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Abstract: Low-grade chronic inflammatory conditions such as ageing, obesity and related metabolic
disorders are associated with deterioration of skeletal muscle (SkM). Human studies have shown that
marine fatty acids influence SkM function, though the underlying mechanisms of action are unknown.
As a model of diet-induced obesity, we fed C57BL/6J mice either a high fat diet (HFD) with purified
marine fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (HFD-ED), a HFD
with corn oil, or normal mouse chow for 8 weeks; and used transcriptomics to identify the molecular
effects of EPA and DHA on SkM. Consumption of ED-enriched HFD modulated SkM metabolism
through increased gene expression of mitochondrial β-oxidation and slow-fiber type genes compared
with HFD-corn oil fed mice. Furthermore, HFD-ED intake increased nuclear localization of nuclear
factor of activated T-cells (Nfatc4) protein, which controls fiber-type composition. This data suggests
a role for EPA and DHA in mitigating some of the molecular responses due to a HFD in SkM. Overall,
the results suggest that increased consumption of the marine fatty acids EPA and DHA may aid in
the prevention of molecular processes that lead to muscle deterioration commonly associated with
obesity-induced low-grade inflammation.

Keywords: eicosapentaenoic acid (EPA)/Docosahexaenoic acid (DHA); obesity; skeletal-muscle
metabolism; mitochondrial β-oxidation; transcriptome

1. Introduction

The World Health Organization (WHO) estimates that chronic inflammatory conditions accounts
for more than 17 million deaths every year [1]. Obesity is considered one of the main underlying
factors for chronic inflammation and has almost doubled since 1980 and now over 1.4 billion adults
worldwide are obese. Obesity, once considered a problem only in developed countries, is now also
a major problem in low- and middle-income countries. Parallel to the increase in obesity, diseases
associated with chronic inflammation such as cardiovascular diseases and type 2 diabetes are also
rising [1]. One of the major concerns associated with low-grade inflammation is sarcopenia—loss of
muscle mass. Generally, after the age of 50 the muscle mass reduces at a rate of up to 1%–2% annually,
while fat mass increases [2,3]. At the same time, muscle strength drops at the rate of 1.5% annually
between the age of 50 and 60 years and at the rate of 3% thereafter [4]. Obesity accelerates age-related
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muscle deterioration [5] exacerbating the risk for type 2 diabetes (T2D) by approximately 30% [6].
The negative feedback loop defined as the combination of excess weight-gain and reduced muscle
mass, strength and performance is known as sarcopenic obesity [7]. Further suggestions of a role
for inflammation in sarcopenia includes an association between increased TNF-α [8] and Il-6 [9] and
decreased muscle mass and strength.

Skeletal muscle (SkM) constitutes about 40% of total body mass in adult lean men and is an
adaptable tissue in response to changes in lifestyle such as diet and physical training [10,11]. SkM is one
of the major sites of glucose metabolism, accounting for about 30% of postprandial glucose disposal [12].
This makes SkM a crucial organ for maintaining healthy glucose concentrations in the body, with
loss of muscle mass also associated with increased type 2 diabetes risk. Changes to diet may impact
on SkM and use of fish oil rich in the fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA) have been proposed to improve SkM metabolism [13]. An intervention with marine fatty
acids improved muscle mass and function in older adults [13] and animal studies suggest a role for
marine fatty acids in SkM anabolism and increased protein synthesis [14,15]. In addition, marine
fatty acids have anti-inflammatory activity in animals and humans [16], which may reduce the loss
of inflammation-mediated SkM mass in older adults. Supplementation with EPA and DHA, the two
main marine fatty acids, could be the basis for a simple, safe and low-cost solution for preventing
and mitigating negative changes to SkM metabolism. For such a strategy to be credible, it is crucial to
understand the underlying signaling mechanisms mediated by EPA and DHA on SkM.

Our previous intervention studies showed that mice fed high fat diets (HFDs) supplemented with
herring improve muscle mass compared with mice fed HFD supplemented with beef [17,18]. In several
randomized control trials in humans, marine fatty acids improve muscle volume, a surrogate marker
for improved muscle performance [13,19,20]. In order to build on these results and determine if EPA
and DHA, or other components in fatty fish, are responsible for improving muscle metabolism and to
determine what the underlying mechanisms could be, we conducted a follow-up trial on earlier work
with fatty fish [17,18]. Here we have used transcriptomics to explore how replacing a commonly used
source of dietary fat, corn oil with purified EPA and DHA interacts with gastrocnemicus skeletal muscle
(gSkM) gene expression, in order to investigate how EPA and DHA can affect muscle deterioration.

2. Materials and Methods

2.1. Animal Experiment

Six-week old male C57BL/6 J mice (Harlan BV, The Netherlands) were grouped 5–6 mice/cage,
and were housed in a temperature and humidity-controlled environment with 12 h light/dark cycle
for three weeks to acclimatize to the facility. At nine weeks of age, mice were switched from a normal
mouse chow to one of three intervention diets: high fat diet with EPA and DHA (HFD-ED), a high fat
diet with corn oil (HFD-corn oil) or the same mouse chow as during the acclimatization period (control
group). Mice were maintained on these diets for 8-weeks (see Diets for details). After 8-weeks the
animals were anesthetized by intraperitoneal injection of sodium pentobarbital (>60 mg/kg) and blood
was collected from the heart followed by cervical dislocation. Plasma was obtained by centrifugation
at 4 ◦C of EDTA whole blood (10 min; 10,000× g). The tissues were weighed and snap-frozen in liquid
nitrogen immediately after dissection. Both, tissues and plasma were stored at −80 ◦C until further
analysis. The animal experiments were approved by the Animal Ethics Committee at the University of
Gothenburg (Dnr: 253-2009) [21].

2.2. Diets

The mice were fed a standard control chow during the 3-weeks acclimatization period. The mice
did not differ in body weight at the start of the study (Table 1) and the body weights were measured
weekly during the study. We removed two mice from the control group due to unsocial behavior, thus
there were n = 9 mice in control and n = 12 mice in either HFD group. HFD were used to induce obesity
in the mice. The two HFD used in the study differed only in their fatty acid composition. The reference
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HFD was prepared with 5 weight/weight (w/w)% corn oil, while the treatment HFD was prepared
with 2 w/w% purified EPA and DHA (EPAX AS Lysaker, Norway) plus 3 w/w% corn oil. The control
diet provided 24 energy% (E%) as protein, 12 E% as fat and 65 E% as carbohydrates, whereas the two
HFD contained 25 E% as protein, 32 E% as fat and 44 E% as carbohydrates (Table 2). The diets were
prepared by Lantmännen AB (Kimstad, Sweden). Access to water and diet was ad libitum and the
diets were changed three times per week throughout the study.

Table 1. Changes in Body Weight Composition and Plasma Lipid Composition.

Parameter Control HFD-ED HFD-Corn oil

Total number of animals; n 9 12 12
Initial body weight (g) 27.5 ± 0.8 28.6 ± 0.8 24.3 ± 0.5
Final body weight (g) 31.4 ± 1 33.8 ± 0.8 36.2 ± 0.9

Change in body weight (g) 3.9 ± 0.5 a 5.2 ± 0.3 a 8.6 ± 0.5 b

plasma cholesterol (mmol/L) 5.6 ± 0.4 5.5 ± 0.4 5.2 ± 0.6
plasma triglyceride (mmol/L) 0.9 ± 0.1 a,b 1.1 ± 0.1 a 0.7 ± 0.1 b

The data are shown as mean ± SEM; different letters show significant different tested by ANOVA followed by
Tukey’s multiple comparison test. To calculate the changes in body weight (g), initial body weight values from
individual animals was subtracted from the final body weight measurement.

Table 2. Diet Compositions Namely Control, HFD-ED and HFD-Corn Oil (CO) [21].

Ingredient (g/100 g Diet) Control HFD-ED HFD-CO

Protein Casein 22.2 25.6 25.6

Carbohydrates
Sucrose 5.0 10.0 10.0

Corn starch 56.0 34.8 34.8
Cellulose 5.0 5.8 5.8

Fat

Total 5.0 15.0 15.0
Corn oil 2.5 3.0 5.0

Coconut oil 2.5 10.0 10.0
EPAX oils a 0 2.0 0

Minerals b 2.0 2.5 2.5

Miconutrients c 3.0 3.0 3.0

Choline bitartrate 1.6 2.0 2.0

Cholesterol 0 1.0 1.0

Methionine 0.2 0.3 0.3

Energy content (kJ/100 g) 1599 1752 1752
Protein E% 24 25 25

Carbohydrate E% 65 44 44
Fat E% 12 32 32

Fatty acid
composition d

(mg/g diet)

C10:0 0.20 1.47 1.33
C12:0 2.37 7.58 7.72
C14:0 1.54 4.58 4.78
C16:0 1.90 3.44 3.59
C18:0 0.68 2.26 2.49
SFA 6.70 19.33 19.91

C18:1n9 2.82 4.80 5.26
MUFA 2.82 4.80 5.26

C18:2n6 3.62 5.03 7.36
C18:3n6 0.12 0.22 0.26

n-6 PUFA 3.74 5.26 7.62
C20:5n3 (EPA) 0.00 2.03 0.01
C22:6n3 (DHA) 0.00 4.58 0.01

n-3 PUFA 0.00 6.61 0.02
a EPAX 1050. EPAX 6015. b CaCO3 (57.7%); KCl (19.9%); KH2PO4 (11.9%); MgSO4 (10.4%). c Corn starch
(98.22%); Ca(IO3)2 (0.0007%); CoCO3 (0.064%); CuO (0.02%); FeSO4 (0.5%); MnO2 (0.035%); Na2MoO4
(0.001%); NaSeO3 (0.0007%); ZnO (0.1%); Vitamin A (0.013%); B2 (Riboflavin-5-phosphate sodium; 0.027%);
B3 (0.1%); B5 (Ca Pantothenate; 0.057%); B6 (0.023%); B7 (0.0007%); B9 (0.007%); B12 (0.00008%); D3 (0.007%);
E (0.25%); K (0.003%). d Analyses were performed in triplicate and data was obtained by Gas chromatography
mass spectroscopy.
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2.3. Muscle Composition

Gastrocnemicus skeletal muscles were dissected and weighed directly after sacrifice. Plasma total
triglyceride and cholesterol was measured enzymatically with Konelab Autoanalyser version 2.0 at the
Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden. Clinical
chemistry procedures have been previously described in detail [21].

