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Stochastic model updating and model selection
with application to structural dynamics
Thesis for the degree of Doctor of Philosophy in Solid and Structural Mechanics
MAJID KHORSAND VAKILZADEH
Department of Applied Mechanics
Chalmers University of Technology

Abstract
Uncertainty induced by our incomplete state of knowledge about engineering systems and
their surrounding environment give rise to challenging problems in the process of building
predictive models for the system behavior. One such challenge is the model selection
problem, which arises due to the existence of invariably multiple candidate models with
different mathematical forms to represent the system behavior, and so there is a need
to assess their plausibility based on experimental data. However, model selection is a
non-trivial problem since it involves a trade-off between predictive power and simplicity.
Another challenge is the model updating problem, which refers to the process of inference
of the unknown parameters of a specific model structure based on experimental data so
that it makes more accurate predictions of the system behavior. However, the existence of
modeling errors and uncertainties, e.g., the measurement noise and variability in material
properties, along with sparsity of data regarding the parameters often make model
updating an ill-conditioned problem. In this thesis, probabilistic tools and methodologies
are established for model updating and selection of structural dynamic systems that can
deal with the uncertainty arising from missing information, with special attention given
to systems which can have high-dimensional uncertain parameter vector. The model
updating problem is first formulated in the Frequentist school of statistical inference. A
framework for stochastic updating of linear finite element models and the uncertainty
associated to their parameters is developed. It uses the techniques of damping equalization
to eliminate the need for mode matching and bootstrapping to construct uncertainty
bounds on the parameters. A combination of ideas from bootstrapping and unsupervised
machine learning algorithms lead to an automated modal updating algorithm suitable for
identification of large-scale systems with many inputs and outputs. The model updating
problem is then formulated in the Bayesian school of statistical inference. A recently
appeared multi-level Markov chain Monte Carlo algorithm, ABC-SubSim, for approximate
Bayesian computation is used to solve Bayesian model updating for dynamic systems. ABC-
SubSim exploits the Subset Simulation method to efficiently draw samples from posterior
distributions with high-dimensional parameter spaces. Formulating a dynamic system in
form of a general hierarchical state-space model opens up the possibility of using ABC-
SubSim for Bayesian model selection. Finally, to perform the exact Bayesian updating
for dynamic models with high-dimensional uncertainties, a new multi-level Markov chain
Monte Carlo algorithm called Sequential Gauss-Newton algorithm is proposed. The key
to success for this algorithm is the construction of a proposal distribution which locally
approximates the posterior distribution while it can be readily sampled.

Keywords: Uncertainty quantification, Bayesian model updating, Bayesian model selection,
stochastic simulation, Bootstrapping, Subspace system identification, Finite element model
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Part I
Extended Summary

1 Introduction
The problem of model updating has received much attention over the years because
of its wide range of application in fields such as complex structural design, structural
control, health monitoring, and reliability and risk assessment [8–12]. The usual goal of
model updating is to use experimental data from a structural or mechanical system to
reconstruct the unknown properties which appear as parameters in its numerical model
such that it makes more precise predictions of the system response to a prescribed, or
random, excitation [13]. The usual deterministic model updating takes a parameterized
model of the system, whether it is based on physics or on a black-box model, and searches
for the best parameter setting that minimizes the error between model predictions and
experimental data. However, this approach may not be enough to yield credible models
because there always exist uncertainties associated with the process of model construction.
Such uncertainties include but are not restricted to measurement uncertainty, modeling
uncertainty, and parameter uncertainty [14–17]. Besides assessing the fidelity of model
predictions to test data, it is thus pivotal to account for such uncertainties in the process
of model updating to quantify the level of confidence on the model predictions.

To quantify uncertainty, the model updating problem can be formulated probabilisti-
cally in two distinct ways based on either the Bayesian (e.g., [11, 18–26]) or the Frequentist
paradigm (e.g., [3, 9, 10, 27, 28]). The ultimate goal of both approaches is to recover the
statistical description of the model parameters based on the available experimental data
and then propagate it through the forward simulation to obtain the uncertainty estimates
of the model predictions. There are several characteristics of structural dynamic models
making the stochastic model updating problem computationally very challenging: (i) the
forward model which maps the model parameters to system outputs is a nonlinear function
of the model parameters, (ii) the system output cannot be analytically formulated in
terms of the model parameters, and (iii) the number of model parameters can be large.

Another problem which has attracted the interest of researchers from different areas
of science is the model selection problem [29–33]. This problem arises from the fact that
there always exists uncertainty in the selection of an appropriate model to represent a
real system. One possibility is to select a set of competing model classes and perform
the statistical inference at a model class level to rank models based on the available
experimental data. It has long been recognized that the ranking of different model classes
must comply the Principle of Model Parsimony or Ockham’s razor [34, 35], that is the
simplest models that are consistent with data should be preferred to the more complex
models which only slightly improve the fit to the data [32]. The challenge in the model
selection problem is to compare multiple models without introducing any ad-hoc measures.

In this dissertation, appropriate statistical paradigms are adopted to provide rigorous
solutions for the above challenges in updating and selection of structural dynamic models
in the presence of uncertainty.
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2 Background
This section begins with the formulation of the model updating problem in the deterministic
setting. Afterwards, the model updating problem is defined in statistical frameworks to
deal with existing uncertainties in the process of model development and ascertain their
implications on the model predictions.

