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ABSTRACT

Words are not detached individuals but part of an interconnected web of related concepts,
and to capture the full complexity of this web they need to be represented in a way
that encapsulates all the semantic and syntactic facets of the language. Further, to
enable computational processing they need to be expressed in a consistent manner so that
common properties, e.g. plurality, are encoded in a similar way for all words sharing that
property. In this thesis dense real valued vector representations, i.e. word embeddings,
are extended and studied for their applicability to natural language processing (NLP).
Word embeddings of two distinct flavors are presented as part of this thesis, sense aware
word representations where different word senses are represented as distinct objects, and
grounded word representations that are learned using multi-agent deep reinforcement
learning to explicitly express properties of the physical world while the agents learn to
play Guess who?. The empirical usefulness of word embeddings is evaluated by employing
them in a series of NLP related applications, i.e. word sense induction, word sense
disambiguation, and automatic document summarisation. The results show great potential
for word embeddings by outperforming previous state-of-the-art methods in two out of
three applications, and achieving a statistically equivalent result in the third application
but using a much simpler model than previous work.
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Chapter 1

Introduction

Speakers of a language tend to have a very personal relationship to the words that make up
that language. Every word has a different feel to it, that somehow encapsulates the essence
of what that word means, but how do you translate this feeling into a mathematical
representation that can be used in computation? When engineers design communication
protocols they tend to keep the symbols orthogonal and context independent which makes
the protocols compact and unambiguous. However, when humans communicate they
make no such effort. Instead, several words may have related or identical meaning and
most words encode different senses depending on the context in which they are being
used. To further add to the complexity, these idiosyncrasies follow no well defined set of
rules which makes human language very difficult to comprehend in an algorithmic way.

In this thesis different ways of representing words as dense real valued vectors are
studied. Starting with neural word embeddings, which are by-products from predictive
modeling of word co-occurrence statistics, that are able to encode similarities between
words as distances in a geometric space. Continuing with sense aware word embeddings
which provide several different representations for each word, i.e. one per word sense.
Finally, a first step is taken towards grounded word representations by letting agents
invent their own language to communicate concepts found in images.

To provide evidence of the usefulness of neural word embeddings in real applications,
a study on the effectiveness of these representations in the following applications are
conducted. (1) The automatic creation of a lexicon given a text corpus which is referred to
as Word Sense Induction(WSI), (2) the related task of Word Sense Disambiguation(WSD)
which is the problem of assigning a sense label, from a predefined set of senses, to a word
token in a text, and (3) automatic summarisation of one or more documents by picking
sentences as to cover as much of the central information in the corpus as possible, i.e.
extractive multi-document summarisation.

1.1 Main Contributions of this Thesis

e A method for creating sense aware word embeddings, Section 2.3.1, is presented
and used to do WSI, Section 3.1, on a well known dataset achieving a 33% relative



improvement over previous state-of-the-art methods. For more details on these
results see Paper 1.

An end-to-end trainable multiple-agent reinforcement learning model that invents a
grounded language to play Guess who?. See Section 2.4 for a short introduction or
Paper II for a complete description.

A purely learned approach to WSD, Section 3.2, that achieves results on par with
state-of-the-art resource heavy systems, by leveraging GloVe vectors, Section 2.2.3,
and a bidirectional long short-term memory network. See Paper III for more on
these results and a detailed description of the model.

A study on the applicability of neural word embeddings, Section 2.2, to provide a
semantically aware sentence-to-sentence similarity score for use in extractive multi-
document summarisation, Section 3.3. The results are disseminated in Paper IV
and Paper V.



Chapter 2

Embedding Words in
Geometric Spaces

Representing words as vectors has many advantages, three of them being: (1) they make
it possible to encode different properties of words that may be shared between words, (2)
they provide well defined distance measures, e.g. euclidean distance or cosine distance, for
comparing words, and (3) they can encode correlated features by using a non orthogonal
basis.

2.1 Basic Vector Representations

Before going into word embeddings some background on traditional vector space models
are given in this section.

2.1.1 One-Hot Vectors

The most basic way of encoding a word in a vector space is called a one-hot encoding, i.e.
a vector of the same dimensionality as the language where all but one dimension are zero
and the remaining is one, the index of which encode the word type. This means that the
vocabulary makes up an orthonormal basis for the vector space, which has the advantage
that no assumptions about the words are being encoded in their representations. This
orthonormal property makes them very useful in some applications, however, as semantic
embeddings they are useless as they encode no information about the words and all words
are of equal distance to each other.