2.4. RNA Isolation and Quality Assurance

Four mice, representative from each diet group on the basis of body weight, plasma triglyceride
and plasma cholesterol levels were selected for RNA isolation and microarray analysis (Supplemental
Table S1). Total RNA from gSkM was purified using the RNeasy® Plus Universal Mini kit (Qiagen
Nordic, Sollentuna, Sweden). RNA samples were quantified spectrophotometrically (NanoDrop 2000c
UV-Vis Spectrophotometer, Thermo Scientific, Wilmington, NC, USA) and the quality of the RNA was
controlled by the ratio of 28S and 18S rRNA (RNA 6000 Nano LabChip for Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA).

2.5. Western Blot Analysis

Nuclear and cytosolic extracts were prepared using NE-PER Nuclear and Cytoplasmic Extraction
Reagents kit (78833, Thermo Fisher Scientific). Western blot analysis was performed as described
earlier [22]. Briefly, the protein concentration was measured in duplicate using the Pierce BCA
Protein Assay kit (Thermo Fisher Scientific) for equal protein loading to the SDS-PAGE. After transfer
of the proteins to the membranes, the membranes were stained with 0.5% Ponceau S (Merck
Chemicals, Darmstadt, Germany) to visualize the protein transfer. For the detection of specific proteins,
the following primary antibodies were used: Rb-anti-m acetyl-CoA carboxylase (Acc; 3662; Cell
Signaling Technology), Rb-anti-m phospho-acetyl-CoA carboxylase (P-Acc; Ser79, 3661; Cell Signaling
Technology), Rb-anti-m troponin c1 (Tnnc1; sc-20642, Santa Cruz Biotechnology), Rb-anti-m Nuclear
factor of activated T-cells (Nfatc4; sc-13036, Santa Cruz Biotechnology). The secondary antibodies
were: HRP-conjugated Horse-anti-m IgG (7076; Cell Signaling Technology), Goat-anti-m IgG (sc-2020;
Santa Cruz Biotechnology) and Rb-anti-m IgG (7074; Cell Signaling Technology). As loading control
for each western blot, either glyceraldehyde 3-phosphate dehydrogenase (anti-Gapdh; sc-47724;
Santa Cruz Biotechnology), or lamin (anti-lamin A/C, sc-6215; Santa Cruz Biotechnology) was used.
Western blots for the protein Acc, P-Acc and Tnnc1 are in supplemental Figure S1.

2.6. Microarray—Data Acquisition and Analysis

RNA was labeled and hybridized to MouseWG-6_V2.0 Expression BeadChip (R3_11278593_A;
Illumina, CA, USA) that contains 45,281 transcripts, at the SCIBLU Genomics core facility (Swegene
Centre for Integrative Biology at Lund University, Sweden). The content of this BeadChip is derived
from the National Center for Biotechnology Information Reference Sequence (NCBI RefSeq) database
(Build 36, Release 22) [23], supplemented with probes from the Mouse Exonic Evidence Based
Oligonucleotide (MEEBO) [24] set, as well as example protein-coding sequences from RIKEN
FANTOM2 database [25]. The raw and normalized data is available in SOFT format at the Gene
Expression Omnibus database under Accession Number GSE76361.

The Illumina bead array files were imported to GenomeStudio Gene Expression (GSGX) software
1.9.0. The un-normalized expression data (fluorescence intensities) were extracted for the mean
intensity of arrays. R Studio software (Version 3.2.3, © 2015 RStudio, Inc., Boston, MA, USA) was used
for microarray data analysis. The data was quantile normalized and variance-stabilizing transformation
(VST) was performed using the default setting of lumiExpresso function from the lumi package [26].
The top 100 differentially expressed genes regulated by HFD-ED compared with HFD-corn oil are
provided in supplemental Table S2. The Empirical Bayes method from the limma package was then
applied to the signals to calculate moderated t- and F-statistics, log odds and differential expression
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for comparisons between the diets from skeletal muscle tissue [27]. The Generally Applicable
Gene-Set/Pathway Analysis (GAGE) Bioconductor package was used for gene-set enrichment analysis
(GSEA) for functional inference [28]. Before implementing the gage function, canonical signaling and
metabolic pathways from the KEGG mouse database was prepared for better-defined results. For the
microarray data, false discovery rate (FDR) adjusted p-values were calculated and FDR adjusted
p-value < 0.05 was considered significant. The Pathview package was used to visualize the data,
where the pathview function downloads KEGG graph data and renders a pathway map, based on
experimental results [29].

2.7. Fatty Acid Analysis

Approximately 100 mg gSkM tissue was weighed, freeze-dried and extracted using the Folch total
lipid extraction method [30]. Briefly, 5 mL chloroform–methanol (2:1 v/v) was added to the samples
followed by sonication at 40 Hz for 30 min at RT (Branson 8510, Branson Ultrasonics Corp, CT, USA).
One mL of physiological saline (0.9% NaCl) was mixed with the samples followed by brief vortexing
and centrifugation for 5 min at 3000 rpm (1700× g), to separate the two phases. The organic lower phase
was collected and the remaining aqueous phase was re-extracted with 1.5 mL chloroform. The two
extracted phases were combined and evaporated under N2 and re-dissolved in 1 mL isopropanol.
All solvents were from Sigma-Aldrich, Sweden.

Solid phase extraction (SPE) method was used to separate lipid classes [31]. Internal phospholipid
(C17:0) and triglyceride (C19:0) standards (Nu-Chek prep, Inc., Elysian, MN, USA) were added to the
samples. Hexane conditioned aminopropyl SPE columns were loaded with 1 mL of extracted SkM lipid
samples. Neutral lipids, free fatty acid and phospholipids were eluted with chloroform–isopropanol
(2:1), diethylether-2% acetone and methanol, respectively and evaporated under N2. Dried SPE
fractions were methylated by overnight incubation with 1 mL 10% acetyl chloride in methanol and
1 mL toluene. After methylation, 0.3 mL water and 4 mL petroleum ether was added to the samples
and the resulting two phases were separated by 3 min centrifugation at 3000× g. The upper phase was
then removed, evaporated under N2 and re-dissolved in 250 µL isooctane [32].

The fatty acid methyl esters (FAMEs) were analyzed by gas chromatography mass spectrometry
(Focus GC, ISQ, Thermo Fischer Scientific, USA) using a ZB-WAX column (30 × 0.25 mm I.D., 0.25 µm)
(Phenomenex, UK). One µl of sample was injected in splitless mode. The injector temperature was 240
and helium was used as the carrier gas with the flow of 1 mL/min. Oven temperature was as follows:
50 ◦C 1.5 min, ramped to 180 ◦C at 25 ◦C/min where held for 1 min, ramped to 220 ◦C at 10 ◦C/min,
held for 1 min and ramped to 250 ◦C at 15 ◦C/min and held for 3 min. The transfer line was kept at
250 ◦C and ion source at 200 ◦C. Electron impact ionization (70 eV) was used and the FAMEs were
detected by scanning a mass range from 50 to 650 m/z. An external FAME standard mix GLC 463
(Nu-Chek prep, Inc., Elysian, MN, USA) was used for identification of peaks in gSkM samples. Fatty
acids were quantified against internal standards, summed and expressed as mg/g dry gSkM biomass
and as a percentage of total lipid fractions.

2.8. Statistical Analysis of Western Blot and Fatty Acid Analyses

Differences in SkM western blot and fatty acid analyses were tested using ANOVA with Tukey’s
honest significant difference (Tukey-HSD) post-hoc test. Statistical significance between the protein
groups was calculated with an unpaired 2-tailed Student’s t-test. A p-value < 0.05 was considered
statistically significant. Statistical calculations were performed using Microsoft® Excel® for Mac 2011
version 14.5.8 and R software (Version 3.2.3) under RStudio interface. All data are presented as
mean ± SEM.
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3. Results

3.1. Effect of EPA and DHA vs Corn Oil on gSkM Weight and Transcriptome

Delayed weight gain was observed in HFD-ED compared with HFD-corn oil fed animals (Table 1).
Moreover, relative adiposity was lower in HFD-ED compared with HFD-corn oil fed mice [21].
Principle component analysis of the gSkM transcriptome did not detect any outliers in the data
(Supplemental Figure S2a) indicating good analytical reproducibility. To visualize the global effects
of different diets on gSkM, differential expression of the genes was performed on the following
comparisons: HFD-ED versus control diet, HFD-corn oil versus control diet and HFD-ED versus
HFD-corn oil. Venn diagrams show the number of differentially expressed genes (DEGs) corrected for
multiple testing by Benjamini and Hochberg at p-value < 0.001 (supplemental Figure S2b). The total
number of DEGs was 365, 129 and 383 for the comparison HFD-ED versus control diet, HFD-corn
oil versus control diet and HFD-ED versus HFD-corn oil, respectively. Differential gene expression
analysis found that the different fat composition of the two HFDs affected gene expression in gSkM
differently when compared to the control group (Supplemental Figure S3).

