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Simultaneous Information and Power Transfer with

Transmitters with Hardware Impairments

Ayça Özçelikkale, Tomas McKelvey, Mats Viberg

Abstract—We investigate the performance of a communication
system with simultaneous wireless information and power trans-
fer capabilities under non-ideal transmitter hardware. We adopt
an experimentally validated additive noise model in which the
level of the noise at an antenna is proportional to the signal
power at that antenna. We consider the linear precoder design
problem and focus on the problem of minimizing the mean-square
error under energy harvesting constraints. This set-up, in general,
constitutes a non-convex formulation. For the single antenna
information user case, we provide a tight convex relaxation,
i.e. a convex formulation from which an optimal solution for
the original problem can be constructed. For the general case,
we propose a block coordinate descent technique to solve the
resulting non-convex problem. Our numerical results illustrate
the effect of hardware impairments on the system.

I. INTRODUCTION

An attractive alternative to the traditional battery limited

or grid dependent communication systems is the simultane-

ous wireless information and power transfer (SWIPT) frame-

work. Here the two tasks, information and power transfer is

performed simultaneously in a wireless medium. These two

tasks typically require different optimal transmission strate-

gies, hence novel transmission strategies have to be designed

in order to be able to perform these tasks efficiently [1–3].

Wireless power transfer capabilities introduce great flexibil-

ity in terms of communication systems design, especially in

scenarios where the transmitters have a relatively large number

of antennas. On the other hand, for such systems to be utilized

widely, the hardware used in each antenna component should

be low cost, especially in massive multiple-input multiple-

output (MIMO) systems [4]. The downside of inexpensive

hardware is the fact that various impairments start to become

prominent, including phase-noise, IQ-imbalance and amplifier

non-linearities [4–6]. The impact of some of these distortions

can be partially compensated by using compensation algo-

rithms at the receiver or calibration methods at the transmitter,

but nevertheless residual transmitter impairments still remains

effective [4–6].

Although these residual transmitter impairments are known

to significantly affect the performance of communication sys-

tems [4–8], up to now, this point is typically overlooked in the

case of SWIPT system designs. Given that multiple-antenna

systems are particularly attractive for power transfer applica-

tions, it is important that effect of hardware impairments is
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understood in these SWIPT systems. Here we address this

issue under a linear precoding framework.

We consider the scenario where a transmitter aims to send

information to an information receiver as reliably as possible,

while also satisfying the energy harvesting (EH) constraints

at the energy receiver. To model the hardware impairments,

we adopt an additive noise model with a special covariance

structure, which is validated with the experiments [5], [6] and

supported by analytical arguments [4]. This set-up, in general,

constitutes a non-convex formulation. For the single antenna

information user case, we provide a tight convex relaxation.

For the general case, we propose a block coordinate descent

technique. Our results illustrate that when the channel signal-

to-noise ratio (SNR) is high, significant gains can be obtained

by the proposed hardware impairment aware designs.

The rest of the paper is organized as follows. In Sec. II, the

system model is described. The precoder optimization problem

is investigated in Sec. III. In Sec. IV, the performance of our

designs is illustrated. The paper is concluded in Sec. V.

Notation: The complex conjugate transpose of a matrix A is

denoted by AH. The ith row jth column element is denoted by

[A]ij . The Frobenius norm is denoted by ||A||= (tr[AAH])1/2.

In denotes the identity matrix with In ∈ C
n×n. An optimal

value of an optimization variable A is denoted by A∗.

II. SYSTEM MODEL

A. Channel Model

In our narrow-band and stationary scenario, the multi-antenna

transmitter transfers data to the information receiver (IR) as

well as power to the energy harvesting receiver (ER) as

yI = HIx+ wI (1)

yE = HEx+ wE (2)

where yI and yE denote the signals received by IR and ER,

respectively. Here HI ∈ C
nr×nt and HE ∈ C

ne×nt rep-

resent the channel gains from the transmitter to the IR and

the ER where the number of antennas at the transmitter, the

IR and the ER are denoted by nt, nr and ne. Zero-mean

complex proper Gaussian random variables wI ∈ C
nr×1 ∼

CN (0,KwI
), KwI

= E[wIw
H
I ] and wE ∈ C

ne×1, wE ∼
CN (0,KwE

), KwE
= E[wEw

H
E ] denote the noise at the IR’s

and ER’s channel, respectively.

