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Simple, robust, and on-demand generation of single and correlated photons
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Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, Gothenburg SE-41296, Sweden

(Received 10 November 2015; revised manuscript received 10 May 2016; published 13 June 2016)

We propose two different setups to generate single photons on demand using an atom in front of a mirror,
along with either a beam splitter or a tunable coupling. We show that photon-generation efficiency of ∼99%
is straightforward to achieve. The proposed schemes are simple and easily tunable in frequency. The operation
is relatively insensitive to dephasing and can be easily extended to generate correlated pairs of photons. They
can also, in principle, be used to generate any photonic qubit of the form μ|0〉 + ν|1〉 in arbitrary wave packets,
making them very attractive for quantum communication applications.
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I. INTRODUCTION

Single photons, the fundamental excitations of the elec-
tromagnetic field, are prime candidates to transfer quantum
information across a network. As opposed to coherent fields
(even at weak powers), single photons and the higher number
states are clearly nonclassical, as can be seen in interference [1]
and correlation measurements [2]. The nonclassical nature of
single photons can not only be used to test the foundations
of quantum mechanics [3] but also for several applications in
quantum communication [4], quantum computing [5,6], and
in metrology to beat the standard shot-noise limit [7,8].

While sources of coherent light such as lasers and mi-
crowave generators are well developed, generating indistin-
guishable single photons on demand over a wide range of
frequencies remains a challenge. Currently, prominent sources
of single photons include spontaneous parametric down-
conversion (SPDC) and single atomic emitters [9]. SPDC is
an inherently random process that generates correlated pairs
of photons (signal and idler) from a strong coherent field
of higher frequency (pump), where the detection of an idler
photon heralds the signal photon. In contrast, a single emitter
such as an atom, ion, or quantum dot is an on-demand source
which when excited by an external control relaxes by releasing
the desired single photon. The problem in such a setup is the
collection efficiency as the photon is radiated in all of the
available spatial modes. This problem has been overcome to a
certain extent by embedding the emitters in a cavity and using
the Purcell effect [10].

In the microwave regime, superconducting artificial atoms
coupled to one-dimensional (1D) transmission line resonators
have been used to efficiently generate single photons [11–13],
even with controlled temporal envelopes [14,15]. However,
the use of resonators in these systems reduces the bandwidth
of operation. To make such a setup broadband, one has to
precisely tune both the qubit and cavity frequencies which
would lead to a change in the coupling strength of the qubit and
the quality factor of the cavity. Thus, it is advantageous to move
beyond the use of resonators for single-photon generation.
Previous work in this regard had suggested the use of two
transmission lines, one strongly coupled and another weakly
coupled to the atom, for efficient generation of single photons
under certain parameter regimes [16,17].
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II. SINGLE-PHOTON GENERATION

In this article, we propose two different setups to gener-
ate single photons using artificial atoms without resonators
(Fig. 1). We solve the problem of collection efficiency by
placing the atom at the end of a semi-infinite transmission line,
which corresponds to an atom in front of a mirror [18,19].
In such a configuration, all the field emitted from the atom
is routed through a single output port. We will exploit this
to generate a single photon by exciting the atom to the first
excited state using a coherent π pulse and then separating
the atomic decay from the coherently reflected field. Thus
the proposed system is all optical and does not require a
separate channel such as an electrical port to excite the
qubit.

The two suggested setups differ in how we separate the
emitted single photon from the coherent part. In the first
setup, we use an unbalanced beam splitter with reflection
coefficient r ≈ 1 to isolate the single-photon part in one of the
output modes. We believe this setup involving only a two-level
system and a beam splitter is the simplest implementation
of deterministic single-photon generation yet. In the second
setup, we tune the coupling of the qubit to the transmission
line by modulating either the boundary condition or the qubit
frequency. By decoupling the qubit from the transmission line
at the end of the π pulse, we isolate the single excitation in
the qubit, which could then be released on demand. Moreover,
by tuning the coupling, we could also release the photons in
arbitrary wave packets, which is essential in quantum networks
for efficient information transfer.

