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Abstract—We study the second-order asymptotics of informa-
tion transmission using random Gaussian codebooks and nearest
neighbor (NN) decoding over a power-limited additive stationary
memoryless non-Gaussian channel. We show that the dispersion
term depends on the non-Gaussian noise only through its second
and fourth moments. We also characterize the second-order
performance of point-to-point codes over Gaussian interference
networks. Specifically, we assume that each user’s codebook is
Gaussian and that NN decoding is employed, i.e., that interference
from unintended users is treated as noise at each decoder.

I. INTRODUCTION

In second-order asymptotic analyses, a line of work pi-
oneered by Strassen [1] and extended by Hayashi [2] and
Polyanskiy, Poor and Verdú [3] among others, one seeks a
two-term approximation of the maximum possible number
of messages M∗(n, ε) that can be transmitted with average
probability of error no larger than ε using a stationary and
memoryless channel n times. In the real AWGN case, under
the assumption that the noise has unit variance and that the
codewords have power P , it is by now well-known that
M∗(n, ε) can be approximated as [2], [3]

logM∗(n, ε) = nC(P )−
√
nV(P )Q−1(ε) +O(log n) (1)

where Q(a) := (1/
√

2π)
∫∞
a
e−t

2/2 dt is the complementary
cumulative density function (CDF) of a standard Gaussian and
Q−1(·) its inverse, C(P ) = (1/2) log(1+P ) [nats per channel
use] is the channel capacity, and

V(P ) =
P (P + 2)

2(P + 1)2
, [nats2 per channel use] (2)

is the channel dispersion. Gaussian codebooks, where each
codeword is uniformly distributed on a sphere of radius√
nP , achieve (1). Furthermore, the nearest-neighbor (NN)

or minimum distance decoding rule is optimal.
A natural question then beckons. What is the maximum

rate we can achieve if the codebook is constrained to be
Gaussian and the decoder uses the NN rule, but the noise
is non-Gaussian? This question is relevant in situations when
one knows how to combat Gaussian noise, and seeks to adopt
a design accordingly despite the inherent mismatch.

Lapidoth [4] provided a “first-order-asymptotics” answer to
this question by showing that the Gaussian capacity C(P )
is also the largest rate achievable over unit-variance non-
Gaussian stationary ergodic additive channels when Gaussian

codebooks and NN decoding are used. In some sense, this re-
sult says that Gaussian codebooks and NN decoding, although
possibly suboptimal for the case of non-Gaussian noise, form
a robust communication scheme.

In this paper, we extend Lapidoth’s result in the direction
of second-order asymptotics by determining the analogue of
V(P ) in (1) when we use a Gaussian codebooks and a NN
decoder. Specifically, we show that when the non-Gaussian
noise is i.i.d. and has a finite fourth moment ξ and a finite
sixth moment, the dispersion with Gaussian codebooks and
NN decoder is given by

V(P, ξ) :=
P 2(ξ − 1) + 4P

4(P + 1)2
. (3)

This means that the rate of convergence to C(P ) depends on
the fourth moment (or, more generally, on the kurtosis, i.e., the
ratio between the fourth-moment and the square of the second
moment) of the noise distribution: the higher the kurtosis, the
slower the convergence.

Motivated by work by Baccelli, El Gamal and Tse [5] on
communication over interference networks with point-to-point
codes, we also establish the dispersion for the scenario where
additional noise arises from unintended users equipped with
Gaussian codebooks, and the NN decoding rule is used at
the intended receiver, with the interference treated as noise.
For this case, whereas the first term in the second-order
expansion is simply the Gaussian channel capacity C(·) with P
replaced by the signal-to-interference-and-noise ratio (SINR),
the expression for the channel dispersion is more involved. In
particular, it depends on the individual power of each interferer
and not just on the total interference power.

Our analysis relies on the Berry-Esseen theorem for func-
tions of random vectors [6], [7] (also known as the multivariate
delta method in statistics), which has previously been used
to obtain inner bounds to the second-order rate regions for
Gaussian multipleaccess and interference channels [6], [8].

