
Chalmers Publication Library

Performance Bounds for Remote Estimation with an Energy Harvesting Sensor

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Proc.  IEEE Int. Symp. Information Theory (ISIT)

Citation for the published paper:
Ozcelikkale, A. ; McKelvey, T. ; Viberg, M. (2016) "Performance Bounds for Remote
Estimation with an Energy Harvesting Sensor". Proc.  IEEE Int. Symp. Information Theory
(ISIT)

Downloaded from: http://publications.lib.chalmers.se/publication/237341

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70616873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://publications.lib.chalmers.se/publication/237341


Performance Bounds for Remote Estimation with an

Energy Harvesting Sensor

Ayça Özçelikkale, Tomas McKelvey, Mats Viberg

Abstract—Remote estimation with an energy harvesting sensor
with a limited data buffer is considered. The sensor node
observes an unknown correlated circularly wide-sense stationary
(c.w.s.s.) Gaussian field and communicates its observations to a
remote fusion center using the energy it harvested. The fusion
center employs minimum mean-square error (MMSE) estimation
to reconstruct the unknown field. The distortion minimization
problem under the online scheme, where the sensor has only
access to the statistical information for the future energy packets
is considered. We provide performance bounds on the achievable
distortion under a slotted block transmission scheme, where at
each transmission time slot, the data and the energy buffer is
completely emptied. Our bounds provide insight to the trade-
off between the buffer sizes and the achievable distortion. These
trade-offs illustrate the insensitivity of the performance to the
buffer size for signals with low degree of freedom and suggest
performance improvements with increasing buffer size for signals
with relatively higher degree of freedom.

I. INTRODUCTION

Energy harvesting (EH) offers a promising perspective for

efficient usage of energy sources in sensor networks. Sensors

with EH capabilities use alternative available energy sources,

such as solar power or mechanical vibrations, instead of

completely relying on a fixed battery or the power from

the grid. In addition to utilizing energy resources that may

otherwise be wasted, EH capabilities offer prolonged battery

life-times, eliminates the need for dedicated power cables and

offers significant mobility for the nodes in the network [1].

The intermittent nature of the energy available is one of the

main challenges in the design of EH systems. Accordingly,

performance of EH communication systems have been studied

under a broad range of scenarios, but mostly under the per-

formance criterion of rate maximization; see, for instance, [1–

4]. Although these works successfully address issues related

to reliable communications, they can only provide limited

insights about the sensing problem at hand, i.e. the recovery

of the unknown field measured by the sensors. In that respect,

estimation with EH sensors have been studied in a relatively

small number of works, such as parameter estimation [5]

and estimation of Markov sources [6], [7]. Nevertheless the

interplay between the unreliable characteristics of the EH

sources and the estimation performance has only been partially

understood.

An important characteristic in estimation problems is the

varying degrees of freedom, i.e. degree of sparsity, hence
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varying degrees of correlation of the unknown signal. In

addition to providing a reasonable model for physical fields,

the sparsity of the signal can be utilized to compensate for the

unreliable nature of the energy sources in an EH system. For

EH systems, structural results that directly exploit the sparsity

or the correlation characteristics are available only for a limited

number of scenarios, such as estimation of a single parameter

[5], Markov sources [6], [7], two correlated Gaussian variables

[8] and i.i.d. Gaussian sources as a result of the findings of, for

instance, [2], [3]. Here, we address this issue by focusing on

the trade-offs between the estimation performance, the level

of sparsity of the signal and the buffer size.

We consider an EH sensor which observes an unknown

correlated c.w.s.s. Gaussian field and communicates its obser-

vations to a remote fusion center using the energy it harvested.

The fusion center employs MMSE estimation to reconstruct

the unknown signal. We consider the problem under a limited

data and energy buffer constraint and a slotted transmission

scheme where at each transmission time slot the data buffer

and the battery is completely emptied. We consider an amplify-

and-forward strategy similar to [5]. We focus on the online

scheme, where the sensor has only access to the statistical in-

formation for the future energy packets. Using random matrix

theory and compressive sensing tools, we provide performance

bounds that reveal the trade-off between the buffer size and

the achievable distortion. As one may infer from compressive

sensing results, the performance bounds are observed to be

relatively insensitive to the buffer size for signals with low

degrees of freedom, i.e. for sparse signals. Our results also

quantify the possible performance gain due to increasing buffer

sizes for signals with relatively higher degrees of freedom.