2.1 Deterministic model updating
In the setting of deterministic model updating (e.g., [36, 37]), one seeks to minimize an
appropriate norm of discrepancy between the observed system output Dx ∈ Rno and
model outputs1 S(θ) ∈ Rno , i.e.,

θ̂ = argmin
θ
‖Dx − S(θ)‖2

W (2.1)

where W ∈ Rno×no is a weighting matrix. Unfortunately, the solution to the above
minimization problem is ill-posed. In other words, there are many different sets of model
parameters that are consistent with the observed data inasmuch as data are typically
sparse and not informative about the full extent of the model. One way to alleviate
the ill-posedness of model updating problem is to add a regularization term, R(θ) to
the discrepancy function. The regularization term penalizes the distance from a given
parameter setting by minimizing:

θ̂ = argmin
θ
{‖Dx − S(θ)‖2

W+R(θ)} (2.2)

The solution to this inverse problem is the best parameter setting which simultaneously
make the discrepancy function and the regularization term small [41].

Furthermore, the forward model can in general be a nonlinear mapping between the
parameters θ and the model output S(θ). This may lead to convergence problems in the
optimization routines employed due to existence of locally optimal parameter settings.
This thus necessitates the initiation of the optimization routine from sufficiently high
quality starting values [42].

However, the solution to the deterministic optimization problems stated in (2.1) or
(2.2) provides only a point estimate of the model parameters for which no statistical
spread in the test data is carried over to the estimator. Making predictions based on the
point estimator model is not best practice since it does not represent our confidence in the
predictions. Instead, we are interested to extract the statistical description of the model
parameters from the available information in the observed experimental data. The next
section sheds light on two paradigms to formulate a statistical model updating problem;
the Frequentist and the Bayesian paradigms.

1A challenge in the model updating problem, which has not been addressed in this thesis, is that the
forward models are often large-scale models and their simulation leads to overwhelming demands on the
computational resources. Thus, appropriate tools (e.g., [1, 38–40]) should be developed to speed up the
model updating procedure.
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2.2 Stochastic model updating
In the process of model development, there always exist errors because of imperfect
modeling and uncertainties2 because of lack of information about the real underlying
system and its surrounding environment. This section presents two different statistical
paradigms, namely the Bayesian and Frequentist paradigms, to account for such errors
and uncertainties in the mathematical model in order to make credible predictions of
system behavior.

2.2.1 Frequentist paradigm
The Frequentist method is one way to recovering the statistical description of the model
parameters from the experimental data. In this approach, a measure of probability for
each outcome of an experiment is the relative frequency of occurrence of that outcome in
a long sequence of experiment repetitions [43]. Based on this definition of probability, the
uncertainty in the parameter estimates is represented by the sampling distribution of the
estimator which is the distribution that an estimator takes when it is applied to multiple
experiment repetitions [44]. The notion of variation across the repeated experimental
data sets is actually what makes the basis for modeling uncertainty in this approach.

The Maximum Likelihood Estimator (MLE) is one often used estimator in the Fre-
quentist literature (e.g., [45, 46]). In general, MLE searches for the parameter setting
which gives the highest likelihood to the experimental data. To formulate the likelihood
function, one needs to form a bridge between the model output S(θ) ∈ Rno and the
experimental data (observed real system output) Dx ∈ Rno . This can be done using the
output-additive error model [47] which represents the observed system output as:

Dx = S(θ) + e (2.3)

where e ∈ Rno denotes the measurement\modeling error. Typically, e is supposed to
be a vector of independent Gaussian distributed random variables, with zero mean and
covariance matrix Γe ∈ Rno×no [47]. Thus, the likelihood function L(Dx|θ) can be written
as [48]:

L(Dx|θ) ∝ exp
[
− 1

2(Dx − S(θ))TΓ−1
e (Dx − S(θ))

]
(2.4)

The MLE estimator θ̂MLE is therefore the solution to the following optimization
problem:

θ̂MLE = argmax
θ
{L(Dx|θ)} (2.5)

2 In general uncertainty can be classified into two categories, epistemic uncertainty and aleatoric
uncertainty. Epistemic uncertainty, also known as systematic uncertainty, basically refers to the type
of uncertainty that could be made known but they are unknown in practice. These uncertainties are
associated to lack of knowledge. In contrast, aleatory uncertainty, also known as statistical uncertainty, is
due to inherent randomness in the real system. This type of uncertainty cannot be reduced other than
by putting in unreasonable resources. The Brownian motion of molecules or momentary distribution of
gust wind velocity at a wind turbine site are examples of processes subjected to aleatoric uncertainty.
In this thesis we only address methods and tools for accounting for the epistemic uncertainty in the
mathematical models of structural systems.
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The sampling distribution for MLE can be computed in two distinct ways:

Asymptotic distribution

If the model is globally identifiable (see Remark 1), the modeling\measurement error can
be modeled as identically and independently distributed random variables, and certain
regularity conditions are met, it can be shown that the distribution of the MLE estimator
θ̂MLE asymptotically tends to Gaussian for large number no of observed data points [47].
The center of the Gaussian distribution is θ̂MLE and its variance is approximated by the
inverse of Fisher information matrix computed at θ̂MLE, where the Fisher information
matrix I(θ) is the negative Hessian of the logarithm of the likelihood function [48].

