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Abstract

This thesis is focused on the application and use of two different tools for

the numerical solution of parabolic partial differential equations. The first part

of the thesis investigates the possibility of using a weak space-time formulation

in order to derive analytical results and to construct numerical schemes for lin-

ear parabolic equations, with the linear heat equation as reference problem. In

the first paper the stochastic heat equation is considered and an alternative for-

mulation is presented, which besides being consistent with known formulations

of the same problem, naturally simplifies the construction of Petrov–Galerkin

discretizations. The second paper is focused on certain features of an alterna-

tive discretization of the deterministic linear heat equation. It is shown that for

the proposed discretization, a certain component of the solution, neglected in

other works on the same topic, converges in space and time with a rate which

is twice the rate of the “main” component of the solution. The third paper has

a natural collocation in between the previous two, since it focuses on the quasi-

optimality theory for parabolic problems with random coefficients. A spatial

semidiscretization and a full discretization are considered, and results of quasi-

optimality with explicit constants are derived, both path-wise and in an Lp-sense.

The second part of this thesis investigates the possible use of the Discrete

Variational Derivative Method (DVDM) to construct numerical schemes that re-

tain certain conservation properties. In the fourth paper this method is applied

to construct energy-preserving numerical schemes to solve the geodesic Euler–

Poincaré equation on the group of diffeomorphisms, also known as EPDiff.

Three different schemes are presented, for which conservation properties, re-

versibility, convergence and computational cost are investigated both theoreti-

cally and empirically. The quality of the schemes is finally tested with a series

of well-established benchmark problems.

Keywords: inf-sup theory, stochastic linear heat equation, Petrov–Galerkin discretiza-

tion, random coefficients, DVDM, EPDiff
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2 INTRODUCTION, part 1

1.1 Introduction

The first part of this thesis deals with the weak space-time formulation of parabo-

lic problems, with particular focus on the advantages that this approach offers

both in terms of low-regularity of the solution and relatively easier error analy-

sis based on the quasi-optimality theory. The main tool upon which we rely is

the inf-sup theory and the Banach–Nečas–Babuška theorem. From a historical

point of view, this approach was first used in connection to mixed formulations

of elliptic problems rather than for parabolic problems. In 1972 Babuška and

Aziz introduced an approximation theory for saddle point formulations of linear

partial differential equations (see [4]), which constituted a powerful extension of

the approximation theory based on Lax-Milgram and Céa’s lemma, for positive-

definite operators. The novelty of their approach was the possibility of using

different spaces for trial and test functions. Natural applications for this were

in the first place those problems which admitted a saddle-point or a mixed for-

mulation. However, in 1989, Babuška and Janik (see [5] and [6]) proposed an

application of the inf-sup theory in connection with numerics for parabolic prob-

lems, suggesting the possibility of a space-time formulation in which different

test and trial space had to be used. In particular, up to that time, the finite ele-

ment method was typically used in space only, reducing the problem to a system

of ordinary differential equations to be then solved exactly or by means of the

finite difference method. In [5] the finite element method was instead used both

in space and in time for the first time, although a single element in space was

considered (the authors referred to it as the p-version). In [6] we can instead

find a real space-time finite element method, with a complete discussion of what

the authors call the h-p-version in time. In particular, the error is measured with

respect to the norm: ∫ T

0

‖u(·, t)‖2H1(Λ) dt, (1.1)

which we will better specify later in this work, and which became the standard

measure of error in the works dealing with space-time formulations of parabolic

problems.

Since then, several authors have further investigated the use of space-time

formulations of parabolic problems and the possible applications in numerics.

We briefly summarize some of the most relevant features which inspired us to

use this method:
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• It naturally leads to the development of a quasi-optimal error analysis.

• It offers the possibility of constructing solutions under relatively weak

assumptions of regularity.

• It allows us to keep track of every constant appearing in the bounds for the

norm of the solution and in the error estimates.