The rest of the paper is organized as follows. In Section II,

the system model is described. Our performance bounds are

presented in Section III. In Section IV, illustration of the

bounds is provided. The paper is concluded in Section V.

Notation: The complex conjugate transpose of a matrix A
is denoted by A†. The spectral norm of a matrix A is denoted

by ||A||. Positive semi-definite (p.s.d.) ordering for Hermitian

matrices is denoted by �. In denotes the identity matrix with

In ∈ Cn×n. The l2 norm of a vector a is denoted by ‖a‖.

II. SYSTEM MODEL

A. Signal Model

The aim of the remote estimation system is to estimate the

unknown complex proper zero mean c.w.s.s. Gaussian field

x = [x1, . . . , xN ] ∈ CN×1, x ∼ CN (0,Kx) with Kx =
E[xx†]. Here, the covariance matrix Kx is circulant [9], [10]

and models the possible correlation of the field values in time.
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Fig. 1: Energy Harvesting Sensor

Let s be the number of non-zero eigenvalues of Kx, i.e. rank

of Kx. Let Kx = UsΛx,sU
†
s be the (reduced) singular value

decomposition of Kx, where Λx,s ∈ Cs×s is the diagonal

matrix of non-zero eigenvalues and Us ∈ CN×s is the sub-

matrix of U corresponding to non-zero eigenvalues with U ∈
C

N×N the DFT matrix [10]. Let Px = tr[Kx] = tr[Λx,S].
We consider Λx,s of the form Λx,s =

Px

s
Is. Here s gives the

number of degrees of freedom (d.o.f.), i.e. the sparsity level

of the signal family. This type of models have been used to

represent signal families that have a low degree of freedom

in various signal applications, for instance as a sparse signal

model in compressive sensing literature [11], [12].

B. Sensing and Communications to the Fusion Center

At time epoch t, the sensor observes the field value at time

t, i.e. xt. The observations are held in a buffer of finite size

Qd before transmission. The buffer contents at the end of

transmission time slot k, i.e. at the end of time epoch kQd,

is given by x̄k = [x(k−1)Qd+1, x(k−1)Qd+2 . . . x(k−1)Qd+Qd
].

For convenience, NT = N/Qd is assumed to be an integer

where NT gives the number of transmission blocks. As illus-

trated in Fig. 1 and Fig. 2, we consider a block transmission

scheme, where at the end of transmission time slot k, the

sensor transmits the data in its buffer to a fusion center using

an amplify-and-forward strategy

ȳk =
√
pkx̄k + w̄k, k = 1, . . . , NT , (1)

where yk and w̄k denote the received signal at the fusion

center and the effective channel noise for transmission time

slot k, respectively. Here,
√
pk denote the amplification factor

adopted by the sensor at transmission time slot k. The channel

noise w̄k is modelled as complex proper zero mean Gaussian

w̄k ∈ CQd×1 ∼ CN (0,Kw̄k
), Kw̄k

= E[w̄kw̄
†
k]. Let w =

[w̄1, . . . , w̄NT
] ∈ CN×1. The noise for different samples and

transmission time slots are assumed to be uncorrelated with

Kw̄ = E[w̄w̄†] = σ2
w̄IN .

Similar to [5] we consider an amplify-and-forward strategy,

motivated by [13] and the high complexity and the high energy

cost of source and channel coding operations. The above type

of block transmission scheme allows us to study the effect

of finite buffer size on estimation and facilitates connections

with the off-line uniform allocation strategies optimal for i.i.d.

sources [2]. It is also supported by the fact that for devices

with low power budgets, it is more energy efficient to send

relatively larger amount of data at each transmission [14].

The average energy used by the sensor for communications

at transmission slot k can be written as follows:

Jk=τE[||√pkx̄k||2]=τpk

Qd
∑

t=1

σ2
xkQd+t

=τpkQd

Px

N
, (2)

where we have used σ2
xkQd+t

= σ2
x = tr[Kx]/N = Px/N .

