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Abstract. Computations in toroidal geometry are systematically performed for the plaspanse

to 3D magnetic perturbations, produced by ferritic inserts (FIs) and lmskdét modules (TBMs), for
four ITER plasma scenarios: the 15MA baseline, the 12.5MA hybrid, th& 8iady state, and the
7.5MA half-field Helium plasma. Due to broad toroidal spectrum of the FIEB#I fields, the plasma
response for all the n=1-6 field components are computed and compéeeglasma response is found

to be weak for the higim-(n > 4) components. The response is globally not sensitive to the toroidal
plasma flow speed, as long as the latter is not reduced by an order of naggriihis is essentially due

to the strong screening effect occuring at a finite flow as predictedr®RIplasmas. The ITER error
field correction coils (EFCC) are used to compensatathel field errors produced by FIs and TBMs
for the baseline scenario, for the purpose of avoiding the mode lockirgfound that the middle row

of EFCC, with a suitable toroidal phase for the coil current, can provideo#st correction of these
field errors, according to various optimization criteria. On the other harmah without correction, it

is predicted that these= 1 field errors do not cause substantial flow damping for the 15MA baseline
scenario.

1 Introduction

It is well known that periodic toroidal field ripples can havegative effects on the plasma
performance, in particular in H-mode plasmas [1, 2]. Fastlass due to the ripple fields is
one of the significant concerns in ITER and future fusiont@ac It is by this reason, ferritic
inserts (FIs) have been designed for ITER, in order to recheeipple fields in ITER, which
has predominantly the = 18 (n is the toroidal mode number) component due to symmetry
of the toroidal field coils. While cancelling the ripple fieJdeese Fls produce small, but not
negligible field errors, of other toroidal mode numbers.



Test blanket modules (TBMs), which are not periodicallyraisited along the toroidal angle
of the torus, are also designed for ITER. These TBMs contaisimearromagnetic materials
(several tons), which again generate 3D error fields (EA3)&R. Unlike the present devices,
where the EFs can be minimized by careful alignment of thehinacand the coils system, the
EFs in ITER, as well as their correction, are a substantiateon partly due to the presence
of TBMs. In particular, a broadband toroidal spectrum of tlis S expected in ITER, due to
the non-periodic distribution of TBMs.

Recent TBM experiments, carried out in DIII-D [3, 4] using magkcoils, have shown that,

whilst with little effect on the L-mode plasmas and with moate impact (up to 20%) on the

particle and energy confinement in H-mode plasmas, the TBM doihave significant effect

on the plasma stability, in particular on the plasma flow dag@nd the subsequent mode
locking in DIII-D. It is therefore of critical importance tiovestigate the TBM induced mode
locking in ITER. It should also be mentioned that the vacuungmeic field, produced by the

mock up coils in DIII-D, is about 3 times larger than that poteld by the ITER TBM.

Understanding the structure of the vacuum fields, produgdéldand TBMs, is certainly an
important first step. However, as has been recently realiaéthg into account the plasma
response to the 3D external fields may be crucial. This isuliset only just for understand-
ing the modification (plasma shielding and/or amplificafiohthe field structure due to the
plasma response, but also, and perhaps even more impgrfantbroviding better guidance
of correcting these field errors, for understanding the maemode locking induced by the
low-n components of these fields, and for further investigatioar@rgetic particle losses in
the presence of the total 3D field perturbations includirggplasma response [5].

Various physics models have recently been developed arlgedgp model the plasma re-
sponse to external 3D fields. In particular, ideal singladflpiasma response model has been
used to guide the error field correction in ITER (not inchgliEFs resulting from the Fis and
TBMs, though) [6], ideal/resistive single fluid models haeeb successfully applied to simu-
late the resonant magnetic perturbation (RMP) experimeri@gli-D [7, 8, 9, 10, 11], MAST
[12], and ASDEX Upgrade [13]. A magnetohydrodynamic-kiodtybrid model has been
shown to quantitatively reproduce the response of plasnithgwessure approaching or even
exceeding the the no-wall limit for the external ideal kimistiability [14]. Two-fluid model
has been assumed to compute the plasma response in DIII}D $Lscessful comparisons
have been made between various models and experiments [9].

In this work, we use the MARS-F/K/Q codes suite [16, 17, 18] twlel the plasma response
due to ripples, Fls, TBMs, and for limited cases also with tiedusion of the fields from edge
localized mode (ELM) control coils. The plasma responsén&ELM coils has previously
been more systematically modelled for ITER [12, 27]. We Ist@hsider four ITER scenarios
- the 15MA baseline, the 12.5MA hybrid, the 9MA steady statg] finally the 7.5MA half-
field Helium plasma. Three issues are addressed: (i) tharlipsma response to various
decompositions of the vacuum fields, of different toroidalde numbers = 1 — 6, for all
four scenarios; (ii) optimal correction of thre= 1 field errors due to FIs and TBMs, using
the ITER error field correction coils (EFCC), for the 15MA baselscenario, for the purpose
of avoiding mode locking; (iii) simulation of the plasma flatamping due to the =1 Fls
and TBMs fields for the 15MA plasma, using both the quasi-indARS-Q code, and the



JINTRAC code [19] coupled to the MARS-F code.

Section 2 briefly describes the MARS-F/K/Q models, followgddiscussions on the input
data for the modelling - primarily the equilibrium speciticas for four ITER scenarios -
in Section 3. Section 4 reports the systematic study of theali plasma response, for the
four ITER scenarios from Section 3. Section 5 reports the etliog) results on then =1
error field correction (EFC). Section 6 reports MARS-Q and JRAT results on the plasma
toroidal momentum confinement in the presence ofitkel FIs and TBMs fields. Section 7
summarizes the work.

2 The MARS-F/K/Q model for computing plasma response

We compute thdinear plasma response in the framework of the single fluid, resisdHD
approximation. The plasma model, witlgaentoroidal rotationvVg = RQg, is thus described
by the following set of equations

i(Qer+nQ)E = v+ (§-0Q)Rg, @)
ip(Qer+nQ)V = —Op+jxB+Ixb—p[20Z x v+ (v-0Q)Ry|

—pKy[kven,il [v+ (- O)Val, (2)

i(Qer+nQ)b = Ox (vxB)+(b-0Q)Rp—0x (nj), (3)

I(Qep+nQ)p = —v-OP-TPO-v, 4)

] = Oxb, 5)

whereR is the plasma major radiug,the unit vector along the geometric toroidal anglef

the torusZ the unit vector in the vertical direction in the poloidal paQgr is the excitation
frequency of the external (to the plasma) 3D field pertudvesti In this work, these 3D fields,
which are generally referred to here as the error field (Ef),caused by ripple fields, FlI,
TBM, as well as edge localized mode (ELM) control coils. Weuass that these 3D fields
are generally dc fields, witgr = 0. nis the toroidal harmonic number. For a linear response
of axi-symmetric equilibria, we need to consider a singlenly. The plasma resistivity is
denoted byn. The variable€,v,b,j, p represent the plasma displacement, perturbed velocity,
magnetic field, current, and pressure, respectively. Thaliequm plasma density, field,
current, and pressure are denotegbi, J, P, respectively.