II. POINT-TO-POINT CHANNELS

Consider the point-to-point additive-noise channel

Y n = Xn + Zn, (4)

where Xn is the input vector and Zn is the noise vector over n
scalar channel uses. Throughout, we shall focus exclusively on



Gaussian codebooks. More precisely, we consider shell codes
for which Xn is uniformly distributed on a sphere with radius√
nP , i.e.,

Xn ∼ f
(shell)
Xn (x) := δ(‖x‖2 − nP )/Sn(

√
nP ). (5)

Here, δ(·) is the Dirac delta and Sn(r) = 2πn/2rn−1/Γ(n/2)
is the surface area of a radius-r sphere in Rn. This random
coding distribution is second- and third-order optimal for
AWGN channels [9]. For comparison, we also consider i.i.d.
Gaussian codes, in which each component of Xn is distributed
according to a zero-mean, variance P normal distribution, i.e.,1

Xn ∼ f
(iid)
Xn (x) :=

n∏
i=1

1√
2πP

exp
(
− x

2
i

2P

)
. (6)

This random coding distribution achieves C(P ) but not V(P ).
The noise Zn is assumed to be a stationary and memoryless

process that does not depend on the channel input:

Zn ∼ PZn(z) =

n∏
i=1

PZ(zi). (7)

Hence, the nth extension of the channel is

PY n|Xn(y|x) =

n∏
i=1

PY |X(yi|xi) =

n∏
i=1

PZ(yi − xi). (8)

The distribution PZ is non-Gaussian; the only assumptions are
the following:

E[Z2] = 1, ξ := E[Z4] <∞, E[Z6] <∞. (9)

The assumption that the second moment is unity is made for
convenience. As we shall see, the assumption that the fourth
moment of Z is finite is critical. The assumption that the sixth
moment of Z is finite is made only for technical reasons.

Given either a shell or an i.i.d. codebook consisting of
M ∈ N random codewords C := {Xn(1), . . . , Xn(M)}, we
consider an NN (or minimum distance) decoder that returns
the message Ŵ whose corresponding codeword is closest in
Euclidean distance to the channel output Y n, i.e.,

Ŵ := arg min
w∈[1:M ]

‖Y n −Xn(w)‖. (10)

This decoder is optimal if the noise is Gaussian, but may not
be so in the more general setup considered here.

We also define the average probability of error as p̄e,n :=
Pr[Ŵ 6= W ]. This probability is averaged over the uniformly
distributed message W , the random codebook C and the
channel noise Zn. Note that in traditional channel-coding
analyses [2], [3], the probability of error is averaged only over
W and Zn. Similar to [4], the additional averaging over the
codebook C is required here to establish an ensemble converse
for the Gaussian codebooks considered in this paper.

Let M∗shell(n, ε, P ; PZ) be the maximum number of mes-
sages that can be transmitted using a shell codebook over

1The quantity P in (5) can be interpreted as a power constraint in the sense
of [3, Eq. (192)]; however, this does not hold for P in (6). There, P should
instead be interpreted as the power averaged over the random codebook.

the channel (4) with average error probability no larger than
ε ∈ (0, 1), when the noise is distributed according to PZ . Let
M∗iid(n, ε, P ; PZ) be the analogous quantity for the case of
i.i.d. Gaussian codebooks. Lapidoth [4] showed that for all
ε ∈ (0, 1) and † ∈ {shell, iid},

lim
n→∞

1

n
logM∗† (n, ε, P ; PZ) = C(P ) (11)

regardless of PZ . Note that this result holds under milder
conditions on the noise, not requiring the i.i.d. assumption.

Theorem 1. Consider a noise distribution with statistics as
in (9). For shell codes,

logM∗shell(n, ε, P ; PZ)

= nC(P )−
√
nVshell(P, ξ)Q

−1(ε) +O(log n), (12)

where the shell dispersion is

Vshell(P, ξ) :=
P 2(ξ − 1) + 4P

4(P + 1)2
. (13)

For i.i.d. codes,

logM∗iid(n, ε, P ; PZ)

= nC(P )−
√
nViid(P, ξ)Q−1(ε) +O(log n), (14)

where the i.i.d. dispersion is

Viid(P, ξ) :=
P 2(ξ + 1) + 4P

4(P + 1)2
. (15)

A sketch of the proof is presented in Section IV.
The second-order terms in the asymptotic expansions of

logM∗shell(n, ε, P ; PZ) and logM∗iid(n, ε, P ; PZ) depend on
the distribution PZ only through its second and fourth mo-
ments. If Z is standard Gaussian, then the fourth moment
ξ = 3 and we recover from (13) the Gaussian dispersion (2).
An expression of the same form as (2) was also derived by
Shannon [10] in his study of the optimal asymptotic error
probability of transmission over an AWGN channel at rates
close to capacity. Comparing (13) with (2) we see that noise
distributions PZ with higher fourth moments than Gaussian
(e.g., Laplace) result in a slower convergence to C(P ). Con-
versely, PZ with smaller fourth moment than Gaussian (e.g.,
Bernoulli) results in a faster convergence to C(P ).

