Emergency department overview - Improving the
dynamic capabilities using an event-driven
information architecture

Kristofer Bengtsson, Elin Blomgren, Oskar Henriksson, Linnéa Johansson,
Edvard Lindelof, Martin Pettersson, Asa Soderlund

Abstract—It is challenging to get an overview and understand-
ing of what is going on at an emergency department (ED). This
is due to the sometimes turbulent work environment and a large
variation in patient processes. To increase the dynamic capability
and responsiveness of an ED, it is important that the staff and
patients have an overview of what is going on and what will
happen in the coming hours. This paper presents a smart online
support software that shows the current state of the ED as well
as a prediction of the coming hours. The software has been
developed as a case study of using agile development ideas when
developing new systems for hospitals. The result shows that the
use of the event-driven information architecture for healthcare
(EVAH) enabled a rapid development of a successful running
application, helping the nurses getting an overview of current
situation and the coming hours.

I. INTRODUCTION

Dynamic capabilities is often used to refer to an or-
ganizations ability to adapt and reconfigure resources and
processes to react to changing circumstances [25]. One key
to achieve dynamic capabilities in turbulent environments like
an emergency department (ED) can be to utilize advanced IT
support [9]. This, together with the challenge of overcrowded
emergency departments (EDs) [7] has led to an increased in-
terest from the healthcare sector in finding new and innovative
support tools.

Healthcare research has been studying IT-support for
decades [3], [11], including a large variety of systems and
functionalities. One example is the transition from paper-based
to computer based patient records [8], guideline support [19]
and archetype-based information structures [21]. However,
few have been studying how to support the dynamic capabili-
ties [24] of an ED, i.e. how to support a reactive and adaptive
patient process control at chaotic emergency departments.

Bengtsson et al. [5] introduced an event-driven architecture
for healthcare (EVAH) as a backbone to support dynamic
capabilities. The first application was to visualize the current
and future situation and behavior at an ED, especially for the
nurses working with the actual care [4]. EVAH is inspired
e-mail:

K. Bengtsson, is with Sekvensa AB, Goteborg, Sweden,

kristofer@sekvensa.se

E. Blomgren, O. Henriksson, L. Johansson, E. Lindelof, M. Pettersson,
A. Soderlund are students at Chalmers University of Technology, SE-412 96
Goteborg

978-1-5090-1314-2/16$31.00 (© 2016 IEEE

by event-driven architectures [16] which has been shown to
support dynamic capabilities in health care [26].

EVAH is event-driven, has formalized transformation pat-
terns, uses stream-based aggregation, and prototype-oriented
information models. This makes EVAH able to handle the
complex and changing processes at an ED and allowing a large
diversity of communication devices and interaction with mul-
tiple IT-systems. Furthermore, EVAH gives the possibility to
easily introduce new calculation and visualization algorithms
not only based on new, but also on historical data. This paper
presents a dashboard tools for the nurses at an emergency
department including information about current situation as
well as a prediction of the coming hours.

Modern development paradigms like agile software de-
velopment [15] is hard to use when developing new hos-
pital applications. This is often due to restrictive polices
and non flexible information technologies. This paper will
therefore also show that EVAH supports modern development
paradigms like agile software development. As a case study,
six students developed a dashboard for nurses at an emergency
department using agile development ideas. The result show
that the use of the event-driven information architecture for
healthcare (EVAH) enabled the students to rapidly develop a
running application helping the nurses getting an overview of
current situation and the coming hours.

Two key enablers were the use of transformations of real-
time events into understandable information and a simple
approach for creating new services, like a predictive algorithm.
This made it possible to continuously include the end users
and try out a variety of ideas.

This paper demonstrated the power of EVAH and the
ease of developing new support tools when having a modern
architecture. In section II, EVAH is introduced and in Section
III, the dashboard is described. The data handling and the key
performance indicator calculation is described in Section IV
and the prediction algorithm is presented in Section V.

II. EVENT-DRIVEN INFORMATION ARCHITECTURE FOR
HEALTHCARE (EVAH)

EVAH is based on a set of simple building blocks: An
event bus, transformation and service endpoints, and EVAH
events. These building blocks enable, in a modular and loosely
coupled way, the creation and transformation of events into

Patienter totalt: 52

Infektion Triage

7 -
iz -

2

20 i’} Ejtriagefarg
18 Klara

16 Pétittade

Opétittade

S o zomm T eimin
TTL .