The last term in Eq. (2) describes the effect of parallel somave damping [20], whene is

a numerical coefficient determining the damping “strengky’= (n—m/q) /R s the parallel
wave number, wittm being the poloidal harmonic number ambeing the safety factovp ; =
\/2Ti/M; is the thermal ion velocity, witfi;, M; being the thermal ion temperature and mass,
respectively. The parallel component of the perturbedomlas taken along the equilibrium
field line. In this work, we assume = 1.5, corresponding to a strong sound wave damping,
which has been shown to be adequate for modelling the lowdasana response to external
3D fields [12, 13].

The external 3D field is normally generated by the sourceeatiyror an equivalent surface
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currentjgsc, located in the vacuum region outside the plasma
Oxb=jesc, U-jesc=0. (6)

In this study, the source current is specified as a surfacemifollowing a rigorous procedure
as described in Ref. [21] .

Note that for plasma response modelling, we also make udeedivergence-free condition
for the total field perturbatio in the plasma region, by replacing one of the equations in
the Ohm's law (3) byll-b = 0. This is to ensure that the field divergence-free condition
is numerically enforced. The plasma-vacuum interface itimms are the continuity of the
normal component of the field, and the (total) perturbed pressure balance condition. The
former is satisfied automatically by solving for the tdidield across all regions.

All the perturbed quantities are decomposed into Fouriembaics along the toroidal and
poloidal angles of the torus. For linear perturbations, vlgesEqgs. (1)-(5) for each toroidal
harmonicn separately. For each givenall the poloidal harmonics, however, couple together,
and need to be included into the solution at the same timengitbe radial direction, Egs.
(2)-(5) are solved using the finite element method.

Details of the drift kinetic extension of the above model éescribed in Ref. [17, 22]. This
is essentially a MHD-kinetic hybrid model, based on the dkedanon-perturbative approach.
The code implementation (MARS-K) benchmarking results weported in [23] and vali-

dated against experiments [24, 14]. The quasi-linear sidanimplemented to model the
external 3D field induced toroidal flow damping of the plasmias reported in [18]. Various
momentum sink terms associated with 3D field perturbatiomduding the electromagnetic
resonantj(x b) torque, the neoclassical toroidal viscous (NTV) torqueweall as the torque
due to the Reynolds stress (REY), have been implemented intR$4Q, benchmarked [25]
and validated [26)].

The MARS-F/K/Q models have been extensively used to studgltdsma response in DIII-D
[7,8,9, 28,10, 14, 11], NSTX [24], MAST [12, 26], ASDEX Upgta[13], as well as ITER
[27].

3 Specification of ITER equilibria and 3D vacuum fields

The main input data for the MARS-F/K/Q modelling are (i) thagyha equilibria, and (ii)
the external perturbed vacuum 3D magnetic fields. In thidystfour plasma scenarios are
defined for ITER, as listed in Tab. 1. For the baseline and tiheithgcenario, two phases are
considered - the plasma current ramp-up phase and the tilatetop phase.

These four ITER plasma scenarios, which will be consideoethie plasma response compu-
tations, are the 15MA inductive scenario at Q=10 and at thdiéld (5.3T), at one time slice
during current ramp-up (RU, with,=12MA) and one time slice during current flat-top (FT);
the 12.5MA hybrid scenario at full field, at one time sliceidgrcurrent ramp-upl,=10MA)
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Table 1: Plasma scenarios considered in the study.

| Scenario | Bo[T] | Ip[MA] | Ref# | FTorRU |
Baseline 5.3 15 10470| Flat-Top

10060| Ramp-Up
Hybrid 5.3 12.5 13090 Flat-Top

13050| Ramp-Up
Steady-State 5.3 9 10100| Flat-Top
Half-Field Helium| 2.65 | 7.5 10920 Flat-Top

and one time slice during current flat-top; the 9MA steadyessaenario at full field, at one
time slice during the steady state phase. the half-fieldb{®.@nd half-current (7.5MA) sce-
nario with the helium plasma, at one time slice during curfiat-top. These equilibria were
produced by the JINTRAC transport code [19].

Figures 1 and 2 show two examples of the equilibrium profftasthe 15MA baseline scenario
and the 9MA steady state scenario, respectively. Both égiailshown here are in the current
FT phase. For the baseline plasma, the safety fapiois 3.23. The normalized plasma
pressure iy = 2.04. Transport modelling produces two toroidal rotatiorfiles, depending
on the assumption on the Prandtl numBer(the ratio of the momentum diffusivity to the
thermal diffusivity). For the 9MA plasma, theys value is 5.84. The normalized plasma
pressure iy = 2.87.

In order to compute the plasma response, the external 3B fieddised by the toroidal ripples,
Fls or TBMs, have to be properly specified and included intoNt#RS-F model. These

vacuum fields, including also additional, not small conttibns from irregular neutral beam
ports in ITER, are computed by a combined finite element - Banta® law integrator method

[29]. Based on these vacuum fields, a rigorous procedure hwialid in a generic toroidal

geometry, has been devised [21] to compute the plasma respefds. This procedure relies
on computing the equivalent surface current (ESC), whichdsreent that produces exactly
the same vacuum field inside a virtual surface (VS), showrhbysblid line in Fig. 3, as that

of the external 3D field. Thus the eventual plasma responsggtation is converted to the
response of the plasma to the ESC.

The above ESC procedure is strictly valid only if the extéfredd sources (e.g. a current
source) are not perturbed by the plasma response. In ouy, stedexternal field sources (FI
and TBM) are ferromagnetic, and therefore will eventuallycteo the pure plasma response
field produced by the perturbed plasma current. This efieaeglected in this work, since,
as will be shown later, the pure plasma response field is giyemall compared to the
applied vacuum external field for these ITER plasmas. It &sfisde to design a more involved
procedure that takes into account this secondary effetiasito the so called backward
coupling scheme as envisaged in Refs. [30, 31], where gtabiloblems (instead of the
response problem) were considered, and where the infludrtbe plasma response on the
external structures (the conducting walls) is rigorouaken into account.
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Figure 1: Equilibrium radial profiles of (a) the safety factp (b) pressure normalized by
B%/uO, (c) plasma density normalized to unity at the magnetic,asl (d) toroidal rotation
frequency, for the modelled 15MA baseline plasma at theetutfftat-top phase.
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Figure 3: An example of the virtual surface (VS, solid linehewe the normal component
of the vacuum magnetic field is specified, plotted togethéh wWie plasma boundary shape
(dashed line) and a test surface (dash-dotted line). Caesideere is the 15MA baseline
scenario at flat-top, with the= 1 vacuum field.
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Figure 4: Comparison of the peak amplitude of the vacuum f@léhside the virtual surface,
for toroidal harmonics = 1 — 20, of the ripple field (dash-dotted), the ripple plus the Elifi
(solid), and of the total field (ripple- FI + TBM, dashed line). The 9MA steady state plasma
is considered here.