Consider the two lowest levels of an atom (i.e., a qubit) at
a distance l in front of a mirror driven by a coherent pulse
αin(t) at frequency ωd close to the qubit frequency ω01. The
output field using the standard input-output relation is αout(t) =
αin(t)eiφ + (1 + eiφ)

√
�
2 σ−(t), where σ− ≡ |0〉〈 1| is the low-

ering operator of the qubit and φ = (2ω01/c)l is the phase
gained by the field during the round-trip between the qubit and
the mirror [19]. We assume an open boundary condition with
the field antinode at the end of the transmission line and define
an effective coupling strength of the qubit to the transmission
line, �eff(φ) ≡ �(1 + cos φ) [20]. The input that we consider
here is a π pulse, αin(t) = [	(t − t0)−	(t − t0 − tw)]α0,
where 	 is the Heaviside step function, t0 is the time of arrival
of the pulse to the qubit, and tw = π/[2α0

√
�eff(φ)] is the

width of the pulse considering a constant φ.
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FIG. 1. Two different schematic setups for single-photon gen-
eration: A coherent π pulse αin(t) excites a qubit at the end of a
transmission line to state |1〉. The reflected field αout(t) contains a
coherent part and the emission from the qubit. (a) The coherent
part of the reflected field is separated from the single photon
using a beam splitter with reflection coefficient r ≈ 1. (b) A
particular implementation in superconducting circuits is shown using
a directional coupler and a transmon qubit (green). (c) The coherent
part and the atomic emission are separated by tuning the coupling
of the qubit to the transmission line by either changing the effective
distance to the mirror or by changing the qubit frequency. (d) A
corresponding implementation of (c) in superconducting circuits.

A. Setup I : Using a beam splitter

In the first setup [Figs. 1(a) and 1(b)], we consider an
effective coupling that is fixed by design such that φ is any
value other than π . Without any loss of generality, we take
φ = 0 and denote the effective coupling as just �eff. The output
field αout is then interfered with a strong coherent field β in a
beam splitter. The input-output relation for the beam splitter
with a reflection coefficient r and a π/2 phase shift in the
reflected field is(

c

d

)
=

(
τ ir

ir τ

)(
αin(t) + √

�effσ−(t)
β(t)

)
, (1)

where the transmission coefficient τ ≡ √
1 − r2. Choosing

β(t) = −irαin(t)/τ , the coherent part of the reflected field
is perfectly canceled and we have d(t) = ir

√
�effσ−(t),

which is our output of interest containing only the single
photon. In the ideal limit with r → 1 and the probability
of excitation of the qubit Pexc → 1, we will approach unit
probability of having a single photon in the mode d, P1 → 1.
Depending on the experimental implementation, one could
instead chose the opposite limit with τ → 1 and isolate the
single photon in the output mode c. While the above limits
themselves are impossible to achieve, we believe that with
current technologies, single-photon probabilities greater than
0.97 can be easily achieved, especially using an on-chip
superconducting directional coupler as beam splitter [21]. As a
proof of principle, in Appendix C we show experimental data
for cancellation of coherent pulses using 20 dB directional
couplers. We observe cancellation by a factor of 2500 (−34 dB)
at room temperature.

B. Setup II : Using tunable coupling

We now move on to the second setup [Figs. 1(c) and 1(d)],
where the focus is to use the tunable coupling of the qubit

to also shape the photon wave packet. The operation of
this scheme is as follows. We start with an initial phase
φi close to π either by using the external flux through the
superconducting quantum interference device (SQUID) at
the end of the transmission line [20] or by designing the
distance to the mirror in fabrication. We then excite the qubit
using a coherent π pulse of width tw. As the effective coupling
of the qubit �eff with this initial phase is close to zero (but not
zero), the qubit does not relax significantly during this pulse
width. At the end of the π pulse, we tune the external flux
to have φ = π and decouple the qubit from the transmission
line completely. We assume this can be done arbitrarily fast as
we start with a phase close to π . Now the single excitation
is stored in the qubit, while the rest of the coherent field
has been reflected back. At an arbitrary release time tr , we
tune the phase back away from π and release the excitation
from the qubit. By choosing an appropriate function φr (t), we
can change the coupling such that it also satisfies the relation
�eff(t) = |ξ (t)|2/ ∫ ∞

t
|ξ (s)|2ds, which leads to the release of

the photon in a desired wave packet ξ (t) [22]. We note that
one could, in principle, achieve all of the above by tuning ω01

instead of having a SQUID at the end of transmission line [19].
In such a case, one could also forego the use of the beam splitter
in the previous setup. Instead, by fast tuning the frequency of
the qubit at the end of the π pulse, we can separate the coherent
part from the single photon with a filter since they come out at
different frequencies.