For convenience, we use time duration as τ = 1 in the rest of

the paper.
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Fig. 2: Time Schedule for the Energy Harvesting Sensor

C. Energy Constraints at the Sensor:

The harvested energy process Et is an i.i.d. discrete-time

stochastic process as follows: Et = δtE0, where δt is a

Bernoulli random variable with success probability of p. We

consider a battery-aided operation where the energy is stored

at a battery and used in regular time intervals. Let the initial

energy stored at the battery be 0. At the end of time slot k,

the total energy that have arrived to the battery at this time

slot is given by Ēk =
∑Qe

t=1 E(k−1)Qe+t. We assume that the

transmission time slots for the data buffer and the battery is

synchronized and Qe = Qd = Q. We assume that the battery

capacity is large enough so that E0Q can be stored at the

battery.

In general, the sensor has to operate under the energy neu-

trality conditions:
∑k

l=1 Jl ≤
∑k

l=1 Ēl, k = 1, . . . , NT . These

conditions ensure that the energy used at any transmission

time slot does not exceed the available energy. Here, we focus

on the case where at each transmission all the energy at the

battery is used, i.e.

Jk = Ēk, k = 1, . . . , NT . (3)

D. Estimation at the Fusion Center:

After NT transmission time slots, i.e. obtaining y =
[ȳ1, . . . , ȳNT

] ∈ CN×1, the fusion center forms an estimate

of x. The MMSE estimate can be found as [15, Ch2]

x̂=E[x|y] = KxyK
−1
y y (4)

The resulting MMSE, E[||x−E[x|y]||2], can be expressed as

ε = ε(G) = tr

[

(
s

Px

Is +
1

σ2
w

U †
sGUs)

−1

]

, (5)

where G = diag([p11Qd
, . . . , pNT

1Qd
]) ∈ CN×N and 1Qd

=
[1, . . . , 1] ∈ CQd is the vector of ones. We note that here the

fusion center knows the source and noise statistics, including

the covariance matrices.

We note that in order to perform the MMSE estimation, the

fusion center needs to know or estimate the values of pk. In

general, estimation of pk’s can be considered as a part of the

channel estimation process. In the above setting the possible

energy cost of this operation is not incorporated to the problem

set-up. Alternatively, the fusion center can have independent

access to the Et realizations and calculate the strategy pk, for

instance, when it is in the spatial vicinity of the sensor and it

can measure solar energy fluctuations Et itself.



III. PERFORMANCE BOUNDS

We will now investigate the effect of different buffer sizes

on the system performance. We first provide our main result,

and then discuss our results using a lower bound on the average

performance and the performance of a related off-line scheme

as benchmarks. Let us define

fbt(µ, ̺, t)
.
= 2s exp

(

− ̺

µ2
h

(

µt

̺

))

(6)

fbn(µ, ̺, t)
.
= 2s exp

(

− t2/2

µt/3 + ̺

)

(7)

with h(a)
.
= (1 + a) log(1 + a)− a, a ≥ 0.

We now present our main result, i.e. bounds on the error

performance that hold with high probability:

Theorem 3.1: The performance of the EH system satisfies

the following bounds

I.

P(ε < εI) ≥ 1− fbt (µI , ̺I , t) ≥ 1− fbn (µI , ̺I , t) (8)

for t ∈ (0, 1], where η = s/N and

εI =
1

1 + 1
σ2
w

N
s
pE0(1− t)

Px (9)

µI = max{1/p− 1, 1} min{Qη, 1} (10)

̺I =
1

Q
(1/p− 1)min{Qη, 1} (11)

II.

P(ε < εII) ≥ 1− min
γ∈[0,1]

fbt (µII , ̺II , t) (12)

≥ 1− min
γ∈[0,1]

fbn (µII , ̺II , t) (13)

for t ∈ (0, 1], where η = s/N and

εII =
1

1 + 1
σ2
w

N
s
p̄E0γ(1− t)

Px (14)

µII = max{1/p̄− 1, 1}min{Qη, 1} (15)

̺II = (1/p̄− 1)min{Qη, 1} (16)

p̄ =

Q
∑

l=⌈γQ⌉

(

n

l

)

pl(1− p)Q−l. (17)

Proof: The proof is presented in Section VI.

For Q = 1, the energy Et that arrives to the sensor at

time t is immediately used to send the sample xt. Hence

for Q = 1, the measurement set-up is the same as the

classical compressive sensing setting, and these bounds can

be seen as a consequence of eigenvalue bounds provided in

the compressive sensing literature [16, Ch.12].