1.2 The inf-sup theory

The main tool that we use in order to prove existence and uniqueness of the

solution to our equation, once stated in its variational form, is the following

theorem, here stated in its abstract form (see [4, 15]).

Theorem 1 (Banach–Nečas–Babuška (BNB)). Let V and W be Banach spaces,
V reflexive. Given a bounded bilinear form B : W × V → R,

CB := sup
0 �=w∈W

sup
0 �=v∈V

B(w, v)

‖w‖W ‖v‖V
<∞, (BDD)

the associated linear operator B : W → V ∗, defined as

〈Bw, v〉V ∗ V := B(w, v), ∀w ∈W, ∀v ∈ V, (1.2)

is boundedly invertible if and only if the following two conditions are satisfied:

cB := inf
0 �=w∈W

sup
0 �=v∈V

B(w, v)

‖w‖W ‖v‖V
> 0, (BNB1)

∀v ∈V, sup
0 �=w∈W

B(w, v) > 0. (BNB2)

The constant cB is called the inf-sup constant, while the constant CB is

called the boundedness constant. Whenever (BNB1)–(BNB2) hold and W is

reflexive, we have the further identity

c−1
B = ‖B−1‖L(V ∗,W ) = ‖(B∗)−1‖L(W∗,V ), (1.3)

which leads to the following condition, equivalent to (BNB1)–(BNB2):

inf
0 �=w∈W

sup
0 �=v∈V

B(w, v)

‖w‖W ‖v‖V
= inf

0 �=v∈V
sup

0 �=w∈W

B(w, v)

‖v‖V ‖w‖W
> 0. (1.4)

This allows to swap the spaces where the infimum and the supremum are taken,

leading to the next corollary.
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Corollary 2. The variational problem

w ∈W : B(w, v) = F (v), ∀v ∈ V, F ∈ V ∗, (1.5)

i.e., Bw = F ∈ V ∗, and its adjoint

v ∈ V : B(w, v) = G(w), ∀w ∈W, G ∈W ∗, (1.6)

i.e., B∗v = G ∈ W ∗, are well-posed whenever (BDD), (BNB1) and (BNB2)

hold. In particular, the well-posedness of the former is equivalent to the well-
posedness of the latter and the norms of the solutions are bounded respectively
as follows:

‖w‖W ≤ ‖B−1F‖W ≤ 1

cB
‖F‖V ∗ ,

‖v‖V ≤ ‖(B∗)−1G‖V ≤
1

cB
‖G‖W∗ .

(1.7)

The two conditions expressed in (BNB1) and (BNB2) can be interpreted in

terms of surjectivity and injectivity of the operator B (see [15, Remark 2.7]):

• (BNB1) ensures the surjectivity of B∗ ∈ L(V,W ∗), since it shows that

Ker(B) = {0} and that Im(B) is closed.

• (BNB2) ensures that the operator B∗ ∈ L(V,W ∗) is injective, since it

rules out the possibility of having 0 �= v ∈ Ker(B∗).

The next example helps to clarify that one condition alone does not ensure both

existence and uniqueness:

Example 3 (Solvability of ∇ · w = F in R
3). The bilinear form is in this

case given by B(w, v) = (w,∇v), and we have that (w,∇v) = 0 does not
necessarily imply that v = 0 because w can be a curl of some vector field. So,
given a solution to∇·w = F we could add any curl to the solution and still get
a solution. However the condition (BNB2) rules this out.

It is quite important to make a comparison between this result and the well-

known Lax-Milgram theorem.

Theorem 4 (Lax-Milgram (LM)). Given a Hilbert space V , a bounded bilinear
form a(·, ·), coercive on V , and a functional F ∈ V ∗, there exists a unique
solution to the problem

a(u, v) = F (v), ∀v ∈ V. (1.8)
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Although they both ensure the invertibility of an operator, the (BNB) theo-

rem differs from the Lax-Milgram theorem in several ways:

BNB LM
Equivalence Implication

Banach spaces Hilbert spaces

Test space �= Trial space Test space = Trial space

If we restrict ourselves to a finite-dimensional case, these differences become

even more evident, since the two theorems respectively claim that:

LM: A positive-definite matrix is invertible.