Since most often the ultimate goal of model development is to make predictions, it is
of particular interest to propagate the parameter uncertainty to the model predictions.
When the parameter uncertainty can be approximated by a Gaussian distribution, the
most straightforward approach to approximate the covariance matrix of model predictions
of interest Sp(θ) is to use its first order derivatives as [49]:

var(Sp) = (∇Sp(θ))T I(θ)−1(∇Sp(θ))
∣∣∣
θ=θ̂MLE

(2.6)

where ∇ = [ ∂
∂θ1

, . . . , ∂
∂θnp

]T denotes the gradient.

Bootstrapping

A different approach to approximate the sampling distribution for MLE is bootstrapping.
The idea behind bootstrapping is to repeatedly draw random datasets with replacement
from the experimental data Dx. This would be repeated a number of times to generate nB
bootstrap datasets {Dx

(1), . . . , D
x
(nB)} of the same size as the experimental dataDx. Then,

applying the MLE to bootstrap datasets gives a set of estimates {θ̂(1)
MLE, . . . , θ̂

(nB)
MLE} which

approximates the sampling distribution for MLE. To adequately reflect the uncertainty in
the model parameters, bootstrapping requires a sufficient number of bootstrap datasets
(e.g., nB = 100 [50]), and, additionally requires to start optimizations (2.5) towards
bootstrap datasets from widely dispersed starting values [49].

Bootstrapping is also a well-developed approach to estimate the prediction uncertainty.
In particular, this method is of interest when the goal is to quantify the prediction
uncertainty for model responses at which there exists no measured data [51]. To this
end, several bootstrap rules such as the 0.632 bootstrap rule have been developed which
basically keep track of how well a model evaluated at an individual sample θ̂(i)

MLE from the
MLE distribution predicts the response of interest at data points that are not included in
the associated bootstrap dataset Dx

(i) [51]. This will be discussed in detail in paper C.

Remark 1 One concept that plays an important role in model updating is identifiability
[18]. Based on the topology of the likelihood function, a model can be categorized into
one the following classes; (i) globally identifiable: if there is a unique θ̂MLE, (ii) locally
identifiable: if there are a finite number of θ̂MLE’s, and (iii) unidentifiable: if there are
infinitely many θ̂MLE’s.
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2.2.2 Bayesian paradigm

Bayesian model updating provides a systematic framework to take into account various
sources of uncertainty to characterize the uncertainty in the model parameters through
updates of their joint probability density function after testing. In contrast to the
Frequentist interpretation of a probability measure, the Bayesian approach is based on the
probability logic axioms [52]. In probability logic, a probability measure demonstrates the
degree of plausibility of an event n given the information covered by a proposition m, with
probability of n given m to be p(n|m). If the information in m gives a complete knowledge
about the event n, and thus makes it deterministic, the probability logic collapses to the
Boolean logic which means that information in m implies that n is either true or false.
Presence of uncertainty, due to lack of knowledge, reduces information in the proposition
m about n, and then p(n|m) is not binary but instead p(n|m) ∈ [0, 1]. Thus, uncertainty
extends the Boolean logic to a multi-valued logic. The remaining part of this section
demonstrates that the exclusive foundation of Bayesian paradigm on the probability logic
axioms provides a rigorous framework to treat uncertainty in updating and selection of
models in order to make credible predictions.

Stochastic model class

To solve the problem of model updating through the Bayesian approach, a key idea
is to describe the uncertain behavior of a system by constructing a stochastic model
class M which consists of two fundamental probability distributions [13]. First, a set
of parameterized probability models p(D|θ,M) is established to partially quantify the
relative plausibility of the possible values of the system output D ∈ Rno given the vector
of uncertain parameters θ ∈ Rnp . This can be constructed by stochastic embedding of any
deterministic model, e.g., a state-space model or a finite element model, of the system that
gives the relationship between the parameter vector θ and the model output S(θ) ∈ Rno .
To this end, an uncertain prediction error can be introduced:

D = S(θ) + e (2.7)

to connect the output of the deterministic model to the observable system output. The
probability model of the prediction error e is chosen to be a Gaussian white noise N (0,Γe)
based on the Principle of Maximum (Information) Entropy [52] under the first and second
moment constraints. Then, the predictive PDF for the observable system output is given
by:

p(D|θ,M) = 1
(2π)no |Γe|1/2 exp

[
− 1

2(D − S(θ))TΓ−1
e (D − S(θ))

]
(2.8)

where |.| denotes the determinant of a matrix. For the second part of the stochastic model
class, a prior distribution p(θ|M) over the parameter space Θ ∈ Rnp is selected that
encodes the initial relative degree of plausibility of each probability model p(D|θ,M).
Here, we assume that the prior distribution has a probability density function (PDF) and
also that the negative log-prior has a positive semidefinite Hessian over Θ.
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Bayesian model updating and robust posterior predictive analysis

When the measurement data Dx is available from the dynamic system, the predictive
PDF in (2.8) gives the likelihood function p(Dx|θ,M) which can be used to update the
prior probability for the uncertain parameters θ through Bayes’ Theorem to obtain the
posterior PDF as:

p(θ|Dx,M) = p(Dx|θ,M)p(θ|M)
p(Dx|M) (2.9)

where p(Dx|M) =
∫

Θ p(Dx|θ,M)p(θ|M) dθ denotes the evidence, or marginal likelihood.
A central challenge in Bayesian model updating is to devise an efficient algorithm to
characterize the posterior PDF, especially when it is defined over a high-dimensional
parameter space or its support has a complex geometry.