3.2. gSkM Fatty Acid Composition

Neutral lipids: The total amount of neutral lipids was significantly higher in the mice fed
HFD-corn oil compared to mice fed the other two study diets (Table 3). The concentration of fatty
acid C12:0 was higher in HFD-corn oil fed animals compared with both HFD-ED and control diets
(Table 3). C14:0 was higher in HFD-corn oil fed animals compared with control diet but there was no
difference compared with HFD-ED fed animals. Fatty acids C16:0, C18:1 and C18:2 n-6 (linoleic acid)
were higher in HFD-corn oil fed animals compared with mice fed HFD-ED or control diets, whereas no
difference was observed between the control and HFD-ED fed animals. C22:6 n-3 (DHA) was higher
in the HFD-ED fed animals compared to the control diet.

Free fatty acids: Free fatty acids (FFA) mainly comprised of saturated and monounsaturated
fatty acids including C16:0, C19:0, C16:1 and C18:1 (Table 3). Apart from C12:0, which was higher in
HFD-ED fed animals, the remaining FFAs were higher in HFD-corn oil fed animals compared with the
other two diets. The concentration of C20:3 n-3 was higher in the HFD-corn oil fed animals compared
with HFD-ED and the concentration did not differ compared with control diet. As expected, C22:6
n-3 concentrations were higher in the HFD-ED fed animals compared with HFD-corn oil. The total
amount of FFAs in gSkM did not differ between the different groups.

Phospholipids: The concentration of C14:0 was significantly higher in the HFD-ED fed animals
compared with the other two diets (Table 3). The amount of C18:1 was significantly lower in the
HFD-ED fed animals compared with HFD-corn oil fed animals. The amount of C20:4 n-6 (arachidonic
acid) was lower in HFD-ED fed animals compared with either HFD-corn oil or control diet fed animals.
The amount of n-3 PUFA C20:5 n-3 (EPA) did not differ for any of the diets, with only very low
concentrations measured, whereas the concentrations of C22:5 n-3 (DPA) and C22:6 n-3 (DHA) were
significantly higher in the animals fed HFD-ED compared with animals fed HFD-corn oil but the
expected increase in EPA was not found. The total phospholipid content was significantly lower in the
HFD-ED fed animals compared with control diet fed animals but did not differ from that found in
gSkM from the animals fed HFD-corn oil.
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Table 3. The Fatty Acid Profiles of Different Lipid Fractions in Gastrocnemicus Skeletal Muscle.

Lipid Fraction mg/g mg/g mg/g % value % value % value

Neutral lipids Control HFD-ED HFD-Corn oil Control HFD-ED HFD-Corn oil

C12:0 0.12 ± 0.06 a 1.51 ± 0.42 b 2.87 ± 0.41 c 0.44 ± 0.18 a 3.93 ± 0.21 b 4.02 ± 0.33 b

C14:0 1.18 ± 0.24 a 3.15 ± 0.76 4.81 ± 0.49 b 4.35 ± 0.48 a 8.19 ± 0.52 b 6.74 ± 0.23 c

C16:0 8.11 ± 2.31 a 9.75 ± 2.28 a 19.01 ± 2.11 b 29.93 ± 1.78 25.35 ± 1.51 26.63 ± 2.34
C18:0 0.55 ± 0.05 0.65 ± 0.05 0.68 ± 0.04 2.03 ± 0.48 a 1.69 ± 0.4 a 0.95 ± 0.09 b

C18:1 13.11 ± 3.05 a 14.86 ± 3.45 a 29.2 ± 2.19 b 48.38 ± 0.81 a 38.64 ± 1.06 b 40.91 ± 1.6 b

C18:2 n6 3.75 ± 0.78 a 7.29 ± 1.89 a 14.55 ± 1.25 b 13.84 ± 0.67 a 18.95 ± 0.9 b 20.38 ± 0.73 b

C18:3 n3 0.07 ± 0.04 0.07 ± 0.03 0.09 ± 0.02 0.26 ± 0.08 0.18 ± 0.04 0.13 ± 0.03
C20:3 n6 0.02 ± 0.01 0.01 ± 0 a 0.03 ± 0 b 0.07 ± 0.06 0.03 ± 0 0.04 ± 0
C22:5 n3 0.03 ± 0.01 0.06 ± 0.01 0 ± 0 0.11 ± 0.09 0.16 ± 0.01 a 0 ± 0 b

C22:6 n3 0.14 ± 0.02 a 1.1 ± 0.09 b 0.14 ± 0.02 a 0.52 ± 0.25 a 2.86 ± 0.68 b 0.2 ± 0.04 a

Total neutral lipids 27.1 ± 6.48 a 38.46 ± 8.89 a 71.38 ± 6.13 b

Free fatty acids Control HFD-ED HFD-Corn oil Control HFD-ED HFD-Corn oil

C12:0 0.13 ± 0.04 0.16 ± 0.04 a 0.04 ± 0.01 b 6.6 ± 2.11 8.21 ± 2.26 a 1.61 ± 0.43 b

C16:0 0.52 ± 0.07 a 0.64 ± 0.02 0.78 ± 0.04 b 26.4 ± 3.14 a 32.82 ± 1.34 b 31.33 ± 2.03 b

C16:1 0.12 ± 0.03 0.09 ± 0.03 0.15 ± 0.05 6.09 ± 1.17 4.62 ± 1.3 6.02 ± 1.58
C18:1 1.07 ± 0.09 0.89 ± 0.07 a 1.29 ± 0.12 b 54.31 ± 4.03 a 45.64 ± 1.96 b 51.81 ± 1.68

C18:2 n6 0 ± 0 a 0 ± 0 a 0.11 ± 0.02 b 0 ± 0 a 0 ± 0 a 4.42 ± 0.46 b

C18:3 n3 0.09 ± 0 0.07 ± 0.01 0.07 ± 0.01 4.57 ± 0.64 a 3.59 ± 0.51 2.81 ± 0.27 b

C20:3 n3 0.04 ± 0 a 0 ± 0 b 0.04 ± 0.01 a 2.03 ± 0.27 a 0 ± 0 b 1.61 ± 0.24 c

C22:6 n3 0 ± 0 a 0.09 ± 0.03 b 0 ± 0 a 0 ± 0 a 4.62 ± 1.25 b 0 ± 0.14 a

Total free fatty acids 1.97 ± 0.17 1.95 ± 0.12 2.49 ± 0.21

Phospholipids Control HFD-ED HFD-Corn oil Control HFD-ED HFD-Corn oil

C14:0 0.33 ± 0.02 a 0.83 ± 0.04 b 0.64 ± 0.07 2.17 ± 0.14 a 6.14 ± 0.28 b 4.7 ± 0.49 c

C16:0 5.06 ± 0.06 a 4.93 ± 0.09 4.73 ± 0.06 b 33.29 ± 0.76 a 36.49 ± 0.55 b 34.75 ± 1.37
C18:0 1.97 ± 0.33 2.65 ± 0.18 2.01 ± 0.26 12.96 ± 2.38 19.62 ± 1.41 14.77 ± 2.02
C18:1 3.67 ± 0.68 a 0.39 ± 0.26 b 2.07 ± 0.44 a 24.14 ± 3.71 a 2.89 ± 1.81 b 15.21 ± 3.12 a

C18:2 n6 1.73 ± 0.06 a 0.58 ± 0.09 b 2.13 ± 0.05 c 11.38 ± 0.28 a 4.29 ± 0.61 b 15.65 ± 0.6 c

C20:3 n6 0.05 ± 0 a 0 ± 0 b 0.06 ± 0.01 a 0.33 ± 0 a 0 ± 0 b 0.44 ± 0.04 a

C20:4 n6 0.57 ± 0.01 a 0.1 ± 0 b 0.55 ± 0.01 a 3.75 ± 0.12 a 0.74 ± 0.01 b 4.04 ± 0.28a

C20:5 n3 0 ± 0 0.04 ± 0 0.02 ± 0.02 0 ± 0 0.3 ± 0.01 0.15 ± 0.15
C22:3 n6 0.54 ± 0.02 a 0.07 ± 0 b 0.26 ± 0.03 c 3.55 ± 0.18 a 0.52 ± 0.01 b 1.91 ± 0.23 c

C22:5 n3 0.05 ± 0 a 0.11 ± 0 b 0.06 ± 0.01 a 0.33 ± 0.02 a 0.81 ± 0.02 b 0.44 ± 0.05 c

C22:6 n3 1.23 ± 0.03 a 3.45 ± 0.06 b 1.07 ± 0.1 a 8.09 ± 0.3 a 25.54 ± 0.53 b 7.86 ± 0.73 a

Total phospholipids 15.2 ± 0.47 a 13.15 ± 0.34 b 13.61 ± 0.45 b

Total Fat content 44.26 ± 6.99 53.56 ± 9 87.47 ± 6.45

The fatty acid profiles from the mice fed, either control, HFD-corn oil or HFD-ED are shown as mean ± SEM
and as a proportion of total fatty acid fraction; different letters show statistical difference tested by ANOVA
followed by Tukey’s multiple comparison test. For details see methods section.