In this work, mainly three contributions of the externaldel(ripples, Fls, TBMs) are pro-
vided as the input data. The toroidal Fourier harmonics eséhfields are then computed
and analysed for each individualcomponent. In particular, analysis of these input vacuum
fields show that the ferritic inserts do compensate, thougi partially, then = 18 ripple
field, as observed in Fig. 4. The peak amplitude of the fieldlenthe VS is compared in the
figure. Note that, while compensating the ripple fielchat 18, FIs also introduce other
components of the vacuum field, though at low level. The trgacuum fields, with a broad
toroidal spectrum, are generated by the TBMs.

4 Plasma response to 3D fields by Fls and TBMs

In this Section, we report and analyse the MARS-F plasma resspocomputations for all
the four ITER scenarios as described in the previous SecBefore showing the computed
plasma response, we discuss two particular issues releyvdmé plasma response computa-
tions.



4.1 Plasma response at high and computing magnetic field outside vir-
tual surface

The first issue is related to the plasma response for higheuum field components, since
both the ripple field and the TBM field contain rather higkomponents as shown in Fig. 4.

Using MARS-F, we computed the plasma response tanthel8 ripple field, for the 9MA
plasma. A comparison of the total field (including the plasmsponse) with that of the
vacuum field, shows almost no difference between these twasfidn order to ensure the
numerical convergence, we have included 280 poloidal Eotarmonics (fronm= —140 to
140) in computing the plasma response ofithe 18 field.

We identify two major reasons that the plasma response i& feednigh-n harmonics. First,
the largest modification, that the plasma response brintpeteacuum field, is for the resonant
Fourier harmonics of the radial field. These harmonics asergglly shielded by the plasma
response (either ideal response leading to complete sigelar the resistive plasma response
with flow leading to partial shielding). However, for largdield components, the dominant
poloidal harmonics, which are normally at law-are non-resonant and are thus not shielded
by the plasma response. For the example shown in Fig. 5gediidimonics with thennumber
below 23 are non-resonant. The first resonant harmonic f®ntk 18 radial field ism/n =
24/18, since theymin value is 1.3248 for this 9MA plasma equilibrium. Since a# th> 23
Fourier harmonics have at least 3 orders of magnitude loedek, their contribution to the total
field, even taking into account the plasma response induasdification, is small. Second,
the plasma is normally deeply stable with respect to the-higink mode. Therefore, the
plasma response induced kink amplification, which is ofteseoved in lona RMP response
modelling [12, 28, 10, 13], does not occur for higfikelds.

In fact, as will be shown later on, the plasma response iadjreelatively weak for the
numbers above 4, for all the plasma scenarios consideréasimvork. Therefore, in most of
the work, we shall perform the plasma response computafiwms= 1 to 6.

Another important issue is how to obtain the total plasm@aase field which is valid in
the whole computational domain. The ESC procedure, asetbuisRef. [21], only ensures
that the plasma response is valid inside the VS. What we haleed, however, is that it is
possible to rigorously obtain the plasma response in thdemhamain even beyond the VS.
The key idea here is to first compute and store the perturb@)l glasma currents, as the
result of the plasma response to the external fields. Nextniignetic field, produced by the
perturbed plasma current, is computed based on a procegluikakent to the Biot-Savart law.
Finally, the plasma current perturbation induced field, #redoriginal vacuum field, which
can both be evaluated in the whole space, are combined tondb&atotal response field.
Examples of the this new procedure are shown below.
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Figure 5: The logarithmic plot of the= 18 vacuum radial field amplitude versus the poloidal
harmonic numbem, for the combined field from ripples, FIs and TBMs of the 9MA&as

4.2 Plasma response for four ITER scenarios

The plasma response has been computed for all four ITER sosnwith six plasma equi-
libria in total as listed in Tab. 1. For each equilibrium, ttesponse is computed for each
individualn = 1 — 6 field component. For each equilibrium and eachve separately com-
pute the plasma response to the ripphé and ripple-FI+TBM fields. In addition, the plasma
response to the ELM control coil currents is also computedife 15MA baseline scenario
and the 9MA steady state scenario, again for each individgal — 6. For the RMP fields, the
corresponding (optimal) coil configurations are taken fiRei. [32]. Some of these response
field data have been used for further investigation of theieslosses in ITER [5].

As an example, figure 6 plots the plasma response field (orlBBghcomponent alondR at

Z = —0.03m is shown) for alh = 1— 6 components, for the 9MA steady state equilibrium at
FT. The ripple, Fl and TBM contributions are all included. Aduh of the TBM contribution
normally results in several times larger field than the Ftfiél's also interesting to note that
the plasma response is not very strong (compared to thespomding vacuum field) when
all fields are included. It turns out that the plasma respteesds to larger modification of the
vacuum field, when the TBM contribution is absent. This shdvas the poloidal spectrum of
the applied vacuum field can significantly affect the plasesponse. It is also evident that
the pure plasma response (i.e. the fields produced by therped plasma response currents,
shown in red) is already small, compared to the applied vaciieid (shown in blue), for the

n = 4-component.
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Figure 6: The computeBR field (in Tesla), both real (solid) and imaginary (dashed}ga
along the major radius at the vertical positiba= —0.03m, for the 9MA steady state scenario
at the flat-top phase and including the field contributiomsnfithe ripple, the FI and TBM.
Each of the sub-plots (a-f), correspondingnte= 1 — 6, respectively, shows (i) the vacuum
field (blue), (ii) the response field produced by the pertdrplasma current (red), (iii) the
directly computed total field valid within the virtual sucta (black, in the major radius range
between 4m and 8.4m in this plot), and (iv) the total field diaverywhere, by combing
fields (i) and (ii).
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Figure 7: The computeBR field (in Tesla), both real (solid) and imaginary (dashed}pa
along the major radius at the vertical positior= —0.03m, for the 9MA steady state scenario
at the flat-top phase and including (a) the- 1, and (b)n = 2, field contributions from the
ripple, the FIs, TBMs, as well as (the lowside-bands of) the ELM control coils. Compared
are (i) the vacuum field (black), (ii) the total response fizduming the fluid model (blue),
and (iii) the total response field assuming the drift kinatiadel (red).

For the 9MA equilibrium, which has high beta, we have alstesvhether the drift kinetic
effects from thermal particles can significantly modify tbe-n plasma response. The kinetic
effects include the resonances between the mode and thendtibns of bulk plasma particles
species, including the toroidal precession of thermal emg electrons, the bounce (transit)
motion of trapped (passing) thermal ions. The comparisbaws in Fig. 7, indicates that
the drift kinetic modification is moderate for this ITER eljfaiium, for then=1 andn= 2
plasma response.