When a large amount of data is available and the model classM is globally identifiable
based on data Dx, the posterior PDF can be asymptotically approximated by a Gaussian
PDF centered at the Maximum A Posteriori (MAP) point, i.e., the parameter setting
maximizing the posterior PDF:

θ̂MAP = argmax
θ

p(θ|Dx,M) (2.10)

and characterized by covariance matrix equal to the inverse of the Hessian of the negative
log posterior PDF evaluated at the MAP point. However, application of the asymptotic
approximation faces difficulties in dealing with locally identifiable and unidentifiable
model classes. In recent years, the focus has shifted from asymptotic approximations to
using Markov Chain Monte Carlo methods which generate samples from the posterior
PDF [5, 11, 19–21, 24, 25, 53–56]. MCMC methods used to solve the problem of Bayesian
model updating in the field of structural dynamics include, but are not limited to: the
multilevel Metropolis-Hastings [19, 20, 55], the Gibbs [24], the Hybrid Monte Carlo [11],
the Manifold-based Metropolis adjusted Langevin algorithms [53], and the Approximate
Bayesian Computation by Subset Simulation (ABC-SubSim) [5, 57, 58].

A useful application of Bayesian model updating within a particular model class M is
to make robust posterior predictions about uncertain events based on past observations.
Given the Model class M, the Total Probability Theorem can be used to obtain the
robust predictive PDF for a future system response of interest Dp as [13, 59]:

p(Dp|Dx,M) =
∫
p(Dp|θ,M)p(θ|Dx,M) dθ (2.11)

This expression can be interpreted as a weighted average of the predictive PDFs p(Dp|θ,
Dx,M) for each specific model θ ∈ Θ within the model class M, where the weight is
the posterior probability p(θ|Dx,M) dθ. As pointed out by Beck and Taflanidis [59],
one interesting application of the robust posterior analysis is to improve the predictive
modeling of already operating systems. This can be done by defining a system performance
measure as expectation of some performance function with respect to the posterior robust
predictive PDF as follows:

E[f(Dp)|Dx,M] =
∫
f(Dp)p(Dp|Dx,M) dDp (2.12)

6



A common example of a performance function used in reliability analysis is the indicator
function, f(Dp) = IF (Dp) in which IF (Dp) = 1 if Dp meets a given failure criterion and
zero otherwise. Using this performance function, (2.12) gives the posterior robust failure
probability.

Multi-dimensional integrals arising in the above formulations, (2.11) and (2.12), are
most often high-dimensional and cannot be evaluated analytically, nor numerically. This
renders the use of the posterior PDF for the purpose of robust posterior analysis challenging.
However, Laplace’s method of asymptotic approximation and stochastic simulations are
useful methods to approximate these integrals. The Laplace’s method for asymptotic
approximation can be used when the posterior distribution of the model parameters can
be approximated as a Gaussian distribution and a large amount of experimental data is
available. An interested reader is referred to Beck and Katafygiotis [18] for a detailed
description of the asymptotic approximation method. Recently, the use of stochastic
simulation methods [11, 53, 55] for evaluation of the integrals involved in the Bayesian
model updating problem has become widespread. In these methods, the integral in (2.11)
can be approximated by:

p(Dp|Dx,M) = 1
N

N∑

n=1
p(Dp|θn,Dx,M) (2.13)

where θn, n = 1, . . . , N are samples drawn from the posterior distribution p(θ|Dx,M)
using a stochastic simulation method.

Bayesian model selection and model averaging

Bayesian model class selection provides a rigorous framework to compare the performance
of a set of candidate model classes in describing the experimental data [13, 29, 32, 60].
Consider a set M ≡ {M1,M2, . . . ,MNM

} of NM model classes for representing a
system. In Bayesian model selection, models in M are ranked based on their probabilities
conditioned on the data Dx that is given by Bayes’ Theorem:

P (Mj |Dx,M) = p(Dx|Mj)P (Mj |M)
∑NM

l=1 p(D
x|Ml)P (Ml|M)

(2.14)

where P (Mj |M) denotes the prior probability of Mj that indicates the modeler’s belief
about initial relative plausibility of Mj within the set M . The factor p(Dx|Mj), which
is called the evidence for Mj , indicates the probability of data Dx according to Mj .
Evidence can be calculated by use of the Total Probability Theorem as:

p(Dx|Mj) =
∫

Θ
p(Dx|θ,Mj) p(θ|Mj) dθ (2.15)

The interpretation of the evidence is similar to the one given for (2.11) except now the
likelihood function p(Dx|θ,Mj) is weighted by the prior probability p(θ|Mj)dθ. However,
the calculation of evidence requires the evaluation of a multi-dimensional integral which
is the computationally challenging step in Bayesian model selection, specially when the
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number of parameters np is large (see [60] for a detailed discussion on model evidence
calculation).

It is worthy to mention that the log-evidence, which most often dominates the posterior
probability of a model in (2.14), can be written as the difference of two terms [22, 32]:

ln p(Dx|Mj) = E[ln p(Dx|θ,Mj)]− E
[

ln p(θ|D
x,Mj)

p(θ|Mj)

]
(2.16)

in which expectation E[.] is taken with respect to the posterior PDF p(θ|Dx,Mj). In
this expression, the first term is the posterior mean of the log-likelihood function, which
encodes the degree to which the model class Mj fits to the data, and the second term
is the Kullback-Leibler divergence, which reflects the amount of information extracted
from data and is always non-negative [13, 32]. The above expression gives insight into
how rigorously the log-evidence for a model class, without introducing ad-hoc penalty
terms, trades off between the data-fit and complexity of a model class.