B. Precoding at the Transmitter with Non-Ideal Hardware

With an ideal transmitter, the channel input with linear pre-

coding x can be expressed as x = Aos [9]. Here the zero

mean complex proper Gaussian random vector s ∈ C
ns , s ∼

CN (0,Ks), Ks = I denotes the data and Ao ∈ C
nt×ns



denotes the linear precoder. We consider the hardware im-

pairments at the transmitter as follows [4–6]

x = Aos+ v, (3)

where v ∈ C
nt , v ∼ CN (0,Kv) denotes the residual hardware

impairments that remain effective after utilizing impairment

compensation algorithms [4], [5]. The Gaussian assumption

on v is supported by experiments (see for instance [5, Fig.7])

as well as by the central limit theorem and the fact that this

term models the overall effect of various different hardware

impairments [4–6]. The covariance of v is given as [4–6]

Kv = αv diag(AoA
H
o ), (4)

where diag(M) denotes the diagonal matrix formed with [M ]11,

. . ., [M ]nn as the elements on the main diagonal with M ∈
C

n×n,. Hence the level of noise at an antenna is proportional

to the signal power at that antenna [4–6]. The associated model

has been used to study the performance of various communi-

cation scenarios under hardware impairments [4–8].

The constant αv ≥ 0 indicates the quality of the hardware.

As αv increases, the quality of the hardware decreases. Here v
is modelled as statistically independent of the unknown signal

s due to usage of compensation algorithms [4], [5]. We note

that in contrast to wI and wE , statistics of v depend on the

precoder Ao which will be optimized.

C. Signal Recovery at the IR

Upon receiving yI , the information receiver forms an esti-

mate of s. The mean-square error can be expressed as

(5)ε(Ao, B) = E[||s−ByI ||2],
where B represents the linear estimator adopted by the IR.

Here the expectation is over the relevant signals and the noise,

i.e. s, w and v. By standard arguments, the optimum B can

be found as

(6)B=AH
o H

H
I

(

HIAoA
H
o H

H
I +Kw̄I

)−1
.

where
(7)Kw̄I

= αvHI diag(AoA
H
o )H

H
I +KwI

denotes the covariance of the effective noise at the receiver,

i.e. w̄I = HIv + wI .

We note that due to the Gaussian distribution and the statis-

tical independence assumptions on the relevant signals, B yI
gives the minimum mean-square error (MMSE) estimation of

s. The resulting MMSE can be expressed as

ε(Ao) = ns − tr[AH
o H

H
I (HIAoA

H
o H

H
I +Kw̄I

)−1HIAo]

(8a)= tr[(I +AH
o H

H
I (Kw̄I

)−1HIAo)
−1],

where we have used Sherman-Morrison-Woodbury identity.

D. Energy Harvesting at the ER

The energy harvested at the ER can be expressed as [1]

(9)J (Ao) = κE[||yE ||22]
where κ ∈ [0, 1] is the loss factor that accounts for the possible

loss in the energy conversion process. Hence

J (Ao)=κ tr[HE

(

AoA
H
o+αv diag(AoA

H
o )

)

HE
H]+κ tr[KwE

].

An energy harvesting constraint in the form of J (Ao) ≥ γ is

imposed by the energy receiver. Since the EH constraints can

be scaled accordingly, we set κ = 1 in the rest of the article

without loss of generality.

III. LINEAR PRECODER DESIGN

Our aim is to find the precoder design that minimizes the

MMSE while satisfying the EH constraint. We are interested

in the following precoder design problem

(P1) min
Ao

ε(Ao) (10a)

s.t. J (Ao) ≥ γ (10b)

P(Ao) ≤ P (10c)

where ε(Ao) is as defined in (8). Here P(Ao) is the transmit

power at the output of the transmitter given by

P(Ao) = E[||Aos+ v||2] (11)

= tr[AoA
H
o ] + αv tr[diag(AoA

H
o )] (12)

= (1 + αv) tr[AoA
H
o ] (13)

As seen in (8a) when there are hardware impairments, the

precoder not only affects the signal but also the statistics of the

effective noise w̄I . Although the power used for the precoder

increases the effective noise level, it is optimal to use all of

the available power:

Lemma 3.1: Let σwI
> 0. For an optimal solution of A∗

o

of (10), P(A∗
o) = P .