Figure 8 compares the= 1 plasma response for all 6 equilibria considered in thiskw®he
plasma response appears particularly strong for the 7.584field Helium plasma scenario.
This is associated with a strong core kink amplificationctffgy the plasma [12, 28].

4.3 Sensitivity of plasma response to flow variation

Due to the well known uncertainty in the transport predictad the toroidal flow speed for
ITER (one example is shown in Fig. 1(d)), it is important toifjewhether the MARS-F
computed plasma response is sensitive to the equilibrium fid/e choose the 15MA FT
plasma for this study. We consider the= 1 ripple plus Fl fields only, since the plasma
response yields relatively larger modification to the vamndigld, in the absence of the TBM
field.

Figure 9 shows the MARS-F computed total response field whiti&cglly scanning the
whole flow profile, obtained by the JINTRAC modelling assumthg Prandtl number of

13
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Figure 8: The computed = 1 B field (in Tesla), contributed by the ripple, the Fl and TBM
fields, both real (solid) and imaginary (dashed) parts,t@tbtlong the major radius at the
vertical positionZ = —0.03m. Each of the sub-plots (a-f), corresponding to (a) thdA5
baseline scenario at flat-top, (b) the 12.5MA hybrid scenatiflat-top, (c) the 9MA steady
state scenario at flat-top, (d) the 15MA baseline scenaniarap-up, (e) the 12.5MA hybrid
scenario at ramp-up, and (f) the 7.5MA half-field Helium suém at flat-top, respectively,
shows (i) the vacuum field (blue), (ii) the response field petl by the perturbed plasma
current (red), (iii) the directly computed total field valdthin the virtual surface (black,
in the major radius range between 4m and 8.4m in this plot),(an the total field valid
everywhere, by combing fields (i) and (ii).
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Figure 9: The computed (a) real (solid) and imaginary (ddsparts of the totah = 1 re-
sponse fiel®dBR, plotted along the major radil® across the mid-plang = 0, and (b) mag-
netic islands width at rational surfaces, while varyingalisg factor for the toroidal rotation
amplitude. The whole radial profile of the toroidal rotatibequency, as shown in Fig. 1(d)
for the Prandtl number of 0.75, is scaled by the fa€étoirhe islands produced by the vacuum
field is also plotted in (b). Considered is the 15MA scenariftedittop, with the inclusion of
both the ripple and the FI fields.

0.75, by a factofF, which varies between 0.1 and 2. The total response field Woiesig-
nificantly change whef varies within a factor of 2 along both ends. This also ingisahe
difference between the two rotation profiles shown in Figd) Khould not strongly affect
the computed plasma response. Indeed the MARS-F compudatanfirm that the plasma
response is almost identical using these two flow profiles frag. 1(d).

However, the plasma response does significantly chandee flaw speed is reduced by one
order of magnitude, as shown in Fig. 9. Similar observatitenee been made by previous
studies [12, 10].

4.4 Evaluation of the Chirikov parameter

Associated with the resonant 3D field perturbations are thgnetic islands and the Chirikov
parameter. These islands are formed as a result of the foecednection. The MARS-F

resistive plasma response model enables us to comparégihe veidth (and consequently the
Chirikov parameter) with that of the vacuum approximation.

The MARS-F computed radial field perturbation is decomposeHaurier harmonics, in a
PEST-like straight field line coordinate system

[ b-Oyp
2 By ) v

whereQ denotes th¢m, n)-th Fourier harmonic of the perturbed radial magnetic fleldp,
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is the equilibrium poloidal flux function, which also labele radial coordinate, with r =
v/ (Wo—Wp)/(Wo—0). Note that here we have assumed that the equilibrium pdldiida
is Yo on the magnetic axis, and vanishes at the plasma eBggdenotes the equilibrium
magnetic field, angis the geometric toroidal angle.

As shown in Appendix, the width of the magnetic island, leckat the rational surfaap=
m/n, can be evaluated, in general toroidal geometry, as

W:£:4 '
a

_Q
2ypnS

) (8)

whereS= (r/q)dq/dr is the magnetic shear, evaluated at the same rational surfac

Assuming two neighbouring islands, of width andw,, are located at the minor radii of
andr,, respectively, the Chirikov parameter is conventionallfiroel as

o= Wetw/2 (9)

[ro—r1]

In the following, we shall plot the Chirikov parameter for #i&ER 15MA scenario, based on
the computed plasma response. A similar investigation bas barried out for the 9MA case
but not shown here. Before showing the results, we point @itkie Chirikov parameter only
provides an estimate of the field line stochasticity, indlUogthe islands overlapping. A more
accurate knowledge is obtained by direct field line tracigificare plot) using the computed
plasma response field.

We have compared the computed Chirikov parameter under theuwafield (ripple plus Fl
fields) assumption, between the current ramp-up phase anithtitop phase, for the 15MA
baseline scenario and for each of the 1— 6 toroidal components. As expected, the Chirikov
parameter is generally larger, for al§, during the RU phase. Each singieomponent does
not yield significant islands overlapping even near thempkagdge - the Chirikov parameter
is always below 1.

As one example, figure 10 compares the Chirikov parameteouittblue) and with (red)

the plasma response, for eaglsomponent of the 15MA FT case with the applied ripple plus
the FI fields. Except for tha = 6 case, the plasma response generally reduces the magnetic
island width compared to the vacuum island, and hence thekGhiparameter as well. The
reduction is significant towards the plasma core, but gdlgerederate near the plasma edge,
due to both higher plasma resistivity (lower thermal el@ctiemperature) and slower plasma
flow in the edge region. The amplification of the magneticridlaby the plasma response,
shown here for the = 6-component, is also plausible, as has already been nopeehirously
studies [33, 34].

Combining alln-components yields Chirikov parameter locally exceedingslshown in Fig.
11. This is largely because more islands, of different ited& now co-exist at very close
distances. The Chirikov parameter, as a function of the masnmor radius, thus shows a
rather irregular behaviour when combining together adirisls with differenh-numbers. This
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Figure 10: Comparison of the Chirikov parameters, corresipgrtd each individuah=1—6
ripple+Fl vacuum (blue) and total response (red) field, for the 15Ménsirio at the flat-top
phase.

complicates the judgement on the field line stochastizatear the plasma edge region. A
better definition rather than simply the Chirikov parametach as that defined in Ref. [32],
can be more useful. Eventually the best way of judging thd fiek stochasticity, is probably

still the Poincare field line tracing plot. Neverthelesg.FL1 still quantitatively shows clear

reduction of the Chirikov parameter by the plasma response.