In the i.i.d. Gaussian case, if Z ∼ N (0, 1), we obtain

Viid(P ) =
P

P + 1
. (16)

An expression of the same form as (16) was derived by
Rice [11], who used i.i.d. Gaussian codes to establish a lower
bound on the error exponent for an AWGN channel at rates
close to capacity. Note finally that Vshell(P, ξ) ≤ Viid(P, ξ).

III. INTERFERENCE NETWORKS

We assume that K sender-receiver pairs operate concur-
rently over the same additive noise channel. Similarly to
Section II, the additive noise Zn is i.i.d. but possibly non-
Gaussian. The senders use Gaussian codebooks with powers
{Pj}Kj=1 (as in Section II, we shall consider both the shell



and i.i.d. cases) and all receivers use NN decoding. Hence,
they treat the codewords from the unintended senders as
additional noise. Note that for the case of shell codes, the
resulting total additive noise is no longer i.i.d.. Although the
communication strategy described above may be suboptimal
rate-wise compared to more sophisticated strategies such as
superposition or Han-Kobayashi coding [12], it is easy to
implement since it relies exclusively on point-to-point channel
codes [5]. Without loss of generality, we shall focus only on
the signal at receiver 1, which is given by

Y n = Xn
1 +Xn

2 + . . .+Xn
K + Zn. (17)

Here, Xn
j denotes the codeword transmitted by the jth sender;

Xn
1 is the codeword intended for receiver 1. We consider

two different models for the codewords. In the first, each
codeword Xn

j follows a shell distribution as in (5) with
power Pj . In the second, each codeword Xn

j follows an i.i.d.
Gaussian distribution as in (6) with power Pj . We define
M∗shell(n, ε, {Pj}Kj=1; PZ) to be the maximum number of mes-
sages that sender 1 can transmit using shell codes with error
probability no larger than ε ∈ (0, 1) over the channel (17),
when the receiver uses NN decoding, and, hence, treats
Xn

2 , . . . , X
n
K as noise. Similarly, let M∗iid(n, ε, {Pj}Kj=1; PZ)

be the analogous quantity for the case of i.i.d. Gaussian
codebooks. Let the SINR of the channel from sender 1 to
receiver 1 be P̄ := P1/(1 + P̃ ), where the total power of the
interfering codewords is P̃ :=

∑K
j=2 Pj .

In Theorem 2 below, we provide the second-order term in
the asymptotic expansion of logM∗† (n, ε, {Pj}Kj=1; PZ).

Theorem 2. Consider a noise distribution with statistics as
in (9). For shell codes,

logM∗shell(n, ε, {Pj}Kj=1; PZ)

= nC(P̄ )−
√
nV′shell({Pj}Kj=1, ξ)Q

−1(ε) +O(log n),

(18)

where the shell dispersion is

V′shell({Pj}Kj=1, ξ)

:=
P 2

1 (ξ − 1 + 4P̃ ) + 4P1(1 + P̃ )3 + 4P 2
1

∑
2≤i<j≤K PiPj

4(1 + P̃ )2(1 + P1 + P̃ )2
.

(19)

For i.i.d. codes,

logM∗iid(n, ε, {Pj}Kj=1; PZ)

= nC(P̄ )−
√
nViid(P̄ , ξ′)Q−1(ε) +O(log n), (20)

where Viid(·, ·) is defined in (15) and ξ′ := 3P̃ 2+6P̃+ξ

(P̃+1)2
.

The proof of this result can be found in [13] and is omitted
due to space constraints.

A few comments are now in order. First, as expected, the
first-order term in the asymptotic expansion is C(P̄ ), where P̄
is the SINR. The second-order term for the i.i.d. case can be
obtained straightforwardly from Theorem 1. This is because
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Fig. 1. Dispersion as a function of the number of interferers K − 1 for
both shell and i.i.d. codes. Here, P1 = 10, P2 = · · · = PK = 1 and
P̄ = P1/(1+

∑K
i=2 Pi). The noise Zn is i.i.d. Gaussian with unit variance.

the effective noise is now Xn
2 + . . . + Xn

K + Zn, which is
also i.i.d. Gaussian, but of variance P̃ + 1 instead of 1. The
second-order term for the shell case does not follow directly
from Theorem 1, as the total noise Xn

2 +. . .+Xn
K+Zn, which

is the sum of K − 1 shell random vectors and a single i.i.d.
Gaussian random vector, is neither i.i.d. nor shell distributed.