Proof: Let us consider a fixed feasible Ao where P(Ao) =
P0 < P . Let us form a new solution by scaling Ao, i.e.

tAo, t ≥ 1. Now (8a) is a decreasing function of t under

σwI
> 0. Since J (Ao) is also an increasing function of

t, feasible solutions with a smaller objective function value

can be obtained by increasing t. Hence for an optimum A∗
o,

P(A∗
o) = P . �

We note that under σwI
= 0, a solution with P(Ao) < P

can be optimal. This can be seen, for instance, by considering

the scenario with γ = 0, nt = nr = ns = 1. Here the error

is given by (1+ |HI |2|Ao|2/(αv|Ao|2))−1 where any solution

with P(Ao) > 0 gives the same error value.

We note that ε(Ao) is not a convex function of Ao. This

is true even for the case with αv = 0. Although an optimal

solution can be constructed for the αv = 0 case when there

are no EH constraints (see for instance [9]), these results

do not immediately generalize to (10). We further note that

although it is possible to rewrite Problem P1 in terms of a new

variable RAo
= AoA

H
o � 0, this formulation will have a rank-

constraint rank(RAo
) ≤ ns (so that an admissible optimal

Ao ∈ C
nt×ns can be found from an optimal RAo

∈ C
nt×nt ),

which corresponds to a non-convex constraint when ns < nt.

A. MISO IR Channel

We now consider the scenario with multiple-input single-

output IR channel, hence nr = 1, HI ∈ C
1×nt . The error can

be expressed as

(14a)ε(Ao) = tr[(Ins
+AH

o H
H
I (Kw̄I

)−1HIAo)
−1]

(14b)=tr[(1 + (Kw̄I
)−1HIAoA

H
o H

H
I )−1]+ns−1,



where Kw̄I
= αvHI diag(AoA

H
o )H

H
I + σ2

wI
∈ R and (14b)

follows from the equivalence of the non-zero eigenvalues of

the products of matrices M1M2 and M2M1 [10]. We note

that minimizing the error expression in (14b) is equivalent to

maximizing the following signal-to-noise ratio expression

(15)f(Ao) =
HIAoA

H
o H

H
I

αvHI diag(AoAH
o )H

H
I + σ2

wI

Hence equivalent to (10), we consider the following problem

max
Ao

f(Ao) (16)

subject to (10c) and (10b). Although (16) constitutes a non-

convex formulation, we will provide a tight convex relaxation

to it. We first introduce a new variable KAo
= AoA

H
o and

rewrite the objective function as follows

f̄(KAo
) =

HIKAo
HH

I

αv tr[KAo
diag(HH

I HI)] + σ2
wI

(17)

where we have used

(18a)tr[M diag(AoA
H
o )M

H] = tr[diag(AoA
H
o )M

HM ]

(18b)= tr[AoA
H
o diag(MHM)]

(18c)= tr[AH
o diag(MHM)Ao],

for ∀M ∈ C
ns×n with n ≥ 1 is an arbitrary integer and

HI diag(KAo
)HH

I = tr[HI diag(KAo
)HH

I ] for HI ∈ C
1×nt .

The energy harvested can be expressed as

JK(KAo
) = tr[HE (KAo

+ αv diag(KAo
))HH

E ] (19)

= tr[
(

HH
EHE + αv diag(H

H
EHE)

)

KAo
]. (20)

The transmit power can be expressed as

PK(KAo
) = (1 + αv) tr[KAo

].

Hence the optimization problem in (16) can be written as

max
KAo

�0
f̄(KAo

) (21a)

s.t. JK(KAo
) ≥ γ, (21b)

PK(KAo
) ≤ P, (21c)

rank(KAo
) ≤ ns. (21d)

We relax the rank constraint in (21d) and consider the follow-

ing problem

max
KAo

�0
f̄(KAo

) (22a)

subject to (21c) and (21b).

We will now show that this relaxation is tight, i.e. the solu-

tion of (22) provides a solution for (16). To this end, we first

show (22) can be solved using convex optimization methods.

We note that the objective function of (22) is a linear-

fractional function, hence it is not convex function of KAo

[11]. Nevertheless, (22) can be written as a convex optimiza-

tion problem using Charnes-Cooper transformation [12]. Let

us define β = (tr[KAo
HH

I HI ] + σ2
w,I)

−1, GAo
= βKAo

.