We also find that, for a given(n = 3 andn = 4 for ITER), the largest field perturbation comes
from the ELM control coils (the RMP fields). On the other harek symmetry of the ELM
coil distribution along the toroidal angle in ITER normathgnerates narrow band toroidal

spectrum of the 3D field perturbation, compared to the rdthead spectrum (fon up to 20)
generated by the ripples, Fls, and particularly the ITER TBMs

5 Error field correction using EFCC

5.1 EFCC specification

In this work, we consider using the ITER error field correcttmils (EFCC) to correct the 3D
fields produced by the FIs and TBMs. The correction takes iotoant the plasma response
as computed by MARS-F, following various EFC optimizatioriesta.

The EFCC design, shown in Fig. 12, is taken from Ref. [35]. Eashaonsists of 6 coails,
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Figure 11. Comparison of the Chirikov parameters, corresipgnob alln = 1— 6 vacuum
(blue) and total response (red) ripplEl fields combined together, for the 15MA scenario at
the flat-top phase, (a) in the whole plasma region, and (b)theglasma edge.

covering 60 degrees along the toroidal angle for the top atitin rows, and 36 degrees for
the mid-plane row. The upper limit of the coil current is 1Qkiith 32 turns designed for the
top and bottom rows, and 20 turns for the mid-plane row of EFCC.

Here we shall consider the correction of the 1 field component, by three rows of the EFCC.
This is motivated by the fact that normally the= 1 field component leads to the most severe
consequences for the mode locking. We shall consider thefeiRie 15MA scenario at the
flat-top phase. Two studies, with and without the TBM contiittuto the EF, shall be carried
out. Here by the EF we specifically refer to the combined figais the ripple, the Fls, and/or
the TBMs.

5.2 Ciriteria for EFC optimization

We shall consider various optimization criteria, followia similar study that has been carried
out for the MAST plasmas [21]. In particular, according tot€iia A, we choose the EFCC
currents such that the/n = 2/1 resonant component of the total field (EFEFCC) vanishes
at theq = 2 surface. This choice is motivated by the fact that the modkithg observed in
experiments is often associated with the 2/1 tearing mode gossibilities are considered:
either the full cancellation of the vacuum EF only, by thewam EFCC (further referred to
as Criterion AV), or that of the full field including the lineegsistive plasma response to both
EF and EFCC (further referred to as AP).

With Criterion B, we minimize the net resonant electromagnairque (thg x b torque)
acting on the whole plasma column, due to the plasma respoiseh the EF and the EFCC
field. This is again motivated by the mode locking physics.

The third family of criteria, Criteria C, is designed to miniaivarious aspects of the 3D
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Figure 12: Location of the top, mid-plane, and bottom rowshef EFCC in ITER, plotted
together with the plasma boundary shape (red) and the dgableim vessel model (blue).
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corrugation of the plasma surface, as a result of the plassponse to 3D EF. This includes
the overall peak displacement of the plasma surface (furéferred to as Criterion CA), the
averaged value of the surface displacement (AE), the low §iele mid-plane (CI) as well as
the maximal displacement near the equilibrium X-point (CK)is family of criteria, initially
designed for correcting the EF in MAST plasmas [21], may &lsaf practical usefulness
in ITER (e.g. to minimize the peak amplitude of the plasmaldisement thus avoiding the
plasma locally touching the first wall).

The actuators for the EFC optimization are obviously theg¢mows of EFCC currents. As-
suming that then = 1 currents flowing in the upper, lower and middle rows are iieelc
asIVexp(ioV), L exp(idt), andIMexp(idM), respectively, we end up with a generally six-
dimensional optimization problem in the real spéicg, |-, IM @Y ®- ®M). In order to sim-
plify the problem, we shall fix certain parameters, and cauymost of the optimization in
two-dimensional sub-spaces. Such approach not only diegpthe optimization procedure,
but also allows easy illustration of the robustness of thiiokd optima. Even though a
systematic investigation has been performed, we shalktré&etow only sample results illus-
trating the key results.

5.3 EFC optimization results

As the first study, we choose three typical cases of spegfyia EFCC current amplitude: (i)
V=1t =M (i) 21V =21t = 1M (i) 1Y =1t = 2IM. For each case, we assume the same
toroidal phase for the upper and lower rows of coils, i = ®- = &, and independently
vary the two phase parametémd, ®M). The assumption obY = ®- = ® is not unique but
representative. In fact we have also made the optimizaearaingd¥ = —d- = @, but find
that the optimal results are not sensitive to this.

We adopt the following optimization procedure. First, wa the MARS-F code to compute
the plasma response fields (or the vacuum field for the vacwelthdased Criterion AV) for
each individual row of coils, assuming a unit current anojolé and zero toroidal phase. Next,
we perform superposition of the computed fields, by lineadgling each of the fields by the
coil currents in the corresponding rows. The superposigaways valid for linear plasma
response. The EFC optimization has been carried out withrowith the TBM field.

One example, based on the vacuum field correction Criterigris®shown in Fig. 13. Here
only the ripple and FI contributions are included. We fix tloél current amplitude at’ =

IL =IM =] = 10kAt, and varying the coil’s phasing in the 2D domair{®F = ot = d, oM),
the optimal point® = 90° and®M = 100, is shown by the “+” symbol in the figure. Note
that, even though the optimal (corresponding to minib%{ amplitude) point is relatively

robust, there is also a global maximal pointlat 90° and®M = 280 that corresponds to the
worst correction of the@ = 1 vacuum island.

Taking into account the plasma response, however, significahifts the optimal point as

shown by Fig. 14. The optimal coil phasing now becom®t & ®b = 34, oM = 33P).
Note also the significantly reduced field amplitude, comgdecethe vacuum field shown in
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Figure 13: The amplitude of the/n = 2/1 vacuum radial field at the = 2 rational surface
with varying toroidal coil phasing for EFCC. The vacuum fieldth& combination of the
ripple+Fl fields, and the EFCC field assumifg= I = IM = | = 10KALt.

Fig. 13.

The next example also includes the TBM field contribution. Témults, following optimiza-
tion criterion B, is reported in Tables 2, for various choioésombination for the coil current
amplitudes. At each combination, the optimal EFCC curreasspty is presented. Overall, it
is interesting to note that, with the inclusion the TBM cdntition, the optimal phasing for
the middle row EFCC remains relatively fixed at aroupld = 30C°, according to all but the
vacuum criteria.

As an example, one optimum point from Tab. 2, with 2= 2|- = IM = | = 18kAt, ® = 12(°
and®M = 300, is shown by the “+” symbol in Fig. 15. The negative value d tbrque
indicates the ngtx b acts to brake the plasma flow.

Next, we fix the EFCC current phasing and optimize the curremglidude. We choose two
cases of specifying the EFCC current phase®{)= ¢ = ®&M = @, and (i) dY = L =
0,IM = @. For each case, we assume the same current amplitude fqupleeand lower rows
of coils, i.e. IY = I- =1, and independently vary the two amplitudgsl™). We adopt the
similar procedure to that described for the coil phasingnaigation.