Second, observe that the cross term in (19), namely∑
2≤i<j≤K PiPj = (

∑K
j=2 Pj)

2 − ∑K
j=2 P

2
j implies that

the dispersion does not only depend on the sum P̃ of the
interferers’ powers, but also on the individual power Pj of each
interferer. This phenomenon is not present in the i.i.d. case.
Since, by convexity,

∑K
j=2 P

2
j ≤ P̃ 2/(K − 1), we conclude

that the shell dispersion is maximized when all interferers have
the same power. Through standard manipulation one can also
show that V′shell({Pj}Kj=1, ξ) ≤ Viid(P̄ , ξ′) for fixed {Pj}Kj=1.

In Fig. 1, we plot both V′shell({Pj}Kj=1, ξ) and Viid(P̄ , ξ′)
for the case P1 = 10, P2 = · · · = PK = 1. The noise Zn is
i.i.d. Gaussian with unit variance (ξ = 3). For comparison, we
also plot Vshell(P̄ , ξ), which corresponds to the dispersion for
the case when the intended sender uses a shell code, whereas
the interferers use i.i.d. codes. The resulting dispersion, which
follows directly from Theorem 1, takes a particularly simple
form: the Gaussian dispersion (2) computed at the SINR P̄ . As
illustrated in Fig. 1, there is no ordering between Vshell(P̄ , ξ)
and V′shell({Pj}Kj=1, ξ). In this example, shell interference is
preferable with a single interferer, but i.i.d. interference is
preferable when there are three or more users.

IV. PROOF OF (12) IN THEOREM 1

Because of space constraints we will only provide the
proof of (12). Our analysis makes use of the “mismatched”
information density

ι̃(x, y) := log
N (y;x, 1)

N (y; 0, P + 1)
= C(P )+

y2

2(P + 1)
− (y − x)2

2
.

(21)
This is the information density of the Gaussian chan-
nel N (y;x, 1); indeed, the denominator in (21) is its
capacity-achieving output distribution N (y; 0, P + 1). We set
ι̃n(x,y) :=

∑n
i=1 ι̃(xi, yi).



A. Proof of the Direct Part of (12)

By (21), the NN rule is equivalent to maximizing
ι̃n(x(w),y) over w. Hence by the random coding union
bound [3], the ensemble error probability can be bounded as

p̄e,n ≤ E
[
min{1,M Pr(ι̃n(X̄n, Y ) ≥ ι̃n(Xn, Y )|Xn, Y n)}

]
,

(22)
where (X̄n, Xn, Y n) ∼ f

(shell)
Xn (x̄)f

(shell)
Xn (x)PY n|Xn(y|x).

Let g(t,y) := Pr
[
ι̃n(X̄n,y) ≥ t

]
. With this definition,

p̄e,n ≤ E
[
min

{
1,Mg(ι̃n(Xn, Y n), Y n)

}]
. (23)

Using [9, Eq. (58)], g(t,y) can be bounded as follows

g(t,y) ≤ K0e
−t

√
n
≤ K0e

−t, (24)

where K0 is a finite constant independent of y.
Substituting (24) into (23), using the fact that for every

real-valued random variable J and every positive integer n
E
[
min{1, J}

]
≤ Pr[J > 1/

√
n] + 1/

√
n, and after some al-

gebra, we can further upper-bound the right-hand-side of (23)
as follows:

p̄e,n≤ Pr

[
P‖Zn‖2 − nP − 2〈Xn, Zn〉

≥2(P+1)
(
nC(P )− logM −log(K0

√
n)
)]

+
1√
n
. (25)

Here, we also used the fact that ‖Xn‖2 = nP almost surely.
Now we make use of the Berry-Esseen Theorem for functions
of random vectors (see [6, Prop. 1] and [7, Prop. 1]), by
proceeding similarly as in [6, Sec. IV.D]. A shell codeword
can be written as

Xn =
√
nPX̃n/‖X̃n‖, (26)

where X̃n ∼ N (0, In). We may write P‖Zn‖2 − nP −
2〈Xn, Zn〉 in terms of the i.i.d. random variables