= M_k___

”

00| . -

. - Lediga rum

120 min “eomm “somin ~2omn Tmin T20min ChEAED

1 10

T ¥ e

1

= M

-120 min -E0min B0min -30min Omin +20min

Fig. 1.

;

Medicin Gul

12 [B]H]5]
M | Medicingul [T
10 18
Medicin bla g

Jour: Ortopedi
ONH
Gyn
A4 A3 A2 Al

_C
CDEBE-

Akutrum Kirurgi
Medicin Bla Gips Kirurg Triage Akut Jour Ortoped
12 20 22 23 47a 47b 48 5 6 7 Al A2 A3 30 31 33 36
24 25 26 4Ba 48b 8 A4 34 45

The coordination view of the dashboard. Upper left show patients per section, priority and current state.

Current and predicted waiting times are shown lower left. The ED layout and occupied and free rooms are on

shown to the right.

usable information. EVAH uses a event / message bus called
Apache ActiveMQ for sending and receiving events, but can
use any type of publish-subscriber solution. ActiveMQ is an
Enterprise Service Bus (ESB) that supplies transformation
and routing of data/information throughout several distributed
applications.

A. EVAH Events

When something happens, for example when a patient is
examined or someone in the staff goes for lunch, an event
can be sent out with information about the change. A EVAH
event, is defined as:

Definition 1 (EVAH events): e = (id,t, KV'), where id
is a unique identifier of the event, ¢ is a timestamp, and
KV = {attr; : valuey,...,attry : valueg} is a set of
ordered attribute — value pairs describing the event and the
state change. O

EVAH does not strictly define types or classes of events. In-
stead, a prototype-oriented approach is used [23]. Inheritance
is managed by cloning an event, and similarities among events
are identified based on the attribute — value pairs. This makes
the event creation, identification and filtering more flexible
and easier to change and update, since the strict hierarchical
relation enforced by a class structure is removed. This is
described in more detail in [5]. Each event is published onto
the message bus by an endpoint as a json messages so that
other services can receive it.

B. Transformation endpoints

One big challenge when trying to create an information
system for healthcare is to manage all the various types of
events. In addition, sometimes events are not immediately
registered, some events only include limited information, or
activities are only defined by a single event after completion.
To be able to use all these events, for example to calculate
various key performance indicators, KPIs, it is necessary to
transform, update, and aggregate events.

EVAH uses three fundamental types of transformations:
Fill, Map, and Fold. Fill and Map are used for adding missing
information to an event and Fold is used for transforming
events sequences into messages or new events.

The Fill transformation fetches information from a database
or other type of static information that do not change over
time. The most common use cases are to fetch and include
patient and staff information based on an id tag, or to fetch
and include extra information about the sender of the event.
The function will always return the same result unrelated to
what has happened before.

In many cases, an event does not only need static infor-
mation, but also values that are based on the current state of
the system. A Map transformation is a function that transform
events by appending a set of new attribute — value pairs based
on the current state of some part of the system, which the map
function is tracking.

Fill and Map can be used to transform events in multiple
steps to simplify the implementation and to increase the

changeability. The last transformation type is Fold, which
takes a sequence of events and transforms them into a new
event or that is sent out onto the message bus. Fold transforma-
tions can also implement advanced event pattern identification
algorithms like complex event processing (CEP) [14] or real-
time languages [18]. CEP is a concept that tries to formalize
how patterns and “knowledge” are identified from a flow of
lower-level events, which are then sent out as higher-level
events. [6]

III. AN ED DASHBOARD USING EVAH

The ED dashboard that was developed as a case study
includes two views, one view, which is studied in this paper,
for supporting the coordination of resources and patients at
the ED Fig.1 and one view focusing on the patients in one
part of the ED. The dashboard shows information aggregated
for each patient, including state as well as the history of each
patient. It also shows various resource aggregations related to
rooms, ED sections and performance indicators like waiting
time.

A. Aggregated information

The information in the dashboard represents aggregations
of specific patient information gathered from the events. With
each new event related to a view, the dashboard is updated and
redrawn. This leads to an accurate and continuously updated
visual presentation of the present state at the ED.

The views were iteratively developed in collaboration with
the end users. During the case study it became apparent that
what information the staff thought they wanted to see changed
rapidly. Therefore, it was necessary to rapidly evaluate new
ideas and enable a system that could evolve and easily be
updated.

