

A review of the recent literature on traffic safety reveals four fundamentally different, 
but complementary, approaches to the study of driver behavior in traffic and in 
crashes. Each offers useful insight into various aspects of traffic safety—and in 
particular, into the role of driver behavior in crash causation. 
 
The first approach, experimental studies of driver behavior in specific situations, 
typically aims to link driver behavior either directly with crashes (Rizzo, McGehee, 
Dawson, & Anderson, 2001) or with some surrogate measure that is hypothesized to 
correlate with the occurrence of crashes and crash risk (e.g., Muhrer & Vollrath, 
2011; Strayer et al., 2015; Vadeby et al., 2010; Vaux, Ni, Rizzo, Uc, & Andersen, 

                                                 
1 Bold will be used to highlight important terms. 
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2010). This highly controlled approach typically uses driving simulators (e.g., Boyle & 
Lee, 2010; Engström, Johansson, & Östlund, 2005; Wortelen, Baumann, & Lüdtke, 
2013), laboratory settings (e.g., Caird & Hancock, 1994; Hancock, Caird, & Johnson, 
1991), or test-track experiments (e.g., Bärgman, Smith, & Werneke, 2015; Kiefer et 
al., 2003; Summala, Lappi, Pekkanen, Lehtonen, & Hietamäki, 2012). Experimental 
studies require a priori specification of the scenario and the driver behavior to be 
studied (for example, cognitive load, hypothesized to contribute to crashes). This 
approach facilitates the testing of hypothesized causal relationships between specific 
driver behaviors (e.g., glance behaviors) and specific traffic scenarios (e.g., a lead 
vehicle in a highway car-following situation).  
 
The second approach, traditional collection and analysis of in-depth crash 
investigation data, primarily addresses questions related to injury outcome 
(Fagerlind, Martinsson, & Hagström, 2010; Otte, Krettek, Brunner, & Zwipp, 2003; 
Seeck et al., 2009). The portion of these data relevant for pre-crash driver behavior 
research has typically included variables that document vehicle kinematics (e.g., 
speeds and accelerations) and environmental factors (e.g., weather and road 
conditions), together with driver and witness accounts of the event (Paulsson, 2005; 
Sandin & Ljung, 2007; Seeck et al., 2009). The pre-crash kinematics are 
reconstructed from, for example, tire tracks, post-crash positioning of the vehicles, 
and vehicle deformations (Niehoff & Gabler, 2006). The data collected through crash 
investigations can be used in a variety of ways: as input into epidemiological studies 
of crash occurrence and injuries (Kullgren, 2008; Lefler & Gabler, 2004); as a basis 
for simulations of vehicle kinematics in crashes; and as a means to identify crash-
causation factors. The methods may be based on expert assessment (e.g., Dunn et 
al., 2014; Habibovic, Tivesten, Uchida, Bärgman, & Ljung Aust, 2013; Sandin & 
Ljung, 2007; Van Elslande & Fouques, 2007) or different epidemiological methods 
studying why crashes occur (e.g., Carney et al., 2015; Hickman, Hanowski, & 
Bocanegra, 2010; Toth, Radja, Thiriez, & Carra, 2003; Victor et al., 2015). Driver and 
witness accounts, collected through interviews and questionnaires, provide 
information about driver state (e.g., fatigue). However, this approach cannot provide 
an in-depth understanding of actual driver behavior (or the detailed interplay of road 
users) in the few seconds before the crash. 
 
The third approach, drivers’ self-reports leverages the explicit and tacit information 
held by drivers about their driving and behavior, the surrounding traffic, the 
infrastructure, and their vehicle. A wide range of self-report methods have been used 
in traffic safety research. A literature review found questionnaires and interviews to 
be the most common self-report tools for eliciting an understanding of driver behavior 
in the traffic context. Questionnaires are attractive because they enable the collection 
of a large sample of data relatively quickly. Two examples are the Manchester 
Driving Behavior Questionnaire, DBQ (Parker, Reason, Manstead, & Stradling, 1995; 
Reason, Manstead, Stradling, Baxter, & Campbell, 1990), and the Driving Style 
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Questionnaire, DCQ (French, West, Elander, & Wilding, 1993). Both consist of a 
series of questions (e.g., How often do you exceed the posted speed limit?) that 
address aspects of driver behavior (specifically, driving style). The format is forced-
choice, with three to five ranges as potential answers, permitting aggregation of the 
data across respondents and the subsequent use of non-parametric statistical 
analyses. (For a review on self-reporting tools for research on driving styles, see the 
informative work by Sagberg, Selpi, Bianchi Piccinini, and Engström (2015).) In 
contrast, interviews enable the researcher to dig more deeply into a driver’s opinions 
and beliefs. Because they are typically conducted one-on-one, the data can be quite 
rich and revealing. Given the highly personalized, subjective nature of interview data, 
they must be treated like observational data rather than experimental data. Examples 
of the use of interviews include the qualitative descriptions of driving habits by 
Tillmann and Hobbs (1949) based on detailed interviews of taxi drivers, and the 
research by Houtenbos (2008) into drivers’ views on the expectations and 
interactions between road users in intersection negotiation. In addition to 
questionnaires and interviews, self-reports have been a fundamental component in 
the evaluation of driver acceptance of, and trust in, ISS (Pettersson & Karlsson, 
2015; Seppelt, 2009).  
 
Finally, in the last several years a fourth approach has been developed. The 
collection and analysis of naturalistic driving data (NDD) allow the observation and 
understanding of driver behavior in real traffic (Bronrott, 2010; Carney et al., 2015; 
Dozza, 2013; Fancher et al., 1998; Hallmark et al., 2011; Hickman et al., 2010; 
LeBlanc et al., 2006; Neale, Dingus, Klauer, Sudweeks, & Goodman, 2005; Othman, 
Thomson, & Lannér, 2012; Peng, Boyle, & Hallmark, 2013; Sayer et al., 2010; 
Tivesten & Dozza, 2014a, 2014b; Uchida, Kawakoshi, Tagawa, & Mochida, 2010; 
Victor et al., 2010; Victor et al., 2015). The data are unobtrusively acquired, and 
typically include information about the driver, the vehicle, and the driving environment 
(including other road users). They are typically collected from a variety of sources, 
such as accelerometers, GPS, radar, and video of the driver, the vehicle, and the 
surrounding traffic environment. Information this detailed (i.e., dynamic, context-
dependent time-series data), was not available until recently. Some of this data may 
be available from the vehicle’s electronic bus system, for example a Controller Area 
Network (CAN; ISO_11898, 2003).  

1.1.2 Naturalistic driving data (NDD) 

Until recently there have been only two sources of NDD, naturalistic field 
operational tests (NFOT) and naturalistic driving studies (NDS). A third source of 
NDD has recently become available to some researchers: commercially collected 
NDD. These three sources are described in turn. 
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Naturalistic Field Operational Tests (NFOT) 
NFOT are projects that evaluate some form of pre-crash safety measure, for 
example, one or more ISS (Bao, LeBlanc, Sayer, & Flannagan, 2012; Benmimoun, 
Ljung Aust, Faber, & Saint Pierre, 2011; Bezzina & Sayer, 2015; Carsten et al., 2008; 
Dozza et al., 2010; Fancher et al., 1998; LeBlanc et al., 2006; Ljung Aust, Regan, & 
Benmimoun, 2011; Mononen et al., 2012; Sayer et al., 2011; Sayer et al., 2010; Viti, 
Hoogendoorn, Alkim, & Bootsma, 2008). These studies are often empirically rigorous, 
with both treatment and baseline (control) phases to enable statistical inference. 
Many NFOT include sections with descriptive statistics of normal everyday driving 
(LeBlanc et al., 2006; Sayer et al., 2010). As discussed in Ljung Aust et al. (2011), 
one drawback of an NFOT of production ISS is that ISS are not always available to 
consumers as individual products. (For example, forward-collision warning is bundled 
with adaptive cruise control.) As a result, disentangling the effects of the different 
systems on safety is not always easy. On the other hand, an advantage of NFOT is 
that it is probably the method with the highest ecological validity capable of 
evaluating early-to-market and pre-production ISS (Carsten et al., 2008; Ljung Aust 
et al., 2011; Sayer et al., 2011). This validity is achieved by performing the evaluation 
through the study of natural behavior in the real world—on real roads, in everyday 
driving, using the actual system to be evaluated—basically, the definition of a method 
with high ecological validity (Schmuckler, 2001). Generalizability is, however, still 
typically limited by, for example, the selection of study participants (Dozza et al., 
2010), and the common use of surrogate (proxy) measures of safety (e.g., 
studying near-crashes instead of crashes; this consideration is addressed Section 
4.1).  
 
Ambiguity in the literature makes it appropriate to take a stand on issues of NFOT 
nomenclature. First, the term Field Operational Test (FOT) has been used by some 
authors to refer to any study conducted on actual roads in traffic (Festag, Le, & 
Goleva, 2011). In this thesis the acronym NFOT (with the prefix N) is reserved for 
studies with a treatment/control design which are aimed at evaluating one or more 
(safety) measures by unobtrusively collecting data during participating drivers’ 
everyday driving. Even the term naturalistic is not always used in conventional ways. 
It is, for example, not obvious what a “naturalistic driving simulator” (Daza et al., 
2011, p. 1199) is. In this thesis naturalistic means in a natural setting, without 
constraints imposed, in contrast to controlled experimental conditions. 
 
Furthermore, the term baseline often appears in literature on NFOT studies as a 
synonym for an experimental treatment that epidemiology typically calls control 
(Rothman, 2012). However, NFOT baselines are also used in the descriptive analysis 
(statistics) of drivers’ everyday driving, without a comparison to a treatment phase 
(Othman, Thomson, & Lannér, 2014; Sayer, Devonshire, & Flannagan, 2007; 
Tivesten & Dozza, 2015). The NDS (Naturalistic Driving Studies) literature typically 
assigns both meanings to the term baseline, so this thesis will also use baseline to 
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denote both the epidemiological controls and the segments of everyday driving data. 
In this thesis data refers to information collected on-road in a naturalistic setting, 
including quasi-experimental studies (NFOT), observational studies (NDS), and 
studies using commercially collected NDD.  
 
Naturalistic Driving Studies (NDS) 
One of the main differences between NDS and NFOT studies is that the latter 
typically reveal correlations between traffic events, driver behavior and crash 
causation (Blatt et al., 2015; Neale et al., 2005; Utesch et al., 2014), rather than 
evaluating a specific safety countermeasure (e.g., ISS). Unlike NFOT, NDS are 
strictly observational (Carsten, Kircher, & Jamson, 2013); they do not contrast 
treatment and baseline conditions as part of the study design. Two of the most 
common foci of NDS are normal everyday driving (Neale et al., 2005; Othman et al., 
2014; Sayer, Mefford, & Huang, 2003; Victor et al., 2010), when drivers go about 
their everyday lives (Carsten et al., 2013), and safety-critical events (SCE). The 
latter are hypothesized to pose an increased level of crash or injury risk (typically 
used as crash surrogates; Dozza & González, 2013; Paper II; Paper III; Fancher et 
al., 1998; LeBlanc et al., 2006; Liang , Lee, & Yekhshatyan, 2012; Victor et al., 2010), 
and typically include several levels of outcomes such as crashes, near-crashes, and 
crash-relevant conflicts (SHRP2, 2012). Studies often analyze both everyday driving 
and SCE—at least, the data typically allow for the analysis of both. 
 
As Victor et al. (2010) noted, it is possible to base an observational study on 
conveniently acquired data from an NFOT. Not only can an NFOT baseline be seen 
as an NDS, but the treatment phase of an NFOT can be used for research unrelated 
to the systems the NFOT aims to evaluate (Gordon et al., 2010; LeBlanc, Sivak, & 
Bogard, 2010; Sayer et al., 2007; Sayer et al., 2003; Tivesten & Dozza, 2015). 
However, care must then be taken to address the potentially confounding effects of, 
for example, prototype ISS, or interaction effects among different ISS (Carsten et al., 
2013; Ljung Aust et al., 2011).  
 
It is not strictly necessary to distinguish between NDS and NFOT in this thesis or the 
methods presented in the included papers. However, the possibility of using NFOT 
for the study of driver behavior (unrelated to the original intent of the NFOT) may not 
be obvious and warrants mention because it represents a potentially valuable 
additional data source. For convenience, NDS will be the general term for both NDS 
and NFOT, unless explicitly stated otherwise. 
 
Commercially collected NDD 
Finally, the third source, commercially collected NDD (CNDD), is not typically 
intended to answer a set of research questions, but to generate a profit while 
improving road safety (Lytx, 2016; SmartDrive, 2016). In this thesis the term 
commercial NDD is used when (a) the origin of the data is a commercial entity 
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(company), (b) their collection is being driven by commercial incentives (however, 
typically, making roads safer and saving lives are important complementary 
incentives), and (c) the deployment of additional instrumented (customer) vehicles 
(collecting the NDD) has a positive impact on the company’s revenue. (In contrast, 
each additional vehicle increases the cost of NDS or NFOT data collection.)  
 
Only a few studies have used commercial NDD to date (Carney et al., 2015; Hickman 
& Hanowski, 2010; Hickman et al., 2010; Lich & Georgi, 2011; McGehee, Carney, 
Raby, Lee, & Reyes, 2007b; McGehee, Carney, Raby, Lee, & Reyes, 2007c; 
McGehee & Carsten, 2010; Soccolich & Hickman, 2014). The differences between 
commercially collected NDD and NDD collected specifically for research are 
discussed in Section 4.3. 
 
All three sources of NDD, with their high ecological validity, complement traditional 
experimental studies (Carsten et al., 2013). Additionally, these sources typically 
provide more detailed records of the driver, the vehicle, and the environment (both in 
everyday driving and in the few seconds before a crash or other safety-critical event) 
than are available from, for example, in-depth crash investigations.  

1.1.3 The variety of data in NDD 

Video, an important component in most NDD research, is used to understand the 
driving behavior of individual drivers, as well as the interaction between drivers and 
their surroundings. Data without video are beyond the scope of this thesis, although 
the method presented in Paper I could also be applied to NDD without video. For 
site-based data collection, the video is usually collected from cameras on nearby 
road infrastructure or buildings (Laureshyn, 2010; Smith, Thome, Blåberg, & 
Bärgman, 2009), or from mobile towers put in place specifically for the study (Gordon 
et al., 2012). However, site-based NDD are beyond the scope of this thesis. In this 
thesis, the term ‘NDD’ refers to in-vehicle data collected unobtrusively. 
 
Most NDD with video include at least one camera facing forward toward the road 
ahead and one focused on the driver’s face and/or body to identify actions and 
reactions. However, in some NDD only the forward video is available (Lich & Georgi, 
2011; Lich et al., 2012). Additional camera views may include (a) a close-up of the 
driver’s face to capture eyes and facial expressions, (b) a view of the driver’s feet to 
capture brake readiness and reaction times, (c) a rear-facing camera to study the 
effect of trailing vehicles on driver behavior, and (d) side views to capture road users’ 
actions in complex environments such as intersections (Figure 2). The method 
presented in Paper III can be applied to NDD with forward video only, but the 
methods in Papers II and V require video or some other means of monitoring of 
drivers’ visual attention (e.g. eye-trackers; Holmqvist et al., 2011), as well as 
monitoring of the surrounding traffic scene with, for example, radar (Valldorf & 
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Gessner, 2003). The counterfactual simulation approach of Paper IV can use vehicle 
kinematics from NDD without video, but then driver-monitoring data from other 
sources is needed for full utilization. In addition to video, NDD often include records 
from the vehicle’s internal communication bus (CAN; ISO_11898, 2003). This 
information may include, but is not limited to, the list shown in Figure 3.  
 