Hence (22) can be equivalently written as

max
GAo

�0,β≥0
tr[HIGAo

HH
I ] (23a)

s.t. JK(GAo
) ≥ βγ, (23b)

PK(GAo
) ≤ βP, (23c)

HIGAo
HH

I + βσ2
w,I = 1. (23d)

This is a convex formulation. We obtain the following:

Lemma 3.2: Let (16) be feasible. Then the optimum values

for (23) and (16) are equal and can be attained. Using an

optimal solution of (23), an optimal rank 1 solution KAo
for

(16) can be constructed.

Proof: We observe that for any fixed β ≥ 0, (23) is a semi-

definite programming (SDP) problem with two constraints. By

[13, Thm 2.2], a solution GAo
for (23) with rank 1 always

exists. Hence the rank constraint inherent in (16) can be always

satisfied. An optimal rank 1 solution for (16) from a solution

of (23) can be constructed using [13, Algorithm RED].�

This result shows that by solving the convex optimization

problem (23), a solution for (16) can be found. We further

discuss the feasibility of (16) (equivalently feasibility of (10))

at the end of Sec. III-C.

We now discuss the effect of hardware impairments on

the solution of (16). In particular, due to Lemma 3.1 and

Lemma 3.2, a solution in the form of Ao =
√
θu, θ = P/(1+

αv) with ||u||2= 1, u ∈ C
nt×1 is optimal for (16). Hence

maximizing the objective function of (16), i.e. (15), is equiv-

alent to the maximization of the following expression

θ|HIu|2
αvθ

∑nt

i=1|[HI ]i1|2|[u]i|2+σ2
wI

. (24)

Let us consider the case γ = 0. Without the hardware im-

pairments, i.e. αv = 0, uo = HH
I /||HI || which distributes

the power proportional to strength of the channel coefficients

is optimal (since uo is the eigenvector associated with the

largest eigenvalue of HH
I HI ). With αv > 0, this solution is

not necessarily optimal. An example scenario is the following:

Let nt = 2, HI = [h1 h2] ∈ R
1×2,u ∈ R

nt×1. Hence

ua = [h1 h2]
H/||HI || is optimal for αv = 0 for σ2

wI
> 0. On

the other hand, for αv > 0, σ2
wI

= 0 the problem corresponds

to minimizing an expression in the form of β + 1/β, β ≥ 0,

β = (h1u1)/(h2u2) and β = 1, hence ub = [h2 h1]
H/||HI ||

is optimal. Hence this suggests for σ2
wI

≈ 0, h1 6= h2, the de-

signs without and with the hardware impairments are different.

Here the solution for αv > 0 needs to provide the optimum

trade-off between two opposing forces: sending more power

along the strong channel coefficient in order to increase signal

power at the IR and sending less power along this channel

coefficient in order to decrease the effective noise power at

the IR. We note that under certain channel conditions, EH

constraints may force the approach that assume ideal hardware

to provide designs that are more close to the ones designed

with the awareness of non-ideal hardware. Such a case oc-

curs, for instance for the above scenario when HE/||HE ||=
[h2 h1]/||HI || where the EH constraints will favor solutions

close to ub as γ increases.



B. Precoder Design with Fixed Receiver Filter at the IR

We now consider the general scenario nr ≥ 1. In order to

propose a design for Problem P1 in this multiple-antenna IR

scenario, we first consider the case where the IR uses a fixed

estimation filter:

(P2) min
Ao

ES [||s−ByI ||2] (25a)

subject to (10c) and (10b). We note that here the filter B that

does not depend on Ao.

Although Problem P2 also forms a non-convex formulation,

we again derive a tight convex relaxation. For a given B, the

mean-square error in (5) can be written as

ε(Ao, B) = ||Ins
−BHIAo||2 + tr[B(HIKvH

H
I +KwI

)BH]

(26)

=tr[AH
0 H

H
I BHBHIA0]− 2Re[tr[BHIA0]]

+ns+αv tr[BHI diag(AoA
H
o )H

H
I BH]

+tr[BKwI
BH],

where Re[z] denotes the real part of z ∈ C. We note that

due to (18) the terms in (26) that include diag(AoA
H
o ) can

also be expressed as convex quadratic functions of Ao. Hence

the objective function of Problem P2, i.e. (26), is a convex

quadratic function of Ao. Similarly, the constraints can be

written as convex quadratic functions of Ao. Nevertheless, the

EH constraint, (10b), does not form a convex constraint since

it bounds a convex function from below. Hence the resulting

problem formulation is not convex.