C. Photon-generation efficiency

We characterize both setups by calculating the probability
of having n photons, Pn in the output field. The single-photon
probability P1 then directly corresponds to the efficiency since
an ideal single-photon source would have P1 = 1 with all other
probabilities equal to 0. The photon number probabilities are
calculated from the mth-order correlation function

G(m)(t1,t2, . . . ,tm) ≡ 〈L†(t1) . . . L†(tm)L(tm) . . . L(t1)〉, (2)

where L ≡ √
�eff(φ)eiφ/2σ−. Integrating the correlation func-

tion over all times from the release time tr to final time T gives
the number of photon m-tiples,

Nm =
∫ T

tr

dt1

∫ T

t1

dt2 . . .

∫ T

tm−1

dtmG(m)(t1,t2, . . . ,tm), (3)

which is related to the probabilities Pn as Nm =∑k
n=m

(
n

m

)
Pn [16]. k is the cutoff that we have chosen above

which the probabilities are negligible. For the setup with the
beam splitter, we have tr = t0.

To calculate the correlation functions, we start from the
master equation for the qubit (see Appendix A for the
derivation following [19]),

ρ̇(t) = −i[H (t),ρ(t)] + D[L]ρ(t) ≡ L(t)ρ(t). (4)

We have defined a Liouvillian L(t) to simplify notation. The
Hamiltonian H (t) in the rotating frame of the drive is [19]

H (t) = � − (�/2) sin φ

2
σz − i[αin(t)eiφL† − H.c.], (5)
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where � = ω01 − ωd is the detuning between the qubit and the
drive. The dissipation superoperator is defined as D[X]P ≡
XPX† − 1

2 {X†X,P }.
The above master equation can be formally solved by

writing a solution ρ(t) = P (t,0)ρ(0), where ρ(0) is the initial
density matrix of the atom in front of a mirror at time t = 0.
P (t,0) is the propagator that evolves the qubit state from
time 0 to t . Substituting the above solution in the master
equation (4), we get Ṗ (t,0) = L(t)P (t,0), with the initial
condition P (0,0) = 1. Considering the two-level system to
be driven by a coherent pulse between t0 and tw, the solution
of this equation is simply

P (T ,0)

= exp

(∫ T

tw

L0dτ ′′
)

exp

[∫ tw

t0

Lα(τ )dτ ′
]

exp

(∫ t0

0
L0dτ

)

(6)

= exp [L0(T − tw)] exp

[∫ tw

t0

Lα(τ )dτ ′
]

exp (L0t0), (7)

where L0 = L(αin = 0) is the Liouvillian without any driving
and Lα contains the time-dependent driving term. Considering
a square pulse that has a constant value α0 between t0 and tw and
0 everywhere else, the integral containing the drive can also be
evaluated immediately. Any two-time propagator P (t2,t1) can
be evaluated similarly, taking into account in which regions t1
and t2 fall. The mth-order correlation function defined in (2)
can then be calculated using the propagator as [23]

G(m)(t1,t2, . . . ,tm) = Tr[LP (tm−1,tm) . . . {LP (t3,t2)

×{LP (t2,t1){Lρ(t1)L†}L†}L†} . . . L†].

(8)

From the correlation functions, we can calculate the photon
m-tiples and the photon probability distribution, as explained
above.