 
 
Figure 2: Example of video configuration in NDS. From production system units in the UDrive 
project (Barnard, Utesch, van Nes, Eenink, & Baumann, 2015). Note that the driver’s face is 
blurred to ensure privacy. Printed with permission from the UDrive project and the 
experimenter in the video.  
 
The availability of the various types of CAN data varies appreciably between NDD 
sets. Practically speaking, data that include proprietary ISS or derivatives thereof are 
usually available only to the vehicle manufacturer, the suppliers of the ISS, and 
trusted research organizations (Victor et al., 2010), since all manufacturers want to 
avoid reverse engineering and other commercial intellectual property leakage. The 
methods in all papers in this thesis would benefit from high-quality CAN data (e.g., 
high-quality speed data, or even range and range rate from forward radars). Although 
CAN data was used in Papers I, IV and V, they were high-quality only for Paper I. 
 
The measures available on CAN are applicable to a broad range of NDD studies 
which consider the role of driver behavior in critical events. Some examples of 
information collected, along with what it is used for, include: accelerometers and 
brake pedal position to study pre-crash behaviors; information on light condition, 
windshield wipers, and ambient temperature as potential factors contributing to 
crashes (indicating visibility, precipitation, and road friction); ISS information for 
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studying driver interaction with such systems and the surrounding traffic (Faber et al., 
2011; LeBlanc et al., 2006).  
 

 
Figure 3: Examples of data that can be available from CAN in NDD.  
 
Additional in- or on-vehicle sensors can be added which are not part of the 
(individual) CAN configuration, in order to provide specific information about key 
features of the interaction between the driver, vehicle, and environment—for 
example: (a) radar for range and range rate with respect to other road users; (b) 
accelerometers and yaw rate sensors to study drivers’ braking, acceleration and 
steering behavior; (c) GPS to capture the vehicle’s position; and (d) camera-based 
traffic sign recognition. Eye-trackers have also been used in NDD collection, but it 
has proven difficult to achieve sufficient quality in the capture of driver’s gaze 
direction in naturalistic settings (Victor et al., 2010; Victor et al., 2015). Although CAN 
may include radar, researchers often obtain range and range-rate data from add-on 
sensors (e.g., radar), because vehicle manufacturers (or their suppliers) may not be 
willing to share the CAN data from radar (Blatt et al., 2015). If high-quality range and 
range rate data to the lead vehicle are unavailable, applying the methods of Papers 
II, IV and V is more complicated. Fortunately, Paper III provides a method for 
addressing the lack of such data. The application of the method in Paper I often 
requires data already available on CAN; otherwise, external sensors must be added 
to collect the data.  
 
The data from commercial NDD (see Papers II and III, and Section 4.3) are usually 
limited to one or two video cameras (one forward and one on the driver), two or three 
accelerometers, and GPS (Lytx, 2016; SmartDrive, 2016).  
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It is also possible to collect NDD without video, capturing only the vehicle speed and 
position (e.g., GPS; Mononen et al., 2012)—as is the case with traditional event data 
recorder (EDR) data, which are included in the NDD category. According to the US 
national highway traffic safety administration (NHTSA), “An event data recorder 
(EDR) is a function or device installed in a motor vehicle to record technical 
information about the status and operation of vehicle systems for a very brief period 
of time (i.e., a few seconds) and in very limited circumstances (immediately before 
and during a crash), primarily for the purpose of post-crash assessment of vehicle 
safety system performance.” (NHTSA, 2012a, p. 74145). EDR data can be used as 
input when applying the methods presented in Papers IV and V. 
 
In NDS and NFOT, questionnaires (an example of a self-report tool) are often 
administered to participating drivers to complement in-vehicle sensor data. In addition 
to standard questionnaires collecting background information about the drivers (e.g., 
demographics), commonly used questionnaires include (a) the Driving Style 
Questionnaire, DSQ (French et al., 1993) and (b) the Manchester Driving Behavior 
Questionnaire, DBQ (Parker et al., 1995; Reason et al., 1990). They are not explicitly 
a part of the methods in Papers I-V.  
  
Data from external sources can also be used to complement NDD; for example, map 
data (e.g., road type and number of lanes) can be obtained via map matching 
through GPS positions or comparison with crash databases with respect to location 
(LeBlanc et al., 2006; Victor et al., 2010). Applications of the method in Paper I in 
particular are especially likely to utilize such data. 
 
Having such a plethora of objective data can certainly be useful for traffic safety 
research. However, appropriate methods for NDD analysis are needed. In their 
review of two major categories of on-road studies for traffic safety research 
(controlled on-road experiments and field operational/naturalistic driving studies; see 
Section 1.1.1), Carsten et al. (2013) assess these methods’ benefits, drawbacks and 
complementary nature. In discussing NDD, they conclude: “Even though the increase 
in information density is promising, it is necessary to put effort into developing 
suitable methods, both for data extraction and data analysis.” (Carsten et al., 2013, p. 
172). 
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2 Methods for analyzing NDD 

2.1 Analysis of everyday driving 

Most time spent driving is uneventful from a safety perspective (critical events are 
sparse). Most drivers quickly learn to adapt to the vehicle kinematics, other road 
users, and the environment in order to travel safely and comfortably. Understanding 
everyday driving is as important for the development of all types of ISS as it is for 
other safety measures (Lee, 2008).  
 
Everyday-driving NDD consist of electronic records created while drivers of 
instrumented vehicles go about their everyday lives. There are two research areas 
that warrant special attention in the analysis of everyday-driving NDD. First, the data 
can be analyzed to quantify driving in a variety of ways, including (a) establishing 
distributions of driver performance metrics (LeBlanc et al., 2006; Peng et al., 
2013; Sayer et al., 2007), (b) categorizing drivers’ behaviors into different driving 
styles (Fancher et al., 1998; Moeschlin, 2007; Sagberg et al., 2015; Yurtsever, 
Miyajima, Selpi, & Takeda, 2015), and (c) identifying risk factors in everyday driving 
(Barnard et al., 2015; Stutts et al., 2005). Second, everyday-driving NDD are 
commonly used when evaluating the benefit of in-vehicle ISS in NFOT, by comparing 
performance metrics from (between): the baseline/control condition when the ISS is 
inactive and/or not available to the driver, and the treatment condition when it is 
available (Bao et al., 2012; LeBlanc, Bao, Sayer, & Bogard, 2013; LeBlanc et al., 
2006; Sayer, Mefford, Shirkey, & Lantz, 2005b). NFOT is often used to address both 
of the research areas. For example, studies using NFOT typically include both 
analyses of driving styles and estimations of safety benefits (Fancher et al., 1998; 
LeBlanc et al., 2006). In both of these research areas, result stability can be 
improved by checking for autocorrelation and calculating the performance metrics in 
a way that minimizes bias. Paper I seeks to do just this.  
 
Strategies for the collection of NDD vary from continuous to the selective collection of 
short segments. The former retains data from the time the vehicle is started until it is 
turned off. The latter applies some sampling criteria, such as the acquisition of 
random segments (e.g. 20 s) of in-vehicle data (Aksan et al., 2013), or the acquisition 
of data within a fixed distance (e.g. 50 m) of a specific intersection or curve (Gordon 
et al., 2012; Smith et al., 2009). Both collection strategies are interchangeable for 
many types of analyses, but some analyses are intrinsically impossible with selective 
(short segment) collection (e.g., analysis of driver behavior adaptation as a function 
of context, from start to completion of secondary tasks; Tivesten & Dozza, 2014a). In 
the early years of NDD collection, data storage capacity was an issue, so the large 
storage requirements of continuously collected data were a disadvantage. However, 
with the technological advances in the last decades, this is much less of a limitation 
(Victor et al., 2010). Today the cost of installation and equipment is typically the 
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limiting factor, and not storage space. Thus if a vehicle is instrumented for NDD 
collection, the data is typically collected continuously (Sayer et al., 2008; TRB, 2014).  
 
Depending on the everyday driving research area and the strategy for NDD 
collection, different issues exist in the data analysis. However, basically all analyses 
share the issue of (some) bias. For example, when analyzing everyday-driving NDD 
(as well as the equivalent in controlled driving-simulator or on-road studies), it is 
common to apply some statistic (e.g., standard deviation) to segments of data—one 
example being the calculation of standard deviation of lane position (SDLP; Green, 
Cullinane, Zylstra, & Smith, 2004). Depending on the segment selection and how 
sets of segments are aggregated (e.g., means across segments), biases can be 
introduced. Such biases include segment-size bias and autocorrelation bias. 
Segment-size bias can occur when a statistic sensitive to segment size is applied to 
segments of unequal size, and aggregation is performed across the segments (e.g., 
mean of the calculated standard deviations (Paper I, and indirectly described in work 
by Östlund et al. (2004)). Similarly, autocorrelation bias is introduced when samples 
that are assumed to be independent (e.g., as a prerequisite for a specific statistical 
analysis) are not actually independent (Box, Jenkins, Reinsel, & Ljung, 2016; Sayer, 
Devonshire, & Flannagan, 2005a; Paper I). For example, a car’s speed on a highway 
in one instance is highly correlated with its speed in the next few hundred 
milliseconds, or even the coming seconds and minutes. Few studies acknowledge 
and address these biases (e.g., Peng et al., 2013; Sayer et al., 2005a; Östlund et al., 
2004). Paper I provides a method to address size bias and highlights the importance 
of controlling for autocorrelation.  

2.2 Understanding crash causation 

There are two primary approaches in the literature that seek to establish causation 
from observational data. The first is the qualitative expert assessment of 
observations. The second applies statistical methods such as descriptive statistics, 
odds ratios, logistic regressions, and induced exposure to the observations, and is 
typically followed by scientific reasoning on crash causation. As both approaches 
rely on observational data, neither can appeal to the tradition of controlled 
experimentation (truly randomized, controlled experiments) to claim causation. The 
issue of inferring causation based on NDD (observational data) is the topic of Section 
4.2.  
 
The main difference between (a) qualitative expert assessment and (b) statistical 
approaches to studying crash causation is that, in the former, experts assess the 
available information subjectively, identifying causal factors according to some pre-
defined process; in the latter, statistical methods are applied to the data at hand, 
without explicit (subjective) expert assessment. Expert-assessment-based studies 
typically involve at least one expert in traffic safety who performs the analysis of a set 
of crashes (or, in some cases, near-crashes;Habibovic et al., 2013). Causation is 
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often studied by organizing causal (or, as others may phrase it depending on their 
view of causation, ‘potentially contributing factors’; see Section 4.2 for a discussion 
on causation) factors into causal chains or some other tree or chain structure 
(Chang & Wang, 2006; Elvik, 2003; Paper II; Habibovic et al., 2013; Otte, Pund, & 
Jänsch, 2009; Sandin & Ljung, 2007; Warner & Sandin, 2010).  
 
To date, NDD is seldom used as a basis for expert-assessment crash-causation 
studies. Notable exceptions are Paper II of this thesis, as well as the work by 
Habibovic et al. (2013) and Dunn et al. (2014). The Dunn report documented an 
expert-assessment method for crash causation that aimed “to investigate the crash 
trifecta concept to determine if the convergence of multiple elements, rather than a 
single, unitary critical reason, has greater value in explaining the complexities of 
crash genesis” (p. i). These are believed to be the only three expert-assessment-
based crash-causation studies to date which perform a detailed analysis of NDD, 
including event video—and only Paper II has been applied to commercial NDD.  
 
The second approach to studying crash causation—using direct statistical methods 
instead of expert assessment—can be further subdivided into studies that use (1) 
descriptive statistics only, when no controls are available with which to contrast the 
crashes or other SCE (Carney et al., 2015); or (2) inferential statistics to establish 
an association between specific factors and risk (e.g. when controls are available 
with which the crashes or other SCE can be contrasted; Hallmark et al., 2015; Klauer 
et al., 2014; Victor et al., 2015). Many studies in this second category make 
inferences about causation based on the established associations and scientific 
reasoning. An example of one such method is induced exposure (Hautzinger, 
Pastor, Pfeiffer, & Schmidt, 2007; Lardelli-Claret et al., 2005) which does not use 
controls in the traditional sense. Instead, some variable that is assumed to be 
insensitive to what is being studied is used to manage exposure. For example, 
vehicles/drivers that are categorized as not-at-fault in crashes are used as the 
controls in a case-control like manner, with the at-fault vehicle/drivers under study as 
the cases (Lardelli-Claret et al., 2005).  
 
It is important to note, however, that all the analysis methods described in this section 
have the same basis—their data are observational, so hidden (and uncontrolled) 
factors may be confounding the results (Carsten et al., 2013; Rothman, 2012). For 
example, talking on the phone while driving has, in studies of NDD (Fitch, Hanowski, 
& Guo, 2014; Klauer et al., 2014), not been shown to have adverse effects on safety 
in a rear-end crash scenario. Possibly even more surprisingly, NDD studies have 
even indicated protective effects of talking on the phone in this scenario (Hickman et 
al., 2010; Victor et al., 2015). Some researchers have questioned these results, using 
arguments such as: “[I]t could be possible that drivers only use their telephone in low-
risk situations. There might also be an intermediate process, in the sense that drivers 
who use a mobile phone are aware that they need to exert extra effort, and thus, they 
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even overcompensate by being extra attentive.” (Carsten et al., 2013, p. 167; see 
also Strayer & Cooper, 2015). This driver adaptation could, potentially, be 
confounding results. The implications of studies indicating non-risky, or even 
protective, effects of some behaviors when they are genuinely risky could be 
devastating to, for example, policy making. However, some researchers argue that it 
may be vice versa: that established methods (e.g., the way driver reactions are 
quantified, Markkula et al., 2016) and/or concepts of cognitive load (highly relevant in 
phone talking) may in fact be incomplete (Engström, Markkula, Victor, & Merat, 
2016b), rather than the NDD studies being erroneous.  
 
Another important consideration when seeking to understand crash causation is 
whether near-crashes (or other non-crash events) should be used as surrogates for 
crashes in the analysis. Because crashes are rare, the focus of crash-causation 
research in general (as well as, e.g., in safety benefit evaluations of ISS through 
NFOT), has often been on using crash surrogates, such as near-crashes, instead, in 
order to have more data for analysis. The logic to this approach is a hypothesized 
relationship between non-crashes and crashes. Traffic-conflict theory research 
(Hydén, 1987; Migletz, Glauz, & Bauer, 1985; Svensson, 1992; Svensson, 1998) and 
the following studies based on NDD (Guo & Fang, 2013; Paper V; Guo, Klauer, 
McGill, & Dingus, 2010; Wu & Jovanis, 2012) support the existence of this 
relationship.  
 