B. Visualizing information

In the upper left in Fig.1, a bar chart visualizes where
patients are currently located. Each bar group shows the
patient at that section of the ED, together with their priorities
and if they have met a doctor. The three charts in the lower
left show the last hours as well as a future prediction for three
patient waiting time metrics: waiting time until triage, waiting
time until meeting a doctor, and total time spent at the ED.
The map and table on the right shows every room at the ED
and whether each room is occupied or availible.

One example is how to measure the performance of the
ED. A common performance indicator is the waiting time
from arrival until the first physician evaluation. However, due
to patient priority, the patient type, as well as inaccurate
registrations, there are large variations in registered waiting
time as can be seen in Fig.2. The figure shows registered
waiting times for patients as well as four different calculation
methods of gliding average waiting times, between 08:00 and
18:00 a day at an ED.

The 10% new method in Fig.2 shows a low-pass filter
implemented as the weighted average Ty = 0.1x7,.4-0.9+T7,
where T; is the previously calculated average time and 7).

TTL from 2016-04-28 08:00 to 2016-04-28 18:00

— 10% new
moving 10p

200 60 min average |.
Exp moving 20p

xx Actual TTLtimes

150,

8 10 12 14 16 18
time of the day

Fig. 2. Time to doctor (TTL), showing four methods for calculating
average waiting time as well as registered waiting time for each patient

is the latest registered time. Moving 10p shows the average
including the 10 last registered times, and 60 min average
shows the average for the last 60 minutes unrelated to number
of registered times. The last, Exp moving 20p shows the
moving average including a weight. These methods just show
the need for evaluating a variety of measuring methods.

To have a flexibility in what information can be shown,
it is necessary to have a good architecture and information
management. EVAH is one of the core pieces of this.

IV. CREATING INFORMATION FROM EVENTS

The core concept of EVAH is that many systems can
generate events unrelated to each other and publish them to
the bus. Some systems can only send simple numbers, and
others can send out complex messages. EVAH will handle
them all, since small transformation services transforms and
standardizes the messages so that higher level systems can
understand them. The studied ED however, has only a simple
database system storing the current state of each patient,
including e.g. where the patient is located. To be able to track
the history of each patient and to use the ideas of EVAH, the
database is polled every second and changes to a patient are
identified and an event is published.

A. Raw events

In the case study, three types of events were available:

1) NewPatient
2) RemovedPatient
3) UpdatedPatient

The NewPatient event includes just the arrival time ¢4yripq1
and a patient id ID,. After that event, every update to
that patient generates a new event. Examples of events are:
priorityChange, triageStart, locationChange, sectionChange,
doctorStart, careStart, careEnd, etc. Finally, a RemovedPatient
event is published when a patient is removed from the ED
database. This event is analogous to the NewPatient event but
also includes the final state of the removed patient. Each event
includes a timestamp, the id of the patient and an event id.
All these events are published on the bus where a number of
services transforms and creates information.

B. Transformations

A number of transformations are used in the case study.
To the right in Fig.1, a map of the ED shows if a room
is occupied or not. This information is created by a service
that listens to UpdatedPatient events that include a location
change. Every time such an event arrives, the service adds that
patient to the room, and if the patient was located somewhere
else, removes it from the old room. The service then sends
out a new event, RoomChange, which includes the state of the
changed room as well as, for example, how long the room has
been occupied during the last hour. The service also handles
registration "errors" if more than one patient is in the same
room, and emits a registration error event.

Since the RoomChange service keeps track of the state of
all the rooms, it is also the source for the user interface in the
figure. If, in the future, the ED for example installs a tracking
system for all patients, the new data can be used directly by
the same service, making the system handle it without any
changes beyond the scope of the RoomChange service.

Most of the services used in the case study are patient fold
services. They listen to patient events to update their internal
state, keeping track of the patients. Each service focuses only
on one task, for example calculating various waiting times or
tracking patient movements.

In Fig. 1, to the left, a fold service is used to aggregate
information related to each section of the ED. In the figure, 23
patients are located at section kirurg (surgery), 9 have priority
orange, 12 yellow and 1 green, 10 have met a doctor and 12
are still waiting for the doctor. This simple bar chart quickly
gives the staff an overview of current state of the ED, which
is based on low level events.