Even though the optimum varies depending on the applied 3B ¢enfiguration (without
or with TBM), and on the chosen criterion for optimization, @rerall conclusion is that the
dominant correction comes from the middle row EFCC for thelapFI and/or TBM fields.
This is also evident from one example shown in Fig. 16, by #ut that the optimum point
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Figure 14: The amplitude of the/n = 2/1 total response radial field at tlye= 2 rational
surface with varying toroidal coil phasing for EFCC. The fiedthie combination of the plasma
response to the rippleF| fields, and to the EFCC field assumitiy= |- = IM = | = 10KALt.

Table 2: Optimal EFCC current phasing (in degrees) for ctimgaipple+FI+TBM fields
following the plasma response based Criterion B. HeYe= ®- = . T is the minimal net
] x b torque for each choice of the EFCC current amplitude.

V=1t =1"=]|

21V =21t =M=

U =1t=2"=]

I(KAD)

O]

CDM

T(Nm)

0]

CDM

T(Nm)

)

(DM

T(Nm)

2

4

6

8
10
12
14
16
18
20
22
24
26
28
30

140
140
140
140
130
130
130
110
90
70
60
50
40
30
30

300
300
300
300
300
300
300
310
310
320
320
320
320
320
320

-2.6760
-1.9864
-1.4115
-0.9512
-0.6029
-0.3674
-0.2453
-0.2206
-0.2425
-0.2625
-0.2939
-0.3388
-0.3930
-0.4597
-0.5275

140
140
140
140
130
130
130
120
120

80

60

40

30
340
340

300
300
300
300
300
300
300
300
300
310
310
310
310
300
300

-2.7866
-2.1783
-1.6550
-1.2169
-0.8626
-0.5925
-0.4069
-0.3049
-0.2822
-0.3139
-0.3474
-0.4016
-0.4764
-0.5573
-0.6539

140
140
140
140
140
140
140
140
130
130
130
120
110
110
100

300
300
300
300
300
300
300
300
300
300
300
310
320
320
330

-2.9474
-2.4615
-2.0225
-1.6304
-1.2851
-0.9866
-0.7351
-0.5303
-0.3707
-0.2563
-0.1881
-0.1532
-0.1410
-0.1465
-0.1394
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Figure 15: The computed ngk b torque acting on the whole plasma column, with varying
toroidal coil phasing for EFCC. The torque occurs due to therptaresponse to the combina-
tion of the ripplerFI+TBM fields, and the EFCC field assuming’2=2I- = IM = | = 18kAt.

is much more sensitive to the middle row coil current, thantthp and bottom rows EFCC
currents.

6 Flow damping due to Fl and TBM fields

Here, we again choose the 15MA baseline scenario at thefigittase. We run the MARS-Q
[18] code to model the time evolution of the toroidal flow, @®éng the presence of (i) the
ripple + Fl fields, (ii) the ripple+ FI + TBM fields, and (iii) the ripple+ FI + TBM + RMP
fields. As in the case of the EFC study (and following the sarotmvation), we consider only
then = 1 external 3D fields. The MARS-Q model has been shown to welrogluce the
RMP induced flow damping in MAST [26] for variousnumbers. The code has also recently
been applied to model the flow damping due to the pure RMP fieldls 6 = 3 andn = 4) for
one of the ITER 15MA plasmas [27]. The flow damping modellinghis study always starts
with an initial rotation profile obtained from the JINTRAC nwidling, with the assumption of
the Prandtl number of 0.5 (cf. Fig. 1(d)).

One peculiar aspect of the initial value modelling for thisVIA plasma, is that this equilib-
rium, with gmin=0.95, is unstable to the= 1 internal kink mode. Since MARS-Q does not
have the sawtooth crash physics incorporated into the eseelshall model two possible sit-
uations. The first is the flow damping in the presence of anabesinternal kink (i.e. before
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Figure 16: The computed X-point displacement of the plasonéase, with varying EFCC
current amplitudes. The displacement occurs as the plasspomds to the combination of
the ripple+FI+TBM fields, and to the EFCC field assumigy = ®- = oM = & = 300°.

the sawtooth crash). Such a simulation will eventually leadn-realistically large amplitude
of the internal kink mode, which fully brakes the toroidaMiloThe physically meaningful
time period of the simulation corresponds to the stage wtlereamplitude of the internal
kink mode still remains reasonably small.

The second situation is to model the flow damping after thei@ativ crash, wherem, be-
comes slightly above 1 and the internal kink mode is stabléedd by slightly decreasing the
total equilibrium plasma current, we can elevatedhg to be slightly above 1, thus ensuring
a stable internal kink mode. Table 3 lists the linear grovetie and frequency (both normal-
ized by the on-axis toroidal Al&n frequency) of the MARS-F computed= 1 internal kink
mode while scanning thgn, value near unity. The toroidal plasma flow is included inte th
computation. The mode becomes marginally unstabtg,at= 1.03, and becomes stable at
Omin = 1.04. The real frequency of the mode matches that of the cosenalaotation speed.
In other words, the mode rotates together with the plasma.

We emphasize that changes to the original equilibrium iSmmahin the scan listed in Table
3. The largest change is in tlgeprofile, which is still minor, yet the stability of the inteal
kink changes, which affects the flow damping modelling by MAQRS

We have performed the MARS-Q modelling for several choicdb®df-profile shown in Tab.

3. Figures 17 and 18 show and compare three cases, for thelegttresonant field amplitude
and the net toroidal torques, respectively. All the 1 3D external fields are included.

24



Table 3: Linear growth ratg and frequencyw of then = 1 internal kink mode for the 15MA

baseline plasma.

Case#t

Omin

Yia

wWla

1

0.9488
1.0057
1.0100
1.0200
1.0300

3.67191E-3
4.45495E-3
3.99806E-3
2.68833E-3
1.03062E-3

9.51908E-3
9.35699E-3
9.31278E-3
9.19379E-3
9.01798E-3

OO WN

1.04 <0 -

Highergmin generally leads to slower growth of the plasma response ftialil full saturation
is reached when the internal kink mode becomes marginaliyabie or stable. For the three
cases shown in Figs. 17 and 18, the original equilibriumhegiti, = 0.95, is most unstable to
then= 1 internal kink, also agreeing with the computed linear gromates of the mode shown
in Tab. 3. For such cases, the non-linear runs terminate thiteresonant field perturbations
at rational surfaces reach too large amplitude (over 1 Gaue§ and the net toroidal torques
become unrealistically large at a very short time scaleglaf milliseconds). Within this
time interval, MARS-Q results show that the toroidal flow i strongly affected. The lin-
early unstable internal kink mode eventually leads to nicaécrash of the simulation, in the
absence of additional non-linear physics associated wilsawteeth in MARS-Q.