A useful application of the Bayesian model class selection is the hyper-robust posterior
predictive analysis [13] (posterior model averaging) which combines the predictions from
all model classes in the set M . By use of the Total Probability Theorem, the posterior
hyper-robust predictive PDF for the set of model classes M is given by:

p(Dp|Dx,M) = 1
NM

NM∑

l=1
p(Dp|Dx,Mj)p(Mj |Dx,M) (2.17)

which is in fact a weighted average of the posterior robust predictive PDF of each model
class in the set M , where the weight is its posterior probability p(Mj |Dx,M).

3 Research challenges
The present dissertation has been carried out with a focus on the quantification of the
uncertainties, in two different levels of the parameter uncertainty within a particular
model class and the model uncertainty within a set of alternative model classes, and the
assessment of their effects on the model predictions. This is performed using both the
Frequentist and the Bayesian paradigms each giving rise to its own specific challenges as
summarized below:
• Frequentist paradigm

The aim of the model updating problem is to reconstruct the unknown parameters of a
mathematical description of a real system based on the observed data from the system.
The characteristics of the system and the intended use of the model strongly influence
the choice of the model structure and, as a consequence, the challenges arising from
the building of these models. Two popular model structures in structural dynamics
are modal models, in which the parameters are natural frequencies, damping ratios
and mode shapes, and FE models, in which the parameters are physically motivated
parameters such as Young’s moduli or mass density. The present work has attempted
to address the following challenges pertinent to the application of Frequentist paradigm
to identification of the parameters of these model structures.
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– FE model updating: As mentioned in Section 2.1, the challenge for the model
updating problem is to find a starting value for the parameters that is reasonably
close to the global minimum of the deviation between model predictions and
measurement data. Recently, Abrahamsson and Kammer [36] proposed a model
updating algorithm, called “FE model calibration with damping equalization”,
which formulates the distance metric in (2.1) as the deviation between the loga-
rithm of the frequency responses of FE model and a test data model found from
measurement where the same level of modal damping is imposed on all modes.
This formulation gives a smooth metric with a large radius of convergence to the
global minimum. Unfortunately, it was found that the estimates provided by this
model updating algorithm become biased in the presence of measurement noise.
Besides, analogous to other deterministic model updating algorithms, it does not
provide the uncertainty in the model parameters. Therefore, the challenge here
is to enhance the performance of the technique of “FE model calibration with
damping equalization” in dealing with noisy experimental data and to recover the
uncertainty bounds on the model parameters.

– Modal updating: A central problem in the identification of the modal parameters
using experimental data is to determine the true model order to capture the
physical modes of the structure under study [61]. The common practice is to
identify a model with an order that is much higher than motivated by physics
to ensure that all physical eigenmodes within the frequency band of interest are
safely captured [62]. However, this inevitably results in the appearance of noise
modes in the identified model, i.e., modes which are present in the model due to
measurement noise or computational imprecision but have no relevance to the
physics of the tested system. The detection and elimination of such noise modes
usually demand considerable interaction from an experienced user which hinders
the use of developed modal analysis techniques for the applications which require
a periodic estimation of the modal parameters like continuous health monitoring
of structures. Therefore, the challenge is to develop a fully automated modal
parameter estimation algorithm such that it provides uncertainty bounds on the
estimated modal parameters and also avoids high-dimensional optimization.

• Bayesian paradigm

The MCMC methods are currently the most popular simulation techniques for solving
Bayesian model updating problems. Their popularity stems from the facts that they
can handle model classes with various degrees of identifiability based on available exper-
imental data, and also can deal with applications with a small amount of experimental
data. However, MCMC methods often encounter difficulties when: (i) the parameter
space is high-dimensional, this is a problem which is known as so-called curse of di-
mensionality, a situation in which an algorithm works efficiently in low dimensions but
fails in high dimensions, and (ii) the posterior distribution has a complex topology, e.g.,
multi-modal, very peaked, or nonlinear correlation among the uncertain parameters. It
is highly desirable to devise MCMC methods that can efficiently draw samples from
posterior distributions exhibiting any or all of such characteristics.
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4 Thesis contribution
The contribution of the present work is to develop novel tools and methodologies to respond
to the research challenges exposed in the previous section which can be summarized as
follows:

• Frequentist paradigm

– FE model updating: The development of a novel stochastic FE model updating
framework for estimation of the uncertainty in model parameters and predictions
from the measured frequency responses, see Paper C. This framework combines
the technique of “FE model calibration with damping equalization” ([36] and
Paper A) with the principles of bootstrapping. The performance of the former
is improved in dealing with noisy measurements by: (i) use of a new dedicated
frequency sampling strategy that gives the frequencies at which the experimental
FRF of the structure needs to be measured, see Paper B, and (ii) use of a
weighted log-least-squares objective function. The bootstrapping technique is used
to take into account the uncertainties in the measurements and forward simulations
in order to quantify the uncertainty in the parameters and to assess their effects
on the predictions made by the FE model.