C. Elastic search and event sourcing

Most of the information shown in Fig.1 is based on the
current state, which is stored in the memory of the services.
If a service crashes, it can recreate its state from persisted
events, stored in a journal. To store the history of events with
the purpose to persist an application’s state is called event
sourcing [13]. Compared to persisting the state itself, there are
some notable differences. With event sourcing, the exact same
application behavior can be replayed and analyzed in detail.
For example, if an application is found to be in an incorrect
state it is possible to step through the replay of events to
find out which event processing introduced the error. Another
advantage of event sourcing is that it is possible to apply the
event history to new applications.

When studying the history of the ED however, a search
database is used instead of an event journal. In this case study,
elasticsearch [12] has been used for indexing and fast search
of historical information.

V. PREDICTING THE COMING HOURS

In the bottom left of Fig. 1, the last 2 hours together with
a prediction of the coming 30 minutes are shown for time to
triage, time to doctor and time to finished. Due to the nature of

event driven architecture, it was easy to integrate and evaluate
various prediction methods.

To predict the waiting time, a learning algorithm is needed
that uses a training set based on historical data. What algo-
rithm that fits best, what input parameters to use and how
to tune the learning will always be a design task. Hence a
flexible information system is necessary to be able to develop
learning algorithms.

Researchers have evaluated some prediction methods for
emergency departments, e.g. [22], [1]. In the case study,
similar methods was evaluated as well as standard prediction
methods like: artificial neural networks [10], linear regression
[17], k-Nearest Neighbors regression [2] and LASSO [20].
The training data for predicting time to doctor includes the
following tuple of variables V that are retrieved from the bus:

e Average waiting time last 30 min

e Average waiting time last 60 min

o Average waiting time last 120 min

o Number of new patients last 60 min

o Number of patients assigned doctor last 60 min

o Number of patients waiting for doctor

« Average waiting time for patients waiting for doctor

The value of the variables in V' at time instance ¢, de-
noted V;, are the input values when training the prediction
models. The output for the prediction is the time series
(W, Wit10, Wi420, Witk), denoted W, where w; is the waiting
time at time ¢ and w410, Wet20, Wy are the waiting times
after ¢ with ten minutes intervals until k. The prediction
models are trained with the input-output pair (V;, W;). The
training set includes a time range of pairs, and the result is
evaluated using a different time range. In Fig. 3, the evaluation
of linear regression for time to doctor is shown, using an
average waiting time for patients seeing a doctor in the
next 120 minutes (i.e. the average of VW where k = 120).
Each dot illustrates the difference between the predicted and
measured value. As can be seen, the prediction is accurate up
to 200 minutes. After that, the variation between patients is
too large for a good prediction. To improve the accuracy it
would probably be necessary to separate the patients based on
priority and predict each group individually.

The prediction models can be trained at one time and
used to predict future waiting times, or trained again at a
specific rate, e.g. once every week. The predicted segments
(indicated by dashed lines) in the lower left in Fig. 1, were
generated using polynomial regression. The polynomial terms
were taken as all possible products of the prediction variables
described above.

The prediction service makes a prediction once a minute
as well as each time any of the prediction variables changes.
The model predicts four points: waiting time now, 10 minutes
ahead, 20 minutes ahead and 30 minutes ahead. The different
algorithms evaluated showed similar results and were possible
to use for online prediction, on the dashboard. However,
further evaluations and experiments are needed to find a
prediction technique that helps the staff at the ED in taking
good decisions. It could for example be better to predict

Time to Doctor

Linear regression

600

400 .

300 e

200 P

100!

~100! I I . I . L
—100 0 100 200 300 400 500 600

Fig. 3. Cross validation of predictingTime to doctor (TTL), linear
regression. Predicted value on y axis and measured value on x axis.

patient throughput instead of the waiting time. When using
EVAH it is easy to evaluate a large number of prediction
techniques.

VI. CONCLUSIONS

One important tool to handle overcrowding in emergency
departments is to visualize the current system state and the
future possible behavior. Using an event-driven architecture
is an enabler for rapid development and evaluation of various
visualization techniques and algorithms. This paper shows
that the Event-driven information architecture, EVAH, made it
possible for a group of students to rapidly develop a prototype
tool that the emergency department (ED) could use.

To increase the dynamic capabilities of an ED, new and
innovative computer aided techniques are necessary, especially
prediction and analysis algorithms to help the staff in making
informed decisions. After this case study, EVAH will be
integrated at the ED and new techniques for how to define and
analyze the plan for each patient will be evaluated. When a
plan for each patient is available, it will increase the possibility
for the staff to make even better decisions to increase the
dynamic capabilities.