For the fully saturated solution (where the internal kinkinearly stable), the final flow is
again found to be nearly the same as the initial flow (i.e. énabsence of 3D fields). We also
find that the saturated amplitude for the resonant radial fiermonics remains well below
the 1 Gauss level. This is due to the strong screening of ttgnete islands by the plasma
flow in the plasma core region. The saturated toroidal tas@ue well below 1Nm level even
with the inclusion of the TBM field.

The periodic oscillations shown in Figs. 17 and 18 are rdl&wethe mode rotation. In fact
the estimated oscillation frequency from Fig. 17 recoveef the computed mode frequency
shown in Tab. 3. The oscillation frequency for the torquag.(RE8) is roughly twice of the
mode rotation frequency, as expected.

Inclusion of then = 1 RMP contribution from the ELM control coils almost does nffeet
the simulation results, for both the core flow damping andrtkietoroidal torques. This is
because the ELM coils are configured to produce predominémin = 3 field perturbation
in this case. Tha = 1 side-band field is very small. The inclusion of the TBM cdmition
does significantly increase the torques, by a factor of ab@uthough the resulting damping
is still generally too weak to substantially affect the phasflow.

The MARS-Q modelling does not assume the equilibrium evotuti Moreover, we only
model thechangeof the toroidal momentum due to the applied 3D fields (in owgecthe
ripple+FI+TBM+RMP fields), by assuming that the a steady state momentumdsa(as-
sentially between the momentum source terms and the momatitiusion term) has already
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Figure 17: Time evolution of all the resonant harmonics & thdial field perturbations,
computed by MARS-Q for three sets of 15MA baseline equiliwigh gmin = 0.95 (thin
lines), gmin = 1.02 (medium-thick linesymin = 1.03 (thick lines), as a result of quasi-linear

plasma response to time= 1 ripple+FI+TBM-+RMP fields.
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Figure 18: Time evolution of all three torque componentsnpoted by MARS-Q for three
sets of 15MA baseline equilibria withmin = 0.95 (thin lines),gmin = 1.02 (medium-thick
lines) gmin = 1.03 (thick lines), as a result of quasi-linear plasma respdosthen = 1

ripple+FI+TBM+RMP fields.
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been achieved before the application of the 3D fields. Thasvalus to avoid direct modelling
of the momentum source term in the momentum evolution egu§ti8]. On the other hand,
the JINTRAC code [19] does allow the direct modelling of bdth plasma equilibrium evo-
lution and the (time-varying) momentum source terms such&siBI torque. But JINTRAC
does not compute the toroidal torques due to the 3D fieldsteftre, we wish to couple the
MARS-F and the JINTRAC codes in the following sense. We firstMARS-F to compute
the linear plasma response induced toroidal torques, gisengquilibrium and the flow speed
as predicted by JINTRA®eforethe application of the 3D fields. The magnetic surface aver-
aged torque densities due to the 3D fields are then enteh@tdNTRAC transport simulation
as the additional momentum sink terms. And iteration betwe® codes can be envisaged if
necessary.

Figure 19 reports the final JINTRAC simulation results, withand with these additional
torques. The predicted steady state flow profile, shown in 9¢c), is almost not affected by
the 3D fields induced torques, confirming the MARS-Q findingsrfithe previous Section.
There is only a slight change to the flow profile near the padlegh. The results are probably
not surprising if we compare the 3D fields induced torque witit produced by the NBI, as
shown by 19(b). The NBI torque is much larger than the MARS-Fmated torque due to 3D
fields.

Due to the very weak effect of the 3D fields on the plasma duilm and the toroidal mo-
mentum evolution, there is no need to carry out an iteratreegxlure between MARS-F and
JINTRAC, for this specific case considered in the work. Sudiaiten may indeed be neces-
sary for other cases, where the 3D fields induced torque leasignificant modification of
the plasma momentum confinement.

/7 Summary

We have carried out computations in toroidal geometry ferlfER plasma response to 3D
magnetic fields, for four scenarios: the 15MA baseline, tA&MA hybrid, the 9MA steady
state, and finally the 7.5MA half-field Helium plasma. For tieseline and the hybrid sce-
narios, we also separately considered an equilibrium attineent ramp-up phase and an
equilibrium during the flat-top phase.

The 3D external fields are generated by the toroidal fieldlegphe ferritic inserts, the test
blanket modules, the ITER error field correction coils, amdgome cases also by the ELM
control coils. Due to the broad toroidal spectrum of the Hil #me TBM fields, we have
computed the plasma response to variom®mponents of the applied fields. Since we find
that the plasma response is very weak for higield components, this allows us to limit the
plasma response computations mainly for lowe&omponents, namely=1— 6. We have
established a rigorous procedure of computing the totglorese field which is valid in the
whole space.

A sensitivity study of the plasma response computationgnagéhe toroidal flow variation
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Figure 19: The JINTRAC modelled steady state radial profiegd) the thermal ion temper-
ature, (b) the torque densities, and (c) the toroidal flovedpéor the 15MA baseline scenario
during the current flat-top phase. Three torque densitesa@mpared in (b): the NBI torque
(red), the sum (blue) of all three torques due to plasma respto 3D fields from ripple and
FI, and the sum (pink) of all three torques due to plasma mespdo 3D fields from ripple,
FI and TBM. Three simulated steady state flow profiles are coetpia (c): without the 3D
fields induced torque (red), with the torque induced by epghd FI fields (blue), with the
torque induced by ripple, Fl and TBM (pink).
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shows that the plasma response is not sensitive to the &biftogl, as long as the latter does
not change by order of magnitude. Based on the computed pleesspanse, we have also
evaluated the magnetic islands width and the associateck@hiparameter. The resistive
plasma response in most cases reduces the island width oesinwéh that of the vacuum
island, and consequently, reduces the Chirikov parameterels Despite the fact that each
individual n-component results in Chirikov parameter below 1, combamabtf all n's can
result in Chirikov parameter locally exceeding 1. The Chwikawiterion, though may still
be useful as an indicator for the plasma edge field line s&i@@ion, may be quantitatively
less useful when islands with differemis overlap. A better and more direct way to judge the
stochasticity is still the Poincare map. For a give(h = 3 andn = 4 for ITER), the largest
field perturbation, with the amplitude of the order of 100 &gwomes from the ELM control
coils (the RMP fields). On the other hand, the symmetry of thMEbils in ITER normally
generates narrow band toroidal spectrum of the 3D field geation, compared to the rather
broad spectrum (fon up to 20) generated by the ripple, Fl, and particularly thERTTBM,
though the corresponding= 3 andn = 4 components of these 3D broadband fields are about
ten times smaller than the ELM fields. The amplitude of the TB&dfis typically several
times larger than that of the FI field. Therefore, most of th@aldband 3D fields in ITER are
produced by the TBM components. On the other hand, the tdrandbpoloidal spectra of the
fields are different between these two components.