3.3. Increased Mitochondrial B—Oxidation and Oxidative Phosphorylation in the Gskm of Mice Fed HFD-ED

Energy metabolism is a biochemical process to generate energy from nutrients via aerobic
or anaerobic pathways. KEGG pathway analysis suggested that HFD-ED intake led to an
increased regulation of energy metabolism relating to lipid metabolism, Krebs cycle and oxidative
phosphorylation, leading to increased capacity for ATP production in gSkM compared with HFD-corn
oil fed animals.

Eight gene transcripts were upregulated by HFD-ED compared with the HFD-corn oil fed mice
(Figure 1a). Functionally, the enzymes in the β-oxidation pathway facilitate the breakdown of fatty
acids to form acetyl-CoA, which enters the Krebs cycle. The upregulated gene products, which are
responsible for transporting fatty acids into the mitochondria, were two carnitine palmitoyltransferases
(Cpt1a and Cpt2). In addition, RNA transcription of genes responsible for the subsequent degradation
of fatty acids within the mitochondrial matrix producing acetyl-CoA including short/medium chain
acyl-CoA dehydrogenase (Acadm), long chain acyl-CoA dehydrogenase (Acadl), very long chain
acyl-CoA dehydrogenase (Acadvl), acetyl-CoA acyl transferase 2 (Acaa2), enoyl-CoA delta isomerase 1
(Eci1) and aldehyde dehydrogenese (Aldh2), were upregulated by the HFD-ED diet.
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Figure 1. Pathway analysis of the gSkM transcriptome for the comparison of HFD-ED and HFD-corn
oil fed mice. The illustration is based on the Kegg pathway database (http://www.genome.jp/kegg/
pathway.html). (a) Fatty acid β-oxidation: Genes highlighted in red are upregulated in gSkM of
mice fed HFD-ED compared with HFD-corn oil; (b) Electron transport chain: Genes highlighted in
red are upregulated in gSkM of mice fed HFD-ED compared with HFD-corn oil; (c) Krebs Cycle:
Genes highlighted in red are upregulated in gSkM of mice fed HFD-ED compared with HFD-corn
oil; (d) Relative Acc protein levels in HFD-ED (white bars) fed mice was lower than HFD-corn oil
(black bars) and there was no difference in the phosphorylation of Acc (p-Acc) protein after 8-weeks
diet intervention. * Different at p < 0.05.

http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
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Pathway analyses showed a significant increase in the oxidative phosphorylation pathway in
gSkM from the HFD-ED fed mice compared with HFD-corn oil animals (Figure 1b). Several genes
involved in electron transport complex I-V were upregulated by HFD-ED fed mice compared with
HFD-corn oil. Genes from the NADH dehydrogenase family that constitutes complex I (Ndufa11,
Ndufb3, Ndufb5, Ndufb7, Ndufb10 and Ndufs6); two succinate dehydrogenases (Sdhb and Sdhc) from
complex II; ubiquinol-cytochrome c reductase core protein 1, cytochrome c oxidase subunit VIIb-Muscle
and ATP synthase H+ transporting mitochondrial F0 complex subunit B1 (Uqcrc1, Cox7b and Atp5f1)
constituting complex-III, IV and complex-V respectively, were upregulated.

HFD-ED upregulated the Krebs cycle in mice gSkM compared with HFD-corn oil (Figure 1c).
The mitochondrial event consumes Acetyl-CoA producing NADH, FADH2, GTP and the by-product
CO2. NADH and FADH2 are in turn used by oxidative phosphorylation to generate ATP. Genes for
key proteins in this metabolic pathway that were upregulated by EPA and DHA include pyruvate
dehydrogenase E1 alpha 1 (Pdha1) and dihydrolipoamide S-acetyl transferase (Dlat), which converts
pyruvate to Acetyl-CoA. HFD-ED upregulated several Krebs cycle genes including two kinds of
isocitrate dehydrogenases (Idh1 and Idh3g), oxoglutarate dehydrogenase (Ogdh), Succinate-CoA
ligase GDP forming alpha subunit 2 (Sucla2), succinate dehydrogenase subunit a (Sdha) and malate
dehydrogenase 2 (Mdh2), when compared with HFD-corn oil. There was no difference in the gene
expression of Acacb (Acetyl-CoA carboxylase beta) but the total protein content of total acetyl-CoA
carboxylase (Acc) was markedly lower in the gSkM of HFD-ED fed mice (Figure 1d). However, the
phosphorylation levels of Acc did not differ in between the two HFDs (Figure 1d). This suggests
increased internalization of fatty acids in mitochondria for potential β-oxidation in gSkM of HFD-ED
fed mice rather than synthesis of fatty acids, as seems to be ongoing in HFD-corn oil animals.

3.4. Increased Expression of Muscle Contraction Pathway Genes in the Gskm of Mice Fed HFD-ED

Skeletal muscle fibers require stimulation from the neuromuscular junctions acting on the
cholinergic nicotine receptor on the muscle cells to initiate contraction. These efferent cholinergic
nerves are crucial for voluntary control of skeletal muscles. Gene expression of the cholinergic receptor
nicotinic α polypeptide 1 (Chrna1), insulin growth factor receptor (Igfr) and two L-type voltage
dependent Ca-channel genes (Cacna1s and Cacnb2), two calcium ATPases (Atp1a1 and Atp2a2, a.k.a
Serca 1 and 2, respectively), were upregulated by HFD-ED compared with HFD-corn oil fed mice
(Figure 2a).
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Figure 2. Pathway analysis of the gSkM transcriptome for the comparison HFD-ED versus HFD-corn
oil fed mice. The illustration is based on the Kegg pathway database (http://www.genome.jp/kegg/
pathway.html). (a) Nerve-Muscle contraction: Genes highlighted in red are upregulated in gSkM of
mice fed HFD-ED compared with HFD-corn oil; (b) Relative Troponin C1 protein level in HFD-corn oil
(black bars) fed mice was lower than HFD-ED (white bars). * Different at p < 0.05.

http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
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3.5. Increased Slow-Fiber-Specific Gene Expression Program in the Gskm of Mice Fed HFD-ED

The calcium mediated calcineurin-Nfat signaling cascade has been suggested to upregulate
slow-fiber type gene expression. Differential gene expression of gSkM from the mice fed HFD-ED
compared with HFD-corn oil suggested upregulation of several Nfat (Nfatc1; Nfatc2; Nfatc4) isoforms.
The slow-fiber type genes troponin C1, cardiac/slow skeletal (Tnnc1), tropomyosin 1 alpha (Tpm1)
and actin alpha 1 (Actc1) complex genes and crossbridge myosin heavy polypeptide isoforms (Myh1,
Myh2, Myh3, Myh6, Myh7, Myh8) were upregulated in gSkM of HFD-ED fed mice compared with
HFD-corn oil animals. Protein levels of Tnnc1, a biomarker for slow muscle fiber type, were higher
in gSkM of HFD-ED fed mice compared with HFD-corn oil animals (Figure 2b). Furthermore, the
gene product forming complex with Nfatc2 and Nfact4, namely myogenin (Myog) and GATA Binding
Protein 5 (Gata5) regulating the transcription of slow-fiber type gene expression was upregulated in
the HFD-ED gSkM compared with HFD-corn oil. Nuclear localization of Nfat protein is essential for
regulation of the slow-fiber-type gene expression. In the gSkM of HFD-ED fed mice, nuclear protein
Nfat levels were significantly higher than HFD-corn oil fed animals (Figure 3). The master regulator of
the calcineurin-Nfat signaling cascade, the regulator of calcineurin-2, Rcan2, was upregulated and its
inhibitor glycogen synthase kinase 3β (Gsk3β) was downregulated in mice fed HFD-ED, compared
with HFD-corn oil animals. Another transcriptional activator, suggested to be a direct target of marine
fatty acids, peroxisome proliferator-activated receptor-γ coactivator 1α (Ppargc1α) was upregulated in
gSkM of HFD-ED compared with HFD-corn oil fed mice.
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Figure 3. Representative Western blot is shown with LaminA/C loading control. Nuclear (black bars)
and cytosolic (white bars) protein extract from the gSkM of HFD-ED (left-panel) and HFD-corn oil
(right-panel) were analyzed by Western blot using antibodies for total anti-Nfatc4 antibody and the
cytosolic protein levels in the HFD-ED was kept to 1. Different at ** p < 0.05 and # p < 0.01.