D. Results

Using the above expressions, we can now evaluate the
efficiency of both setups, starting with the one containing the
beam splitter. The photon probabilities in the output field from
the beam splitter are plotted in Fig. 2(a) as a function of the
input amplitude, where we have taken a cutoff of k = 3. At very
low input powers close to 0, the atom is rarely excited, leading
to only vacuum in the output field. At higher input powers, we
have significant excitation of the qubit and P0 falls towards
0. However if the π pulse is long, the qubit can be excited
again after an initial decay during the pulse width. This leads
to a non-negligible two-photon probability P2. As α0 increases
and tw decreases, the higher photon probabilities vanish and
we are left with an efficient single-photon source. In these
calculations, we have used r = 0.995 to get a single photon
with ∼95% efficiency using α0 = 5 and with ∼97% efficiency
using α0 = 10. We believe these values are straightforward to
achieve with current technologies.

Next, we turn to the setup with tunable coupling and focus
on generating single-photon wave packets with an envelope

(a)
(b)

(c)

(d)

FIG. 2. Left: Photon generation using a beam splitter: (a) Photon
number distribution in the output field after the beam splitter as a
function of the input drive strength α0 of the π pulse with r = 0.995.
The incoming field is on resonance with the qubit, i.e., � = 0. All of
the parameters are in the units where �eff = 1. For α0 = 5, we have a
P1 ≈ 0.95, and for α0 = 10, we have a P1 ≈ 0.97. Right: Generating
a single photon with arbitrary wave-packet envelopes using tunable
coupling: (b) φ at different time steps, (c) corresponding probability
of excitation Pexc of the qubit, and (d) the average flux output from
the qubit 〈L†L〉. We have shown the results for two different wave
packets: an exponential (blue solid line) and a Gaussian (red dashed
line). We have the initial phase φi = 0.9π , and φr (t) is chosen to get
the corresponding wave packets. The π pulse starts at t0 = 1 with
α0 = 5 and the photon is released from tr = 8. The scale is set by
� = 1. From this simulation, we find that between tr and T = 20, we
have P1 ≈ 0.97. For α0 = 10, we correspondingly find P1 ≈ 0.99.

that can be shaped in time. In Fig. 2, we show the results for
two different wave packets: an exponential and a Gaussian. The
exponential wave packet is naturally generated using a constant
coupling with any φr �= π . To get the Gaussian wave packet,
the coupling has to be tuned in a nontrivial fashion, as shown
by the red dashed line in Fig. 2(b). The width of the wave
packets is limited by the maximum (2�) and minimum (0)
coupling that we can reach. The efficiency of the single-photon
generation in this case is limited by the loss of excitation during
the π pulse, which can be seen as a small bump in the photon
flux before tr . We see that with an initial phase φi = 0.9π , we
can reach single-photon generation efficiency of ∼97% using
α0 = 5 and ∼99% using α0 = 10.

E. Limitations

We now look at some of the limitations coming from the
qubit on the presented schemes. The width of the π pulse in
both setups is limited by the anharmonicity ω01 − ω12 of the
qubit. To confine ourselves to the lowest two levels of the atom,
we require that the Rabi frequency of the drive � = 2α0

√
�eff

be less than the anharmonicity. For a transmon with typical
anharmonicity of about 250–300 MHz and effective coupling
strength of about 60–80 MHz [18], we require α0 to be less
than 20–30, which is higher than the values we have considered
here. By using qubits with higher anharmonicity such as flux
qubits [24], one could push the drive strength much further,
taking the single-photon probability even closer to 1. Next we
look at the effect of pure dephasing of the qubit, which we have
neglected so far in the discussion. In the setup with the beam
splitter, the efficiency of single-photon generation is impacted
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by dephasing only during the π pulse, which can be made
short by increasing α0 subject to the limit from anharmonicity.
In the setup with the tunable coupling, if dephasing leads to a
change in energy splitting of the qubit, it would also lead to a
slow variation of φ. Then, the excitation stored in the qubit has
to be released more quickly than the scale set by the dephasing
time to avoid additional losses. In engineered quantum systems
such as superconducting circuits, the dephasing rates have been
made much smaller compared to the coupling strengths over
the past few years and the total decoherence is often T1(∝ 1/�)
limited [25]. Thus, we believe the proposed setups are not
significantly affected by dephasing. We also believe that with
two independent photon sources with low dephasing rates,
we can generate indistinguishable photons and also create
entangled states using the Hong-Ou-Mandel effect with high
efficiency similar to [21]. In all of the above calculations,
we have neglected other decay channels usually referred to as
nonradiative decay channels. The effect of these other channels
can be made negligibly small for superconducting circuits, as
shown by the extinction of forward scattering of coherent light
in [26,27], and hence is not important for our current proposal.
However, to keep the discussion complete, in Appendix B we
analyze the effect of other channels on the photon-generation
efficiency.