Based on the plasma response computations, we also perf@ratdly on optimal error
field correction using the ITER EFCC, where the error field isahsumed to be the= 1
component of the ripple field, the Fl and the TBM field. The stisdyade based on the 15MA
baseline case during the current flat-top phase. The EF@zatiions have been carried out
using various optimization criteria designed for an eatyglg on the EFC in MAST [21]. The
optimizing parameters are both the amplitude and the tatqgase of the EFCC currents
flowing in the top, middle, and the bottom rows. The key findimghat the middle row of
EFCC plays the dominant role in correcting the EF due to ripple-TBM. At a fixed coill
current amplitude, it turns out that about 8@the optimal phase for the middle row of EFCC
current, in order to correct all the 3D fields including thitiee (dominant) TBM contribution.
This is robustly predicted by all but the vacuum field basetthupation criteria considered in
this work, as well as by various choices of the coil currenpkionde.

Both the MARS-Q modelling and the JINTRAC modelling, to whicle 8D fields induced
torques are provided by the MARS-F computation, show ndgédiow damping by the& =

1 component of all the 3D fields considered in this work, faa #5MA baseline plasma.
In addition, MARS-Q modelling also shows that, in the absewnfcthe n = 1 internal kink
instability, the non-linear time evolution fully saturatafter about 100ms. The dominant
torque is provided by the resonant electromagnetic tordire JINTRAC modelling shows
that the total torque due to all time= 1 3D fields, even in the presence of TBM field, is still at
least one order of magnitude smaller than the NBI torque fi@l6MA baseline scenario.

Although not included in this work, we mention that similalARS-Q and JINTRAC runs
have also been performed for the 9MA steady state plasmiavery similar findings for the
flow damping. Then = 1 fields from Fls and TBMs do not provide appreciable changheo t
toroidal flow.
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Appendix: Magnetic island width and Chirikov parameter

Evaluation of island width in MARS-F coordinates

In MARS-F PEST-like coordinates, x, @), definingxmn = mx + ngandds as the variation of
sof the 3D field line along the helical angig.n, we have

00s _ B-DOs
OXmn - B- OXmn’

(10)

whereB = Beqg+ b is the total 3D magnetic field, and we shall only consider arsonant
harmonic for the perturbed field In MARS-F formulation, we have

B-Us = b-Os=J"'Qém  Q=biks ¢ (11)
B-OXmn =~ Beq' UXmn= Beq: (MIX +nl®) (12)
m{'J~ 1 +nF/R% = /I Y (m+nq) ~ §'I Ind5s, (13)

where(y = d@)/ds and we have used the fact that in the PEST-like straight liieédcoordi-
nate system,

_F/R :
9= 73 ~ Qs+ 3s. (14)
Thus we have
00s Q..
OXmn nm’q’ESseI ’ (15)
or
0(3s)? 2Q
= n 16
OXmn  NQY q (16)
yielding
2Q 4|Q| Q
2 Xmn|X2 2 _ _
(68) - in&lq/ el X1’ ( S)max— ‘n¢/q/’7 ’6 |max— nm/q/ (17)
Finally we define the island width, in terms of the normalisador radiuss, to be
nQ'q/ ntD’qS 2on nqS

where S = sdg/ds/q as calculated at the rational surface, and we have used theht

§ = 2Qpes.
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An equivalent approach for evaluation of island width

Following Ref. [36], the island width, in toroidal geometrgchin terms of the normalized
poloidal fluxy, is calculated as

Brmn /o dq qu — Yaxis

W¢:6L|J24 W7 q—ﬂv w:w—o’ (19)
Brn = 628%'&‘, OBmnA = 27§cos(me— ng)dB - dS, (20)
0

whereWo = Psep— Yaxis = 2mJ)p. Note the factor of & here due to special definition of the
poloidal flux in MARS-F.

In terms of MARS-F variables]S = Jsndxdg = JOsdxd, we obtain
5B = 74 e (MX+in0) 358 . Osdydp = (21)2Q, 21)

where as beforeQ = bl . Note that the factor of 2 in the definition dBypA disappears
due to different Fourier representations for the pertufid. We thus obtain

Sincey = &%, we have
dg dq1l
/
=—=——. 2
d dy¢ ds2s (23)
Substituting all the above factors into (19), we obtain glarid width in terms ofy
22 Q sdg/ds
Wy=0 =4/ ——— S= . 24
b=o0 {o naS q (24
Sincey = &%, we havedy = 2s3s. Therefore, the island width, in terms gfis
1 Q

which is exactly the same as that calculated in Eq. (18).

In case the island is generated by the combination of both) and (—m, —n) resonant har-
monics, the facto® should be re-defined as

1,—m—
Q = RelbyiAks_F + byiars_Fl = 2RebyiARs F- (26)
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Chirikov parameter

The Chirikov parameter, between two adjacent islands |dcatteational surfaces;, ands,,
is defined as

W1 + Wo
oO=——. 27

This parameter can also be approximately defined for a sisglad, assuming a single
field perturbation. In this case, the distante between two adjacent rational surfaces is
approximately calculated via

A(Smr1) —d(sm) = qAs. (28)
Sincenq(sm+1) —NA(Sn) = (M+1) —m= 1, we haveAs= 1/(nq). Thus

W 1 ngS
0_A5_4‘2% §ﬂ. (29)

An asymptotic scaling of Chirikov parameter at large n

Consider a large-aspect-ratio model for the perturbed vadield b = 00, satisfying

U] 10%p 0°Q
w%ﬁ@”ﬁ_a (30)

2
J-b=0 q"_ ror (
Assuming( = (r)em+kz with k = n/Ry, we obtain the modified Bessel’s equation

2
20W + xaLIJ — (+mP)P =0, (31)

wherex = nr/Ry. The physically interesting solution is the modified Bessalttionly(x)

W=3 s ) 2)

At small argument &< x << v/m+ 1, we have

1 X\m
m>X) > E g (E) ‘ (33)
At large argument, we have
el
Im(X) ~ N (34)



We shall consider the large argument asymptote, assumisgarge. Assuming that the
vacuum magnetic field amplitude scales #a &t the plasma boundary, i.8(r =a) = 1/n,
where

QN =Co- o (35)
r)= :
\/Nr/Ro
The boundary condition giveg = /a/Roe "¥Ro/,/n, thus
11
_ =~ aheg(l-9)
Q(r> - n \/ée ) (36)

wheregp = a/Ry,s=r/a. Inserting the above equation into (29), we obtain the largealing
for the Chirikov parameter

O~ S—5/4e—nso(1—s)/2, (37)

showing that the Chirikov parameter decays exponentiallgrgen, basically due to the fact
that the vacuum field amplitude decays exponentially with
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