4. Discussion

In this study, we have shown that HFD-ED improves muscle metabolism and promotes a switch
to slow-fiber type compared to HFD-corn oil. HFD-ED improves metabolism of fatty acids in gSkM
by upregulating expression of genes coding for proteins involved in fatty acid β-oxidation, the Krebs
cycle and oxidative phosphorylation. Lipid analysis shows that the HFD-ED fed animals had lower
total fatty acid content compared to HFD-corn oil and control diet fed animals. Reduced ectopic fat
accumulation in HFD-ED compared with HFD-corn oil fed animals suggests a physiological effect
of EPA and DHA on muscle metabolic health. Higher expression of the genes involved in muscle



Nutrients 2016, 8, 543 11 of 17

contraction was found in gSkM of HFD-ED fed animals compared with HFD-corn oil fed animals.
Western blot analysis showed reduced Acc protein levels in gSkM of HFD-ED fed animals compared
with HFD-corn oil, confirming gene expression results. Acc is an inhibitor of fatty acid β-oxidation in
mitochondria and the lower levels shows increase in mitochondrial fatty acid β-oxidation. In addition,
increased Tnnc1 levels suggest increased muscle contraction in gSkM of HFD-ED fed animals compared
with HFD-corn oil. Moreover, increased nuclear protein levels of the Nfatc4 isoform strongly suggests
up-regulation of slow-fiber-type gene expression in gSkM of HFD-ED fed animals compared with
HFD-corn oil fed animals (Figure 4).
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Figure 4. Schematic representation of the role of ED—enriched HFD on the gSkM transcriptome and
modulation of ageing and/or obesity-induced sarcopenia in C57Bl/6J mice. Briefly, ED enriched
HFD downregulates glucose synthase kinase 3 beta (Gsk3β) that phosphorylates nuclear factor of
activated T cells (Nfatc4) and excludes it from entering into the nucleus. It also increases cytosolic
calcium concentrations that in turn regulate calcineurin that then dephosphorylates Nfat allowing
its localization in the nucleus. Upon localization, Nfat forms complex with myogenin (Myog) to turn
on slow-fiber-type specific gene-program for e.g., Troponin C1. Pgc1α, a known master regulator
of mitochondrial biogenesis was also seen upregulated by ED enriched HFD that could act upon
multiple targets, one of which regulating dephosphorylation of Nfatc4 isoforms and its further
nuclear localization.

The gSkM neutral lipid and free fatty acid profiles reflect the higher amount of DHA in the
feed of HFD-ED fed mice, though EPA was not detected in either fraction, in line with our previous
findings in liver; that EPA was present in very low amounts, not in proportion to EPA in the diet [21].
There was no substantial proportional difference in gSkM fatty acid composition between the two
HFD groups, even though HFD-corn oil fed mice had nearly twice the amount of total neutral lipids.
This suggests that ED does not specifically upregulate any of the reactions related to β-oxidation
and rather, leads to stimulation of β-oxidation in general, resulting in reduced total neutral lipids
in SkM. Although there were several differences in the amount and proportion of free fatty acids
and phospholipids, these differences were not quantitatively important aside from the increase DPA
and DHA in mice fed HFD-ED but lower EPA in phospholipids fractions [33]. Notably C18:1 was
substantially higher in HFD-corn oil fed mice compared with HFD-ED fed mice and this result was
reversed for DHA. This could have implications for membrane fluidity within SkM and this may play
a role in the observed transcriptome changes.

Previously we found that HFD-ED induced β-oxidation reduced liver fat compared to HFD-corn
oil [21], similarly, reduced SkM fat can be due to the increase in β-oxidation and the lower amount
of neutral lipids in HFD-ED fed mice. Reduced SkM mitochondrial fatty acid β-oxidation has been
proposed as a key feature leading to insulin resistance [34,35] and high fat diets led to downregulation
of the group of genes involved in oxidative phosphorylation in human SkM biopsies [36–38]. In the
gSkM of the HFD-ED fed mice, the expression of rate limiting enzymes in fatty acid β-oxidation
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in mitochondria, Cpt1 and Cpt2 were upregulated compared with HFD-corn oil fed mice. Notably,
the protein level of Acc was significantly reduced in gSkM of HFD-ED fed mice compared with
HFD-corn oil. Acc regulates fatty acid metabolism by synthesizing malonyl-CoA (building blocks
for new fatty acids) but suppresses mitochondrial β-oxidation by inhibiting fatty acid transporter
Cpt1. Therefore, lower protein levels of Acc suggests entry of fatty acid into mitochondria via Cpt1
transporter for mitochondrial β-oxidation in gSkM of HFD-ED fed mice compared with HFD-corn oil.
A SkM specific isoform of Acc (Acc2) knockout mice were protected against fat-induced peripheral
insulin resistance [39] whereas overexpression of Cpt1 is sufficient to reduce insulin resistance [40].
Impairments in mitochondrial oxidative capacity in skeletal muscle have been seen in relation to a
decrease in energy expenditure [35,41,42]. Thus, increased mitochondrial oxidative capacity in the
gSkM of HFD-ED fed animals, supported by increased levels by Cpt1 and decreased total protein
levels of Acc may contribute to increased energy expenditure. Further work on a possible stimulation
of energy expenditure by EPA and DHA, possibly via diet-induced thermogenesis is required.

Ageing and obesity may contribute to the decrease in the contractibility of skeletal muscle. Muscle
contraction is regulated by intracellular calcium concentration via the thin filament regulatory proteins
troponin and tropomyosin. In the absence of calcium, actin-myosin interaction and subsequently
muscle contraction is inhibited. In the gSkM of HFD-ED, two ATPases, namely Na+/K+-ATPase
transporting α2 polypeptide (Atp1a2; sodium pump) and ATPase Ca+2 transporting skeletal muscle
slow switch 2 (Atp2a2; Serca2a) were upregulated compared with HFD-corn oil. A tissue specific
knockout study shows that the sodium pump (Atp1a2) is required to prevent fatigue, and systematic
analysis of Serca isoforms in calcium transport showed their importance for restoring muscle
contractibility [43,44]. Protein levels of the oxidative fiber biomarker Troponin C1 were higher in
gSkM of HFD-ED fed mice compared with HFD-corn oil, indicative of increased muscle contraction
via control of intracellular calcium in mice fed HFD-ED. Together, these results suggest that HFD-ED
contributes to increased calcium release into the sarcoplasm, compared with HFD-corn oil fed mice.

Calcineurin has been proposed to play a major role in the upregulation of slow-fiber-specific gene
expression [45–47]. Earlier, it was found that inhibition of calcineurin by cyclosporin-A could result
in an increased number of fast fibers in rat skeletal muscle [45]. Activated calcineurin phosphatase
capacity is required for dephosphorylation of Nfat proteins, which then localize to the nucleus to initiate
slow-fiber-specific gene expression [45,47]. Our data shows that the gSkM of HFD-ED fed animals
has markedly higher nuclear levels of Nfat (Nfatc4 isoform) compared with HFD-corn oil, which
could contribute to upregulation of the slow-fiber-specific gene expression upon nuclear localization.
An earlier study showed abundant myogenin mRNA in slow oxidative muscles and this relationship
followed phenotype transition caused by cross-innervation [48]. In HFD-ED fed mice, myogenin
(Padj-value = 0.06) tends to be higher compared with HFD-corn oil fed animals suggesting upregulation
of genes for the slower muscle fiber phenotype. We also found that EPA and DHA increased gene
expression of Ppargc1α, a master regulator of mitochondrial biogenesis leading to red type I fiber, also
suggests genetic programing towards stimulating slower muscle fiber [49–52]. It is known that the
products of peroxisomal β-oxidation are also targeted towards mitochondria for oxidation in skeletal
muscle and therefore assist in complete lipid disposal [53]. Further support for an effect on muscle
fiber type comes from stimulation of insulin growth factor 1 (Igf -1), which regulates the Akt pathway.
Activation of Akt phosphorylates Gsk3β thereby inactivating it. Gsk3β phosphorylates Nfat and
excluding its entry into the nucleus and subsequent DNA binding [54], which would down-regulate
slow-fiber gene expression. In our study, Gsk3β was downregulated in the gSkM of HFD-ED compared
with HFD-corn oil animals, indicating little Nfat phosphorylation and thus, conditions that would
favor production of slow-fiber type. Resistance training, testosterone treatment, growth hormone, or
dehydroepiandrosterone interventions have shown favorable effects in retaining muscle mass and
function [19,55–58]. However, long-term use of growth hormone treatment can be harmful due to
associated side effects, making this a poor choice for intervention against muscle loss. Our findings
suggest a mechanistic basis for the human results and supports the case for further research on either
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ED or fish oil supplements as potential molecules for the long-term prevention of sarcopenia. In this
study we were unable to determine if muscle fiber type regulation is due to the effects of increased
β-oxidation, or a direct effect of EPA or DHA on gene transcription.

Although the effects of EPA and DHA on gSkM gene expression are conclusive, due to the limited
sample amount we have been unable to validate many of the possible physiological effects found
from transcriptome analysis. Ideally, future work should study these effects across a wider range of
SkM and perform histology to confirm the hypothesis on fiber-type regulation. Similarly, our results
suggest an effect on many parameters related to energy metabolism, supported in part by finding a
lower fat content in the gSkM of HFD-ED fed mice compared with HFD-corn oil. Future work will
need to see if this effect extends to improved glucose disposal which could extend the findings to
possible relevance for T2D. A role for regulation of calcium concentrations for signaling should also be
tested using muscle cell models. Future work will also need to test if these pathways are still relatively
upregulated with lower proportions of n-3 fatty acids and at lower amounts, to test if they are relevant
at normal amounts of dietary fat.