There are different ways to define crash surrogates (which include near-crashes) 
used in crash-causation analysis. As one example, classic conflict-theory researchers 
primarily classify non-crash events based on human estimates of time-to-accident 
(Svensson, 1998): “Time-to-Accident is the time that remains to an accident from the 
moment one of the road users takes evasive action calculated assuming that they 
otherwise had continued with unchanged speeds and directions” (p. i). In contrast, a 
second, different definition of crash surrogates is used in most NDS (Klauer, Perez, & 
MacClaggerty, 2011; SHRP2, 2012; Utesch et al., 2014). They typically use a two-
stage process to extract safety-critical events (SCE; Utesch et al., 2014)—a term 
commonly used in NDS literature to describe crash surrogates. The first stage is 
automated identification of potential conflicts (SCE candidates) using algorithms 
applied to sensor data (i.e., algorithms that identify deceleration, time-to-collision, or 
time-to-lane-crossing), and the second is a visual review of videos of the situation, 
performed according to a set coding schema (SHRP2, 2012). Part of the NDS 
definition of SCE is often in line with that used by conflict theory (the classical conflict; 
Svensson, 1998), but other parts are not (e.g., defining a run-off-road or a tire-strike 
as a crash in SHRP2 (2012)). Current work (in ISO WG5/SC39) aims to improve and 
harmonize the definition of SCE across NDS by providing a conceptual framework 
and operationalizing different classes of SCE. See Section 4.1 for a discussion on the 
use of near-crashes as surrogates for crashes in NDD research.  



Methods for analyzing NDD 

14 
  

2.3 Driver behavior in prospective safety-benefit estimates  

There are several different methods available for estimating the safety benefit for ISS 
and other safety measures. This section describes prospective methods: they 
estimate the future benefit of safety measures (e.g., ISS) before they have been 
deployed (i.e., systems in development, or prototype systems—when statistical data 
from on-road crashes are not available). In contrast, many benefit estimates are 
retrospective: they estimate the safety benefit for safety measures that are already 
deployed (on-market). The relevant statistical data for retrospective benefit estimation 
is typically found in crash databases (NHTSA, 2015) or insurance data (Cicchino, 
2016; Isaksson-Hellman & Lindman, 2012), which are not available for prospective 
benefit estimation. Retrospective safety benefit analyses are excluded from the 
scope of this thesis. 
 
Examples of methods for prospective safety-benefit estimates include expert-
assessment-based methods using in-depth crash data (Strandroth, 2015a; 
Strandroth, 2015b), combinations of expert assessment and test-track experiments 
(Lesemann et al., 2011), combinations of test-track experiments and dose-response 
methods (Bálint, Fagerlind, & Kullgren, 2013), naturalistic field operational tests 
(Ljung Aust et al., 2011; Sayer et al., 2011), and virtual (counterfactual) simulation-
based approaches (Georgi et al., 2009; Lindman & Tivesten, 2006; McLaughlin, 
Hankey, & Dingus, 2008; Paper IV; Scanlon, Sherony, & Gabler, 2016).  
 
One of the main reasons for using virtual simulations for prospective safety benefit 
estimates of ISS is to reduce the number of expensive and time-consuming physical 
experiments in favor of less expensive, easily repeated simulations in a virtual 
environment (Page et al., 2015). As a testament to the importance of using virtual 
simulations, developers of passive (injury prevention) safety systems—safety 
measures to mitigate the consequences of crashes once they have happened—have 
used mathematical simulations for decades (Prasad & Chou, 2002; Yang et al., 
2006). In fact, the automotive industry today considers mathematical simulations of 
vehicle crashes an absolute necessity for timely and efficient vehicle development. 
These simulations save money and time by facilitating system optimization and 
prospective benefit evaluation without the need to crash hundreds of vehicles and 
vehicle components in the design phase. Developers of passive safety systems rely 
on models of either crash test dummies (Foster, Kortge, & Wolanin, 1977; Svensson 
& Lövsund, 1992), or, more recently, finite-element human body models (HBM; 
Brolin, 2016; Östh, 2014). Typically, researchers in academia develop the dummies 
and models together with industry. However, to develop and evaluate ISS, which act 
before the crash, it is not enough to model the physical driver. Mathematical models 
of driver behavior (Jagacinski & Flach, 2002; Lee, 1976; Lee, 2008; Markkula, 
Benderius, Wolff, & Wahde, 2012) are needed, rather than mathematical models of 
the physical driver (i.e., crash test dummies or humans). Further, when developing 
passive safety systems, the crash is a given. When evaluating ISS, however, the aim 
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is to avoid crashes, or at least mitigate their consequences. This is also the case 
when the evaluation is performed through mathematical simulations. 
 
Counterfactual simulations for pre-crash safety-benefit analysis are a specific type of 
virtual simulation: they create events that didn’t actually happen, using mathematical 
simulations based on time-series data from actual real-world events. Typically, 
counterfactual simulations compare ‘what-if’ scenarios—events as they would occur 
with and without ISS (algorithms and virtual actuators). Crashes are usually used 
(Georgi et al., 2009; Lindman & Tivesten, 2006; Papers IV and V; Scanlon et al., 
2016), while near-crashes can also be used (McLaughlin et al., 2008; Paper V). Even 
everyday-driving normal (lead-vehicle braking) events have been used as a basis for 
counterfactual simulations (Woodrooffe et al., 2012). Each simulation produces a 
specific outcome: either a crash (with a specific outcome; e.g. delta-v; Lindman & 
Tivesten, 2006) or no crash. Paper IV demonstrates how the choice of driver models 
affects the results, even when all other variables are unchanged. Paper V, however, 
is different from the typical application of counterfactual analyses—it does not aim to 
evaluate the safety benefit of an ISS. Instead, Paper V shows how counterfactual 
simulations can be used to evaluate driver behaviors with respect to safety.  
 
In general, the different approaches of prospective safety-benefit estimation use 
different types of data and take driver behavior into account in different ways. In FOT 
and NFOT studies, which often implicitly include driver behavior in the analysis, the 
actual behavior of the driver is overtly or covertly recorded in the data on which 
benefit estimations are based. However, counterfactual simulations documented in 
the literature have typically used simplistic models of driver behavior without 
considering the implications of the choice of model on benefit estimation (which 
Paper IV does). Models of driver behaviors are becoming increasingly important—at 
least in ISS safety measures when the driver is in the loop (Paper IV)—as the 
automotive industry relies increasingly on counterfactual simulations to study ISS. A 
testament to the increased focus on counterfactual simulations is the self-funded 
(members contribute with in-kind time and resources only) European consortium 
Prospective Effectiveness Assessment for Road Safety (P.E.A.R.S.; Page et al., 
2015). It consists of a large number of automotive companies, institutes, 
governments, and academic institutions developing a “comprehensive, reliable, 
transparent, and thus accepted methodology for quantitative assessment of these 
systems by virtual simulation.” (Page et. al, p. 1).  
 
While industrial stakeholders aim to achieve pragmatic implementations of 
counterfactual simulations for the evaluation of ISS, researchers have recently 
proposed a theoretical framework for counterfactual simulations (Davis, Hourdos, 
Xiong, and Chatterjee, 2011). They represent crashes and conflicts as the results of 
the interactions between initial conditions (e.g., kinematics) and evasive actions. The 
overall statistical framework is also applicable when evasive actions are determined 
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by an ISS rather than a driver. Davis et al. acknowledge the need to understand (a) 
actual pre-crash kinematics and (b) evasive actions, while highlighting the importance 
of understanding sampling bias: “Basically, studies of non-crash events can be used 
to construct proxies for crash probabilities, but the sampling bias that results when 
attention is restricted to non-crash events can forestall the development of simple 
predictive relationships.” (Davis et al., 2011, p. 1916).  
 
Understandably, the automotive industry focuses less on academic publishing and 
theoretical frameworks than on their practical implementations (Page et al., 2015). To 
date, only a limited number of scientific publications present the method of 
counterfactual simulation and/or describe its use for estimating the safety benefit of 
ISS (Erbsmehl, 2009; Funke, Srinivasan, Ranganathan, & Burgett, 2011; Georgi et 
al., 2009; Kusano & Gabler, 2010; Lindman & Tivesten, 2006; Markkula, 2015; 
McLaughlin et al., 2008; Scanlon et al., 2016; Woodrooffe et al., 2012). Further, a 
literature review found only two studies using NDD as the source for the kinematics in 
the counterfactual estimation of prospective safety benefits: McLaughlin et al. (2008) 
used data from the 100-car NDS (Neale et al., 2005), while Scanlon et al. (2016) 
used event data recorder (EDR) data. However, there are few articles actually 
utilizing counterfactual simulations in which the model of driver behavior is 
addressed—beyond, for example, the application of simple reaction times and 
constant decelerations as evasive actions. Exceptions include a recent PhD thesis by 
Markkula (2015) and Paper IV, which argues for the need for validated driver models 
to achieve good safety benefit estimates using counterfactual simulations.  
 
Although the scope of this thesis excludes the explicit development of mathematical 
models of driver behavior, they are intrinsic to counterfactual simulations in which the 
ISS require drivers’ reactions (Markkula, 2015; Paper IV), or when the effect of the 
driver behavior itself is being studied (Paper V). However, the term ‘driver model’ has 
many different meanings in the literature. Markkula (2015) categorizes driver models 
into three main groups: conceptual, statistical, and process models. Examples of 
conceptual models include those that outline how drivers adapt to risks in driving 
(Bärgman et al., 2015; Näätänen & Summala, 1974; Vaa, 2007; Wilde, 1982), and 
those that describe how drivers interact with information and the world (e.g., 
predictive processing, Engström et al., 2016a; hierarchical models of driving, Michon, 
1985; and information processing,Wickens, Hollands, Banbury, & Parasuaman, 
2016). Statistical models, on the other hand, are statistical descriptions of driver 
behavior, with distributions of reaction times (Green, 2000; Olson & Sivak, 1986) as 
one of the most commonly used statistical models. Other statistical driver models 
describe drivers’ safety margins (e.g., comfort-zone boundaries; Bärgman et al., 
2015; Lübbe, 2015). These models can also be components of ISS algorithm 
implementations (Brown, Lee, & McGehee, 2001). Finally, process models, in 
Markkula’s (2015) terminology, are models that allow for computer (mathematical) 
simulation: input is typically processed moment by moment (using current or 



Methods for analyzing NDD 

17 
  

historical data), and an action or actions are performed based on the input. Process 
models of driver behavior originate in different research domains (e.g., neuroscience, 
Benderius (2014); and control theory, Jagacinski and Flach (2002)). These models 
describe driver behaviors at different levels of abstraction, from body movement 
(Georgopoulos, 1986) to lateral (Fajen & Warren, 2003; Salvucci & Gray, 2004) or 
longitudinal (Lee, 1976) control while driving, for example. Note that while these three 
groups of models are different, they are not mutually exclusive. Many of the 
conceptual models have been developed into process models (actually, most 
process models are based on conceptual models), implemented algorithmically for 
use in a computer simulation (Salvucci, 2006). Statistical models, too, are often an 
integral part of process models (e.g., Paper IV and any process model of driver 
behavior that includes reaction time distributions). In addition, there are models of 
driver behavior that arguably do not fit into Markkula’s three categories—for example, 
when the models are implicitly constructed as part of driver-behavior detection 
systems (Al-Sultan, Al-Bayatti, & Zedan, 2013; Kuge, Yamamura, Shimoyama, & Liu, 
2000). A review of models of driver behavior in critical situations can be found in the 
2012 paper by Markkula et al. 
 
Driver behavior models to be applied to counterfactual simulations can be used in 
two different ways: for pre-crash event generation and for simulated driver reaction. 
Pre-crash event generation is the application of counterfactual drivers’ behaviors to 
pre-crash kinematics time-series (typically) from real-world events (crashes or near-
crashes), in order to produce counterfactual pre-crash event time-series data (see 
Figure 4). These data are then used in the counterfactual simulations as if they were 
recorded data from real events to provide counterfactual events during the pre-crash 
phase. Pre-crash event generation is thus applied in the preparation phase of 
counterfactual simulations (Figure 4). Simulated driver reaction, on the other hand, 
is the application of process models of driver reaction to some stimuli, to simulate 
when and how the driver reacts (Figure 5). For all ISS where the driver is to react to 
an ISS (e.g., forward collision warning), the simulated driver reaction is at the core of 
the counterfactual simulations. Both pre-crash event generation and simulated driver 
reaction can use both statistical and process models (Figure 4 and 5, and Papers IV 
and V).  
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Figure 4: A demonstration of pre-crash event generation where counterfactual glance 
behavior is applied to original pre-crash kinematics (as in Papers IV and V). The original 
kinematics come from an actual crash (for demonstration purposes a sketch of an actual 
crash is used here). The counterfactual kinematics are created by finding the start of 
following vehicle’s (FV) evasive maneuver (braking), after which the speed is set constant. 
The lead vehicle’s (LV) deceleration is extended beyond the crash point. By combining the 
counterfactual kinematics, a sample from a distribution of off-road glance duration, and a 
model a model of when that glance occurs, counterfactual pre-crash event data are created. 
This counterfactual pre-crash event data can then be used in a counterfactual simulation, as 
if both the counterfactual kinematics and the glance behavior had actually been recorded.  
 

 
Figure 5: A demonstration of how the counterfactual pre-crash event data from pre-crash 
event generation (see Figure 4) is combined with a model of brake onset (when the driver 
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starts to apply the brakes; here, a constant reaction time added to the time of the glance 
back on road), and brake control (how the driver applies the brakes).  
 
In addition to appropriate, validated driver models, other validated models are 
needed for the following: sensors (e.g., range and field-of-view limitations), the 
environment (e.g., friction, occlusion, and weather conditions), the vehicle (e.g., 
vehicle dynamics and actuators such as braking and steering systems), and ISS 
algorithms (e.g., their actual implementations). However, these models, typically 
more mature than models of driver behavior (Markkula, 2015), are beyond the scope 
of this thesis, as are the details of the development of the driver models used in the 
thesis.  

2.4 Understanding the effect of driver behavior on safety  

Research seeking to understand how driver behavior affects traffic safety is multi-
faceted and dates back many decades (Gibson & Crooks, 1938; Lee, 1976). As a 
result, methods for estimating the risks related to drivers’ behaviors vary widely. The 
methods include using hypothesized relationships between specific performance 
metrics and crash risk from controlled experiments and NDD (e.g., standard deviation 
of lane position and reaction times after the precipitating event; Boyle & Lee, 2010; 
Engström, Aust, & Viström, 2010; Engström et al., 2016b; Gordon et al., 2009; Green 
et al., 2004). Additionally, simulator and test-track studies have compared, for 
example, have compared an outcome metric (e.g., the number of crashes or near-
crashes) or a severity metric (e.g., time-to-collision; SAE, 2015) between control and 
treatment phases in empirical studies that impose different tasks for the driver 
(Horrey, Lesch, & Garabet, 2009; Lee, Caven, Haake, & Brown, 2001; Markkula, 
Benderius, Wolff, & Wahde, 2013; Strayer et al., 2015). Furthermore, as NDD have 
emerged, researchers have applied different epidemiological approaches to NDD 
(e.g., comparing talking on the phone or texting to baseline in a case-control study; 
Hickman et al., 2010), and in-depth analysis of time-series pre-crash data (Victor et 
al., 2015). The most common epidemiological approach for studying the effect of 
driver behavior on safety that has been applied to NDD is the use of (crude) odds 
ratios or logistic regression to calculate, for example, the odds of different factors 
(Hickman et al., 2010; Klauer et al., 2014; Victor et al., 2015). A key aspect to 
minimizing bias in such analyses is the selection of appropriate controls to be 
compared with the crashes and near-crashes (Kidd & McCartt, 2015; Victor et al., 
2015).  
  