Using the variable KAo
= AoA

H
o , the objective function

can be rewritten as follows:

εK(Ao,KAo
, B) = tr[BHI (KAo

+ αv diag(KAo
))HH

I BH]

− 2Re[tr[BHIA0]]+ns+tr[BKwI
BH].

Hence the optimization problem in (25) can be written as

min
Ao, KAo

εK(Ao,KAo
, B) (27a)

s.t. (21b), (21c), (27b)

KAo
= AoA

H
o . (27c)

Due to (27c), this formulation is not a convex optimization

problem. We relax (27c) as KAo
� AoA

H
o . Now the relaxed

problem can be expressed as follows

min
Ao, KAo

εK(Ao,KAo
, B) (28a)

s.t. (21b), (21c), (28b)

KAo
� AoA

H
o . (28c)

This is a convex optimization problem. The following result

shows that this relaxation is tight:

Lemma 3.3: Let (25) be feasible. Then the optimum error

values for the relaxed problem in (28) and the problem in (25)

are equal and can be attained. Using an optimal solution of

(28), an optimal solution for (25) can be constructed.

The proof is given in Sec. VI. In Sec. III-C, this result is

used as an intermediate step to propose solutions for (10).

We note that feasible regions for (25) and (10) are the same.

We discuss the conditions for the feasibility of (25)/(10) in

Sec. III-C.

Algorithm 1 Algorithm for Problem P1

Initialize:

if ((30) is infeasible) then

Quit Algorithm 1. // Problem P1 is infeasible.

end if

Solve (30) and find A0
o.

Using A0
o and (6), find B0. Let i=1.

repeat

Using Bi−1, solve (28) for (Ai
o,K

i

Ao
).

if Rank constraint is not satisfied then

Generate new Ai
o using [13, Algorithm RED].

end if

Using Ai
o and (6), find Bi.

Using Ai
o,Bi and (26), find the error ei.

until (ei−1 − ei ≤ ǫ) or (i > nmax)) // The stopping criterion is met.

Output: Ai
o.

C. Joint Precoder and Receiver Filter Design

In Sec. III-B, we have considered the case where the es-

timator B is fixed. In general, optimum Ao depends on B.

We will now consider the joint optimization of Ao and B, i.e.

Problem P1 in (10). We rewrite it equivalently as follows

(P1) min
Ao,B

ε(Ao, B) (29)

subject to (10c), (10b). Since the optimization over Ao for

fixed B, (Problem P2) does not form a convex formulation, in

general (29) is not a convex formulation in (Ao, B), either.

To find a design for Problem P1, we propose a block coor-

dinate descent approach, which is summarized in Algorithm

I. Here we alternate between fixing Ao and B. For fixed B,

by Lemma 3.3, an optimal solution for Ao is found using

(28). For fixed Ao, an optimal B is found using (6). By

monotone convergence theorem this block coordinate descent

technique is guaranteed to converge since the objective func-

tion is bounded from below and it decreases during the steps

with both fixed Ao and fixed B. We note that due to non-

convexity of the formulation, the proposed method provides

possibly sub-optimal solutions for Problem P1. The algorithm

is initialized using the solution of

max
KAo

�0
JK(KAo

), (30)

subject to (21c) and (21b). We note that JK(KAo
) in (19) can

be equivalently written as

JK(KAo
)=tr[AH

o

(

HH
EHE + αv diag(H

H
EHE)

)

Ao]

Whenever (30) is feasible, an optimal analytical solution of

(30), K∗
Ao

in the form of beamforming with full power in the

direction associated with the largest eigenvalue of HH
EHE +

αv diag(H
H
EHE) exists, see for instance [1]. Hence feasibility

of (30) and equivalently (25)/(10) can be checked a priori by

comparing JK(K∗
Ao

) and the EH constraint γ.

IV. NUMERICAL RESULTS

We now illustrate the performance of the hardware im-

pairment aware designs. We consider Hc = 10−3/2√nt
H̄c

||H̄c||

where H̄c is given by the practical uniform linear array model

H̄c =
∑Lc

i=1 κc,iac(θc,i)a
T
T (θT,i); see, for instance, [14] for

discussions on the validity and the applications of the model.

The coefficient 10−3/2 is due to the path loss corresponding



0 50 100 150 200 250 300
10

−2

10
−1

10
0

 

 

N
o
rm

al
iz

ed
M

S
E

γ(µW )

TXH, α1
TXI, α1
TXH, α2
TXI, α2

(a) SNR= 35 dB.