These results clearly demonstrate the wide-ranging impact a difference in dietary fatty acid
composition can have on SkM gene-transcription. It is unclear if ED regulates all of these gene targets
simultaneously, or if some are a result of downstream interactions with initial ED targets. Given the
clear sequential effects on energy metabolism from β-oxidation to oxidative phosphorylation, it appears
likely that the observed upregulation of these processes is directly related to increased circulating EPA
and DHA. Further studies on cell and rodent models of ageing and functional analysis of SkM are
required to confirm these effects and the likely regulatory nodes for these mechanisms.

5. Conclusions

The skeletal muscle transcriptome from mice fed HFDs differing in fat composition for 8 weeks,
showed marked differences in expression of genes coding for metabolic proteins. Our results suggest
muscle-protective effects of EPA and DHA against catabolic degradation, possibly via stimulation of
pathways that increase mitochondrial β-oxidation capacity and control calcium release for muscle
contraction. These shifts in gene expression, even against a background of HFD are clearly favorable
for hindering molecular progression towards muscle loss. With the limited availability of clinical
treatments for preventing muscle loss, increased intake of fatty fish that are abundant in EPA and
DHA, or supplementation with marine fatty acids could provide a safe and economic alternative to
pharmaceutical interventions.

Supplementary Materials: The following are available online at www.mdpi.com/link, Figure S1: Protein lysate
from the gSkM of HFD-ED and HFD-corn oil were analyzed by Western blot using antibodies for total Acc,
p-Acc (Ser79) and total anti-Troponin C1. Gapdh was used as a loading control for the Western blot, Figure S2:
(a) Principle Component Analysis (PCA) plot based on the normalized gene expression from the gSkM tissue
fed control, HFD-ED and HFD-corn oil is plotted for assessing the quality of the datasets. No animals or any
related data was excluded from further assessment. (b) Venn diagrams showing the number of differentially
expressed genes (FDR adjusted p-value < 0.001) in each diet-comparison for gSkM tissue. HFD-ED compared
with control diet and HFD-corn oil fed mice shows most transcriptional response to the diet. Key: ED = HFD-ED;
CO = HFD-corn oil and CD = control diet, Figure S3: (a) Fatty acid β-oxidation pathway rendered by the
pathview function from the Kegg pathway database. Genes highlighted in red are upregulated for the comparison
HFD-ED vs. HFD-corn oil. (b) Krebs cycle pathway rendered by the pathview function from the Kegg pathway
database. Genes highlighted in red are upregulated for the comparison HFD-ED vs. HFD-corn oil. (c) Oxidative
phosphorylation pathway rendered by the pathview function from the Kegg pathway database. Genes highlighted
in red are upregulated for the comparison HFD-ED vs. HFD-corn oil, Table S1: Table for the selection criteria
for animals for microarray analysis. Animals marked in green were selected for microarray analysis, Table S2:
The top 100 differentially regulated genes regulated by HFD-ED compared to HFD-corn oil fed mice, based on
adjusted p-value.

Acknowledgments: The study was supported by grants from Stiftelsen Olle Engkvist, Byggmästare; The Swedish
Research Council for Environment, Agricultural Sciences and Spatial Planning (222-2011-1322); the Region of
Västra Götaland (VGR; RUN 612-0959-11) and the Swedish Research Council (VR project number 2013-4504).
IN gracefully acknowledge Swedish Research Council (VR-2013-4504). We would like to acknowledge SCIBLU,
Lund University for the labelling of RNA and hybridization to the Illumina microarrays chips, and CBI, University

www.mdpi.com/link


Nutrients 2016, 8, 543 14 of 17

of Gothenburg, for the assistance with the animal experiments. We also acknowledge Chalmers Mass Spectrometry
Infrastructure (CMSI), Chalmers University of Technology for their help with fatty acid profiling. We also gratefully
acknowledge the kind gifts of the EPAX oils from EPAX AS, Norway (now FMC Corporation, USA).

Author Contributions: B.G., I.N., and A.S. designed the study. B.G. performed the animal experiments; B.G. and
N.So. conducted the RNA isolation and microarray data collection. I.N. coordinated microarray experiment
and analysis. N.So. and O.I.S. performed fatty acid analysis. N.So. performed statistical analyses and wrote the
manuscript. A.B.R. and N.Sc. aided in the interpretation of the data and gave their input during the preparation
of manuscript. All authors reviewed and approved the final version of manuscript.

Conflicts of Interest: The authors declare that they have no potential conflicts of interest.

References and Notes

1. World Health Organization. Obesity and Overweight Fact Sheet N◦311; World Health Organization Media
Centre: Geneva, Switzerland, 2015.

2. Lauretani, F.; Russo, C.R.; Bandinelli, S.; Bartali, B.; Cavazzini, C.; Di Iorio, A.; Corsi, A.M.; Rantanen, T.;
Guralnik, J.M.; Ferrucci, L. Age-associated changes in skeletal muscles and their effect on mobility:
An operational diagnosis of sarcopenia. J. Appl. Physiol. 2003, 95, 1851–1860. [CrossRef] [PubMed]

3. Candow, D.G.; Chilibeck, P.D. Differences in size, strength, and power of upper and lower body muscle
groups in young and older men. J. Gerontol. 2005, 60, 148–156. [CrossRef]

4. Von Haehling, S.; Morley, J.E.; Anker, S.D. An overview of sarcopenia: Facts and numbers on prevalence and
clinical impact. J. Cachexia Sarcopenia Muscle 2010, 1, 129–133. [CrossRef] [PubMed]

5. Rosenberg, I.H. Sarcopenia: Origins and clinical relevance. J. Nutr. 1997, 127, 990S–991S. [CrossRef]
[PubMed]

6. Schmidt, M.; Johannesdottir, S.A.; Lemeshow, S.; Lash, T.L.; Ulrichsen, S.P.; Botker, H.E.; Sorensen, H.T.
Obesity in young men, and individual and combined risks of type 2 diabetes, cardiovascular morbidity and
death before 55 years of age: A danish 33-year follow-up study. BMJ Open 2013, 3. [CrossRef] [PubMed]

7. Roubenoff, R. Sarcopenic obesity: The confluence of two epidemics. Obes. Res. 2004, 12, 887–888. [CrossRef]
[PubMed]

8. Schaap, L.A.; Pluijm, S.M.; Deeg, D.J.; Harris, T.B.; Kritchevsky, S.B.; Newman, A.B.; Colbert, L.H.; Pahor, M.;
Rubin, S.M.; Tylavsky, F.A.; et al. Higher inflammatory marker levels in older persons: Associations with
5-year change in muscle mass and muscle strength. J. Gerontol. 2009, 64, 1183–1189. [CrossRef] [PubMed]

9. Visser, M.; Pahor, M.; Taaffe, D.R.; Goodpaster, B.H.; Simonsick, E.M.; Newman, A.B.; Nevitt, M.; Harris, T.B.
Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in
elderly men and women: The health abc study. J. Gerontol. 2002, 57, M326–M332. [CrossRef]

10. Zhao, X.; Wang, Z.; Zhang, J.; Hua, J.; He, W.; Zhu, S. Estimation of total body skeletal muscle mass in chinese
adults: Prediction model by dual-energy X-ray absorptiometry. PLoS ONE 2013, 8. [CrossRef] [PubMed]

11. Kim, J.; Wang, Z.; Heymsfield, S.B.; Baumgartner, R.N.; Gallagher, D. Total-body skeletal muscle mass:
Estimation by a new dual-energy X-ray absorptiometry method. Am. J. Clin. Nutr. 2002, 76, 378–383.

12. Meyer, C.; Dostou, J.M.; Welle, S.L.; Gerich, J.E. Role of human liver, kidney, and skeletal muscle in
postprandial glucose homeostasis. Am. J. Physiol. Endocrinol. Metab. 2002, 282, 419–427. [CrossRef]
[PubMed]

13. Smith, G.I.; Julliand, S.; Reeds, D.N.; Sinacore, D.R.; Klein, S.; Mittendorfer, B. Fish oil-derived n-3 pufa
therapy increases muscle mass and function in healthy older adults. Am. J. Clin. Nutr. 2015, 102, 115–122.
[CrossRef] [PubMed]

14. Alexander, J.W.; Saito, H.; Trocki, O.; Ogle, C.K. The importance of lipid type in the diet after burn injury.
Ann. Surg. 1986, 204, 1–8. [CrossRef] [PubMed]

15. Gingras, A.A.; White, P.J.; Chouinard, P.Y.; Julien, P.; Davis, T.A.; Dombrowski, L.; Couture, Y.; Dubreuil, P.;
Myre, A.; Bergeron, K.; et al. Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism
by promoting muscle insulin signalling to the akt-mtor-s6k1 pathway and insulin sensitivity. J. Physiol. 2007,
579, 269–284. [CrossRef] [PubMed]