– Modal updating: The development and validation of a modal parameter estimation
algorithm, see Paper D, that satisfies the following criteria: (i) it allows for fast
and robust identification of MIMO systems of a given order, (ii) it avoids high-
dimensional optimization, (iii) it provides uncertainty bounds on the estimated
modal parameters, and (iv) it needs no user-specified parameters or thresholds.
This algorithm combines the principles of bootstrapping for uncertainty quan-
tification with the technique of subspace based system identification [63] and
also with unsupervised learning algorithms. The key to success of the engaged
unsupervised learning algorithm is a novel correlation metric [64] that is able to
treat the problems of spatial eigenvector aliasing and nonunique eigenvectors of
coalescent modes simultaneously.

• Bayesian paradigm
The contribution of the present dissertation to Bayesian model updating is around two
stochastic simulation algorithms which avoid the problem of drawing samples from
difficult posterior distributions (i.e., high-dimensional, multimodal, or very peaked
distributions) by sequentially constructing a series of intermediate distributions that
interpolates between the prior and posterior PDFs. These contributions can be summa-
rized as follows:

– Approximate Bayesian computation by subset simulation, ABC-SubSim, is a re-
cently appeared algorithm for Approximation Bayesian Computation (ABC) which
exploits the subset simulation for efficient rare-event simulation. The merits
of ABC-SubSim stems from the facts that (i) it does not suffer from the curse
of dimensionality, and (ii) it bypasses the explicit evaluation of the likelihood
function and, as a result, is applicable to any model for which forward simulation
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is available. One example of such models is a nonlinear state-space model with
state and output uncertain prediction errors for which an analytical formula for
the likelihood function is difficult to establish. In this thesis, a dynamic problem
is formulated in form of a general hierarchical state-space model to show that
the ABC-SubSim algorithm is performing an exact Bayesian updating for a new
model in which its output is corrupted by a uniform additive error term, see
Paper E. This formulation not only allows understanding the quality of the
ABC approximations of the posterior distribution and model evidence, but also
makes it possible to independently approximate the model evidence for each of
the competing models as a simple by-product of the ABC-SubSim algorithm, see
Paper F.

– A new multi-level MCMC algorithm called Sequential Gauss-Newton algorithm
is developed, see Paper G, that enables sampling from difficult posterior dis-
tributions appearing in Bayesian updating of structural models. This algorithm
has two novel facets: (i) the systematic resampling algorithm is utilized to avoid
the loss of diversity among the samples, and (ii) a new MCMC algorithm, called
Gauss-Newton MCMC algorithm, is proposed which is essentially a Metropolis-
Hastings algorithm with a Gaussian proposal PDF tailored to the posterior PDF
using the gradient and Hessian information of the negative log posterior. The
statistical efficiency of the Sequential Gauss-Newton algorithm is improved by
adopting a self-regulating technique to automatically tune the Gauss-Newton
MCMC algorithm at each level such that the average acceptance rate is coerced
to a target value.

5 Summary of appended papers
Paper A: Development of simplified models for wind turbine blades with application to
NREL 5 MW offshore research wind turbine
Integration of complex models of wind turbine blades in aeroelastic simulations places
an untenable demand on computational resources and, hence, means of speed-up become
necessary. This paper considers the process of producing simplified rotor blade models
which accurately approximate the dynamics of interest. The novelty, besides applying
an efficient model updating procedure to the wind turbine blade, is to challenge the
conventional beam element formulation utilized in the majority of aeroelastic codes. First,
a 61.5 m blade, previously reported by the National Renewable Energy Laboratory, is
selected as a case study and a verified industry-standard three dimensional shell model is
developed based on its actual geometry. Next, given the reported spanwise cross sectional
properties of the blade, a calibrated beam model is developed, using an efficient model
updating process, that shows an excellent agreement to the low frequency dynamics of
the baseline model in terms of mode shapes, resonance frequency and frequency response
function. The simulation study provides evidence that a beam model cannot capture
all the important features found in a large-scale 3D blade. This motivates a departure
from conventional beam element formulation and suggests addressing the problem of
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producing simplified models in the framework of model reduction techniques. A modified
modal truncation algorithm is applied to the baseline model to produce a simpler model
which accurately approximates its input–output behavior in a given frequency range. It
is concluded that besides the computational efficiency of the reduction algorithm, the
resulting approximation error is guaranteed to be bounded and the yielded low-order
model can, in turn, be served in wind turbine design codes.

Paper B: Experiment design for improved frequency domain subspace system identifica-
tion of continuous-time systems

A widely used approach for identification of linear, time-invariant, MIMO (multi-
input/multi output) systems from continuous-time frequency response data is to solve it
in discrete-time domain using subspace based identification algorithm incorporated with
a bilinear transformation. However, the bilinear transformation maps the distribution of
the frequency lines from continuous-time domain to discrete-time domain in a non-linear
fashion which may make identification algorithm to be ill-conditioned. In this paper
we propose a solution to get around this problem by designing a dedicated frequency
sampling strategy. Promising results are obtained when the algorithm is applied to
synthetic data from a 6DOF mass-spring model.