0 50 100 150 200 250 300
10

−2

10
−1

10
0

 

 

N
o
rm

al
iz

ed
M

S
E

γ(µW )

TXH, α1
TXI, α1
TXH, α2
TXI, α2

(b) SNR= 40 dB

Fig. 1: Error versus energy harvesting requirements

to a path loss exponent of 3 and a distance of 10m between

the transmitter and the receiver which introduces an aver-

age power loss of 30dB. Here ac(θ) = [1 ej2πdc cos(θ) . . .
ej2π(nc−1)dc cos(θ)]T where c=T, IR, ER; aT (θT,i) is the array

steering vector at the transmitter and aIR(θIR,i)/aER(θER,i)
is the array response vector at the IR/ER corresponding to

the ith path in the IR/ER channel; κc,i is the corresponding

complex path amplitude [14]. Let nt = 3, nr = 2, ns = 2,

LIR = LER = 2, κ1 = κ2 = 1, d = 0.5, θIR,1 = π/6,

θIR,2 = π/3, θER,1 = π/2, θER,2 = π/2, θT,1 = π/4, θT,2 =
π/5, wE = 0, KwI

= σ2
wI

I , ǫ = 10−8ns, nmax = 1000,

SNR= ||HIR||2P/(ntσ
2
wI

) (dB) where P = 100(mWs). The

mean-square error (MSE) values are normalized by dividing

with ns = tr[Ks]. TXH denotes the proposed hardware im-

pairment aware designs obtained by Algorithm 1. TXI denotes

the strategy that assumes ideal hardware. A practical quality

measure for non-ideal hardware is the error vector magnitude

(EVM) [4]. EVM and αv are related as follows

EVM =
√

E[||v||2]/
√

E[||Aos||2] =
√
αv. (31)

We consider two values of αv , α1 = 0.052, and α2 = 0.152

which correspond to an EVM of 0.05 and 0.15, respectively.

We note that 3GPP LTE specifies EVM in the range 0.08 ≤
EMV ≤ 0.175 [4].

The trade-off between the MSE and the EH requirements

are presented in Fig. 1a and Fig. 1b, for SNR= 35dB and

SNR= 40dB respectively. The plots illustrate that there is a

significant average performance gap between the impairment

aware solutions (TXH) and the solutions that assumes ideal

hardware (TXI) when the SNR is high enough. In particular,

for instance, with γ ≈ 100(µW ), αv = α1 the aggregate MSE

performance corresponds to bit error rates (BER) of 0.124 and

0.051 for Fig. 1a and 0.1 and 0.01 for Fig. 1b under 16QAM

where we have related the MSE to the BER performance

through [15, Ch.3]. The performance gap becomes smaller

when the SNR decreases. This is consistent with the fact that

for low SNR values, the performance is already affected by

high levels of channel noise, and the TXI designs are also

made with the awareness of this noise. Hence the relatively

low levels of noise introduced by the hardware impairments do

not affect the performance significantly. As the EH constraints

become more demanding (such as γ & 280(µW ) in Fig. 1b),

the performance gap between TXH and TXI becomes smaller.

V. CONCLUSIONS

Linear precoder design for SWIPT systems is investigated

under transmitter impairments. Our results illustrated that when

the channel SNR is high, significant gains can be obtained by

the proposed impairment-aware designs.

VI. APPENDIX

Using Schur complement, (28c) can be written as ZAo
=

[I AH
o ;Ao KAo

] � 0. Considering (28) in terms of ZAo
in-

stead of Ao and KAo
reveals that (28) is the SDP relaxation

of the problem in (25) [13, 2.7]. By [13, Thm 2.2], (25) and

(28) have the same optimal value if the relaxation is solvable

and the number of constraints in (25) is equal to or smaller

than 2ns. This last condition is satisfied ∀ns, since (25) has

2 two constraints. Since the matrix associated with the power

constraint, i.e. identity, is positive definite, the regularity con-

dition in [13, 2.10] holds. Under feasibility of (25), this implies

solvability of the SDP relaxation [13, Cor. 2.1]. This proves

the first part of Lemma 3.3. An optimal solution for (25) is

found as follows: Using [13, Algorithm RED] on an optimal

solution Z∗
Ao

of (28), a rank-constrained optimal solution Z̄∗
Ao

is obtained. Due to [13, Lemma 2.1], the lower left nt × ns

matrix of Z̄∗
Ao

gives an optimal Ao for (25).
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