A1i := 1− Z2
i , A2i :=

√
PX̃iZi, A3i := X̃2

i − 1, (27)

i = 1, . . . , n, and of the smooth function

f(a1, a2, a3) = Pa1 + 2a2/
√

1 + a3. (28)

It is easy to verify that −nf( 1
n

∑n
i=1[A1i A2i A3i]) =

P‖Zn‖2 − nP − 2〈Xn, Zn〉. Now, the Jacobian matrix of
f evaluated at 0 is J = [P 2 0] and the covariance matrix V
of the vector [A11 A21 A31] is V = diag([ξ − 1 P 2]T ).
Hence, it follows from [6, Prop. 1] and [7, Prop. 1] that
(P‖Zn‖2−nP−2〈Xn, Zn〉)/√n converges in distribution to
a zero-mean normal random variable with variance JVJT =
P 2(ξ−1)+4P . Thus, the probability in (25) is upper-bounded
by [7, Prop. 1]

Q

(
2(P + 1)

(
nC(P )− logM −log(K0

√
n
)√

n(P 2(ξ − 1) + 4P )

)
+O

(
1√
n

)
.

(29)
Equating this to ε, solving for logM , and Taylor-expanding
Q−1(·), we establish the desired lower bound to (13).

B. Proof of the Ensemble Tightness Part of (12)
Since the probability of ties for the NN rule in (10) is zero,

the exact random coding probability can be written as

p̄e,n = E[p̄e,n(Xn, Y n)] (30)

where (Xn, X̄n, Y n) are distributed as in Section IV-A, and

p̄e,n(x,y) = 1−
(
1− Pr[‖y − X̄n‖ ≤ ‖y − x‖]

)M−1
. (31)

Let z := y−x. By symmetry (see [4]), the probability in (31)
depends on (x,y) only through the powers P̂Y = ‖y‖2/n
and P̂Z = ‖z‖2/n. We denote the inner probability in (31) as
Ψ(P̂Y , P̂Z). Because of (11), we shall assume without loss of
generality that lim infn→∞(logM)/n > 0. Let cz := ξ − 1
and cy := ξ − 1 + 4P . Let η > 0 be a small constant. We
define the typical sets

PY :=

{
p̂Y ∈ R : |p̂Y − (P + 1)| ≤

√
cz(log n)/n

}
, (32)

PZ :=

{
p̂Z ∈ R : |p̂Z − 1| ≤

√
cy(log n)/n

}
. (33)

Q :=
{

(p̂Y , p̂Z) ∈ R : p̂Y + P − p̂Z > η
}
, (34)

and let T := (PY × PZ) ∩ Q. Using [7, Prop. 1]
and the assumption that E[Z6] is finite, we conclude that
Pr[(‖Y n‖2/n, ‖Zn‖2/n) /∈ T ] = O(1/

√
n) (see [13]).

Now consider an arbitrary pair of powers (P̂Y , P̂Z) such
that Ψ(P̂Y , P̂Z) ≥ n/(M − 1). In this case

1−
(

1−Ψ(P̂Y , P̂Z)
)M−1

≥ 1−
(

1− n

M − 1

)M−1

= 1−
((

1− n

M − 1

)M−1
n

)n
= 1−

(
e−1(1 + o(1))

)n
= 1− e−nγ (35)

where we used that (1− ζ−1)ζ → e−1 as ζ →∞ and the last
line holds for any γ ∈ (0, 1) provided that n is large enough.

Combining the analyses in the previous two paragraphs, we
obtain from (31) that

p̄e,n ≥ Pr

[
Ψ(P̂Y , P̂Z)≥ n

M − 1
∩ (P̂Y , P̂Z)∈T

]
+O

(
1/
√
n
)
.

(36)

Ensemble tightness is established if we can show that for all
typical powers (P̂Y , P̂Z) ∈ T ,

Ψ(P̂Y , P̂Z)≥q(n) exp

(
−n
(
C(P )+

P̂Y
2(P+1)

− P̂Z
2

))
(37)

for some q(n) satisfying log q(n) = O(log n). This is because
we can then further lower-bound (36) as

p̄e,n≥Pr

[
−n
(
C(P )+

P̂Y
2(P + 1)

− P̂Z
2

)
≥− logM+O(log n)

∩ (P̂Y , P̂Z)∈T
]

+O
( 1√

n

)
(38)

= Pr

[
C(P )+

P̂Y
2(P + 1)

− P̂Z
2
≤ logM

n
+O

( log n

n

)]
+O

( 1√
n

)
(39)



where the last step follows from the fact that
Pr[(‖Y n‖2/n, ‖Zn‖2/n) /∈ T ] = O(1/

√
n). To complete the

proof (sans the justification of (37)), we recall the definitions
of P̂Y and P̂Z , and follow steps (25)–(29) in the direct part,
which are all tight in the second-order sense.