F. Flying qubits

Photons are prime candidates to act as flying qubits that
transfer information across quantum networks, as they rarely
interact with each other. The proposed setups above can also
be used as sources for generating flying qubits of the form
μ|0〉 + ν|1〉 as follows. Any arbitrary state of the above form
can be encoded on the qubit using the detuning �, amplitude
and phase of the drive αin, and pulse width of the drive tw. Via
the coupling to the transmission line, the qubit state can be
transferred to the field and then separated from the coherent
part as before. With the tunable coupling, the state can also be
encapsulated inside a wave packet that can then be efficiently
captured by the receiver [14].

III. GENERATION OF CORRELATED PHOTONS

Given the simplicity of the setups discussed above, we can
immediately extend them to include higher levels of the atom
to generate correlated photons from a cascade process (Fig. 3).
We once again consider an atom in front of a mirror with φ = 0
for simplicity. A coherent π pulse αd (t) resonant with the 0–2
transition excites the atom to the state |2〉. If the coupling
strength of the 0–2 transition is weak �02  �12,�01, the atom
will preferably relax by the cascade process. In this setup, we
do not employ any beam splitters as the coherent pulse and the
desired correlated photons are at different frequencies and can
be easily separated by filtering.

To quantify the correlations between the pair of photons,
we define the function V ≡ G2

is − GiiGss , where

Gab ≡
∫ T

0

∫ T

0
dt1dt2〈L†

a(t1)L†
b(t2)Lb(t2)La(t1)〉, (9)

with L01/12 = √
�01/12σ

(01/12)
− . V is negative or zero for classi-

cal beams and becomes positive for two beams with quantum

FIG. 3. (a) Schematic setup for cascaded pair photon production
and (b) measure of correlation between the fields from 0–1 and 1–2
transition, V as a function of αd and �02. We work in units where
�01 = 1 and with �12 = 2�01. The drive αd is on resonance with the
0–2 transition and the atom is placed at the end of the transmission
line, i.e., with φ = 0. V > 0 implies nonclassical correlations. We
find that with �02/�01 ≈ 1/20 (reasonable value for a transmon) and
with reasonable drive strength αd = 5, we have V ≈ 0.92, very close
to the maximum value of 1.

correlations, reaching a maximum value of 1 for a perfect pair
production. The above quantity is also related to the Cauchy-
Schwarz inequality (CSI) [28,29] defined here as V � 0,
which is violated for two beams with quantum correlations.
The value of V is shown in Fig. 3(b) as a function of the
drive strength and the 0–2 coupling strength �02. As one
would expect, the correlations are much stronger for small �02

and larger αd . In these simulations, we have considered the
transmon limit with �12 = 2�01. For a transmon qubit, �02 is
expected to go to 0 as EJ /EC → ∞ [30]. However, in practical
devices, we have �02/�01 ≈ 1/20 [31]. With this coupling
strength and with reasonable drive strength αd = 5, we have
V ≈ 0.92. Such correlated photon pair sources are useful as
heralded single-photon sources [32,33] and for calibrating
photon detectors [32,34]. While other sources of correlated
microwave photons have already been demonstrated [35,36],
we emphasize that the setup discussed here is nonstochastic.