16. Fetterman, J.W., Jr.; Zdanowicz, M.M. Therapeutic potential of n-3 polyunsaturated fatty acids in disease.
Am. J Health Syst. Pharm. 2009, 66, 1169–1179. [CrossRef] [PubMed]

http://dx.doi.org/10.1152/japplphysiol.00246.2003
http://www.ncbi.nlm.nih.gov/pubmed/14555665
http://dx.doi.org/10.1093/gerona/60.2.148
http://dx.doi.org/10.1007/s13539-010-0014-2
http://www.ncbi.nlm.nih.gov/pubmed/21475695
http://dx.doi.org/10.1016/j.cger.2011.03.003
http://www.ncbi.nlm.nih.gov/pubmed/21824550
http://dx.doi.org/10.1136/bmjopen-2013-002698
http://www.ncbi.nlm.nih.gov/pubmed/23628994
http://dx.doi.org/10.1038/oby.2004.107
http://www.ncbi.nlm.nih.gov/pubmed/15229325
http://dx.doi.org/10.1093/gerona/glp097
http://www.ncbi.nlm.nih.gov/pubmed/19622801
http://dx.doi.org/10.1093/gerona/57.5.M326
http://dx.doi.org/10.1371/journal.pone.0053561
http://www.ncbi.nlm.nih.gov/pubmed/23308254
http://dx.doi.org/10.1152/ajpendo.00032.2001
http://www.ncbi.nlm.nih.gov/pubmed/11788375
http://dx.doi.org/10.3945/ajcn.114.105833
http://www.ncbi.nlm.nih.gov/pubmed/25994567
http://dx.doi.org/10.1097/00000658-198607000-00001
http://www.ncbi.nlm.nih.gov/pubmed/3015058
http://dx.doi.org/10.1113/jphysiol.2006.121079
http://www.ncbi.nlm.nih.gov/pubmed/17158167
http://dx.doi.org/10.2146/ajhp080411
http://www.ncbi.nlm.nih.gov/pubmed/19535655


Nutrients 2016, 8, 543 15 of 17

17. Gabrielsson, B.G.; Wikstrom, J.; Jakubowicz, R.; Marmon, S.K.; Carlsson, N.G.; Jansson, N.; Gan, L.M.;
Undeland, I.; Lonn, M.; Holmang, A.; et al. Dietary herring improves plasma lipid profiles and reduces
atherosclerosis in obese low-density lipoprotein receptor-deficient mice. Int. J. Mol. Med. 2012, 29, 331–337.
[CrossRef] [PubMed]

18. Nookaew, I.; Gabrielsson, B.G.; Holmang, A.; Sandberg, A.S.; Nielsen, J. Identifying molecular effects of
diet through systems biology: Influence of herring diet on sterol metabolism and protein turnover in mice.
PLoS ONE 2010, 5. [CrossRef] [PubMed]

19. Rodacki, C.L.; Rodacki, A.L.; Pereira, G.; Naliwaiko, K.; Coelho, I.; Pequito, D.; Fernandes, L.C. Fish-oil
supplementation enhances the effects of strength training in elderly women. Am. J. Clin. Nutr. 2012, 95,
428–436. [CrossRef] [PubMed]

20. Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B.
Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults:
A randomized controlled trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [CrossRef] [PubMed]

21. Soni, N.K.; Nookaew, I.; Sandberg, A.S.; Gabrielsson, B.G. Eicosapentaenoic and docosahexaenoic
acid-enriched high fat diet delays the development of fatty liver in mice. Lipids Health Dis. 2015, 14.
[CrossRef] [PubMed]

22. Amrutkar, M.; Cansby, E.; Nunez-Duran, E.; Piraz zi, C.; Stahlman, M.; Stenfeldt, E.; Smith, U.; Boren, J.;
Mahlapuu, M. Protein kinase stk25 regulates hepatic lipid partitioning and progression of liver steatosis and
nash. FASEB J. 2015, 29, 1564–1576. [CrossRef] [PubMed]

23. For More Information about ncbi refseq, Please Go to http://ftp.Ncbi.Nih.Gov/refseq/release/.
24. For More Information about meebo, Please Go to http://www.Arrays.Ucsf.Edu/archive/meebo.Html.
25. Functional Annotation of Mouse. Available online: http://fantom2.Gsc.Riken.Jp/ (accessed on 25 August 2016).
26. Du, P.; Kibbe, W.A.; Lin, S.M. Lumi: A pipeline for processing illumina microarray. Bioinformatics 2008, 24,

1547–1548. [CrossRef] [PubMed]
27. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential

expression analyses for RNA-sequencing and microarray studies. Nucl. Acids Res. 2015, 43. [CrossRef]
28. Luo, W.; Friedman, M.S.; Shedden, K.; Hankenson, K.D.; Woolf, P.J. Gage: Generally applicable gene set

enrichment for pathway analysis. BMC Bioinformatics 2009, 10, 1–17. [CrossRef] [PubMed]
29. Luo, W.; Brouwer, C. Pathview: An R/Bioconductor package for pathway-based data integration and

visualization. Bioinformatics 2013, 29. [CrossRef] [PubMed]
30. Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from

animal tissues. J. Biol. Chem. 1957, 226, 497–509. [PubMed]
31. Kaluzny, M.A.; Duncan, L.A.; Merritt, M.V.; Epps, D.E. Rapid separation of lipid classes in high yield and

purity using bonded phase columns. J. Lipid Res. 1985, 26, 135–140. [PubMed]
32. Lepage, G.; Roy, C.C. Improved recovery of fatty acid through direct transesterification without prior

extraction or purification. J. Lipid. Res. 1984, 25, 1391–1396. [PubMed]
33. Tuazon, M.A.; Henderson, G.C. Fatty acid profile of skeletal muscle phospholipid is altered in mdx mice and

is predictive of disease markers. Metable 2012, 61, 801–811. [CrossRef] [PubMed]
34. Lowell, B.B.; Shulman, G.I. Mitochondrial dysfunction and type 2 diabetes. Science 2005, 307, 384–387.

[CrossRef] [PubMed]
35. Petersen, K.F.; Dufour, S.; Befroy, D.; Garcia, R.; Shulman, G.I. Impaired mitochondrial activity in the

insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 2004, 350, 664–671. [CrossRef]
[PubMed]

36. Patti, M.E.; Butte, A.J.; Crunkhorn, S.; Cusi, K.; Berria, R.; Kashyap, S.; Miyazaki, Y.; Kohane, I.; Costello, M.;
Saccone, R.; et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance
and diabetes: Potential role of pgc1 and nrf1. Proc. Natl. Acad. Sci. USA 2003, 100, 8466–8471. [CrossRef]
[PubMed]

37. Sparks, L.M.; Xie, H.; Koza, R.A.; Mynatt, R.; Hulver, M.W.; Bray, G.A.; Smith, S.R. A high-fat diet coordinately
downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes 2005,
54, 1926–1933. [CrossRef] [PubMed]

38. Mootha, V.K.; Lindgren, C.M.; Eriksson, K.F.; Subramanian, A.; Sihag, S.; Lehar, J.; Puigserver, P.; Carlsson, E.;
Ridderstrale, M.; Laurila, E.; et al. Pgc-1alpha-responsive genes involved in oxidative phosphorylation are
coordinately downregulated in human diabetes. Nat. Genet. 2003, 34, 267–273. [CrossRef] [PubMed]

http://dx.doi.org/10.3892/ijmm.2011.856
http://www.ncbi.nlm.nih.gov/pubmed/22160183
http://dx.doi.org/10.1371/journal.pone.0012361
http://www.ncbi.nlm.nih.gov/pubmed/20808764
http://dx.doi.org/10.3945/ajcn.111.021915
http://www.ncbi.nlm.nih.gov/pubmed/22218156
http://dx.doi.org/10.3945/ajcn.110.005611
http://www.ncbi.nlm.nih.gov/pubmed/21159787
http://dx.doi.org/10.1186/s12944-015-0072-8
http://www.ncbi.nlm.nih.gov/pubmed/26193881
http://dx.doi.org/10.1096/fj.14-264937
http://www.ncbi.nlm.nih.gov/pubmed/25609431
http://ftp.Ncbi.Nih.Gov/refseq/release/
http://www.Arrays.Ucsf.Edu/archive/meebo.Html
http://fantom2.Gsc.Riken.Jp/
http://dx.doi.org/10.1093/bioinformatics/btn224
http://www.ncbi.nlm.nih.gov/pubmed/18467348
http://dx.doi.org/10.1093/nar/gkv007
http://dx.doi.org/10.1186/1471-2105-10-161
http://www.ncbi.nlm.nih.gov/pubmed/19473525
http://dx.doi.org/10.1093/bioinformatics/btt285
http://www.ncbi.nlm.nih.gov/pubmed/23740750
http://www.ncbi.nlm.nih.gov/pubmed/13428781
http://www.ncbi.nlm.nih.gov/pubmed/3973509
http://www.ncbi.nlm.nih.gov/pubmed/6530596
http://dx.doi.org/10.1016/j.metabol.2011.10.019
http://www.ncbi.nlm.nih.gov/pubmed/22209669
http://dx.doi.org/10.1126/science.1104343
http://www.ncbi.nlm.nih.gov/pubmed/15662004
http://dx.doi.org/10.1056/NEJMoa031314
http://www.ncbi.nlm.nih.gov/pubmed/14960743
http://dx.doi.org/10.1073/pnas.1032913100
http://www.ncbi.nlm.nih.gov/pubmed/12832613
http://dx.doi.org/10.2337/diabetes.54.7.1926
http://www.ncbi.nlm.nih.gov/pubmed/15983191
http://dx.doi.org/10.1038/ng1180
http://www.ncbi.nlm.nih.gov/pubmed/12808457