Observations and epidemiological approaches based on NDD are only useful if the 
specific tasks to be studied are actually available in the data. Drivers are constantly 
bringing new devices into their vehicles (e.g., smart phones with different apps) and 
vehicle designers develop new driver-vehicle interfaces (DVI; e.g., new 
infotainment or voice-control systems, Merat, Jamson, Lai, Daly, & Carsten, 2014; 
Reimer & Mehler, 2013). As a result, the risks associated with these novel 
interactions also need to be constantly evaluated and updated. The evaluations can 



Methods for analyzing NDD 

20 
  

in turn inform appropriate legislation, develop governmental design guidelines 
(European_Communities, 2007; NHTSA, 2012b), and enable the vehicle industry to 
develop safe and sound DVI (Merat et al., 2014; Park & Kim, 2015). For example, the 
US NHTSA has developed visual-behavior guidelines for evaluating DVI (NHTSA, 
2013), which include (but are not limited to) driving simulator studies to acquire 
drivers’ glance behaviors related to the DVI being evaluated. The glance behavior 
data are then evaluated with respect to a set of performance indicators. The results 
of the evaluation inform the decision to pass or fail the DVI with respect to glance 
behavior. It should be noted that the NHTSA guidelines and corresponding simulator 
study procedures have been criticized for being too sensitive to study design and 
sub-optimization (Heinrich, 2015; Ljung Aust, Dombrovskis, Kovaceva, Svanberg, & 
Ivarsson, 2013; Rydström, Ljung Aust, Broström, & Victor, 2015).  
 
Using pre-crash event generation and simulated driver reaction (see Section 2.3), 
Paper IV presents a new method that can be used by designers of DVI. The method 
could also be an alternative (or, likely, a complement) to that which is proposed in, for 
example, NHTSA guidelines. Using this method, mathematical (virtual) counterfactual 
simulations can evaluate drivers’ glance behaviors during specific tasks, perform 
prospective risk analyses on the introduction of specific DVI, and evaluate other tasks 
which drivers perform in vehicles. Much of the literature for counterfactual simulations 
for ISS is also relevant for these (driver-behavior-focused) counterfactual simulations. 
However, no other counterfactual method has been found in the literature which uses 
real-traffic crash and near-crash data as a basis for estimating the risks associated 
with specific driver behaviors. 

2.5 Aim and scope 

2.5.1 General aim 

This thesis aims to provide and demonstrate methods for analysis of NDD to 
understand and evaluate driver behaviors in relation to traffic safety and crash 
causation. These methods can build a foundation for the development of pre-crash 
traffic safety measures, as well as enable the evaluation of the effect of driver 
behavior on safety on, for example, the design of driver-vehicle interfaces. 

2.5.2 Specific aims 

The methods presented and demonstrated in this thesis aim to enable researchers 
to:  

- obtain stable, reliable and comparable results in the analysis of continuous 
NDD (Paper I). 

- identify crash-causation factors/mechanisms through a structured expert-
assessment using NDD (Papers II-III). 
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- calculate pre-crash interaction kinematics (e.g., range and range rate) and 
optical parameters (e.g., optical expansion rate and tau) in NDD rear-end 
crash and near-crash data (Paper III). 

- realize the importance of selecting appropriate driver models in counterfactual 
safety benefit evaluation of intelligent systems for traffic safety (paper IV). 

- calculate the effects of different driver behaviors on traffic safety through 
counterfactual simulations using NDD (Paper V). 

- compare different driver-vehicle interfaces with respect to safety (Paper V). 

In addition to addressing these aims, the thesis discusses three topics relevant to 
NDD analysis:  

- The use of near-crashes as surrogates for crashes 
- The use of statistics and expert assessment to infer causation when analyzing 

NDD 
- The use of commercially collected NDD.  

2.5.3 Scope 

The research conducted in Papers I-V encompasses a wide range of NDD analyses 
and a variety of NDD sources. The scope is thus relatively broad. However, it is 
somewhat narrowed by the application of the methods primarily to rear-end crash 
scenarios in which an NDD-instrumented following vehicle follows and impacts (or 
could have impacted) a lead vehicle. (This does not, however, rule out the application 
of these methods to other crash scenarios.) The methods include a primarily 
quantitative analysis of NDD data (Papers I and III-V) and analysis using expert 
assessment (Paper II), but exclude qualitative analyses based on subject self-
reporting (e.g., questionnaires). Explicit mathematical modeling of driver behavior is 
also excluded from the thesis, although the use of such models is a prerequisite for 
the successful application of the methods presented in Papers IV & V.  
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3 Summary of papers 

3.1 Paper I  

Title: Chunking: A procedure to improve naturalistic data analysis 
Objective: To develop and present a method, chunking, that facilitates robust and 
comparable results in the analysis of continuous NDD.  
Background: At the time of publication (2013), NDD had been available for only a 
limited time and to only a few researchers. Methods to facilitate appropriate analysis 
are needed now that NDD are beginning to be more readily available. Traditional 
methods neglect the impact of segment length and its potential to significantly bias 
results. Segment length is the section of continuous data upon which a statistic (e.g. 
mean or standard deviation) is applied to extract a performance indicator (e.g. 
standard deviation of lane position).  
Method: The chunking method reduces this source of bias. It is appropriate both for 
basic driver behavior research and for the development and evaluation of Advanced 
Driver Assistance Systems (ADAS); in fact, it was developed and first applied in the 
evaluation of ADAS, applying chunking to segments of baseline and treatment alike. 
Chunking is designed to be used when the aim of analysis is to create aggregate 
measures of continuous NDD across trips or conditions (e.g., all data above 70 
km/h). Chunking divides the datasets into equivalent subsets of data (called chunks) 
before other calculations are applied. The main benefit of the method is the robust 
and consistent calculation of parameters when analyzing continuous NDD, although 
care has to be taken to account for sample dependencies and auto-correlation. 
Examples of the application of chunking are presented, and results are compared 
with traditional methods of analysis.  
Results: Large biases in statistical results with traditional methods were reduced 
using the chunking approach. For example, in a set containing 399 driving hours of 
NDD, 75% of the data were in segments longer than 100 s although 75% of the 
segments were shorter than 100 s. The choice of appropriate chunk size was a key 
factor in obtaining robust results.  
Conclusion: Prior to this paper, little research had been aimed specifically at 
addressing the methodological issues of analyzing continuous NDD. The results 
show that neglecting chunking can introduce large biases in statistical results. Using 
chunking is advisable in many cases, but the effects of auto-correlation and sample 
dependencies must be still be considered.  
Application: Chunking is appropriate wherever aggregation across segments in 
NDD are being considered, particularly when extracting an indicator (e.g. standard 
deviation) that is sensitive to segment length.    
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3.2 Paper II 

Title: Analysis of the role of inattention in road crashes based on naturalistic on-
board safety monitoring data 
Objective: To investigate the role of driver inattention in crossing-path intersection 
crashes and rear-end crashes.  
Background: The role of drivers’ inattention in traffic crashes is not well understood. 
Data from traditional methods (e.g., post-crash reconstructions) do not have the 
requisite fidelity in the pre-crash phase to allow detailed analysis of driver inattention. 
NDD (e.g., time-series data with video) have emerged as a promising source for 
studying this phase; however, most naturalistic driving studies record only a few 
crashes, if any. In contrast, quite a few actual crashes are recorded by on-board 
safety management systems (OBSM), typically mounted in commercial vehicles and 
collecting GPS, accelerometer data, video of the forward roadway (and, often, video 
of the driver), for a period of time around crashes and other safety-critical events.  
Method: A total of 133 real-traffic crash events involving vehicles instrumented with 
the DriveCam (now Lytx) OBSM system were analyzed. The events were drawn from 
two scenarios: 70 rear-end crashes where the OBSM-instrumented vehicle was the 
striking vehicle, and 63 crossing-path intersection crashes where the instrumented 
vehicle intended to drive straight through the intersection. Annotation of the 133 video 
sequences included (a) driver actions and visual behavior, (b) whether there was 
occlusion of the other (conflicting) vehicle, and (c) reconstruction of optical 
parameters (distance and relative speed between the two vehicles) in the rear-end 
events (as described in Paper IV). An event-coding scheme, partly based on work by 
Habibovic et al. (2013) and the EU-US inattention taxonomy group presented in 
Engström et al. (2013), was developed for the qualitative expert assessment of 
factors contributing to the crashes. The experts applying the scheme used both 
qualitative information about the event (e.g. video and narratives) and quantitative 
data extracted from accelerometers, GPS and video annotation. When all 133 events 
had been coded, all codings were aggregated.  
Results: Inattention, especially in terms of eyes off the forward roadway, was 
identified as a primary contributing factor to rear-end crashes. In contrast, for 
intersection crashes (where the study vehicle was going straight), occlusion of the 
conflicting vehicle and insufficient safety margins were identified as key factors.  
Conclusion: Commercially collected event-based data (with video) can provide an 
unprecedented, detailed view of the unfolding of the few seconds before a crash, 
providing new information about pre-crash behavior. A key conclusion is that the role 
of inattention as a factor contributing to crashes strongly depends on the scenario 
and crash type.  
Application: A deeper understanding of the role of inattention in crashes could 
improve legislation, as well as the design of behavior-based safety systems and other 
safety measures.   
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3.3 Paper III 

Title: Using manual measurements on event-recorder video and image-processing 
algorithms to extract optical parameters and range 
Objective: To develop and evaluate a method for extracting optical parameters 
related to a lead vehicle, from the perspective of the driver of the following vehicle. 
The method is applied to video collected using event-based NDD.  
Background: Traditionally, research into crash causation has primarily focused on 
post-crash reconstruction, using interviews and controlled follow-up experiments to 
study suspected crash causation factors and mechanisms. Commercially collected 
NDD with video have recently become available to researchers. Such data permit the 
analysis of time-series data with video from the pre-crash phase of relatively large 
number of actual crashes. These analyses will probably facilitate further 
understanding, both qualitative and quantitative, of the factors and mechanisms 
contributing to crashes.  
Method: Manual measurements obtained through annotation of commercially 
collected NDD video were used to reconstruct optical parameters and range to a lead 
vehicle, as seen from a following vehicle. Video data of the rear of a stationary 
passenger car of known width were collected for a set of 14 different ranges, by 
means of the forward-looking camera of a Lytx (2016) (previously DriveCam) system. 
The optical parameters of the camera were extracted, and a model was created that 
rectifies the intrinsic distortion in the image. For method validation, twenty 
participants manually measured the on-screen size of the vehicle, and the errors 
between coders for different ranges were analyzed. The model was used to predict 
the range between the cars, and the results were compared to the actual range data.  
Results: The results indicate that the method is useful when the ranges between the 
two vehicles are relatively short: when they are less than 10 m apart, the range 
estimate is within 10cm of the actual range. Incorrect estimation of the lead-vehicle 
width contributes significantly to range estimation errors. For optical parameters, on 
the other hand, optical rectification errors are likely to be the main source of error. 
Conclusion: Parameter estimates using the proposed method are good for short 
ranges, while at longer ranges it should be used with care. The method is relevant for 
event-based NDD with video when image processing competence and tools are not 
available, and could be used as validation for other methods.  
Application: This method could play an important role in research exploring why 
lead-vehicle conflicts occur, and thus in the development of safety measures to 
reduce the number and severity of rear-end crashes.  
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3.4 Paper IV  

Title: Counterfactual simulations applied to SHRP2 crashes: The effect of driver 
behavior models on safety benefit estimations of intelligent systems 
Objective: To demonstrate (a) the importance of the choice of driver behavior model 
in safety benefit estimations using counterfactual simulations, and (b) how 
counterfactual simulations can be used for parameter-sensitivity analysis. 
Background: With the rapid increase in the development and deployment of pre-
crash safety measures, the need for computer-based simulations to evaluate the 
potential benefit of pre-crash safety measures is also increasing. The counterfactual 
simulations compare the results obtained with and without a specific pre-crash safety 
measure applied to the pre-crash kinematics, obtained from one of a variety of data 
sources. These simulations require models of the relevant sensors, the vehicle, the 
driver, and the environment. However, to date, the models of driver behaviors 
included in such simulations have been rudimentary; furthermore, the effect of the 
choice of driver models has not been documented.  
Method: Counterfactual simulations of a forward collision warning and an automatic 
emergency braking system were performed, using real-crash pre-crash kinematics 
from the SHRP2 naturalistic driving study as the basis. Three aspects of driver 
behavior were compared, with respect to the percent of crashes avoided by the FCW 
and the AEB and the estimated impact speed: glance off-road, reaction, and braking. 
Counterfactual pre-crash kinematics with glance off-road behavior were first created 
in a Monte Carlo fashion. Simulations were then run with and without FCW and AEB. 
Sensitivity analyses on driver behavior and FCW and AEB parameters were also 
conducted.  
Results: The results reveal that the choice of driver behavior model has a substantial 
impact on the percentages of crashes avoided and the estimated impact speed for 
FCW. Changes to the distributions of driver off-road glances have less of an effect on 
the FCW safety benefit estimation than the positioning of those glances in relation to 
pre-crash kinematics. The effects of the driver model on the combined effect of FCW 
and AEB is small, while the proportion of FCW and AEB are radically different across 
different driver models and model parameter settings. The safety benefit estimations 
using counterfactual simulations for both FCW and AEB differ greatly from the 
retrospective analyses of FCW and AEB based on real-crashes. More research is 
needed to understand these differences.  
Conclusion: Users of counterfactual simulations that include the driver in the loop 
must choose their driver models carefully when evaluating the safety benefits of pre-
crash safety measures.  
Application: Until driver models are good enough, estimates of the real-world 
benefits of pre-crash safety measures is likely to be error-prone. However, with 
validated driver models, safety measure development can be supported by using 
counterfactual simulations to compare algorithms and parameter settings.   
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3.5 Paper V  