For Q > 1, Thm. 3.1 provides a set of novel eigenvalue

bounds for the formulation introduced in Section II. As the

data buffer size Q > 1 gets larger, the probability of sending

the samples in the buffer (with non-zero power) increases

since the probability of the battery being charged with nonzero

energy also increases while waiting for the data buffer to be

full. On the other hand, the power used to send each sample

will be typically lower compared to the case where the energy

is used to send a fewer number of samples, for instance directly

sending the sample xt if positive energy Et arrives (Q = 1).

Hence, the bounds here can be interpreted as an exploration of

the trade-off between using a small number of samples with

high signal-to-noise ratio (SNR), i.e. high power, and a high

number of samples with low SNR in the estimation process.

For comparison purposes, we now consider a lower bound

on the average error performance over different realizations of

the process Et:

E[ε] ≥ tr

[

(
s

Px

Is +
1

σ2
w

U †
sE[G]Us)

−1

]

(18)

=
1

1 + 1
σ2
w

N
s
pE0

Px (19)

where in (18) we have used (5), the Jensen’s inequality and

the fact that tr[X−1] is convex for X ≻ 0. In (19), we have

used E[G]=E[pk]IN , pk =
1

σ2
xQ

∑Q

t=1 δ(k−1)Q+tE0, E[pk] =

pE0N/Px by (2) and (3), and U †
sUs=Is.

We also consider the performance of an associated off-line

scheme. We focus on the following optimization problem

εd = min
tr[G]≤PT

ε(G) (20)

where G = diag(g) = diag([g1, . . . , gN ]) ∈ CN×N . Here the

sensor has a total energy of P̄T = PTσ
2
x and it can freely

distribute this energy on the samples in order to minimize the

error. We note that in contrast to the setting in Section II, here

a block transmission constraint is not imposed onto the set of

admissible sensor strategies. We set P̄T = pE0N , i.e. PT =
pE0N/σ2

x for comparison purposes. We obtain the following

result:

Lemma 3.1: An optimal strategy for (20) is given by the uni-

form power allocation G = diag(PT /N) = diag(pE0N/Px),
and the optimum value is given by

εd =
1

1 + 1
σ2
w

N
s
pE0

Px (21)

Proof: The proof is presented in Section VII.

A total energy of P̄T = pE0N corresponds to the total

energy that will be obtained if an energy packet of pE0 were

harvested at each time step, which coincides with the average

energy of our Bernoulli scheme. In this sense, (21) can be

interpreted as a deterministic benchmark. Comparing our two

benchmark schemes, we observe that both (19) and (21) pro-

vide error expressions in the same form 1
1+SNReff

Px where

SNReff = 1
σ2
w

N
s
pE0. Comparing the bounds in Thm. 3.1

with these, we observe that through a variable t ∈ [0, 1),
the bounds in Thm. 3.1 provide different operating points for

how close one can operate to these benchmarks (for instance
1

1+SNReff (1−t)Px in (9)) and with which probability.

IV. NUMERICAL RESULTS

We now illustrate the performance of our bounds. Let N =
256, p= 0.4, E0 = 1, Px = 1, σ2

w = 10−4Px. The resulting

bounds are presented in Fig. 3a and Fig. 3b, for s = 4 and

s=16, respectively. Here the y-axis corresponds to the error

bound as provided by εI /εII and the x-axis corresponds to the

probability on the right-hand side of (8)/(12). While plotting
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Fig. 3: MSE bound versus probability of error

the bounds, for a given probability we present the tightest of

Bound I and Bound II, i.e. the bound that provides the smallest

error value with a given probability.

In both figures as the desired performance becomes more

demanding, i.e. the mean-square error (MSE) value decreases,

the probability that this error can be guaranteed becomes

smaller. When the degree of freedom of the signal is suffi-

ciently low (s=4, Fig. 3a), the performance bound is observed

to be relatively insensitive to the buffer size. On the other hand,

when the degree of freedom is higher (s= 16, Fig. 3b), the

bound becomes more sensitive to the buffer size. For s=16,

with small buffer sizes Q = 1, 2, the bound cannot provide

any guarantees that hold with high probability; whereas with

higher buffer sizes, small values of error can be guaranteed

with high probability (for instance with probability higher than

0.8 in Fig. 3b). We note that here it is the Bound II that

illustrates the behaviour with s = 16. We observe that as s
becomes larger, the signal can be said to be more close to an

i.i.d. source, with the limiting case of s = N corresponding

to an exactly i.i.d source. Hence these results are consistent

with the results of [2], which show that for i.i.d. sources

the strategies that spread energy on the samples as much

as possible is an optimum strategy for the offline scheme.