Nutrients 2016, 8, 543 16 of 17

39. Choi, C.S.; Savage, D.B.; Abu-Elheiga, L.; Liu, Z.X.; Kim, S.; Kulkarni, A.; Distefano, A.; Hwang, Y.J.;
Reznick, R.M.; Codella, R.; et al. Continuous fat oxidation in acetyl-coa carboxylase 2 knockout mice
increases total energy expenditure, reduces fat mass, and improves insulin sensitivity. Proc. Natl. Acad.
Sci. USA 2007, 104, 16480–16485. [CrossRef] [PubMed]

40. Bruce, C.R.; Hoy, A.J.; Turner, N.; Watt, M.J.; Allen, T.L.; Carpenter, K.; Cooney, G.J.; Febbraio, M.A.;
Kraegen, E.W. Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance
fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes 2009, 58, 550–558.
[CrossRef] [PubMed]

41. Schwerzmann, K.; Hoppeler, H.; Kayar, S.R.; Weibel, E.R. Oxidative capacity of muscle and mitochondria:
Correlation of physiological, biochemical, and morphometric characteristics. Proc. Natl. Acad. Sci. USA 1989,
86, 1583–1587. [CrossRef] [PubMed]

42. Petersen, K.F.; Befroy, D.; Dufour, S.; Dziura, J.; Ariyan, C.; Rothman, D.L.; DiPietro, L.; Cline, G.W.;
Shulman, G.I. Mitochondrial dysfunction in the elderly: Possible role in insulin resistance. Science 2003, 300,
1140–1142. [CrossRef] [PubMed]

43. Periasamy, M.; Kalyanasundaram, A. Serca pump isoforms: Their role in calcium transport and disease.
Muscle Nerve 2007, 35, 430–442. [CrossRef] [PubMed]

44. Radzyukevich, T.L.; Neumann, J.C.; Rindler, T.N.; Oshiro, N.; Goldhamer, D.J.; Lingrel, J.B.; Heiny, J.A.
Tissue-specific role of the na,k-atpase alpha2 isozyme in skeletal muscle. J. Biol. Chem. 2013, 288, 1226–1237.
[CrossRef] [PubMed]

45. Dunn, S.E.; Burns, J.L.; Michel, R.N. Calcineurin is required for skeletal muscle hypertrophy. J. Biol. Chem.
1999, 274, 21908–21912. [CrossRef] [PubMed]

46. Dunn, S.E.; Chin, E.R.; Michel, R.N. Matching of calcineurin activity to upstream effectors is critical for
skeletal muscle fiber growth. J. Cell. Biol. 2000, 151, 663–672. [CrossRef] [PubMed]

47. Dunn, S.E.; Simard, A.R.; Bassel-Duby, R.; Williams, R.S.; Michel, R.N. Nerve activity-dependent modulation
of calcineurin signaling in adult fast and slow skeletal muscle fibers. J. Biol. Chem. 2001, 276, 45243–45254.
[CrossRef] [PubMed]

48. Hughes, S.M.; Taylor, J.M.; Tapscott, S.J.; Gurley, C.M.; Carter, W.J.; Peterson, C.A. Selective accumulation of
myod and myogenin mrnas in fast and slow adult skeletal muscle is controlled by innervation and hormones.
Development 1993, 118, 1137–1147.

49. Lin, J.; Wu, H.; Tarr, P.T.; Zhang, C.Y.; Wu, Z.; Boss, O.; Michael, L.F.; Puigserver, P.; Isotani, E.; Olson, E.N.;
et al. Transcriptional co-activator pgc-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002,
418, 797–801. [CrossRef] [PubMed]

50. Vega, R.B.; Huss, J.M.; Kelly, D.P. The coactivator pgc-1 cooperates with peroxisome proliferator-activated
receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation
enzymes. Mol. Cell Biol. 2000, 20, 1868–1876. [CrossRef] [PubMed]

51. Wu, Z.; Puigserver, P.; Andersson, U.; Zhang, C.; Adelmant, G.; Mootha, V.; Troy, A.; Cinti, S.; Lowell, B.;
Scarpulla, R.C.; et al. Mechanisms controlling mitochondrial biogenesis and respiration through the
thermogenic coactivator PGC-1. Cell 1999, 98, 115–124. [CrossRef]

52. Puigserver, P.; Wu, Z.; Park, C.W.; Graves, R.; Wright, M.; Spiegelman, B.M. A cold-inducible coactivator of
nuclear receptors linked to adaptive thermogenesis. Cell 1998, 92, 829–839. [CrossRef]

53. Noland, R.C.; Woodlief, T.L.; Whitfield, B.R.; Manning, S.M.; Evans, J.R.; Dudek, R.W.; Lust, R.M.;
Cortright, R.N. Peroxisomal-mitochondrial oxidation in a rodent model of obesity-associated insulin
resistance. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E986–E1001. [CrossRef] [PubMed]

54. Neal, J.W.; Clipstone, N.A. Glycogen synthase kinase-3 inhibits the DNA binding activity of NFATc.
J. Biol. Chem. 2001, 276, 3666–3673. [CrossRef] [PubMed]

55. Baker, W.L.; Karan, S.; Kenny, A.M. Effect of dehydroepiandrosterone on muscle strength and physical
function in older adults: A systematic review. J. Am. Geriatr. Soc. 2011, 59, 997–1002. [CrossRef] [PubMed]

56. Emmelot-Vonk, M.H.; Verhaar, H.J.; Pour, H.R.N.; Aleman, A.; Lock, T.M.; Bosch, J.L.; Grobbee, D.E.;
van der Schouw, Y.T. Effect of testosterone supplementation on functional mobility, cognition, and other
parameters in older men: A randomized controlled trial. J. Am. Med. Assoc. 2008, 299, 39–52. [CrossRef]
[PubMed]

http://dx.doi.org/10.1073/pnas.0706794104
http://www.ncbi.nlm.nih.gov/pubmed/17923673
http://dx.doi.org/10.2337/db08-1078
http://www.ncbi.nlm.nih.gov/pubmed/19073774
http://dx.doi.org/10.1073/pnas.86.5.1583
http://www.ncbi.nlm.nih.gov/pubmed/2922400
http://dx.doi.org/10.1126/science.1082889
http://www.ncbi.nlm.nih.gov/pubmed/12750520
http://dx.doi.org/10.1002/mus.20745
http://www.ncbi.nlm.nih.gov/pubmed/17286271
http://dx.doi.org/10.1074/jbc.M112.424663
http://www.ncbi.nlm.nih.gov/pubmed/23192345
http://dx.doi.org/10.1074/jbc.274.31.21908
http://www.ncbi.nlm.nih.gov/pubmed/10419511
http://dx.doi.org/10.1083/jcb.151.3.663
http://www.ncbi.nlm.nih.gov/pubmed/11062266
http://dx.doi.org/10.1074/jbc.M105445200
http://www.ncbi.nlm.nih.gov/pubmed/11555650
http://dx.doi.org/10.1038/nature00904
http://www.ncbi.nlm.nih.gov/pubmed/12181572
http://dx.doi.org/10.1128/MCB.20.5.1868-1876.2000
http://www.ncbi.nlm.nih.gov/pubmed/10669761
http://dx.doi.org/10.1016/S0092-8674(00)80611-X
http://dx.doi.org/10.1016/S0092-8674(00)81410-5
http://dx.doi.org/10.1152/ajpendo.00399.2006
http://www.ncbi.nlm.nih.gov/pubmed/17638705
http://dx.doi.org/10.1074/jbc.M004888200
http://www.ncbi.nlm.nih.gov/pubmed/11063740
http://dx.doi.org/10.1111/j.1532-5415.2011.03410.x
http://www.ncbi.nlm.nih.gov/pubmed/21649617
http://dx.doi.org/10.1001/jama.2007.51
http://www.ncbi.nlm.nih.gov/pubmed/18167405


Nutrients 2016, 8, 543 17 of 17

57. Giannoulis, M.G.; Sonksen, P.H.; Umpleby, M.; Breen, L.; Pentecost, C.; Whyte, M.; McMillan, C.V.; Bradley, C.;
Martin, F.C. The effects of growth hormone and/or testosterone in healthy elderly men: A randomized
controlled trial. J. Clin. Endocrinol. Metab. 2006, 91, 477–484. [CrossRef] [PubMed]

58. Kirwan, J.P.; Solomon, T.P.; Wojta, D.M.; Staten, M.A.; Holloszy, J.O. Effects of 7 days of exercise training on
insulin sensitivity and responsiveness in type 2 diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 2009, 297,
E151–E156. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1210/jc.2005-0957
http://www.ncbi.nlm.nih.gov/pubmed/16332938
http://dx.doi.org/10.1152/ajpendo.00210.2009
http://www.ncbi.nlm.nih.gov/pubmed/19383872
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Animal Experiment 
	Diets 
	Muscle Composition 
	RNA Isolation and Quality Assurance 
	Western Blot Analysis 
	Microarray—Data Acquisition and Analysis 
	Fatty Acid Analysis 
	Statistical Analysis of Western Blot and Fatty Acid Analyses 

	Results 
	Effect of EPA and DHA vs Corn Oil on gSkM Weight and Transcriptome 
	gSkM Fatty Acid Composition 
	Increased Mitochondrial B—Oxidation and Oxidative Phosphorylation in the Gskm of Mice Fed HFD-ED 
	Increased Expression of Muscle Contraction Pathway Genes in the Gskm of Mice Fed HFD-ED 
	Increased Slow-Fiber-Specific Gene Expression Program in the Gskm of Mice Fed HFD-ED 

	Discussion 
	Conclusions 

