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Abstract 

In aerospace modeling and simulation, nominal geometries are norm. However, it has been shown that form error, or irregular deviations in 
geometry, aggravates thermal stresses, which in turn reduces product life. While form error can be measured on manufactured products using 3D 
laser scanners, a simulation infrastructure is needed to analyze its effects on aerodynamic, structural and thermal performance. Moreover, in early 
product development phases, before manufacturing has begun, form error data is not available. This paper describes a method for including form 
error data in mainstream simulation activities. The suggested method works by creating parametric CAD-models to accommodate form error. 
There are two main benefits of this method. Firstly, it enables proactive robustness simulations where substantial design changes can be tested 
and evaluated. Secondly, it enables the mapping of data from previous products onto new designs, which means that robustness analyses can be 
performed in earlier design phases. To demonstrate this capability, a case study shows how a robust optimization scheme using genetic algorithms 
can improve product robustness to form error. The results show that form error have effects of the same order of magnitude as key design 
parameter changes. This finding underlines the importance of performing form error analyses in exploratory early design phases. 
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1. Introduction 

In the aerospace industry, probabilistic design practices 
have long been understood as potential game changers. They 
are recognized as tools that improve product quality, and 
reduce costs, risks and lead times. They are also understood 
to increase confidence in analysis tools [1]. 

Although probabilistic design practices hold all this 
promise, significant barriers remain. In a report compiled by 
Zang et al. [1], the lack of methods for assessing form error 
is declared a major barrier to implementing probabilistic 
methods. Form error, or irregular deviations in geometries, 
are often difficult to model using mainstream simulation 
approaches. When form error is examined, it is generally 
done late in the product development process for 
manufacturing quality control, when it generally is too late 
to proactively change problematic or suboptimal designs.  

Different modelling approaches are preferred for different 
engineering applications. Whereas geometric designers 
generally work with NURBS-based CAD-model, finite 
element models are used by most mechanical analysts. When 

it comes to quality control and model validation, the area 
where 3D scanners are most commonly used, working with 
point cloud geometries is the standard practice. However, a 
well-acknowledged problem with point cloud geometries is 
that they generate “frozen” or killed geometries in that that 
are not parameterizable and difficult to modify, and they do 
not capture the design intent of a model [2]. This means that 
they do not contain the higher-level information of CAD-
models, and cannot distinguish between different features, 
like holes, cylinders, surfaces [3]. Point clouds live in a 
separate ecosystem, something that is often times 
unfortunate since intensive interaction between geometric 
design, mechanical analysis and model validation is often 
highly desired due to the iterative nature of a typical product 
development process [4]. 

The aim of this paper is to demonstrate how including 
form error data into parameterized CAD models can enable 
new types of analyses.  

Section 2 of this paper presents the theoretical framework. 
Section 3 describes the industrial case study, showing how to 
setup a simulation to assess thermal stresses on a turbine 
component, while transferring form error data from one 
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design to another. It also outlines the genetic algorithm used 
for part optimization. Section 4 is the results section, and 
section 5 outlines the quantitative and qualitative 
conclusions drawn from this study.  

2. Theoretical Framework 

Point cloud geometries do not inherently contain any 
higher-level geometric information. There does, however, 
exist an array of methods to extract higher-level information 
from point cloud geometries [3,2,4], generally deriving from 
the field of reverse engineering. However, the capture and  
translation of shape information into a CAD model is a 
difficult and complex task [3]. As components vary among 
themselves, any given scanned part only represents one 
sample in a distributed population. Therefore, the tolerance 
distribution in parts have to be accounted for. One way to do 
this is to scan multiple part scans and calculate of the 
resulting data. Another practical problem is limitations on 
geometrical accuracy in fixturing [3]. 

 
Varady et al. [3] divides the process of extracting higher-

level information from point cloud into three distinct steps:  
 

1. Segmentation is the process of logically dividing 
the original point set into subsets, one for each 
natural surface, so that each subset only contains 
just those point sampled from a particular natural 
surface. 

 
2. Classification is the process of determining to what 

kind of surface each subset of points belongs (e.g. 
planar, cylindrical, etc.) 

 
3. Fitting is the process of finding the surface of the 

given type that is the best fit to the points of a given 
subset. 

 
 

 
Fig. 1: Varady’s hierarchy of surfaces [3] 

Fig. 1 shows how, in the classification of surfaces, 
different surfaces types can be broken down into a hierarchy. 
Note, however, that these are merely tools to describe, 

understand and communicate surfaces. These concepts are 
not intrinsic in the physical world. 

3. Uncertainty Quantification 

If simulations are performed on geometries derived from 
point clouds, a verifying and validating the results is not 
straightforward. This is simply because in any simulation, 
there is a collection of phases that all add uncertainties to the 
simulation [5]. These phases are listed in Fig. 2. 

 

 
Fig. 2: Uncertainties in modeling and simulation [5]. 