IV. SUMMARY

In summary, we have proposed simple and efficient setups
to generate microwave photons on a chip. Such setups along
with others based on voltage-biased Josephson junctions [37]
offer photon-generation protocols not limited by resonator
bandwidths. By tuning the frequency of the qubits in situ,
photons over a wide range of frequencies can be generated
in the proposed setups. While we have focused on microwave
photons and superconducting circuits in this article, we believe
it is straightforward to implement these proposals in other
solid-state devices such as quantum dots coupled to one-
dimensional waveguides [38] and atomic emitters coupled
to silica nanofibers [39] for generating either optical or
microwave photons.
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APPENDIX A: MASTER EQUATION OF AN ATOM
IN FRONT OF A MIRROR

In this section, we briefly review the derivation of the master
equation for an atom in front of a mirror following [19]. To
do so, we use a convenient formalism known as the (S,L,H )
formalism [40,41]. In this formalism, a quantum system is
described by a triplet,

G ≡ (S,L,H ), (A1)

where S is the scattering matrix, L is the vector of coupling
operators, and H is the Hamiltonian. We then define the
following three operations for composing multiple quantum
systems into one system:

(1) The series product � of the triplets is used to denote the
feeding of output of one subsystem to another,

G2�G1 =
[
S2S1,S2L1 + L2,H1 + H2

+ 1

2i
(L†

2S2L1 − L
†
1S

†
2L2)

]
. (A2)

(2) The concatenation product � is used for composing
subsystems into a system with stacked channels,

G2 � G1 =
((

S2 0
0 S1

)
,

(
L2

L1

)
,H2 + H1

)
. (A3)

(3) Finally, we also have a operation for feedback, written
as [(S,L,H )]k→l = (S̃,L̃,H̃ ), where the output from the kth
port of the system is fed back as the input through the lth port
of the same system. The triplet is given by

S̃ = S[��k,l] +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S1,l

...
Sk−1,l

Sk+1,l

...
Sn,l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1 − Sk,l)
−1

× (Sk,1 . . . Sk,l−1 Sk,l+1 . . . Sk,n),

L̃ = L[�k] +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S1,l

...
Sk−1,l

Sk+1,l

...
Sn,l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1 − Sk,l)
−1Lk,

H̃ = H + 1

2i

⎡
⎣

⎛
⎝ n∑

j=1

L
†
j Sj,l

⎞
⎠(1 − Sk,l)

−1Lk − H.c.

⎤
⎦,

(A4)

where S[��k,l] and L[�k] are the original scattering matrix and
coupling vector with row k and column l removed [42].

FIG. 4. A two-level system in front of a mirror. The two-level
system is driven from the left by a coherent field αin(t) of frequency
ωd . The distance between the qubit and the mirror is modeled as a
phase φ gained by the field during the round-trip.

Using the above-defined operations, we can write down the
(S,L,H ) triplet for the whole system,

Gtot =
⎛
⎝Stot,

⎛
⎝L1

...
Ln

⎞
⎠,Htot

⎞
⎠. (A5)

The master equation is written from the above total triplet as

ρ̇ = −i[Htot,ρ] +
n∑

i=1

D[Li]ρ, (A6)

where the dissipation superoperator is given by D[X]ρ =
XρX† − 1

2X†Xρ − 1
2ρX†X. The output from the ith channel

is simply given by Li .
We can now use the above rules and derive the master for

a two-level system that is in front of a mirror. A schematic
is shown in Fig. 4, where we have also marked all the inputs
and outputs. The distance between the qubit and the mirror is
modeled as a phase φ gained by the field. The field reflected
from the mirror is fed back to the qubit and we can use the
feedback operation of the (S,L,H ) formalism to derive the
master equation as in [19]. To keep the notations simple, we
drop the time dependence of the operators in the following.

The triplet for a two-level atom coupled to an open
transmission line (i.e., with both left and right propagating
modes) without any drive is given as

GTLS =

⎛
⎜⎝1,

⎛
⎜⎝

√
�
2 σ−√
�
2 σ−

⎞
⎟⎠,HTLS

⎞
⎟⎠. (A7)

The Hamiltonian of the two-level system is HTLS =
−(ω01/2)σz, where ω01 is the energy difference between the
|0〉 and |1〉 state of the qubit. � is the coupling strength of
the qubit to the transmission line and σ− = σ

†
+ = |0〉〈1| is the

lowering operator of the qubit. The triplet for the phase shift
gained by the field is

Gφ = (eiφ,0,0). (A8)

With these, we can write the total triplet for the qubit mirror
without any drive as