Paper C: Stochastic finite element model calibration based on frequency responses and
bootstrap sampling

A new stochastic finite element model calibration framework for estimation of the
uncertainty in model parameters and predictions from the measured frequency responses
is proposed in this paper. It combines the principles of bootstrapping with the technique
of FE model calibration with damping equalization. The challenge for the calibration
problem is to find an initial estimate of the parameters that is reasonably close to
the global minimum of the deviation between model predictions and measurement
data. The idea of model calibration with damping equalization is to formulate the
calibration metric as the deviation between the logarithm of the frequency responses
of FE model and a test data model found from measurement where the same level of
modal damping is imposed on all modes. This formulation gives a smooth metric with a
large radius of convergence to the global minimum. In this study, practical suggestions
are made to improve the performance of this calibration procedure in dealing with noisy
measurements. A dedicated frequency sampling strategy is suggested for measurement
of frequency responses in order to improve the estimate of a test data model. The
deviation metric at each frequency line is weighted using the signal-to-noise ratio of
the measured frequency responses. The solution to the improved calibration procedure
with damping equalization is viewed as a starting value for the optimization procedure
used for uncertainty quantification. The experimental data is then resampled using
the bootstrapping approach and the FE model calibration problem, initiating from the
estimated starting value, is solved on each individual resampled dataset to produce
uncertainty bounds on the model parameters and predictions. The proposed stochastic
model calibration framework is demonstrated on a six degree-of-freedom spring-mass
system prior to being applied to a general purpose satellite structure.
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Paper D: Automated modal parameter estimation using correlation analysis and boot-
strap sampling
The estimation of modal parameters from a set of noisy measured data is a highly
judgmental task, with user expertise playing a significant role in distinguishing between
estimated physical and noise modes of a test-piece. Various methods have been developed
to automate this procedure. The common approach is to identify models with different
orders and cluster similar modes together. However, most proposed methods based on this
approach suffer from high-dimensional optimization problems in either the estimation
or clustering step. To overcome this problem, this study presents an algorithm for
autonomous modal parameter estimation in which the only required optimization is
performed in a three-dimensional space. To this end, a subspace-based identification
method is employed for the estimation and a non-iterative correlation-based method
is used for the clustering. This clustering is at the heart of the paper. The keys to
success are correlation metrics that are able to treat the problems of spatial eigenvector
aliasing and nonunique eigenvectors of coalescent modes simultaneously. The algorithm
commences by the identification of an excessively high-order model from frequency
response function test data. The high number of modes of this model provide bases
for two subspaces: one for likely physical modes of the tested system and one for
its complement, dubbed the subspace of noise modes. By employing the bootstrap
resampling technique, several subsets are generated from the same basic dataset and for
each of them a model is identified to form a set of models. Then, by correlation analysis
with the two aforementioned subspaces, highly correlated modes of these models which
appear repeatedly are clustered together and the noise modes are collected in a so-called
Trashbox cluster. Stray noise modes attracted to the mode clusters are trimmed away in
a second step by correlation analysis. The final step of the algorithm is a fuzzy c-means
clustering procedure applied to a three-dimensional feature space to assign a degree of
physicalness to each cluster. The proposed algorithm is applied to two case studies: one
with synthetic data and one with real test data obtained from a hammer impact test.
The results indicate that the algorithm successfully clusters similar modes and gives a
reasonable quantification of the extent to which each cluster is physical.

Paper E: Approximate Bayesian Computation by Subset Simulation using hierarchical
state-space models
A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian
Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation
method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested
decreasing sequence of data-approximating regions in the output space that correspond to
increasingly closer approximations of the observed output vector in this output space. At
each level, multiple samples of the model parameter vector are generated by a component-
wise Metropolis algorithm so that the predicted output corresponding to each parameter
value falls in the current data-approximating region. Theoretically, if continued to the
limit, the sequence of data-approximating regions would converge on to the observed
output vector and the approximate posterior distributions, which are conditional on the
data-approximation region, would become exact, but this is not practically feasible. This
paper studies the performance of the ABC-SubSim algorithm for Bayesian updating
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of the parameters of dynamical systems using a general hierarchical state-space model.
We note that the ABC methodology gives an approximate posterior distribution that
actually corresponds to an exact posterior where a uniformly distributed combined
measurement and modeling error is added. We also note that ABC algorithms have a
problem with learning the uncertain error variances in a stochastic state-space model
and so we treat them as nuisance parameters and analytically integrate them out of the
posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim
algorithm is improved by developing a novel strategy to regulate the proposal variance
for the component-wise Metropolis algorithm at each level. We demonstrate that Self-
regulated ABC-SubSim is well suited for Bayesian system identification by first applying
it successfully to model updating of a two degree-of-freedom linear structure for three
cases: globally, locally and un-identifiable model classes, and then to model updating of
a two degree-of-freedom nonlinear structure with Duffing nonlinearities in its interstory
force-deflection relationship.

Paper F: Using approximate Bayesian computation by Subset Simulation for efficient
posterior assessment of dynamic state-space model classes
Approximate Bayesian Computation (ABC) methods have gained in their popularity over
the last decade because they expand the horizon of Bayesian parameter inference methods
to the range of models for which only forward simulation is available. The majority of the
ABC methods rely on the choice of a set of summary statistics to reduce the dimension
of the data. However, as has been noted in the ABC literature, the lack of convergence
guarantees that is induced by the absence of a vector of sufficient summary statistics
that assures inter-model sufficiency over the set of competing models, hinders the use of
the usual ABC methods when applied to Bayesian model selection or assessment. In this
paper, we present a novel ABC model selection procedure for dynamical systems based
on a newly appeared multi-level Markov chain Monte Carlo method, self-regulating
ABC-SubSim, and a hierarchical state-space formulation of dynamic models. We show
that this formulation makes it possible to independently approximate the model evidence
required for assessing the posterior probability of each of the competing models. We also
show that ABC-SubSim not only provides an estimate of the model evidence as a simple
by-product but also it gives the posterior probability of each model as a function of the
tolerance level, which allows the ABC model choices made in previous studies to be
understood. We illustrate the performance of the proposed framework for ABC model
updating and model class selection by applying it to two problems in Bayesian system
identification: a single degree-of-freedom bilinear hysteretic oscillator and a three-story
shear building with Masing hysteresis, both of which are subject to a seismic excitation.