2.1.2 Feature Vectors

To get a more semantically meaningful representation a second approach could be to
list all known features of words and let them define the basis of the space. A word
representation would then be a vector of zeros and ones indicating the absence or presence



of corresponding word feature. However, this leads to a few problems. First, it is not
clear that all features are equally important which means that you will have to weight
these to make the geometric distance measure meaningful and weighting features by hand
with no clear objective would be highly subjective. Second, it is not possible to produce
the definite list of all properties of words since language is continually changing.

2.1.3 Bag-of-Words Vectors

In order to improve scalability and objectivity we turn to hard statistics. But how do
you capture word semantics in statistics? This difficult task was answers by Harris 1954
with the distributional hypothesis stating that, in the words of John Rupert Firth, You
shall know a word by the company it keeps. L.e. statistics regarding which words co-occur
can be used to form word representations. An early attempt at leveraging these statistics
are called bag-of-words representations. These representations are related to the one-hot
encodings in Section 2.1.1 as they can be formed by summing the one-hot vectors of
all tokens in a corpus occurring within a given context window, e.g. three words before
and after, the word type to represent. If this vector is subsequently normalized to sum
to one, each dimension will indicate the probability of co-occurring with the word type
corresponding to that dimension. These types of representations, when trained on a
sufficiently large text corpus, will be able to enjoy all three of the advantages of vector
based word representations stated in the beginning of the section. However, they suffer
from one crucial deficit, the curse of dimensionality. This is because the dimensionality
of the space equals the number of words in the vocabulary, which is very high for most
languages, and has been shown to render geometric distance measures ineffective for
measuring similarity between words in these models (Baroni, Dinu, and Kruszewski 2014).
Though a lot of effort has been spent on overcoming this limitation, via different weighting
and dimensionality reduction techniques, no definite answer of how to solve the problem
has been found (Baroni, Dinu, and Kruszewski 2014).

2.2 Dense Real Valued Vectors Representations

In an effort to overcome the dimensionality problem of bag-of-words representations,
Bengio et al. 2003 introduced a new way of leveraging co-occurrence statistics by learning
to predict the context surrounding the target word using a neural network. By solving
this proxy problem the network is forced into assigning similar vectors, now referred to as
neural embeddings, for representing similar words. This approach has many advantages,
one being that the embedding dimensionality can be chosen by the user. However, this
model relied on computing a distribution over all words in the vocabulary, which is too
computationally expensive to train the model on a large corpus.

2.2.1 CW Vectors

The first practical algorithm for training neural word embeddings was instead presented
by Collobert and Weston 2008. This model solved the dimensionality problem by, instead
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Figure 2.2.1: The continuous Skip-gram model. Using the input word (w;) the model tries
to predict which words that will be in its context (wit.).

of learning the probability of each word type in the context of a target word, learning to
differentiate between the correct target word and a random word given a context.

2.2.2 Continuous Skip-gram

However, it was with the continuous Skip-gram model by Mikolov, Chen, et al. 2013,
released within the Word2vec package, that neural word embeddings became widely
popular. The Skip-gram model is a simplified log-linear neural network, see Figure 2.2.1,
that can be efficiently trained on huge amounts of data. Later the same year this model
was shown by Mikolov, Yih, and Zweig 2013 to be able to capture multiple dimensions
of similarity and be used to do analogy reasoning using linear vector arithmetics, e.g.

Vking—Uman + Vwoman < Vqueen -

2.2.3 Global Vectors for Word Representation

Though prediction based word embeddings quickly gained interest in the community
and were fast replacing the counting based bag-of-words models, Pennington, Socher,
and Manning 2014 showed that the two approaches had some complimentary properties
and introduced Global Vectors for Word Representation (GloVe). GloVe is a hybrid
approach to embedding words that combine a log-linear predictive model with counting
based co-occurrence statistics to more efficiently capture global statistics, something they
showed was lacking in the predictive models. As such, GloVe might represent the best of
both worlds.

2.3 Sense Aware Word Embeddings

Though the word embeddings described in Section 2.2 has enjoyed much success they
are actually founded on a false assumption, i.e. that each word has exactly one sense.
This is clearly not true, e.g. the word rock may refer to either music or a stone. In this
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Figure 2.3.1: Context embeddings for instances of the noun “paper” in the SemFEval-2013
test data, plotted using t-SNE. The legend refers to WordNet gold standard sense labels.

Section we turn our attention to the problem of multiple senses of a single word type. To
solve this we again employ to the distributional hypothesis and use the embeddings of the
surrounding words as a basis for a context specific word embedding tailored for a specific
word token.