G = (S̃,L̃,H̃ ) = [(Gφ � I )�GTLS]1→2. (A9)

We have to concatenate an identity triple I = (1,0,0) to keep
the same dimensions. Using the feedback rules given in (A4),
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FIG. 5. Photon generation using a beam splitter: Probability of
having 0 and 1 photons in the output field in the presence of additional
decay channels. The effect of the other decay channels is given by
their total coupling strength to the qubit �nr. Here we have considered
the input drive strength α0 = 10 and the reflection coefficient of the
beam splitter r = 0.995. The incoming field is on resonance with
the qubit, i.e., � = 0. All of the parameters are in the units where
�eff = 1. As expected, the efficiency of single-photon generation goes
down with increasing �nr.

we get

S̃ = eiφ, (A10)

L̃ =
√

�

2
(1 + eiφ)σ− = eiφ/2

√
�eff σ−, (A11)

H̃ = HTLS + �

2
sin φ σ+σ−, (A12)

where �eff ≡ �(1 + cos φ). With this triplet, we can now
include the coherent drive in its own rotating frame specified
by a triplet,

Gα = (1,αin,0). (A13)

The total triplet is then

Gtot = (S̃,L̃,H̃ )�Gα, (A14)

which gives the master equation

ρ̇ = −i[Htot,ρ] + D[eiφαin + eiφ/2
√

�eff σ−]ρ, (A15)

where the Hamiltonian

Htot = �

2
σz + �

2
sin φ σ+σ−

+ 1

2i
(eiφ/2

√
�eff αinσ+ − H.c.). (A16)

The Hamiltonian is also in the rotating frame of the incoming
field with � = ω01 − ωd . We can expand the dissipator and
simplify the master equation to get

ρ̇ = −i[Heff,ρ] + D[L]ρ ≡ Lρ, (A17)

where L = √
�effe

iφ/2σ− and the effective Hamiltonian is

Heff = �

2
σz + �

2
sin φ σ+σ− − i(eiφαinL

† − H.c.). (A18)
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FIG. 6. Photon generation using a tunable coupling: Probability
of having 0 and 1 photons in the output field in the presence of
additional decay channels as a function of delay time between the
π pulse and the relaxation of the qubit. twait = tr − (t0 + tw). Here
we consider the coupling of the qubit to other decay channels,
�nr = 0.1�. The input drive strength α0 = 10 and phase during the
release φr = π/2. The incoming field is on resonance with the qubit,
i.e., � = 0. All of the parameters are in the units where � = 1. As
expected, the efficiency of single-photon generation goes down as we
wait longer.

To keep the notations simple, we have also defined a Liou-
villian L. By rewriting σ+σ− = (1 − σz)/2 and neglecting the
constant term, we end up with the Hamiltonian given in Eq. (5)
of the main text.

APPENDIX B: EFFECT OF OTHER DECAY CHANNELS

In all of the results presented in the main text, we
have not considered the effect of channels other than the
transmission line on the efficiency of single-photon generation.
As mentioned there, the systems we considered are with near
unity coupling to the transmission line where the effect of
these other channels is negligibly small. However, to keep
the discussion complete, here we calculate the efficiency of
single-photon generation in systems where the effect of these
other (nonradiative) decay channels is not negligible. To do
so, we modify the master equation (A17) as

ρ̇ = −i[Heff,ρ] + D[L]ρ + �nrD[σ−]ρ, (B1)

where �nr is the effective coupling strength of the qubit to all
of the decay channels other than the transmission line.

FIG. 7. Schematic of the experimental setup used to demonstrate
the cancellation of two microwave signals using a directional coupler.
The amplitude and phase of β are adjusted using the in-phase (I) and
quadrature (Q) voltages. The right arm is attenuated by 26 dB to put
the required amplitude of β in the linear regime of the IQ mixer.

063823-6



SIMPLE, ROBUST, AND ON-DEMAND GENERATION OF . . . PHYSICAL REVIEW A 93, 063823 (2016)

FIG. 8. (a) Amplitude of output signal d normalized to the amplitude of α as a function of phase and amplitude of the IQ mixer. The
frequency of the signal is ω/2π = 5 GHz. (b) Line cuts at two different IQ amplitudes, corresponding to the IQ mixer being on (blue) and off
(red). A cancellation of maximum −50 dB is reached.