Paper G: Sequential Gauss-Newton MCMC algorithm for high-dimensional Bayesian
model updating
Bayesian model updating provides a rigorous framework to account for uncertainty
induced by lack of knowledge about engineering systems in their respective mathematical
models through updates of the joint probability density function (PDF), the so-called
posterior PDF, of the unknown model parameters. The Markov chain Monte Carlo
(MCMC) methods are currently the most popular approaches for generating samples from
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the posterior PDF. However, these methods often found wanting when sampling from
difficult distributions (e.g., high-dimensional PDFs, PDFs with flat manifolds, multimodal
PDFs, and very peaked PDFs). This paper introduces a new multi-level sampling
approach for Bayesian model updating, called Sequential Gauss-Newton algorithm,
which is inspired by the Transitional Markov chain Monte Carlo (TMCMC) algorithm.
The Sequential Gauss-Newton algorithm improves two aspects of TMCMC to make an
efficient and effective MCMC algorithm for drawing samples from difficult posterior PDFs.
First, the statistical efficiency of the algorithm is enhanced by use of the systematic
resampling scheme. Second, a new MCMC algorithm, called Gauss-Newton MCMC
algorithm, is proposed which is essentially an M-H algorithm with a Gaussian proposal
PDF tailored to the posterior PDF using the gradient and Hessian information of the
negative log posterior. To further improve the statistical efficiency of the Sequential
Gauss-Newton algorithm, a self-regulating technique is adopted to tune the Gauss-
Newton MCMC algorithm at each level. The effectiveness of the proposed algorithm for
solving the Bayesian model updating problem is illustrated using three examples with
irregularly shaped posterior PDFs.

6 Concluding remarks and future works
The overall goal of the research presented in this thesis is to establish statistical tools and
methodologies for model updating and selection of structural dynamic models that account
for uncertainty arising from our incomplete knowledge of the underlying system and its
environment, with special attention given to systems which can have high-dimensional
uncertainties. One specific goal is in wind turbine engineering in which fatigue predictions
are made early in the design process using loading assumptions and computational models.
However, after time passes by and data are collected from the operating wind turbine, more
information about the actual loading situation is gained. In a stochastic framework, like
presented here, such information can be used for updated remaining lifespan predictions
based on a rational procedure.

Based on the ideas from the Frequentist school of statistical inference, two model
updating algorithms are presented. The first one is a novel framework for stochastic
FE model updating based on noisy FRFs which enjoys the merits of the techniques of
bootstrapping and “FE model calibration with damping equalization”. The former is
employed to quantify the uncertainty in the model parameters and predictions. The latter
is used to provide high-quality starting value for the optimizations towards the bootstrap
data sets. The accuracy of the starting values are increased by proposing a dedicated
frequency sampling strategy that gives the frequencies at which the experimental FRF of
the structure needs to be measured. The results show that the proposed stochastic FE
model calibration framework provides an unbiased estimator which is almost statistically
efficient. The second one is an automated modal parameter estimation algorithm which
uses bootstrap sampling in conjunction with a correlation-based unsupervised machine
learning algorithm. The former is employed to quantify the uncertainty in the modal
parameters. A new mode correlation measure is proposed which is able to deal with the
spatial aliasing phenomenon and the non-unique eigenvector of the modes of coalescent
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eigenvalues. The proposed algorithm has been successfully applied to two cases, a case
with synthetic test data and a case with real test data. Both indicates the method’s
adequacy to distinguish between physical and noise modes.

Based on the ideas from the Bayesian school of statistical inference, two stochastic
simulation algorithms are presented for solving high-dimensional updating problems. The
first stochastic simulation algorithm is ABC-SubSim which solves the Bayesian model
updating problem in the framework of approximate Bayesian computation methods
to adopt the Subset Simulation algorithm, which is an efficient rare-event simulation
algorithm, for drawing samples from high-dimensional distributions. Formulating a
dynamic problem in form of a general hierarchical state-space problem opens up the
possibility to use the ABC-SubSim algorithm to estimate the model evidence for each model
class in a set of competing model classes. The examples show the successful application of
the ABC-SubSim algorithm for Bayesian model updating and model selection of linear and
nonlinear structures. The second stochastic simulation algorithm is the Sequential Gauss-
Newton algorithm which is a new multi-level MCMC algorithm that avoids the problem
of generating samples from difficult distributions by drawing samples from a sequence of
intermediate distributions that can be readily sampled. The combination of a systematic
resampling scheme, which updates samples between intermediate distributions and the
Gauss-Newton MCMC algorithm, which performs exploration within one intermediate
distribution, boosted the statistical efficiency of the algorithm.

It is noteworthy to mention that the stochastic model updating algorithms that rely on
the asymptotic approximations have difficulties to deal with the ill-conditioned problems.
However, the model updating algorithms proposed in this thesis provide potential solutions
for such challenging problems.

The Bayesian model updating frameworks developed in this thesis are applied to
illustrative examples with synthetic data. One possible extension is to apply these
frameworks to more complex structures and to cases with real experimental data.
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