 
In this context, quantifying the effects of form error 

belongs in the phase of mathematical modeling activities, 
and more specifically in the category of deterministic versus 
nondeterministic representation of geometry. However, to 
make sure that these differences are isolated, all differences 
created upstream when the models were created have to be 
identical. This gives rise to a genesis problem. When two 
models are created through different processes, these 
processes will leave there mark on the model. As a 
consequence, the resulting models will exhibit different sets 
of uncertainties. When representing the same physical object 
using different techniques, say a point cloud geometry, a 
CAD geometry and a FE mesh, their properties and 
characteristics will differ somewhat.  This makes it difficult 
to single out effects. For instance, when a manufactured part 
is scanned into a point cloud and compared with a CAD 
geometry, differences of genesis partially occlude whether 
these differences accurately reflect physical differences. 
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4. Industrial Case Study 

In this paper, a case study is performed with a Swedish 
manufacturer of aerospace engine components.  The study 
examines the turbine rear structure (TRS) of a commercial 
turbofan engine, shown in Fig. 3. The rearmost part of an 
engine, the TRS attaches the engine to the aircraft pylon, 
while holding the low-pressure turbine bearing in place. It 
also redirects the hot exhaust flow from the combustion 
chamber [6]. Thus, the TRS has range of functionality 
criteria from numerous fields of engineering. It needs to be 
light and aerodynamic, and withstand significant thermal and 
structural loads [7]. 

 
Fig. 3: Turbine Rear Structure 

This paper focuses on one problem. With each flight, the 
TRS heats up to about 600°C. The resulting thermal 
expansion of the material puts significant stress on the 
structure [8]. The constant heating and cooling of the 
structure in between flights creates low-cycle fatigue. This 
material fatigue is a limiting factor on the number of flights 
one component can safety withstand. 

 

 
Fig. 4: Turbine Rear Structures on different size engines 

As illustrated by Fig. 4, TRSs are found in all sizes of 
turbofan engines, and thus come in all shapes and sizes. 
Although sizes differ, the general design element are the 
same. As such, product knowledge and technology platforms 
can be easily transferred between different products.  

The TRS is a fabricated assembly consisting of a number 
of cast parts welded to sheet metal flanges. Each one of these 
cast parts has some degree of form variation. By using a 3D 
scanner, these errors can be quantified. 

4.1. Part model generation 

The part geometries for the vane-shroud T-sections of the 
geometries were based on 30 individual manufactured parts, 
which were scanned using a laser 3D scanner [9]. Fig. 5 
shows a color-coding of the variation of one scan. 

 

 
Fig. 5: Color-coding of scanned geometry 

Fig. 6 shows the sequence with which a part CAD-
geometries generated from the point cloud data. In step 1 
there is merely point cloud data. Step 2 segments the points 
and classifies them into three categories: vane (red) and 
shroud (blue), and auxiliary (green). The green auxiliary 
points are merely there to ensure continuity and tangentiality 
conditions. They are thus not measurement points, but 
created by the software, and will be part of the final solid 
geometry. Step 3 uses B-spline curves to connect points, 
while keeping color classification. In step 4, the spines are 
combined into NURBS surfaces through a sweep operation. 
These surface geometries are converted into solids in step 5, 
using a thicken operation. The thickening operation 
introduces an error, as manufacturing does not guarantee 
uniform thickness. However, this error does not effect the 
aero surfaces. Step 6 trims the geometries to their final shape, 
and step 7 unites the segments into one solid. In Step 8, the 
secondary geometry, i.e. the shroud-vane blend, is created. 
In step 9, all intermediate geometry is hidden, and only the 
solid part is active. 

 

 
Fig. 6: Generating a feature-based CAD model from point cloud 
data 

4.2. Assembly generation 

Part geometries are placed in fixtures, where they are 
welded together. In the simulation, fixturing is done through 
3-point referencing. In reality, parts interfaces are machined 
to fit together. The ingoing cast geometries have over-
dimensioned interfaces, so that excess material can be 
removed. In doing so, surface continuity can be obtained 
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even when geometries have deviations. For the simulation, 
this step is mimicked by continuous sweeps between 
interfaces. This method is more thoroughly described in 
Forslund et al. [10]. 

4.3. Sample problem – thermal stresses 

A benefit of the method described above is that it can be 
applied to a parameterized CAD model. This means that 
dimensions such as inner and outer radius, features such as 
vane count and lean angle, and others properties can be 
altered, without the need for new scan data.  

 

 
Fig. 7: Scan data obtained from a larger TRS can be mapped to a 
new design 

In the sample problem presented here, this capability was 
tested by transferring scanned variation data from one 
product to another. Fig. 7 shows the geometry from which 
the data was gathered on the left side, and the geometry to 
which the data was mapped to the right.  

To further showcase the method, one design variable of 
the structure was allowed to vary. Fig. 8 shows the selected 
design variable – the blend between vane and shroud.  