Title: How does glance behavior influence crash and injury risk? A ‘what-if’ 
counterfactual simulation using crashes and near-crashes from SHRP2 
Objective: To develop and demonstrate a method for estimating the crash and injury 
risk of specific off-road glance behaviors, for both crashes and near-crashes; to 
provide a means for evaluating the safety impact of glance behaviors resulting from 
specific vehicle designs (e.g., infotainment systems) or secondary tasks (e.g., tuning 
the radio or texting on a mobile phone). 
Background: The role of distraction as a cause of crashes has been more firmly 
established in the last few years. Meanwhile, the automotive industry regularly 
introduces new driver vehicle interfaces (DVI; also known as HMI), and new types of 
secondary tasks (e.g., text messaging) while driving appear and become prevalent. 
To guide DVI design, policies and legislation on, for example, distractions, evaluation 
needs to be done without waiting until post-hoc crash analyses can be performed. 
Evaluation methods can even become part of guidelines. Models of driver behavior in 
critical situations (e.g., glance behavior), together with pre-crash kinematics (e.g., 
from the SHRP2 NDD dataset used here), can facilitate the development of methods 
for evaluating the effect of driver behavior on safety. In addition, there is a current 
debate on the relevance of near-crashes for crash-causation research. Methods are 
needed that provide insights into the similarities and differences of crashes and near-
crashes, asking questions such as: Are the initial conditions of pre-crash kinematics 
different between crashes and near-crashes, or are the drivers’ actions the primary 
determinant of the actual outcome?  
Method: This paper introduces a two-step approach to calculate model-based injury 
and crash risks through mathematical counterfactual (what-if) simulations. The 
method is demonstrated through its application on 37 lead-vehicle crashes and 186 
lead-vehicle near-crashes from the SHRP2 naturalistic dataset.  
Results: The main result of this paper is its method for evaluating the effect of glance 
behaviors on crash and injury. The analysis demonstrates how crash and injury risk 
can be calculated as a continuous metric across both crashes and near-crashes, for 
a given driver model. Another important result is the demonstration of the differential 
influence of percent-on-road glances, glance-off-road distribution, and total-task time 
on crash and injury risk. Insight into the kinematic similarities between crashes and 
near-crashes before a driver starts any evasive maneuver is yet another result.  
Conclusion: Counterfactual simulations can be used to understand the effect of 
driver glance behavior parameters on safety. Near-crashes and crashes have similar 
pre-crash kinematics–it is primarily the actions of the driver that affect the outcome.  
Application: The methods supports the tuning and safety optimization of in-vehicle 
interface designs, and provides a means for evaluating new secondary tasks (e.g., 
interacting with mobile devices).  
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4 Discussion 

As naturalistic driving studies and other sources of NDD have become more 
numerous, their data have become available to a large community of researchers. In 
this thesis (and elsewhere, e.g., Dunn et al., 2014; McDonald et al., 2013; Sayer et 
al., 2007; Victor et al., 2015), new analysis methods have been developed to exploit 
this wealth of information in an ongoing effort to improve the design and evaluation of 
pre-crash safety measures. The development of new methods can also highlight the 
need to discuss and resolve some fundamental aspects of the associated research 
domain. 
 
This chapter presents a discussion on three general topics of NDD (near-crashes vs. 
crashes, crash causation, and commercially collected NDD (CNDD)). These topics 
can be considered a foundation for the work in Papers I-V and this thesis. The topics 
are noteworthy because they highlight important issues surrounding the current and 
future use of NDD. In addition, the five methods associated with the analysis of NDD 
described in this thesis are related to each other and the literature. Benefits, 
drawbacks, and obstacles that remain are discussed in the context of the research 
gaps the methods address. First, however, the five included papers are framed in the 
context of the development process of pre-crash safety measures. 
 
As stated in the aim (Section 2.5), the methods presented in Papers I-V can all 
contribute to the development of pre-crash safety measures, and Paper V can also 
contribute to the design of driver-vehicle interfaces (DVIs). Each paper addresses at 
least one part of the development process (Figure 6 and Table 1).  
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Figure 6: Papers I-V framed in the real-world-driven development process for safety 
systems used at the Volvo Car Group since the 1980s (Jakobsson et al., 2010). The 
light blue circles at the center describe Volvo’s original development process. Paper 
V also supports the development of driver-vehicle interfaces (not necessarily related 
to safety measures). This is shown as a separate item (I; bottom). The letters A-I 
refer to Table 1, below.  
 
Table 1: Each paper’s contribution(s) to the safety measure development process 
above (Figure 6; A-I).  

A. The method in Paper I can provide a more robust analysis of everyday driving 
NDD—when setting safety requirements, for example.  

B. The expert-assessment method for crash causation in Paper II can help 
identify safety problems—a prerequisite to developing good safety 
requirements. 

C. Paper III demonstrates how the method in Paper II can be applied to 
commercially collected NDD (CNDD) with video when other measures (range, 
range rate, and optical parameters) are unavailable. 

D. The method in Paper V, if extended to other crash scenarios and refined for 
the rear-end scenario, could facilitate the development of more detailed safety 
requirements with respect to driver behaviors’ effects on safety. 

E. Paper IV demonstrates the importance of the correct models of driver behavior 
in counterfactual (mathematical) simulations of an ISS during initial 
development, as well as in the prototype phase. 
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F. The counterfactual simulation method in Paper V can be used to understand 
the effect of drivers’ specific behaviors on safety during product and prototype 
development of, for example, automated vehicles—helping to speed up the 
development process. 

G. The method in Paper I can improve the robustness of results when evaluating 
the effects of prototype safety measures on safety – chunking applies to 
segments of baseline and treatment alike.  

H. Paper IV shows the importance of correct driver behavior models when 
performing counterfactual simulations to evaluate the effect of prototypes (or 
production systems) on safety.  

I. The method in Paper V supports the development and evaluation of driver-
vehicle interaction designs with respect to safety, and could also be used to 
refine glance behavior guidelines for driver-vehicle interactions.  

 
The real-world data (top blue circle in Figure 6) are traditionally a variety of 
conventional crash data (e.g., in-depth crash investigations, or crash statistics). 
Different forms of NDD—including CNDD—can complement traditional data with 
more detailed information on the performance of future safety measures.  

4.1 Near-crashes vs. crashes 

The use of near-crashes as surrogates for crashes is the first of the three general 
topics to be discussed. Such a discussion is warranted, given the current debate 
(Bärgman, Guo, Jovanis, & Knipling, 2016) in the research community on the topic. 
Furthermore, Paper V addresses the kinematic similarities between crashes and 
near-crashes in rear-end scenarios, and, as near-crashes are used in Papers II-IV, it 
is relevant to frame the use of near-crashes in the context of crashes. The use of 
near-crashes has its critics (e.g., Carsten et al., 2013; Knipling, 2015).  
 
In order to address the criticisms of the use of near-crashes in NDD research, a 
recent panel debate at the Transportation Research Board 2016 annual meeting in 
Washington D.C. (Bärgman et al., 2016) discussed the relevance and validity of SCE 
from different perspectives. Specifically, based on a previous publication (Knipling, 
2015), Ronald Knipling highlighted issues with the use of datasets of mixed SCE—for 
example, SCE across rear-end, run-off-road, and intersection scenarios—from NDD 
in any analysis. I agree with his assessment: SCE should be stratified, for example 
on a per-scenario basis (e.g., only analysing rear-end crash scenario data from an 
NDD, as in Victor et al., 2015). The take-away message of the panel can be 
summarized by three points: (1) Do not use mixed SCE unless you can make a very 
good case for doing so, (2) Take care when using near-crashes as surrogates for 
crashes in order to avoid bias, and (3) Develop and apply methods that promote 
generalizability of the SCE analysis.  
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A common argument against the use of non-crash SCE in NDD analysis is that the 
link between crashes and non-crash SCE is not sufficiently established. This is 
partially due to the lack of data (crashes) to establish such relationships. In particular, 
too few crashes (specifically high-severity crashes) are available in NDD to enable 
such linkage (Knipling, 2015). With the advent of CNDD, this is likely to change. In a 
few years there will probably be a vast amount of pre-crash data, with detailed 
records of the few seconds before the crash. Analyses of these data should 
contribute to a greater understanding of the relationship between low-criticality 
(including non-crash) SCE and severe crashes (Paper II). For now the research 
community should acknowledge near-crashes as different from crashes (e.g., Paper 
II, contrasting the crashes and near-crashes in crash causation analysis; Jonasson & 
Rootzén, 2014; Knipling, 2015). Meanwhile, additional research is needed to 
investigate the link between near-crashes and crashes (e.g., Paper V, showing that 
the pre-evasive-maneuver kinematics between rear-end crashes and near-crashes 
are similar; Dozza, 2016; Victor et al., 2015).  
 
Another criticism relates to generalizability. The typical (kinematic-trigger based) 
operationalization of SCE by definition would exclude some events of particular 
interest, such as driver drowsiness or falling asleep at the wheel (Knipling, 2015), 
because the majority of kinematic triggers are based on the driver performing an 
evasive maneuver. However, it is hard for drivers to perform evasive maneuvers 
when they are asleep. This valid criticism should be taken into account when 
analyzing data. In essence, the critique comes from the fact that SCE triggers relying 
on certain driver actions fail to capture crash-causation mechanisms that preclude 
those actions in non-crash SCE. As in all research, the researchers need to be aware 
of the limitations of their data (Carsten et al., 2013). A challenge is to identify such 
blind spots and biases. However, as mentioned previously, the large number of 
crashes (potentially) available from CNDD (Carney et al., 2015; Hickman et al., 2010) 
could shed light on these issues and identify the limitations of using, for example, 
near-crashes as crash surrogates in traffic safety research. After the relationship 
between crashes and near-crashes is more firmly established (or debunked), more 
informed choices can be made about using surrogates in future studies. 
  
Furthermore, different (automatic) kinematic SCE triggers (in the first phase of SCE 
extraction from NDD) will vary in their relevance to specific crash scenarios. For 
example, road-departure-based triggers (e.g. triggered by lane-tracker signals; 
Hallmark et al., 2011) are probably quite relevant for run-off-road crash scenarios. In 
contrast, hard-braking SCE triggers (Bagdadi & Várhelyi, 2013; Hallmark et al., 2011) 
are relevant for scenarios in which the driver brakes (and may produce an 
overemphasis on lead-vehicle conflicts; Knipling, 2015). Depending on the selection 
strategy for triggers, the proportion of SCE in different crash types (scenarios) will 
differ widely, without necessarily reflecting the underlying distribution of crash types 
in actual crashes. Knipling (2015) heavily criticizes the use of mixed-SCE analysis 
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without weighting, stating it is “like cooking without a recipe” (p. 201). The issue of 
limited representativeness and generalizability of the NDD selected is discussed in 
Papers II, IV and V. The research community needs improved methods which can 
produce representative sets of SCE—or use weighting to produce more 
generalizable results. Current efforts in that direction are ongoing (Imberg, Kovaceva, 
Bärgman, & Nerman, 2016; Imberg, Liskovskaja, Selpi, & Nerman, 2016).  
 
Evaluating and correcting biases in data has long been a challenge in traditional 
traffic safety research, which uses national crash statistics and databases of in-depth 
post-hoc crash analysis (Cryer et al., 2001; Gabler, Hampton, & Roston, 2003; 
Niehoff & Gabler, 2006; Tivesten, Jonsson, Jakobsson, & Norin, 2012; Yamamoto, 
Hashiji, & Shankar, 2008). Even so, as pointed out by Knipling (2015), a literature 
review revealed only a few peripheral studies and discussions on how SCE selection 
bias affects the generalizability of NDD results (Jonasson & Rootzén, 2014; Wu & 
Jovanis, 2012). Obviously, further research on selection bias and the generalizability 
of NDD is needed.  
 
Going forward, traffic safety research benefits in many ways from studies that use 
naturalistically collected SCE data—which include crashes, near-crashes, and other 
forms of SCE. Understanding the relationships between different types of SCE will 
allow researchers to take full advantage of these data in many ways. Analysis of SCE 
from NDD has the potential to improve ISS, driver training, infrastructure, policy-
making, and legislation design. However, as with all data, care has to be taken to 
establish under what conditions, including boundary conditions, specific data can be 
used (Papers I-V), and how surrogates for crashes can and should be used (Paper 
V). While such care has not always been taken, it is clearly possible to do so (e.g. 
limiting generalization). Actually, it should be possible to develop methods for using 
NDD (including CNDD) to complement in-depth crash data and crash statistics on a 
broader scale than that of today. NDD do provide unparalleled insight into driver 
behavior.  

4.2 Inferring causation from NDD  

Inferring causation from NDD—the second of three general topics of NDD analysis—
is directly relevant to Paper II. The paper’s aim is to develop and demonstrate an 
expert-assessment method that can support the identification of crash-causation 
factors, using an observational (NDD) approach. This approach complements 
stringent epidemiological or experimental approaches that also seek to establish 
causation. As one of the largest criticisms of the use of NDD is the mantra that 
“association does not mean causation” (Carsten et al., 2013)—an inherent problem 
for observational studies—a discussion on this topic is clearly warranted. It should be 
noted that, in general, causation is a difficult concept (Beauchamp & Rosenberg, 
1981; Fair, 1979; Rothman, 2012; Wicksteed & Cornford, 2 vols., 1929).  
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“What is a ‘cause’?” is how Blower and Campbell (2005) begin their report on the 
methodology of the Large Truck Crash Causation Study (LTCCS), an observational 
study of crash causation; inferring causation from observational data is hard, but not 
impossible (Rothman, 2012). In line with epidemiology (Rothman, 2012), it would 
seem that the only way to identify real-world crash causation is through observational 
studies. Now that vehicle video is increasingly available in NDD, crash reconstruction 
using NDD—and the subsequent analysis into causes (e.g., driver behavior 
mechanisms contributing to the occurrence of crashes)—can in many respects be 
more refined than crash reconstruction in traditional crash-causation studies, which is 
based only on reconstruction and interviews. Refinement is possible through the 
availability of objective time-series observation of the pre-crash phase (Paper II). 
However, NDD have drawbacks unknown to traditional crash-causation studies. 
These include: (a) current datasets allow low generalizability (risk of 
overgeneralization, currently likely to be the main disadvantage of NDD); (b) 
obtaining information about driver-state factors (e.g., drowsiness) is hard without 
post-crash interviews (or similar); (c) post-crash injury and long-term disability follow-
ups are typically not done for NDD crashes; and (d) the rarity of crashes means that 
crash surrogates are used (which should be done with care; see 4.1). Thus, NDD and 
traditional crash-causation studies will need to be conducted in parallel for the 
foreseeable future—as complementary tools for understanding crashes and crash 
causation. Using NDD to analyze crash causation should be considered at least as 
valid as more traditional analyses using in-depth crash data or data from other crash 
databases, with the caveat of avoiding overgeneralization (with currently available 
datasets).  
 
When NDD analysis of causation is being discussed, the “correlation does not imply 
causation” mantra is often invoked (Boyle & Lee, 2010; Carsten et al., 2013). The 
difficulty of inferring causation with observational data is actually present in most 
traditional (e.g., in-depth analysis, or crash-database-based) crash-causation studies. 
There is no reason why a well-constructed NDD case-crossover study with carefully 
chosen controls (baselines)—for example, using only crashes—should be less valid 
in terms of inferring causation (or not) than a study using induced exposure applied to 
in-depth crash data (Lie, Tingvall, Krafft, & Kullgren, 2006; Rizzi, Strandroth, & 
Tingvall, 2009). Of course, each method has its benefits and drawbacks.  
 