REFERENCES

[1] Accurate emergency department wait time prediction. Manufacturing
& Service Operations Management, 18(1):141-156, 2016.

[2] N. S. Altman. An introduction to kernel and nearest-neighbor nonpara-
metric regression. The American Statistician, 46(3):175-185, 1992.

[3] M] Ball. An overview of total medical information systems. Methods
Inf. Med, 10:73-82, 1971.

[4] K. Bengtsson and B. Lennartson. Patient coordination in emergency
departments using visualization of operation behavior. In 2013 IEEE
Symposium on Computational Intelligence, Singapore, pages 58-63,
April 2013.

[5]

(6]

[7]

[8]

[9]
[10]
(1]
[12]
[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

(22]

(23]

(24]

[25]

[26]

K. Bengtsson and B. Lennartson. Patient coordination in emergency
departments using an event-based information architecture. In Proceed-
ings of the 2014 IEEE Emerging Technology and Factory Automation
(ETFA), pages 1-6, Sept 2014.

Gianpaolo Cugola and Alessandro Margara. Processing flows of
information: From data stream to complex event processing. ACM
Comput. Surv., 44(3):15:1-15:62, 2012.

Robert W. Derlet and John R. Richards. "overcrowding in the nation’s
emergency departments: Complex causes and disturbing effects". Annals
of emergency medicine, 35(1):63-68, 2000.

Richard S Dick, Elaine B Steen, Don E Detmer, et al. The Computer-
Based Patient Record:: An Essential Technology for Health Care.
National Academies Press, 1997.

Omar A El Sawy and Paul A Pavlou. It-enabled business capabilities
for turbulent environments. MIS Quarterly Executive, 7(3), 2008.
Daniel Graupe. Principles of artificial neural networks, volume 7. World
Scientific, 2013.

Reinhold Haux. Health information systems - past, present, future.
International journal of medical informatics, 75(3):268-2281, 2006.
Rafal Kuc and Marek Rogozinski. Elasticsearch Server. Packt
Publishing Ltd, 2013.

Roland Kuhn and Jamie Allen. Reactive Design Patterns. Manning
Publications, MEAP 1 edition, 2014.

David Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-Wesley
Professional, 2002.

Robert Cecil Martin. Agile software development: principles, patterns,
and practices. Prentice Hall PTR, 2003.

Brenda M Michelson. Event-driven architecture overview. Patricia
Seybold Group, 2, 2006.

Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining.
Introduction to linear regression analysis. John Wiley & Sons, 2015.
J. Perez, J. Jimenez, A. Rabanal, A. Astarloa, and J. Lazaro. FTL-
CFree: A fuzzy real-time language for runtime verification. Industrial
Informatics, IEEE Transactions on, 2014.

Luca Piovesan, Gianpaolo Molino, and Paolo Terenziani. An ontological
knowledge and multiple abstraction level decision support system in
healthcare. Decision Analytics, 1(1):1-24, 2014.

Volker Roth. The generalized lasso. Neural Networks, IEEE Transac-
tions on, 15(1):16-28, 2004.

P Schloeffel, T Beale, G Hayworth, S Heard, and H Leslie. The
relationship between cen 13606, hl7, and openehr. In HIC 2006 and
HINZ 2006 Proceedings, pages 24-28, Brunswick East, Vic.: Health
Informatics Society of Australia, 2006.

Yan Sun, Kiok Liang Teow, Bee Hoon Heng, Chee Kheong Ooi, and
Seow Yian Tay. Real-time prediction of waiting time in the emergency
department, using quantile regression. Annals of emergency medicine,
60(3):299-308, 2012.

A. Taivalsaari and 1. Moore. Prototype-Based Object-Oriented Pro-
gramming: Concepts, Languages, and Applications. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1st edition, 2001.

David J Teece, Gary Pisano, and Amy Shuen. Dynamic capabilities and
strategic management. Strategic Management Journal, 18(7):509-533,
1997.

Catherine L. Wang and Pervaiz K. Ahmed. Dynamic capabilities: A
review and research agenda. International Journal of Management
Reviews, 9(1):31-51, 2007.

Y Whang, L Kung, and T Byrd. Leveraging event-driven it architecture
capability for competitive advantage in healthcare industry: A mediated
model. In Thirty Fourth International Conference in Information
Systems, Milan, 2013.