BNB: A matrix is invertible if and only if it is indefinite.

An important difference is that the validity of the (BNB) theorem on a pair of

spaces (W,V ) does not imply its validity on two arbitrary subspaces Wh ⊂ W ,

Vh ⊂ V , the contrary to what happens with the (LM) theorem. One has thus to

check again the validity of the three conditions expressed in Theorem 1.

Theorem 5. Let Vh ⊂ V and Wh ⊂ W be subspaces of W and V introduced
in Theorem 1. Given a bilinear form B : Wh × Vh → R,

Ch
B := sup

0 �=w∈Wh

sup
0 �=v∈Vh

B(w, v)

‖w‖W ‖v‖V
<∞, (BDDh)

the associated linear operator B : Wh → V ∗
h , defined as

〈Bw, v〉V ∗ V := B(w, v), ∀w ∈Wh, ∀v ∈ Vh, (1.9)

is boundedly invertible if and only if the following two conditions are satisfied:

chB := inf
0 �=w∈Wh

sup
0 �=v∈Vh

B(w, v)

‖w‖W ‖v‖V
> 0, (BNB1h)

∀v ∈Vh, sup
0 �=w∈Wh

B(w, v) > 0. (BNB2h)

The constant chB is now called the discrete inf-sup constant, while the con-

stant Ch
B is called the discrete boundedness constant. For the boundedness con-

stant it is clear that Ch
B ≤ CB , so that boundedness in the continuous case

implies boundedness in the discrete case. But this is not true for the inf-sup

condition. In particular, chB might depend on the chosen discretization and not
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be uniform with respect to that. We can also notice that while checking the va-

lidity of conditions (BNB1h) and (BNB2h), if the spaces Vh and Wh are finite

dimensional, a necessary condition is that the dimensions of the spaces are con-

sistent, that is dim(Vh) = dim(Wh). In this particular case, the two conditions

(BNB1h) and (BNB2h) are equivalent, and we only need to check one of them.

1.3 Miscellaneous mathematical tools

Throughout the remaining of this chapter, and in the appended papers, we denote

by (H, 〈·, ·〉H) a separable Hilbert space.

1.3.1 Gelfand triple

Given a linear subspace V ⊂ H , densely embedded in H via the embedding

map J : V ↪→ H , there exists a canonical embedding J∗ : H∗ ↪→ V ∗, given

by 〈J∗φ, v〉V ∗ V = 〈φ, v〉H , ∀v ∈ V, φ ∈ H∗. Provided that V is reflexive,

the second embedding is also dense. By the identification of H with its dual,

H ≡ H∗, one can thus obtain the Gelfand triple:

V
J
↪→ H ≡ H∗ J∗

↪→ V ∗. (1.10)

When possible, scalar product and dual pairing coincide:

〈u, v〉H = 〈u, v〉V ∗ V , ∀u ∈ H, v ∈ V. (1.11)

In general V is only required to be a Banach space but it might happen to be

a Hilbert space itself, endowed with its own inner product; if this is the case,

we cannot simultaneously identify H ≡ H∗ and V ≡ V ∗, although an isome-

try from V onto V ∗ exists. This isometry is indeed no longer the identity, but

rather another operator (for an instructive example see [7, Chapt. 5]). A typical

example of Gelfand triple to which we often refer is given by

H1
0 (Λ) ↪→ L2(Λ) ↪→ H−1(Λ), (1.12)

for some bounded domain Λ ⊂ R
d.
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1.3.2 About the operator A

The operator appearing in the problem of interest will often be a linear bounded

coercive self-adjoint operator A : V → V ∗, associated to a bilinear form a given

by a(u, v) = 〈A u, v〉V ∗ V . Generalizations of this operator, such as A non self-

adjoint, time-dependent or dependent on a stochastic parameter ω will be also

considered, but analysed case by case in the papers, and not presented here. We

typically assume that the following conditions hold for some positive numbers

Amin, Amax:

〈Au, v〉V ∗ V ≤ Amax‖u‖V ‖v‖V , u, v ∈ V,

〈Av, v〉V ∗ V ≥ Amin‖v‖2V , v ∈ V.
(1.13)

The operator A is thus a bijection from V to V ∗, and has a bounded inverse A−1,

which satisfies similar bounds:

〈A−1u, v〉V V ∗ ≤ A−1
min‖u‖V ∗‖v‖V ∗ , u, v ∈ V ∗,

〈A−1v, v〉V V ∗ ≥ A−1
max‖v‖2V ∗ , v ∈ V ∗.

(1.14)

A typical example of an operator A satisfying the assumptions in (1.13) and

(1.14) is given by

A := −Div(A∇·), (1.15)

defined on the spaces in (1.12), and with a matrix-valued function A such that:

Amin|ζ|2 ≤ ζ · A(ξ)ζ ≤ Amax|ζ|2, ξ ∈ Λ, ζ ∈ R
d. (1.16)

1.3.3 Fractional powers

In order to measure the spatial regularity of the functions used in the appended

papers, we make use of fractional powers of the operator A. To do so, we need

to change the framework, moving from the Gelfand triple setting to something

else. If the operator A is possibly unbounded, self-adjoint, defined on a domain

D(A) ⊂ H , with values in H , then it admits eigenpairs (λn, en)n∈N:

Aen = λnen, (1.17)

where the {en}n∈N constitute an orthonormal basis, and {λn}n∈N is a sequence

of positive numbers that tends to ∞. The analytic semigroup generated by −A
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is denoted by

St := e−tA, (1.18)

and defined as the strong operator limit

St :=
∑
n∈N

e−λnt(en ⊗ en). (1.19)

The family (St)t≥0 thus defined, fulfils the following properties:

St ◦ Ss = St+s, s, t ≥ 0,

S0 := IH ,

t �→ St is strongly continuous.

(1.20)

For an operator A as above, it is possible to define the square root, denoted by

A
1
2 , and in general any fractional powers. Given β ∈ R, we define

A
β
2 :=

∑
n∈N

λ
β
2
n (en ⊗ en), (1.21)

with domain

D(A
β
2 ) =

{
v ∈ H :

∑
n∈N

λβ
n|〈v, en〉2H | <∞

}
, β > 0,

D(A
β
2 ) = H, β ≤ 0.

(1.22)

When β > 0, we denote by Ḣβ the set of all elements of H for which the first

line in (1.22) holds. Ḣβ is a Hilbert space, with inner product and norm defined

by:

〈u, v〉
Ḣβ :=

∑
n∈N

λβ
n〈u, en〉H〈v, en〉H ,

‖u‖2
Ḣβ

:=
∑
n∈N

λβ
n|〈u, en〉H |2.

(1.23)

When β ≤ 0, the spaces Ḣβ are defined as the completion of H with respect

to the norm defined above. Good references for this topic are given by [20]

and [23]. Although there might seem to be a gap between the Gelfand triple

formulation and the fractional powers defined above, it is actually possible to

establish a precise connection and equivalence between the two. We report the

explanation found in [11, Appendix 1] about how it is possible to switch from
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the Gelfand triple framework to the fractional powers framework. For the other

way round we refer instead to [24, Appendix F, Remark F.0.6], and refrain from

presenting the details here.

We start by taking a Gelfand triple

V
J
↪→ H

Φ∼= H∗ J∗
↪→ V ∗, (1.24)

where J and J∗ are dense embeddings and Φ is the Riesz isomorphism. We want

to modify the operator A introduced above, so that it becomes an unbounded

operator Ã from H into H . We define

D(A) ⊂ H = {v ∈ V : Av ∈ J∗Φ(H)}, (1.25)

and a new operator Ã as

Ã : D(Ã) ⊂ H → H,

D(Ã) := J(D(A)),

Ã := Φ−1(J∗)−1AJ−1.