2.3.1 Instance-Context Embeddings

In Paper I, two approaches for computing sense aware word embeddings are introduced,
where the first mainly provide a baseline for the second approach. The baseline system
construct context dependent embeddings by averaging the word embeddings, described
in Section 2.2.2, corresponding to the word tokens in their context. The drawback of
the baseline approach, that we try to rectify in our second method Instance-Context
Empbeddings (ICE), is that it attends the same amount on all words in the context even
though some words are clearly more indicative for deciding the sense of a given target
word. Our solution to this problem is to attend more to the words to which the Skip-gram
model assigns a high probability of occurring in the target words context. This means
that the words that correlate with the target word will be attended to more, but also
that very common words that correlate with every word will be weighted less. This is
due to the connection between the Skip-gram objective and pointwise mutual information
showed in (Levy and Goldberg 2014), and has the effect of creating an embedding that is
more stable for words sense, see Figure 2.3.1, and less affected by the noise of unrelated
words, e.g. stop words or words that are rarely used together with the target word.

2.4 Embedding Grounded Concepts

Another aspect that is not covered by the word embeddings described in Section 2.2 is
grounding. That is, the connection between the physical world and the words in a text.
Grounding is not only important as a bridge to the physical world but could also aid in
the understanding of the text by using generalization of concepts via physical properties



rarely discussed in writing, e.g. that most ground vehicles have wheels which is apparent
from images but usually not stated in written descriptions. In Paper II we take a first
step towards grounded word embeddings by training agents to communicate concepts in
images without any a priori shared language. i.e. they will need to create a language that
encode concepts in the images in order to solve a common task. The task they are set
out to solve is the game of Guess who?. A collaborative game, illustrated in Figure 2.4.1,
where one player (the asking player) is tasked with figuring out which image, from a
known set, that the other player (the answering player) is currently holding. To do this
the asking player gets to ask questions to which the answering player will respond yes or
no.

=2EEn =2EEn =2mEn
NV NN\~ N\~

Asking- Asking- Asking-
agent agent agent

'"’.]1 7”\_{
m} (yes/no) m3 (yes/no)

Answering- Answering-
agent agent

| |
= a

—_—> !

Figure 2.4.1: Schematic illustration of our version of the Guess Who? game.

To get a feeling for what concepts the agents decide to encode in their words we
analyzed their interactions from a restrictive setup where the agents are only allowed two
words (or questions) and the set of images only consist of two images sampled from the
full set. The interactions from three such setups are tabulated in Table 2.4.1 where it can
be seen that question B encoded a concept, perhaps the lack of mustache, that separated
the images in the first and third setup. A deeper analysis of the result is given in Paper II.



Table 2.4.1: Final message protocols between the asking-agent and the answering-agent
depending on the images the agents see.

Message protocol

Asking-agent  Answering-agent Question Answer Guess Reward

B e 1
i a B no a 1
— — B yes — 1
s ol a B no a 1
& LT e A no = 0
i K- E A no E 1
G o s I A no E 0
S ot E A no E 1
i o B yes ~ 1
= B |
o B yes - - 1
=2 = B o B 1

10



Chapter 3

Applications of Word
Embeddings to NLP

Though interesting in themselves, the main reason for the surge of interest in word
embeddings is their applicability in natural language processing(NLP). Within this thesis
three basic NLP application areas have been studied, and descriptions of each of them
will follow.

3.1 Word Sense Induction

The first application considered is Word Sense Induction(WSI), the task of automatically
creating a word sense inventory, i.e. lexicon, given a corpus. WSI is becoming an
increasingly important tool for lexicographers trying to keep up with the ever increasing
pace of language change. Our approach follow the work of Schiitze 1998 by employing
context clustering, i.e. embedding the context of tokens corresponding to a given word
type and clustering them to find the different word senses. Traditionally the embeddings
used have been different variations of the baseline system described in Section 2.3.1, i.e.
bag-of-words representations. However, in paper Paper I we show that our proposed ICE
embeddings, also described in Section 2.3.1, outperforms the traditional embeddings and
achieved a relative improved over the previous state-of-the-art method of 33% on the WSI
task of SemEval-2013.

3.2 Word Sense Disambiguation

The problem of assigning a word sense, from a set of predefined senses, to a word
token is referred to as Word Sense Disambiguation (WSD). Traditionally WSD has been
approached by modeling a fixed context window surrounding the target word, i.e. the
word to disambiguate, as an unordered set. Though this may work for a large set of
instances it is not difficult to find examples where the order is helpful, or even necessary,

11



for correct disambiguation.