Here, the buffers and the slotted transmission scheme facilitate

strategies more close to such a uniform allocation. In that

respect, evaluation of exponentially decreasing online energy

allocation scheme of [3] in our remote estimation framework

is considered future work.
V. CONCLUSIONS

We have considered remote estimation of a correlated

c.w.s.s. Gaussian field with an EH sensor with a limited data

and energy buffer. We have provided performance bounds on

the achievable distortion under a slotted block transmission

scheme. Our bounds illustrate the insensitivity of the perfor-

mance to the buffer size for signals with low degree of freedom

and the possible performance gain due to increasing buffer

sizes for signals with relatively higher degree of freedom.

VI. PROOF OF THM.3.1

We first prove the first family of bounds indexed by I in

(8)-(11). We first note that

ε =

s
∑

i=1

1

λi(
s
Px

Is +
1
σ2
w
U †
sGUs)

, (22)

≤ 1

1 + 1
σ2
w

Px

s
λmin(U

†
sGUs)

Px. (23)

Let

p̃k =
pk

E[pk]
− 1, (24)

Z̄k =

Q
∑

t=1

u(k−1)Q+tu
†
(k−1)Q+t

, (25)

Zk
.
= p̃kZ̄k, k = 1, . . . , NT . (26)

where ui ∈ Cs is the ith column of the matrix U †
s . Hence

NT
∑

k=1

Zk =
1

E[pk]

NT
∑

k=1

pkZ̄k −
NT
∑

k=1

Z̄k, (27)

=
1

E[pk]
U †
sGUs − U †

sUs, (28)

=
1

E[pk]
U †
sGUs − Is. (29)

We will now use the Matrix Bernstein Inequality on Zk to

find lower bounds for the eigenvalues of the first term in (29).

We will then use these in (23) to bound the estimation error.

Lemma 6.1: [Matrix Bernstein Inequality [16, Ch.8]] Let

V1, . . . , VM ∈ C
s be independent zero-mean Hermitian

random matrices. Assume that ‖Vl‖≤ µV , ∀l ∈ {1, . . . ,M}
almost surely. Let ̺V

.
= ‖∑M

l=1 E[V
2
l ]‖. Then, for t > 0

P(‖
M
∑

l=1

Vl‖≥ t) ≤ fbt(µV , ̺V , t) ≤ fbn(µV , ̺V , t) (30)

with fbt(.) and fbn(.) as defined in (6)-(7).

We note that Zk in (26) are statistically independent random

matrices with E[Zk] = 0. We bound the spectral norm of Zk

as follows

‖Zk‖≤ max
k

∣

∣

∣

∣

pk
E[pk]

− 1

∣

∣

∣

∣

‖Z̄k‖. (31)

Here we have the following bound for ‖Z̄k‖

‖Z̄k‖ = ‖
Q
∑

t=1

u(k−1)Q+tu
†
(k−1)Q+t

‖, (32)

≤ Qmax
k,t

‖u(k−1)Q+tu
†
(k−1)Q+t

‖, (33)

= Qmax
k,t

‖u(k−1)Q+t‖2, (34)

= Q
s

N
, (35)

where (35) follows since U is the DFT matrix. We also have

‖Z̄k‖ ≤ ‖
NT
∑

k=1

Z̄k‖= ‖Is‖= 1, (36)

where (36) follows from the fact that for A � 0 and B � 0,

λmax(A) ≤ λmax(A+B). Combining (35) and (36), we have

‖Z̄k‖ ≤ min{Qs/N, 1}. (37)

We now consider the term with pk in (31). We note that by

(2) and (3), pk = Ēk
1
Q

N
Px

, hence pk = 1
Q

∑Q

t=1 δ(k−1)Q+tĒ0

where Ē0 = E0
N
Px

. Here E[pk] = pĒ0. Hence

max
k

| pk
E[pk]

− 1|≤ max{maxk pk
E[pk]

− 1, 1} = max{1
p
− 1, 1}.