For the setup with the beam splitter, we calculate the output
photon probabilities as outlined in the previous section by
solving the above master equation. We show the probability
to have 0 and 1 photons in the output in Fig. 5. As one would
expect, the efficiency of single-photon generation goes down
with additional losses coming from these other channels. When
�nr = �eff, we get the efficiency of around 50% that one would
expect from having a qubit in an open transmission line [16].

For the setup using the tunable coupling, the presence of
the other channels can lead to reduction of photon-generation
efficiency due to loss of excitation during the storage time or
during the relaxation. Thus, the excitation trapped in the qubit
has to be released faster and also in shorter pulse widths to
reduce significant losses. In Fig. 6, we show how the efficiency
of photon generation scales with the waiting time, i.e., the
time between the end of the π pulse and the release, twait =

tr − (t0 + tw), for a particular �nr. As expected, the more we
wait, there is more chance of losing the excitation in other
channels.

From the above analysis, we see that even with �nr around
10 to 20% of �, single-photon generation efficiencies of 80%
to 90% are easily achievable.

APPENDIX C: MEASURED CANCELLATION
OF MICROWAVE SIGNALS USING

A DIRECTIONAL COUPLER

Assume two incident signals on a directional coupler, α =
A1e

i(ω1t+φ1) and β = A2e
i(ω2t+φ2), where ω1/2 are the angular

frequencies, A1/2 are the amplitudes, and φ1/2 are the phases
of the two signals. By putting a mirror at the third port, we can

FIG. 9. (a) The setup used for pulsed measurements. Both arms have two microwave mixers to shape the outgoing signal. By sharing the
same AWG channels between the two arms, we ensure close to identical pulses in both arms. (b) Cancellation of 100 ns Gaussian pulses. In
the red trace, the signal through the IQ mixer is pinched off and we only measure the pulse. In the blue trace, the IQ mixer is tuned into the
cancellation point and we observe up to −34 dB cancellation in the pulse.
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write the outgoing signal at the fourth port as

d = τ1e
iφα + τ2β = τ1A1e

i(ω1t+φ1+φ) + τ2A2e
i(ω2t+φ2),

(C1)

where τ1/2 are the transmission amplitudes, which for an ideal
beam splitter should be the same in the two arms. φ is the
phase acquired by the signal a as it travels to and from the
mirror. Assuming τ1 = τ2 = τ , perfect cancellation occurs at
d = 0, yielding

A2 = A1,

φ2 = φ1 + φ + (2n − 1)π,

ω2 = ω1, (C2)

where n is an integer. The upper limit of cancellation is set by
how well we control the amplitude, phase, and frequency of
the two signals. For pulses, the timing also has to be controlled.

To avoid using two microwave sources with the possibility
of frequency drift between the two signals, we use one source
which is then split into two arms by a 50/50 power splitter.

Arm number one α is left unchanged, while arm number
two β goes into an IQ mixer, enabling control of both the
amplitude and phase of the incoming signal using two dc
voltages corresponding to the in-phase (I) and quadrature (Q)
components; see Fig. 7. Then we interfere the two signals
on a 20 dB directional coupler (τ = 0.1) and measure the
outgoing amplitude and phase using heterodyne detection.
The outcome of the measurement can be seen in Fig. 8. A
maximum cancellation of −50 dB was reached at a frequency
of ω/2π = 5 GHz, a typical frequency for superconducting
qubits.

To create the pulses needed to drive the qubit, we install four
mixers, two in each arm. They are connected to an arbitrary
wave-form generator with a sampling rate of 1.25 GHz [see
Fig. 9(a)]. We use two mixers instead of one in each arm
to get a better on/off ratio. To demonstrate the cancella-
tion of microwave pulses, we create four Gaussian pulses
with a width of 100 ns each. To measure the cancellation,
we compare the outgoing field amplitude |d| when the
IQ mixer is turned on and off. The result is shown in
Fig. 9(b). We observe up to −34 dB of cancellation inside
the pulse.
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