Similarly, in traditional expert-assessment studies, causation is often inferred without 
employing a strictly controlled experimental approach. Actually, in expert-assessment 
studies, controls are typically unavailable. For example, no controls were used in 
Paper II, or one particularly important study in the traditional crash-causation 
literature on the influence of drivers’ (actually drivers’ and bikers’) behaviors and their 
expectations in crash causation (Räsänen & Summala, 1998). Their study was based 
on data from four different crash investigation teams (each including a police officer, 
a vehicle engineer, a traffic engineer, and a physician) which conducted in-depth bike 
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crash studies in four cities in Finland during the 1990s. Based on the experts’ 
reconstructions of the crashes, erroneous expectations were found to be a main 
contributing factor, particularly when the bike came from a bike lane on the right 
when the driver was turning right. Note that the study partially relied on drivers’ and 
riders’ memories (i.e., post-hoc reconstructions) of the events. While the authors 
used no controls, causal (contributing) factors were presented and strongly argued 
for. A review of the literature has found no criticism of their paper from a “claiming 
causation” perspective. Indeed, the statement, “The level of reconstruction in these 
data provides a fairly reliable description of what actually happened” (Räsänen & 
Summala, 1998, p. 659) is probably accurate. Based on theory and scientific 
reasoning, the authors identified causal mechanisms without a stringent, random, 
controlled-experiment approach. This basis is similar to the expert-assessment 
method presented in Paper II (as well as similar methods; Dunn et al., 2014; 
Habibovic et al., 2013). Different methods have different benefits and drawbacks: to 
date NDD analyses often have an issue with generalizability and some fundamental 
biases, while traditional crash-causation analysis may have issues with data quality 
(e.g., derived from e.g. interviews or from lower-quality police reporting; Cryer et al., 
2001) and other types of biases that studies using NDD don’t have. However, from a 
causation-claiming perspective, both (arguably) have more or less the same issues.  
 
One of the most well-known studies of crash risk is the Indiana Tri-Level study of 
crash causation (Treat et al., 1977), which defined causation as: “a factor necessary 
or sufficient for the occurrence of the crash; had the factor not been present in the 
crash sequence, the crash would not have occurred” (p. 16). This definition is highly 
consistent with epidemiological views of causation (Rothman, 2012). In the expert-
assessment method presented in Paper II, a similar definition of causation was used 
as the basis for the identification of factors contributing to crashes: analysts applying 
the method are to consider all the available information on a crash (or near-crash), 
and for each factor in a structured coding schema ask the question, “If this factor had 
not been present, would there have been a crash?” This will, of course, introduce 
potentially biased subjectivity into the procedure. With stringent operationalization of 
such procedures, and with the method based on a model of how crashes occur, the 
subjectivity is minimized. However, in the further development of methods based on 
expert-assessment, validation—including studies of inter-rater reliability—should be a 
cornerstone (Warner & Sandin, 2010). 
 
After observational studies (e.g., NDD) have provided insights into likely crash 
causation mechanisms, controlled experiments can (and should) be designed to 
dissect those findings to detail how driver behavior contributes to crash causation. 
However, NDD and driving simulators have so far mainly been utilized in isolation 
from each other, rather than benefiting from each other’s strengths (Boyle & Lee, 
2010; Tarko, Boyle, & Montella, 2013). It is worth emphasizing that controlled 
experiments and NDD should not seen as competing; they are complementary. 
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Rather, when results from NDD and controlled experiments are in disagreement (e.g, 
the effect of the role of taking on the phone providing different results and 
interpretations in the simulator and NDD studies; Strayer & Cooper, 2015), the details 
of both methods should be scrutinized to identify the reason for the discrepancy. 
Together, the two methods can help researchers better understand crash causation 
and ultimately help save lives. 
 
Finally, “inaction is also an action” (C. Flannagan, personal communication, June 22, 
2016). When findings from observational driving studies (e.g., expert-assessment 
methods; see Paper II), or epidemiological studies (Victor et al., 2015) are dismissed, 
or their results considered less useful than controlled experiments (Carsten et al., 
2013; Kircher, Patten, & Ahlström, 2011; Strayer & Cooper, 2015), there is a risk that 
the research focus is directed toward aspects of traffic safety that are less than 
optimal for reducing injuries and saving lives. The concept of “inaction is also an 
action” is comparable to the debate in the 1950-60s on the relationship between 
smoking and cancer. It took a long time for researchers to provide statistically 
irrefutable evidence of smoking causing cancer – although there was overwhelming 
evidence that showed a clear association between the two. The respected statistician 
Ronald Fisher wrote articles arguing that association is not enough to establish 
causation (see “The alleged relationship between smoking and cancer” (Fisher, 
1957)). If researchers repeatedly find evidence in observational studies that point in 
one direction, not acting on such results is an action (inaction) that can have 
consequences for safety and public health. These consequences apply to traffic 
safety research with respect to the use of observational data (e.g., NDD) in carefully 
conducted studies. As previously stated, if experimental studies and observational 
studies do not corroborate each other’s results, the methods used in experimental 
studies should be scrutinized, as should the NDD methods. In general, researchers 
must know their data, their methods, and the limitations thereof (Carsten et al., 2013; 
Papers I-II). 

4.3 Commercially collected NDD as a traffic-safety research tool 

The potential of commercially collected NDD (CNDD) as a traffic-safety research 
tool—the third general topic on NDD analysis—is directly relevant for Papers II and 
III, as both use CNDD. It should be noted that the methods of Papers IV and V can 
also be advantageously applied to CNDD, and I argue that a shift towards doing so in 
the future is likely. 

This discussion topic is rooted in the distinction between NDD collected with the 
intention of performing research on driver behavior (i.e., conducting an NDS) and 
CNDD. In the latter, there are two parallel aims: the main commercial aim is to 
generate a profit stream, while promoting the common good (saving lives) through 
improved traffic safety is the main humanitarian aim. In contrast, most NDS focus on 
issues of traffic safety by answering a set of empirically falsifiable questions and 
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interpreting and applying the results—by, e.g., developing an ISS, designing 
infrastructure, or making policy. The results from analysis of NDS can also, however, 
be used for commercial purposes. For CNDD to be collected, incentives are needed 
for both a product/service provider and a buyer (for example, a trucking firm). The 
buyer’s incentives are typically to (a) have an objective means of proving innocence 
and reducing legal costs in the event of a crash, (b) reduce the fleet’s stand-still costs 
by reducing the number of crashes, (c) reduce the repair costs for crashes, and (d) 
reduce vehicle maintenance costs by diminishing wear-and-tear (for example, on 
brakes and tires) (Lytx, 2016; SmartDrive, 2016; Victor et al., 2010). The providers’ 
incentive is naturally to make money, but they also want to make roads safer (Lytx, 
2016).  
 
Most of these motives differ from those that traditionally drive NDD research—with 
the exception that both include the aim to make roads safer (and save lives). To date, 
bodies that fund NDS have overwhelmingly been government agencies, at the 
federal (e.g., European Union or US. Department of Transportation) or regional 
(national funding in Europe or state funding in the US) levels. The financing is often 
motivated by the opportunity to improve traffic safety by (a) identifying traffic safety 
concerns (Boyle et al., 2009; Sayer et al., 2007; Uchida et al., 2010; Utesch et al., 
2014); (b) quantifying relationships between safety and a specific factor, such as a 
driver, vehicle or environmental condition (Boyle et al., 2009; Papers I and V; Victor 
et al., 2015); or (c) addressing known traffic safety concerns, by means of ISS 
product development or evaluation (Benmimoun et al., 2011; Bezzina & Sayer, 2015; 
Papers IV and V; LeBlanc et al., 2006; Sayer et al., 2011). 
 
CNDD has received little attention from the research community to date; only a few 
studies have used them as a basis for traffic safety research (Carney et al., 2015; 
Eiríksdóttir, 2016; Hickman & Hanowski, 2010; Hickman et al., 2007; Lich & Georgi, 
2011; Lich et al., 2012; McGehee et al., 2007b; Olson, Hanowski, Hickman, & J., 
2009; Rose, Carter, Pentecost, & Voitel, 2013). A literature review revealed that, of 
the studies that do use CNDD, none applied structured expert-assessment-based 
crash-causation methods to the data. This is a research gap that Paper II addresses. 
The closest methodological match is a prevalence assessment of teen drivers 
(Carney et al., 2015); it, too, examines CNDD video, extracting a set of behaviors and 
factors. The difference between the two papers is that Paper II performs an expert-
assessment-based crash-causation analysis, while Carney et al. perform only the 
prevalence assessment. Further, no studies were found that document methods for 
extracting kinematics and optical parameters from CNDD video; Paper III addresses 
this second research gap.  
 
To clarify their benefits and drawbacks, NDS and CNDD are discussed in terms of 
their utility as valuable sources of data for future traffic safety research. The benefits 
of data from research-focused NDS are: (a) sensing suites, connectivity, data 
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acquisition, and other vehicle instrumentation are usually extensive (e.g., CAN bus 
and radar; Dingus et al., 2006; Selpi et al., 2012; TRB, 2014); (b) sample frequency 
and sensor fidelity are typically high; (c) both everyday driving (baseline) and SCE 
are usually captured (e.g., Benmimoun et al., 2011; LeBlanc et al., 2006; Sayer et al., 
2010; Victor et al., 2010); and (d) researchers can define vehicle and driver selection 
and criteria for SCE extraction (e.g., Barnard et al., 2015; Klauer et al., 2011; Sayer 
et al., 2010). On the other hand, the main drawback with research (non-commercial) 
NDS data collection is that it is expensive. As a result, datasets from research NDS 
typically contain only a small number of crashes (and other SCE), and data analysis 
tends to receive a relatively small share of the budget. Although the expert-
assessment method presented in Paper II can yield useful results even when applied 
to datasets with relatively few crashes, access to a larger set of crashes across all 
severities, as (potentially) facilitated by CNDD, is highly desirable. With larger 
datasets, stratification into smaller and more homogenous crash-scenario typologies 
will provide a foundation for understanding details and nuances in drivers’ behaviors 
in the pre-crash phase. 
 
There are several major benefits to CNDD. First, because data collection does not 
need to be government-sponsored (McGehee et al., 2007b; McGehee et al., 2007c; 
Papers II-III), there is a potentially large cost savings for researchers and society. 
Commercial data collection is driven by a positive relationship between the number of 
vehicles equipped with the data acquisition system and the company’s revenue, 
rather than each additional unit on the road increasing cost. Second, because each 
vehicle that has the data collection system installed generates income for the 
providers, any company collecting CNDD strives for a large number of vehicle 
installations. As a result, a large number of crashes (and other types of SCE) are 
likely to be observed and recorded. Finally, in CNDD data collection is a continuous 
process—in contrast to NDS, which has a finite data collection period defined by the 
specific research (or data collection) project (Blatt et al., 2015; LeBlanc et al., 2006; 
Neale et al., 2005). Crashes from these large commercial datasets can be sub-
categorized (stratified) into more detailed crash scenarios for analysis (Paper II). This 
sub-categorization can provide opportunities to address concerns with NDD analysis, 
for example: (a) investigate differences in causal mechanisms between crashes of 
different severities within the same crash scenario, and (b) understand the 
relationship(s) between lower severity-level SCE (e.g. near-crashes) and more 
severe (e.g., fatal) crashes.  
 
Although it has many advantages, CNDD has its drawbacks. A literature review 
revealed five main disadvantages to CNDD compared to traditional NDD. First, 
vehicle selection cannot be controlled by the researchers. Second, the initial event 
selection procedures are not set by the researchers (Hickman et al., 2010; Paper II). 
Third, the fidelity of the data is, at least to date, usually lower than researchers would 
prefer, with limited sensing equipment and low sample rates (Paper III). Fourth, the 
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drivers studied are likely to be taking part in a behavior-based safety program and 
thus their behavior may not be representative of the general population (Paper III). 
Finally, since a traditional control group is not likely to be part of the providers’ 
business model, baseline data from normal driving are usually not collected. Thus, in 
order to perform risk calculations, researchers must use non-traditional controls if 
epidemiological methods for analysis are to be applied. For example, to calculate 
risk, Hickman, Soccolich, Fitch, and Hanowski (2015) used events kinematically 
triggered by the in-vehicle system, but not classified as safety-related (e.g., driving 
over train tracks or potholes), as controls. This is an approach that merits further 
examination, but additional approaches should be developed as well, to establish 
effective baseline-selection methods and validate their use in risk calculations when 
CNDD are used. 
 
In spite of the drawbacks, the uniqueness of the data means CNDD must be 
considered—as long as the research questions do not extend beyond what the data 
can support (e.g., as long as the results of CNDD analysis are generalized with care 
). It is important for researchers and governments to show the companies collecting 
CNDD that collaborating adds value to their business model. Without some incentive, 
it is unlikely that the data will be made available to external researchers, whose work 
could help traffic safety research, reducing injuries and fatalities in traffic more 
extensively than the CNDD company’s safety services alone. Paper III demonstrates 
the relevance of CNDD for developing behavior-based safety services, and may 
support the development of other safety solutions as well—supporting safer driving 
on our roads. The analysis in Paper II takes us one step closer to convincing CNDD 
providers of the benefit of releasing data for traffic safety research. Furthermore, 
methods such as that presented in Paper III (as well as Meng and Wang (2016), a 
follow-up of the Paper III method) are needed to facilitate the use of CNDD for 
research. As researchers continue to explore the great potential of CNDD, it is 
important to thoroughly understand the data’s advantages and disadvantages. 

4.4 Improving everyday-driving analysis of NDD by chunking 

Paper I presents a procedure for reducing biases and errors in the analysis of normal 
everyday driving using vehicle-based NDD. Scientific publications and technical 
reports seldom provide detailed descriptions of their calculations in the analysis of 
NDD or other data sources, and may even omit the descriptions altogether. For 
example, Green et al. (2004, p. 20) state: “Unfortunately, there is no official, 
standard, or even well accepted definition of the standard deviation of lane position 
[SDLP], and, in fact, it is extremely rare for research reporting results to define it.” 
Since it is rare for papers and technical reports to define SDLP and other driver 
performance metrics, it is difficult to estimate to what extent previous studies are 
affected by bias—such as size bias error (introduced when a function is applied to 
segments of different sizes/durations; Paper I addresses this problem). In some 
studies it is relatively clear how the metrics were calculated, so it is possible to infer 
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whether size bias played a role (and if so, whether it was compensated for). For 
example, in LeBlanc et al. (2006) it can be deduced (although other interpretations 
are possible) that the SDLP was calculated on the entire pool of data (samples) of 
segments of lane position data for a specific stratification (e.g., all data across all trips 
with/without ISS or between different road types for each of the four weeks; LeBlanc 
et al., 2006). For this and similar aggregate analyses that do not apply a statistic 
(e.g., mean or standard deviation) to individual segments of data, the chunking 
method of Paper I does not provide much benefit (as there is nothing to chunk).  
 
In contrast, some studies clearly addressed the problem of size bias appropriately, 
even when dealing with shorter segments. For example, Peng et al. (2013) calculate 
SDLP on one 3s segment (chunk) per secondary task duration, and Sayer et al. 
(2007) apply SDLP to 5s segments (see Sayer et al., 2005a for more details). 
However, Sayer et al. (2005a) and Sayer et al. (2007) also used autoregressive 
integrated moving average (ARIMA; McDowall, McCleary, Meidinger, & Hay, 1980) 
methods to avoid sample dependencies and the size bias issue. There is yet another 
potential issue with data segmentation: short segment choices. The analysis in Paper 
I shows that for chunks shorter than approximately 60s, the SDLP is highly sensitive 
to size changes (see Figure 7, Paper I), and the variance in such an unstable 
condition may be large. Unfortunately, in studies such as Sayer et al. (2005a), Sayer 
et al. (2007), and Peng et al. (2013), the researchers could not choose chunks of 
longer duration, due to the short duration of the tasks they were studying.  
 