In Paper III a sequence modeling approach is instead taken, where the order of words
play an important part, and where the window is implicitly learned during training instead
of defined a priori. See Figure 3.2.1 for an illustration of the model architecture.

y(n)

|

a

|
TWT I [ I TWT

X0 Xn—3 Xn—2 Xn—1 Xn+41 Xn+42 Xn+3 X|D|

Figure 3.2.1: A BLSTM centered around a word at position n. Its output is fed to a
neural network sense classifier consisting of one hidden layer with linear units and a
softmax. The softmax selects the corresponding weight matriz and bias vector for the word
at position n.

The model stand in stark contrast to previous work in that it relies on no external
features, e.g. part-of-speech taggers, parsers, knowledge graphs, etc., but still delivers
results statistically equivalent to the best state-of-the-art systems. Further, we show that
word embeddings play an essential role for the performance when trained on a limited
amount of sense labeled data.

3.3 Automatic Multi-Document Summarisation

The amount of text being produced every day has exploded, which, if you want to follow
what is being written on some topic is both a blessing and a curse. A blessing in that
a much richer picture is being painted, less exposed to the subjective opinions of a few
writers and able to cover more aspects in-depth. This sounds great, however, humans
have a limited ability to read massive amounts of text, which means that you either have
to limit yourself to the opinions of a handful producers or read a fair summary. However,
manually producing such a summary is in most cases prohibitively expensive which is
why automatic summarisation systems are becoming an increasingly important tool to
keep up with the world.

3.3.1 Extractive Summarisation

Automatic summarisation comes in two distinct flavors, abstractive and extractive. Ab-
stractive summarisation is the more general solution where an abstract representation of
the documents is created and the summary is generated based on this representation. In

12
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Figure 3.3.1: Illustration of Extractive Multi-Document Summarisation.

contrast, extractive summarisation picks the most important sentences from the docu-
ments and put them together to form the summary, See Figure 3.3.1. Though abstractive
summarisation more resemble how humans summarise text, extractive summarisation has
so far been more successful at solving the task.

3.3.2 Comparing Sentences

Using the extractive summarisation framework presented by Lin and Bilmes 2011 provides
a way of extracting sentences that are both descriptive of the document set, but also
diverse within the set of extracted sentences to cover as much of the information contained
in the documents as possible. However, in order to perform well, this system depends on
having access to a high quality sentence-to-sentence similarity measure. In Paper IV we
show that word embeddings can be used to compare sentences and provide a semantically
meaningful sentence-to-sentence similarity score, but to do this we have to merge word
embeddings into a sentence embedding. For this we evaluate two approaches: The first is
to average the embeddings of all words in the sentence and use this as a representation.
The second approach use a recursive auto encoder (RAE), proposed by Socher et al. 2011
and depicted in Figure 3.3.2, to recursively merge embeddings guided by a parse tree and
finally using the root layer as a sentence representation.

3.3.3 MULTISUM

In Paper V we follow a similar strategy but the information from the word embeddings
are combined with other measures and achieve a statistically significant improvement
over the state-of-the-art on the well known dataset of Document Understanding Confer-
ence (DUC) 2004.

13
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Figure 3.3.2: The structure of an unfolding RAE, on a three word phrase ([x1,x2,23]).
The weight matriz 0. is used to encode the compressed representations, while 04 is used to
decode the representations and reconstruct the sentence.
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Chapter 4

Future Direction of Research

As the licentiate thesis, to a large extent, represent a milestone on the way to a PhD, some
thoughts on current and future work that will lead up to the dissertation are presented
next. The general direction that is being taken is towards sequences of words and emergent
properties captured through the interaction between agents. At the time of writing, this
translates to the following list of ongoing projects:

Symbolic input sequence optimization Taking an optimization approach to the
sequence to sequence decoding problem by utilizing the gradient to do optimization over
a one-hot input space.

Grounded word embeddings of human language Connecting the grounded em-
beddings described in Section 2.4 with existing human language, to learn grounded
embeddings of real words.

Waveform translation Realizing that the models behind neural machine translation
are independent of the underlying data, we try to connect the spectral voiceprint of the
source sentence to the voiceprint of the target sentences directly. Though challenging,
this approach has the potential of producing a far superior speech-to-speech translation
system than approaches that are constraint by having to transcode the spoken language
in text, since a lot of information gets lost in that step.

15
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