Now we prove (37). By the definitions of Ψ and the powers
P̂Y and P̂Z , and the fact that ‖Xn‖2 = nP , we have

Ψ(P̂Y , P̂Z) = Pr
[
2〈X̄n,y〉 ≥ nP̂Y + nP − nP̂Z

]
(40)

for any y with ‖y‖22 = nP̂Y . We choose y =

(
√
nP̂Y , 0, . . . , 0), from which we obtain for any δ > 0 that

Ψ(P̂Y , P̂Z) = Pr

[
X̄1 ≥

nP̂Y + nP − nP̂Z
2
√
nP̂Y

]
(41)

≥ Pr

[
nP̂Y +nP−nP̂Z

2
√
nP̂Y

≤X̄1≤
nP̂Y +nP−nP̂Z

2
√
nP̂Y

(
1+

δ

n

)]
(42)

≥ δ(P̂Y + P − P̂Z)

2n
√
nP̂Y

min
x
fX̄1

(x), (43)

where X̄1 is the first symbol in the vector X̄n, fX̄1
is its

probability density function, which is given by [14, Eq. (4)]

fX̄1
(x) =

1√
πnP

Γ(n2 )

Γ(n−1
2 )

(
1− x2

nP

)n−3
2

1
{
x2 ≤ nP

}
, (44)

and the minimization in (43) is over the interval in (42). Note
that since the right-hand side of (44) is a decreasing function
of |x|, we can further lower-bound (43) (for sufficiently large
n) by replacing x with the right-hand term in (42). Since P̂Y
and P̂Z are bounded within the typical sets in (32)–(33), we
have that for all sufficiently large n and for some constant K1

(depending only on P and δ),(
nP̂Y + nP − nP̂Z

2
√
nP̂Y

(
1+

δ

n

))2

≤ n(P̂Y + P − P̂Z)2

4P̂Y
+K1.

(45)
Moreover, Γ(n2 )/Γ(n−1

2 ) behaves as Θ(
√
n), and thus the

prefactors in (43) and (44) (which is bounded away from
zero by (34)) can be combined into a single prefactor p′0(n)
satisfying log p′0(n) = O(log n):

Ψ(P̂Y , P̂Z)

≥ p′0(n)

(
1− (P̂Y + P − P̂Z)2

4PP̂Y
− K1

nP

)n−3
2

(46)

= p′0(n)

((
1− (P̂Y + P − P̂Z)2

4PP̂Y

)(
1− K2

nP

))n−3
2

(47)

≥ p′′0(n)

(
1− (P̂Y + P − P̂Z)2

4PP̂Y

)n
2

(48)

= p′′0(n) exp

(
n

2
log

(
1− (P̂Y + P − P̂Z)2

4PP̂Y

))
(49)

where (47) holds for some finite constant K2, and (48) follows
by factoring further terms into the prefactor and calling the

result p′′0(n), which still satisfies log p′′0(n) = O(log n). In
particular, this step uses that limn→∞

(
1 − K2/(nP )

)n/2
=

e−K2/(2P ), which is a constant.
We prove (37) by performing a Taylor expansion of

1
2 log

(
1− (P̂Y +P−P̂Z)2

4PP̂Y

)
about (P̂Y , P̂Z) = (1 + P, 1):

− 1

2
log
(

1− (P̂Y + P − P̂Z)2

4PP̂Y

)
=

1

2
log(1 + P ) +

1

2(1 + P )

(
P̂Y − (1 + P )

)
− 1

2

(
P̂Z − 1

)
+O

(∣∣P̂Y − (1 + P )
∣∣2 +

∣∣P̂Z − 1
∣∣2) (50)

=
1

2
log(1 + P ) +

P̂Y
2(1 + P )

− P̂Z
2

+O
( log n

n

)
. (51)

Here, the remainder term is O
(

logn
n

)
due to the definitions

of the typical sets in (32)–(33). This remainder term can be
factored into the prefactor in (49), yielding q(n) in (37). The
proof of (37) is thus complete.
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