Paper I addresses the assumption of independent observations in many statistical 
methods, and stresses the importance of identifying autocorrelation in data (e.g., 
through autocorrelation analysis) and addressing it (e.g., carefully choosing an 
appropriate analysis method and deciding if chunking should be used). In the Peng et 
al. (2013) study, observation independence was achieved by selecting only one 3 s 
chunk per task, even if the segment available was much longer. This selection 
method may be suitable if high autocorrelation is found, but statistical power is 
sacrificed when chunking is not (or cannot) be applied (e.g., when high 
autocorrelation does not allow for it). Thus, if autocorrelation can be shown to be low, 
the use of chunking is beneficial. Note that the problem with autocorrelation also 
exists in many other NDD analysis methods (as well as in the analysis of controlled 
experiments): for example, when pooling all data points for all segments (e.g., trips in 
NDD data) and then performing a mathematical operation (LeBlanc et al., 2006). 
Although metrics can be calculated on these aggregate distributions of data (e.g., the 
individual data points within each individual segment pooled, on which a statistic such 
as standard deviation is applied), if the data are highly autocorrelated then care must 
be taken not to violate conditions under which specific statistical techniques can be 
used. Paper I highlights the issue with autocorrelation; future work should continue to 
explore innovative methods to address it, such as Sayer et al. (2005a) use of the 
residuals from ARIMA-based methods.  
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Finally, chunking can also, in some cases, reduce bias when applied to data from 
experiments, such as the SDLP calculations in the Driver Workload Metrics Project 
test-track study (Angell et al., 2006) and the Maciej and Vollrath (2009) simulator 
experiment. (As the studies are similar, the study design is described only for the 
former.) The drivers were asked to perform 22 tasks, which were later evaluated 
using different performance metrics, including SDLP. The tasks lasted approximately 
10 s to 120 s, and SDLP was calculated over the task duration. According to Paper I, 
the SDLP results from both studies would be affected by size bias due to the 
different, and short, task durations. Similar biases may be present in several other 
studies as well, but without detailed descriptions of the calculations it is hard to know. 
In one such study Östlund et al. (2004), the size bias issue was at least marginally 
acknowledged. 

4.5 Expert-assessment based crash causation analysis using NDD 

The expert-assessment-based methods presented in Paper II address the 
identification of factors and mechanisms that may be associated with crash 
causation. Paper III facilitates the analysis of Paper II by providing kinematic and 
optical parameters from crashes and near-crashes. The term ‘expert assessment’ 
should be understood as a qualitative assessment by human experts who utilize all 
available information for a specific event (e.g., crash or near-crash) in order to 
identify crash-causation factors and mechanisms. This identification process is a 
foundation of Paper II. The information considered may include quantitative data 
(e.g., acceleration and speed), texts (e.g., written narratives), and video (e.g., forward 
and driver views). The factors and mechanisms identified include driver behaviors 
and aspects of the traffic environment that contribute to the occurrence of crashes 
and other SCE.  
 
Traditional expert-assessment-based crash-causation analysis uses interviews and 
road-users’ memories to understand even very time-critical causation factors (e.g., 
visual occlusion and glance behaviors; Sandin, 2009a; Seeck et al., 2009). However, 
complementing these analyses with NDD means that time-series kinematics and 
video records can provide invaluable data for the last few seconds (or more) before 
the critical moment, in both crashes and near-crashes. For example, determining the 
role of visual occlusion in intersection crashes previously meant relying on drivers’ 
memories (Sandin, 2009a), while the method in Paper II can be applied to address 
the role of visual occlusion in relation to SCE occurrence and the presence of other 
road users. Objective data about occlusion is thus available, taken from a perspective 
similar to that of the driver of the instrumented vehicle. This approach facilitates a 
more detailed study of how an SCE unfolds over time.  

In the near future NDD-based crash-causation analysis (Bärgman & Piccinini, 2016) 
may challenge the infamous “looked-but-failed-to-see” category of intersection-crash 
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causes (Herslund & Jørgensen, 2003; Koustanaï, Boloix, Van Elslande, & Bastien, 
2008; White & Caird, 2010). Research to date has few insights into what this 
category actually comprises. This category may have been invented (or at least much 
overused) due to a lack of information about what actually happened in the few 
seconds before the crash—an information gap that NDD and expert-assessment-
based crash-causation analysis will, at least partially, eliminate (e.g., using the 
method in presented in Paper III). Such insights into crash causation were previously 
unthinkable. Currently, there are still only a few methods using qualitative analysis of 
time-series data and video in NDD to identify the factors and mechanisms that 
contribute to crashes and other SCE (notable exceptions inlcude Dunn et al. (2014); 
Habibovic et al. (2013)), and none (with the exception of the method in Paper II) have 
yet been applied to CNDD. Thus, Paper II makes a scientific contribution to traffic 
safety research by providing a starting point (together with the work by Habibovic et 
al., 2013) for structured expert-assessment approaches identifying factors and 
mechanisms that contribute to the occurrence of SCE using detailed NDD. Traditional 
methods alone are less suited to addressing these aspects of crash causation 
because there is some critical information they simply cannot provide. However, 
traditional approaches in turn can contribute information that typical NDD do not have 
(e.g., information on drivers’ states or traits from post-crash interviews)—the two 
approaches are complementary. 

Understanding the influence of other road users on the occurrence of SCE is another 
example of the usefulness of crash-causation analysis methods that use NDD with 
video. Traditional crash databases and in-depth crash studies cannot identify when or 
how other road users’ presence may be contributing to crashes (Sandin, 2009b; Van 
Elslande & Fouques, 2007); the data are simply not recorded, or may be unavailable 
to researchers in traditional studies. In contrast, vehicle-based NDD with video 
provide detailed (frame-by-frame) visual information about 1) when and for how long 
the driver looks towards other road users, and 2) how and when other road users 
may occlude the principal other vehicle (Paper II). Because occlusion and drivers’ 
gaze behaviors have been identified as important factors for crash causation (Dozza 
& Werneke, 2014; Klauer et al., 2014; Räsänen & Summala, 1998; Sandin, 2009a; 
Victor et al., 2015), NDD-based insights are important, and will be for a long time to 
come.  

As previously described, NDD provide a wealth of information for the study of both 
everyday driving and SCE. However, even with the data from the large SHRP 2 
(TRB, 2014) study, in which over 1000 crashes were collected, after the crashes are 
stratified into specific crash scenarios and low-severity crashes are excluded, the 
number of crashes in each group is still relatively small. To address this deficit of 
data, data from nontraditional sources (e.g., CNDD, used in Papers I and II), can be 
used as a complement. Although there are some limitations, CNDD lends itself 
readily to the quantitative analysis of crash causation. For example, a recent study of 
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Chinese (Shanghai) CNDD SCE (Piccinini, Engström, Bärgman, & Wang, 2016) 
concluded that the main reason for the occurrence of SCE in China is quite different 
from the main reason in the US (as reported in Paper I), at least for professional 
Chinese drivers. It seems that distraction, the main reason in the U.S., is much less 
of an issue in China. Basically, drivers are less distracted in China. If you are 
distracted in China, you have a very high probability of ending up in a crash, contrary 
to the US, where there is ‘just’ an increased risk associated with distracting 
activities— not a close-to-certainty of ending up in a crash. Instead, Piccinini et al. 
(2016) study indicates that drivers’ choice of (short) headways is the main crash 
causation factor in China. 

Due to the large amounts of data in NDD analysis, the difficult tasks of quality 
assurance and data validation (should) consume relatively large portions of the 
available funding. In particular, range and range-rate data from radar deserve special 
attention. Radar has been available in several NDS studies; however, the quality and 
availability of range and range-rate data have been quietly debated in the research 
community. In the study by Victor et al. (2015) of SHRP2 data, the radar data was 
considered so poor (in terms of availability and quality) that the method presented in 
Paper III was used to extract range and range-rate data from video instead—to avoid 
excluding a large portion of the available crashes from the analysis. At the time that 
project was being run, the radar data had not been processed enough to provide 
range and range-rate data of sufficient quantity (missing radar data for entire events) 
and quality (e.g., gaps and errors in the data, and inconsistencies in tracking) for the 
analysis at hand. (Note that at least one project has been conducted to improve 
SHRP2 data (Gorman, Loren, & Hankey, 2015)). In addition, information about range 
and range-rate is not always part of NDD datasets; for example, current CNDD 
typically does not include range or range-rate (Carney et al., 2015; Hickman et al., 
2010; Papers II and III). As a result, pragmatic methods for extracting this 
information, vital to the analysis of crashes, are needed. Paper III fills this need, 
enabling the extraction of these variables from video when datasets do not contain 
range and range-rate data.  

4.6 ISS safety-benefit evaluation using counterfactual simulation 

The terms actual severity and potential severity are important for framing the 
application of counterfactual simulations to safety-critical events in traffic. In this 
thesis actual severity is defined as the actual outcome of an event: for crashes the 
associated metric is typically delta-V (with corresponding injury severity), and for 
near-crashes it could be time-to-collision (TTC; SAE, 2015), depending on what is 
relevant in the particular crash scenario. Actual severity describes what actually 
happened at a particular time. Conversely, potential severity is what could have 
happened had something been different in an event (Figure 7). The latter is thus the 
counterfactual (‘what-if’) outcome if, for example, an ISS had been available in an 
event (Paper IV), or if a driver had exhibited a different glance behavior (Paper V). 
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Studies analyzing only the actual outcome of crashes, for example, delta-V (Gabauer 
& Gabler, 2006; Toth et al., 2003; Viano & Ridella, 1996) fall into the actual-severity 
domain. 
  
When there is a crash, it could be that a very small change in any of a set of 
variables would have produced a near-crash instead of a crash (Davis et al., 2011; 
Papers IV and V). It could also be that the particular event was very rare—some 
combination of factors that do not commonly occur made the event into a crash. 
Further, when a crash is compared with a near-crash it is possible that the crash was 
a very low-speed event, with a very low probability of occurring (see Figure 8), while 
the near-crash was a high-speed event, with a high probability of becoming a (high 
severity/injury risk) crash. Using the actual severity concept, even a 1 km/h bumper 
touch would be considered more severe than a 90km/h straight crossing path near-
crash (Tijerina, Chovan, Pierowicz, & Hendricks, 1994) with a margin between the 
vehicles of 100 milliseconds—because the actual outcome was more severe. In 
contrast, in terms of potential severity, the near-crash would likely be considered 
more severe—because the potential for damage and injury was much greater.  
 

 

Figure 7: Actual severity metrics for crashes and near-crashes. For crashes the metrics 
typically start with impact speed, and may end with some injury criteria (NIC; Boström et al., 
2000; AIS, MAIS;Gennarelli & Wodzin, 2006; HIC; Margulies & Thibault, 1992), or cost 
(Harm; Malliaris, Hitchcock, & Hedlund, 1982) metrics. For near-crashes the metrics vary, 
depending on the specific crash scenario.  
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Figure 8: A 2x2 matrix compares actual and potential severities for a crash and a near-crash. 
A crash with very low initial and impact speeds is contrasted to a near-crash with high initial 
speed, but very low time-to-collision. The actual severity reflects exactly what happened. The 
potential severity indicates the probability of crashing and the risk of injury in each particular 
scenario: with a specific driver behavior (e.g., glance off-road), vehicle (e.g., braking system 
performance), and environment (e.g., friction and distance to the lead vehicle) configuration. 
In this example, there is a much higher risk of an occupant crashing and suffering a severe 
injury (e.g., MAIS3+; Gennarelli & Wodzin, 2006) injury in the near-crash than in the crash. 
 

Perhaps surprisingly, Paper V shows that, on average, near-crashes and crashes, at 
least for rear-end scenarios, have similar kinematics before the driver of the following 
vehicle starts performing an evasive maneuver. The timing and execution of the 
maneuver (e.g. jerk and brake level; Paper IV; Davis et al., 2011) determine the 
outcome. If ISS (including autonomous vehicles) can do a better job than a human at 
getting that timing and execution right, they would provide higher overall safety and 
should be promoted, for example through car safety assessment programs 
(Euro_NCAP, 2015). 
 

Consequently, each crash should be seen as an individual instance along a 
continuum of possible outcomes (as shown in Paper V and as discussed by Davis et 
al., 2011). Other instantiations produce more (or less) severe crashes or even no 
crash (i.e., a near-crash). From a traffic-safety perspective, claiming that crashes are 
always to be considered more severe than near-crashes is problematic—except 
when talking specifically about actual severity.  
 
The operationalization of potential severity using counterfactual simulations would be 
a great contribution to traffic safety research (Papers IV and V), as well as industry 
and government. The successful mathematical modeling of crash-causation 
mechanisms and driver behavior is, however, a prerequisite to improving the 
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prospective analysis of risks and the understanding of both ISS and crash-causation 
mechanisms through counterfactual simulations. This is grounded in the theoretical 
basis for counterfactual simulations presented by Davis et al. (2011), and two 
counterfactual simulation demonstrations are presented in Papers IV and V. As has 
been noted, published research on counterfactual simulations is rare to date, even 
though they are of great interest to the automotive industry (Page et al., 2015). It is 
hoped that the near future will bring improvements to the mathematical models and 
more research confirming the potential of counterfactual simulations, with appropriate 
attention given to models of driver behavior.  
 

The use of counterfactual evaluation methods to estimate the safety benefits of ISS is 
not new. In fact, a range of methods is subsumed under the term counterfactual 
simulations: from purely expert-assessment based counterfactual evaluation (experts 
do best-guess estimates of the benefit, based on limited information), to highly 
mathematical counterfactual simulations with advanced models of crash causation 
and driver behavior. Paper IV and V are far to the latter side of this range. One 
example of a method that is somewhere in the middle is presented in a study by 
Strandroth (2015a); the researcher examined in-depth data from individual crashes 
and applied what could be called an expert-assessment-based counterfactual 
simulation, supported by basic models of crash kinematics, but without explicit 
consideration of detailed driver behavior aspects of crash causation. This approach 
was further validated in a subsequent paper (Strandroth, 2015b). Although the 
Strandroth (2015b) method is shown to be good at estimating a rough, ISS-generic 
benefit, it is probably not the best choice for addressing detailed aspects of ISS 
designs, specifically with respect to the impact of driver behavior, since the method 
does not include detailed models of crash causation mechanisms, or time-series of 
the pre-crash kinematics and driver behavior. On the other hand, counterfactual 
simulations of ISS for safety benefit analysis which use mathematical simulations and 
models of driver behavior as demonstrated in Paper IV, can fill an important gap; they 
facilitate detailed, rapid development and optimization of ISS at relatively low cost. As 
Paper IV shows, appropriate, validated models of driver behavior and crash 
causation mechanisms become very important.  