(38)



Hence by (31), (37) and (38)

‖Zk‖≤ max{1/p− 1, 1}min{Qs/N, 1} .
= µI , ∀k. (39)

We now consider the variance term, i.e.,

‖
NT
∑

k=1

E[Z2
k ]‖= E[p̃2k] ‖

NT
∑

k=1

(Z̄k)
2‖. (40)

Here the spectral norm term can be bounded as

‖
NT
∑

k=1

(Z̄k)
2‖ ≤ max

k
‖Z̄k‖‖

NT
∑

k=1

Z̄k‖, (41)

≤ max
k

‖Z̄k‖, (42)

≤ min{Qs/N, 1}, (43)

where (41) follows from the fact that Zk � 0, see for instance

[17, Sec. 2], (42) follows from ‖∑NT

k=1 Z̄k‖= ‖Is‖= 1 and

(43) follows from (37).

We now consider the term with p̃2k in (40)

E[p̃2k] = E[(
pk

E[pk]
− 1)2] = E[

p2k
E[pk]2

− 2
pk

E[pk]
+ 1], (44)

=
E[p2k]

E[pk]2
− 1. (45)

We have

E[p2k] = E[(
1

Q

Q
∑

t=1

δ(k−1)Q+tĒ0)
2], (46)

= (
Ē0

Q
)2(

Q
∑

t=1

E[δ2t ] +
∑

1≤t,l≤Q, t6=l

E[δtδl]), (47)

= (
Ē0

Q
)2(Qp+ (Q2 −Q)p2). (48)

Using (45) and (48), we obtain E[p̃2k] =
1
Q
( 1
p
− 1). Hence the

variance term in (40) can be bounded as

‖
NT
∑

k=1

E[Z2
k ]‖≤

1

Q
(
1

p
− 1)min{Qs/N, 1} .

= ̺I . (49)

Using (39), (49) and the Matrix Bernstein Inequality re-

veals that ‖∑NT

k=1 Zk‖< t holds with probability greater than

1− fbt(µI , ̺I , t). We note that for Hermitian A, ‖A− I‖< t
implies λmin(A) > (1− t). Therefore, using (29),

λmin(U
†
sGUs) > (1− t)E[pk] = (1− t)p

N

Px

E0 (50)

with probability greater than 1 − fbt(µI , ̺I , t). Using this

eigenvalue bound in (23) leads to the bounds in (8)-(11).

We now consider the second set of bounds given in (14)-

(17). We first consider the probability that pk ≥ γĒ0

p̄
.
= P(pk ≥ γĒ0) = P(

1

Q

Q
∑

t=1

δ(k−1)Q+t ≥ γ) (51)

for γ ∈ [0, 1]. We define a new Bernoulli random variable

δ̄k = 1pk≥γĒ0
, where 1 is the indicator function. Hence

P(δ̄k = 1) = p̄ and P(δ̄k = 0) = 1 − p̄. Let p̄k = γĒ0δ̄k.

We note that p̄k provides a lower bound for pk, ∀k. Hence the

minimum eigenvalue of
∑NT

k=1 p̄kZ̄k provides a lower bound

for the minimum eigenvalue of
∑NT

k=1 pkZ̄k. Now re-iterating

the steps for the proof of bounds in (8)-(11) reveals a set

of bounds similar to (8)-(11), but that also depends on γ. By

expressing the value of p̄ in (51) terms of success probabilities

of a binomial variable, we arrive at the bounds in (12)-(17).

VII. PROOF OF LEMMA 3.1

Since the error is a decreasing function of tr[G], we have

tr[G] = PT for an optimum G. Let us consider a point G,

tr[G] = tr[U †
sGUs] = PT . Let Ga = (PT /N)IN . We note

that tr[Ga] = tr[U †
sGaUs] = PT and Ga is also feasible.

Since ε(G) is a symmetric and convex function of λi(U
†
sGUs),

ε(G) ≥ ε(Ga) [18]. Hence Ga provides a lower bound for the

performance of all such G and it is an optimal strategy.
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[6] A. Nayyar, T. Başar, D. Teneketzis, and V. Veeravalli, “Optimal strategies
for communication and remote estimation with an energy harvesting
sensor,” IEEE Trans. Autom. Control, vol. 58, pp. 2246–2260, Sept 2013.

[7] M. Nourian, A. Leong, and S. Dey, “Optimal energy allocation for
Kalman filtering over packet dropping links with imperfect acknowledg-
ments and energy harvesting constraints,” IEEE Trans. Autom. Control,
vol. 59, pp. 2128–2143, Aug 2014.
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