 

 
Fig. 8: Blend radius set to vary between 2.5mm and 10mm 

The radius of this blend was constrained between 2.5mm 
and 10mm. As previous work [11] have shown that thermal 
stresses tend to concentrate in this blend, particularly in the 
trailing edge, this is a region of interest in TRS design.  

4.4. Simulation 

 With each flight cycle, the TRS is subjected to significant 
thermal loads as the hot exhaust flow from the combustor is 
led though the rear of the engine. Temperatures on aero 
surfaces reach 600° C. This heating leads to material 
expansion, which in turn results in substantial thermal 
stresses in the structure. Fig. 9 shows how these stresses are 
simulated.   

Although the structure can handle these stresses, the 
constant heating and cooling of the structure in and between 
flight cycle will eventually cause material fatigue. This is a 
limiting factor of expected product service life.  

 

 
Fig. 9: Thermal stresses is a limiting factor of product life 

For a nominal geometry, setting up a simulation to 
examine these stresses is relatively straightforward. Since the 
eleven vane-shroud T-sections are nominally identical, the 
problem is rotationally periodic, and only has one 
configuration. However, when form error is taken into 
account, each T-section is different. As a consequence, they 
will handle stresses and distribute loads differently. As they 
are connected, the properties of each T-section cannot be 
isolated from the next one. Hence, a simulation of the entire 
assembly needs to be performed for each simulation.  Fig. 10 
illustrates this problem, using different colors to represent 
different geometry variation. 

 
Fig. 10: A combinatorial explosion of T-section assembly 

If the scope is limited to the assembly of one TRS, the 
problem becomes the following: What is the optimal 
configuration of eleven different parts, in order to minimize 
thermal stresses, and maximize fatigue life? 

Because of axial symmetry of the loads, the orientation of 
the assembly is irrelevant. Hence, the problem can be 
reduced by locking one T-section in place, having that act as 
“ground”, and positioning the other ten parts with respect to 
it. Even so, the problem suffers from a combinatory 
explosion. There are 10! = 3,628,800 different configurations 
of this one product. Analyzing everyone with a ten-minute 
simulation takes approximately seven years. In addition, a 
design variable, the vane-shroud blend, is included. As this 
variable can be set anywhere between 2.5mm and 10mm, the 
computational time grows by additional orders of magnitude. 

4.5. Genetic Algorithm  

To find the optimal configuration without millions of 
simulations, some optimization scheme is needed. Since the 
respective form error of each component is irregular, and 
consist of hundreds of measuring points for each part, using 
any regressive analysis is difficult. Instead, a genetic 
permutation algorithm is used, that also includes the discrete 
vane-shroud blend dimensions.  

The simulation starts by generating 100 random samples. 
Although this is just a fraction of the 10! or 3628800 possible 
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combinations, it gives some knowledge of how life and stress 
is distributed. From there on, it generates 50 new samples for 
each generation, using a mutation probability of 0.3 and a 
crossover probability of 0.4. The simulation ends after the 
result converges, which means that there are fifty samples 
within some epsilon of each other. 

5. Results 

Fig. 11 shows the results over 9 generations of genetic 
simulation. Note that on the first generations, only the 50 
lowest results are shown. Already on the fourth generation, a 
minimum stress value of 349.5 MPa is recorded. 

 
Fig. 11: MOGA iterations 

Fig. 12 shows a scatterplot of all 500 design points. The 
maximal stress recorded is 462.3 MPa, a 32% increase over 
the optimal value. Within the first few generations, the 
algorithm converges on a blend value around 8 mm. In the 
vicinity of this value, stresses vary around 8%.  

 
Fig. 12: Thermal stress as a function of blend radius 

6. Conclusions 

The method described in this paper shows how 3D 
scanned form error data can be transferred from a 
manufactured product to a different product in early stages 
of product development.  

Although the measured variation in one product is not 
necessarily transferrable to a different product, as they will 
vary with geometry and manufacturing techniques, and 
material differences. However, the more similar the 

products, the more transferrable are variation data. However, 
as more products are manufactured and scan data becomes 
available for more geometries, a regressive model based on 
data from different geometries would provide a more reliable 
prediction for future products. This remains to be done. 

Applying variations in geometry has an additional benefit. 
As digital representations such as FE meshes suffer for 
discretization and truncation errors, inflicting small 
variations in geometries and performing multiple simulations 
can be seen as a form of dithering, as it mitigates risk of 
computational error, and improves reliability of results.  

The method for including form error data into 
parameterized CAD models enables new types of analyses. 
For instance, genetic algorithms can now be used for 
optimization when input parameters include both 
measurement data and design parameters. In the case study, 
the results shows that, although the stress effects of changing 
the design variable, which amounted to 32%, is larger than 
the 8% variation when keeping the design variable around 
8mm, this is hardly an order of magnitude difference. This 
finding underlines the importance of considering form error 
when mapping out the design space in early design phases.  
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