Researchers considering ISS may be asking the following: Why not run NFOT 
studies as part of the ISS development, optimization, and early evaluation process, 
instead of using counterfactual simulations? There are, after all, several advantages 
to conducting an NFOT (Benmimoun et al., 2011; Bezzina & Sayer, 2015; LeBlanc et 
al., 2006; Sayer et al., 2010): (a) performance indicators of everyday driving can be 
studied, (b) the ecological validity is considerably higher than in counterfactual 
simulations, and (c) drivers’ subjective experience of ISS interfaces and interactions 
(e.g. nuisance warnings; Smith & Källhammer, 2010) can be studied directly 
(counterfactual analysis cannot evaluate drivers’ subjective assessment of an ISS). 
The simple answer is that NFOT studies are costly in terms of money and time. 
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Consider the development of in-crash passive safety systems: it is expensive to 
crash cars to develop a new airbag, just as it is expensive to conduct large studies of 
safety benefit evaluations for ISS. The creation of counterfactual simulations with 
models of crash-causation mechanisms and driver behavior (as well as other 
included models) which are all well validated reduces both time-to-market and 
development costs significantly (as well as costs associated with estimating and 
evaluating benefits). Counterfactual simulations with large parameter spaces can be 
created before running a smaller set of NFOT to validate the simulations and 
evaluate drivers’ acceptance (which cannot be done through simulations). 
Furthermore, Papers IV and V both demonstrate the feasibility of multi-dimensional 
sensitivity analyses, which can be used by the automotive industry in the design and 
evaluation stages.  

The future use of counterfactual simulations to evaluate the benefit of ISS lies in the 
hands of the developers (and validators) of mathematical models of driver behaviors, 
as well as in the hands of the researchers providing a detailed understanding of 
crash-causation mechanisms. As the development and deployment of intelligent (i.e. 
autonomous and connected) vehicles increase, methods for evaluating their impact 
on safety will be crucial. Counterfactual simulations can be one piece of the puzzle.  

4.7 Using counterfactual simulations to understand the effects of 
driver behavior  

A literature review revealed no other documented methods that use mathematical 
simulations combining pre-crash kinematics and models of driver behavior to 
evaluate the effect of driver behavior on safety. Paper V is pioneering the research in 
this area, focusing particularly on assessing risks related to driver behaviors involving 
new driver-vehicle interfaces, and other in-vehicle driver behaviors (e.g., using smart 
phones in different ways while driving).  

The method presented in Paper V can be used by vehicle designers to evaluate 
specific interface designs with respect to safety. Similarly, the method could be used 
in design guidelines; in the last few years the rapid increase of new in-vehicle 
infotainment features (e.g., navigation systems and menu-based music selection) 
and interfaces between the driver and the vehicle (e.g., touch screens) has prompted 
governments to provide additional visual-manual task guidelines (see Regan, Lee, & 
Young, 2008, for a review of such guidelines). However, it is difficult to develop these 
guidelines. The current US visual-manual guidelines (NHTSA, 2013) have been 
criticized for having methodological problems of repeatability (Rydström et al., 2015) 
and being overly strict (Heinrich, 2015; Ljung Aust et al., 2013); they may also be 
using thresholds and requirements that are not entirely based on state-of-the-art 
research (Victor et al., 2015). The problem with designing such guidelines is probably 
rooted in the difficulty of detailing a quantitative relationship between driver (glance) 
behavior, crashes, and crash outcomes (Ljung Aust et al., 2013; Victor et al., 2015). It 
is particularly difficult to evaluate the net safety effect of a vehicle design that 
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includes infotainment systems as well as ISS, since the latter improve safety and 
may radically mitigate, for example, glances off the roadway related to infotainment 
systems (Victor et al., 2015). The need for methods that can evaluate DVIs and new 
ISS in combination is clearly stated in the following excerpt from a technical report on 
the analysis of SHRP2 NDD, which focused on quantifying the relationship between 
glances off-road and crash risk:  

“Regarding human-machine interaction design, distraction guidelines, 
and other regulatory agency countermeasures, the results emphasize 
the need to tackle the distraction problem as a joint probability 
problem. Risk can most effectively be reduced by removing the timing 
mismatch of eyes off road and lead-vehicle closure rates (inverse TTC 
change rate). A reduction of both sides of the equation—reducing 
eyes-off-road occurrence and reducing closure rates—is 
recommended.” (Victor et al., 2015, p. 106) 

A counterfactual simulation approach that combines the evaluation of ISS (Paper IV) 
and the evaluation of DVI designs (Paper V) is one way to achieve the combined 
evaluation suggested by Victor et al. (2015). 

Typically, design guidelines, such as the US Visual-Manual NHTSA Driver Distraction 
Guidelines for In-Vehicle Electronic Devices (NHTSA, 2013) use thresholds on 
metrics from normal driving, such as time to complete task (i.e., total task time), total 
eyes-off-road time, and longest single glance duration. The metrics are usually 
obtained from normal (baseline) driving in a driving simulator, rather than from critical 
events. A possible reason for this is that exposing study participants repeatedly to a 
(the same simulated) critical event (i.e., unexpected lead-vehicle braking) is (at best) 
questionable with respect to adaptation and ecological validity (Engström et al., 
2010).  

In contrast, counterfactual simulations (Paper V) allow crash and injury risk to be 
evaluated as counterfactual outcomes (e.g., impact speed and injury risk) on a 
continuous scale, rather than by means of thresholds on everyday driving metrics. 
The advantages of counterfactual simulations are: (a) they can capture the 
continuous nature of risk increase (rather than the somewhat binary use of thresholds 
on driver performance metrics in everyday driving data from simulators), and (b) they 
address crash (and possibly injury) risk directly (rather than via metrics only indirectly 
affecting safety—since critical kinematics and glances off-road often need to coincide 
for there to be a rear-end crash (Victor et al., 2015)).  

Paper V demonstrates that counterfactual-based approaches could replace (or, at 
least, complement) threshold values for everyday driving metrics in the guidelines. 
The replacement consists of pre-crash kinematics and a mathematical driver reaction 
model, onto which a glance behavior parameterization (including total task time, 
percent eyes-off-road, and an eyes-off-road distribution) is applied (Paper V). This 
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type of approach makes it possible to evaluate glance behavior in a variety of 
scenarios with different ISS (Victor et al., 2015). The ability to apply ISS is essential 
because the automotive industry introduces new ISS in parallel with new in-vehicle 
systems (e.g., infotainment systems), and what is actually important is the net effect 
on safety of these combined introductions. Of course, only risks that the implemented 
models take into account will be part of the results—particular care has to be taken, 
as the occurrence of counterfactual crashes is based on the crash-causation models 
(e.g., glances off-road at an inopportune time, or having too short headway). What is 
not modeled will not produce crashes, and thus not be part of the benefit evaluation.  

For further development of the counterfactual method for evaluating DVIs, validated 
models of driver behavior (e.g. reaction models) are critical. Development of (real-
world) validated mathematical models of the effect of cognitive load on safety is of 
particular importance, as is extending the application to other crash scenarios beyond 
rear-end crashes (e.g. intersections and run-off-road). There is also a clear need to 
further generalize counterfactual simulations, while using appropriate driver models. 
Crash database reconstructions (Erbsmehl, 2009; Georgi et al., 2009; Lindman & 
Tivesten, 2006) and EDR (Scanlon et al., 2016) are typically much more 
generalizable than the typical NDD—the former being developed over many years to 
facilitate weighting to population level generalization for a region or nation. However, 
crash database reconstructions and EDR do not include detailed (time-series) 
information about driver behaviors (e.g., glance behavior). By merging kinematics 
from more generalizable data (i.e., crash database reconstructions or EDR) with 
time-series driver behavior from NDD (e.g., see Figure 4), it may be possible to 
create reasonably generalizable counterfactual simulations that include driver 
behavior. There is, however, a need for more research into understanding the 
generalizability of driver models and driver behavior in crash causation.  

4.8 This thesis and the future of automated driving 

Highly automated vehicles (HAV) will provide new, large naturalistic datasets, 
increasing the opportunities and demands for counterfactual analyses. The 
introduction of HAV also increases the need for an understanding of their new crash-
causation mechanisms. The new NHTSA guidelines (NHTSA, 2016) require HAV to 
record enough driving data (from the HAV system and the human driver, if in control) 
to reconstruct any event of interest. An event of interest includes crashes, incidents, 
and “positive outcome events”, i.e. events in which the HAV system correctly 
detects a safety-relevant situation, and successfully avoids an incident. Further, the 
NHTSA guidelines propose that these data be shared. In the likely scenario in which 
naturalistic data become increasingly available, the methods proposed in this thesis 
can have a large impact. 

NHTSA guidelines also set a high priority on the validation of HAV that, arguably, 
only counterfactual analyses can meet. In fact, NHTSA requires that all components 
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of the HAV system (including each software update) are validated before they are 
implemented in the real world. As NFOTs or real-world controlled experiments would 
be unfeasible because they would both take too long and not be economically 
justifiable, simulations would most likely dominate the validation process for 
automated driving. Running counterfactual analyses, such as the ones proposed in 
this thesis, may become the standard tool for automated driving validation, paving the 
way for new applications and further development of the methodology introduced 
here. Many counterfactual simulations will validate only the technical performance 
(e.g., sensor limitations and failures), without explicit models of driver behavior 
(Nilsson, 2014).  

However, while automated driving will limit the driver’s involvement in the driving 
task, it will not eliminate the need for behavior analyses and road-user (including the 
driver) models. For example, for many automated vehicle implementations, drivers 
are expected to take over control from the vehicle under specific conditions (transition 
of control; Gold, Damböck, Lorenz, & Bengler, 2013; Seppelt & Victor, 2016). In 
addition, interactions between HAV and other road users are particularly critical for 
automated driving, especially in mixed-traffic situations.  

Thus, more research is clearly needed to develop models of driver behavior in 
automated vehicles, including HAV, as well as to continue the development of the 
methods presented in this thesis. A starting point for the former is the understanding 
of, for example, glance behaviors and reaction processes in different contexts (e.g., 
with and without autonomous driving); the work by Morando, Victor, and Dozza 
(2016) is an example of a step in the right direction. This paper can be 
complemented by studies similar to those by Markkula et al. (2016) and Victor et al. 
(2015), with the scope extended to other crash scenarios (including interactions with 
vulnerable road users, such as pedestrians and bicyclists). Further, models of drivers’ 
task-switching performance (Gold et al., 2013) will also be an integral part of 
counterfactual simulations of automated vehicles. 

 

The front-cover image 
We live in a time of change. Vehicles are becoming more and more automated, and 
the behavior of drivers (or, eventually, riders) is likely to change rapidly in the next 
several decades due to automation. How will the children of today think of vehicles 
when they retire? It is not very likely that ISS will make riders of future vehicles so 
completely safe that passive safety systems are not needed, so that vehicle 
occupants can act like those in the cover image—completely carefree, without 
worrying about the outside environment or any risk of crashing. Or, can human 
transportation eventually be that safe? If so, how far off is this reality?  
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It is not only automation that changes driver behavior. For example, the “need” to 
constantly interact with new devices and communicate digitally is affecting our 
behavior and changing the landscape of distraction. Is it possible to legislate away 
the problem in the long term? Can we expect our children, who are growing up with 
constant access to digital media and new ways to interact, to resist these temptations 
while driving (an extreme case is demonstrated on the cover image)? Or, do we need 
to focus on developing ISS and roadways that allow for such behavior? I believe we 
do. We are already moving in that direction (towards full automation), but—as long as 
the driver has some responsibility in the vehicle, or other human road users are 
present in the traffic environment—we need to develop methods to understand and 
evaluate driver and other road-users behavior in relation to safety, as well as to ISS. 
Addressing this need is what this thesis is all about.  

(The car in the cover image was parked safely (off-course) with the ignition off, and 
both parents of the children had given their consent to the use of the image/photo for 
this thesis cover – thank you Ina and Erik.) 
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5 Conclusions 

In accordance with its aim to develop methods for naturalistic driving data (NDD) 
analysis, this thesis provides a complementary, innovative set of methods capable of 
taking advantage of the vast store of information in NDD for traffic safety research 
and pre-crash safety system development. The methods address five specific 
scientific knowledge gaps. First, potential biases due to segment duration and 
autocorrelation in the analysis of NDD have rarely been acknowledged or understood 
(Paper I). Second, expert-assessment methods for understanding crash causation 
are rare and have typically not been optimized for analyzing NDD with video (Paper 
II). Third, a pragmatic method to extract range and range-rate in rear-end crash 
scenarios has been lacking (Paper III). Fourth, there has been a dearth of 
understanding regarding the importance of the choice of driver model in safety 
benefit analyses using counterfactual simulations (Paper IV). Fifth, and finally, a 
method for studying the effect of the combination of pre-crash kinematics and driver 
behavior has been missing (Paper V).  

The methods can be further developed in the future, and applied in the automotive 
industry and government. Traffic safety research can be improved by the contribution 
from this thesis, particularly in terms of (Paper I) facilitating robust analysis of 
continuous NDD and identification of biases in NDD analysis, (Paper II) providing 
tools to understand why crashes and near-crashes occur, (Paper III) enabling 
extraction of range, range rate and optical parameters from commercially collected 
NDD (CNDD), (Paper IV) demonstrating the importance of driver models in 
counterfactual safety benefit evaluation, and (Paper V) enabling the estimation of 
crash and injury risks related to different glance behaviors.  
 
The methods support different parts of the pre-crash safety measure development 
process. For example, the methods presented in Papers I-III and V can help set 
requirements for pre-crash safety measures such as intelligent safety systems (ISS, 
e.g., different levels of automated driving), infrastructure design, behavior-based 
safety, and policy-making. The methods can also be used in the development of pre-
crash safety measures (e.g., specific ISS products or prototypes; Papers IV and V), 
and can contribute to benefit evaluation, either directly (Paper I, enabling robust 
analyses) or indirectly (e.g. Paper IV, providing insights into methodological 
prerequisites). Further, this thesis also provides a novel framework for estimating the 
combined effects of driver behavior and pre-crash kinematics on safety (Paper V)—
facilitating rapid evaluation of driver-vehicle interaction designs and emerging driver 
behaviors in the real world. The methods of Papers I-V rest on a foundation of 
general methodological aspects related to the analysis of NDD. Thus, the thesis also 
provides a discussion on three topics relevant to the analysis of NDD but which have 
seldom been discussed in the scientific community: (a) the use of near-crashes as 
surrogates for crashes—near-crashes have several uses in traffic safety research, 
but care needs to be taken when using near-crashes them as surrogates for crashes; 
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(b) inferring causation based on NDD—observational data of some kind are needed 
to study crash causation, and NDD provide an unprecedented level of detailed 
information about the pre-crash phase, including detailed data of driver behavior 
(e.g., video and time-series of vehicle kinematic); (c) the use of CNDD—foreseen to 
play a larger role in future research on driver behavior because of their large 
datasets, with detailed records of the driver, the vehicle, and the environment in the 
last few seconds before a crash. 
  
As the importance of driver behavior increases in the design of vehicles (and, in 
particular, safety-measure design), utilizing the methods in this thesis is likely to 
result in safer vehicles and better safety measures developed in a shorter time—
helping to reduce the number of crashes and injuries on our roads and reach the 
Vision Zero target.  
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