(1.26)

In this way Ã is an unbounded densely defined linear operator; in particular it

is positive definite because of the coercivity of the bilinear form. If the bilinear

form a(·, ·) associated to A is symmetric and J is a compact embedding, then Ã

is self-adjoint, boundedly invertible, with compact inverse Ã−1 := JA−1J∗Φ,

and this implies that we can use the spectral theorem in order to define the semi-

group and fractional powers of Ã. Alternatively, we can argue that such an

operator is the generator of a strongly continuous semigroup of contractions and

such a semigroup is holomorphic, as shown in [22, Theorem 1.52], and it is

hence possible to define fractional powers of Ã. In order to simplify the nota-

tion, we finally omit the embeddings and denote Ã by A.

1.3.4 Bochner–Lebesgue spaces

In order to present the abstract formulation of the heat equation, we will need

the following Bochner–Lebesgue spaces:

Y = L2((0, T );V ), (1.27)

X = L2((0, T );V ) ∩H1((0, T );V ∗), (1.28)
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which are Hilbert spaces respectively normed by

‖y‖2Y = ‖y‖2L2((0,T );V ) =

∫ T

0

‖y(t)‖2V dt, (1.29)

and
‖x‖2X = ‖x(0)‖2H + ‖x‖2L2((0,T );V ) + ‖ẋ‖2L2((0,T );V ∗)

= ‖x(0)‖2H +

∫ T

0

(
‖x(t)‖2V + ‖ẋ(t)‖2V ∗

)
dt.

(1.30)

In some books, as for example in [13], the space X is sometimes also denoted

by H1((0, T );V, V ∗) or W 1((0, T );V, V ∗).
The trace theorem for Bochner–Lebesgue spaces ( [13, Theorem 1, Chap-

ter XVIII.1]), says that X is densely embedded in C ([0, T ];H), so that x(0) and

x(T ) are defined in H . Whenever x, y ∈ X integration by parts is possible:∫ T

0

(
〈ẋ(t), y(t)〉V ∗ V + 〈x(t), ẏ(t)〉V V ∗

)
dt

= 〈x(T ), y(T )〉H − 〈x(0), y(0)〉H .

(1.31)

The embedding constant Me, defined as

Me := sup
0 �=x∈X

‖x(t)‖C ([0,T ];H)

‖x‖X
<∞, (1.32)

is uniform in the choice of V . With our choice of norm on X we compute that

Me = 1 because according to (1.31) we have that for any r ∈ [0, T ]:

‖x(r)‖2H = ‖x(0)‖2H +

∫ r

0

〈ẋ(t), x(t)〉V V ∗ dt

≤ ‖x(0)‖2H +

∫ T

0

| 〈ẋ(t), x(t)〉V ∗ V | dt

≤ ‖x(0)‖2H + ‖x‖2L2((0,T );V ) + ‖ẋ‖2L2((0,T );V ∗).

(1.33)

Finally, we introduce the product space L2((0, T );V ) × H , endowed with

the product norm, for which we use the shorthand notation YH , and the space

X0,{T}, defined as the subspace of X of all the x’s such that x(T ) = 0.

1.3.5 Nuclear and Hilbert–Schmidt operators

We will need more tools from functional analysis in order to properly intro-

duce stochastic evolution problems. Given a pair of separable Hilbert spaces
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(H, 〈·, ·〉H) and (U, 〈·, ·〉U ), we denote byL(U,H) the Banach space of bounded

linear operators from U to H , with the simplified notation L(H) whenever

U = H . For an operator Q ∈ L(H), we say that it is self-adjoint positive

semi-definite (resp. positive definite) if Q∗ = Q and if Q ≥ 0, i.e., 〈Qv, v〉H ≥
0, ∀v ∈ H (resp. if Q > 0, i.e., 〈Qv, v〉H > 0, ∀v ∈ H, v �= 0).

We denote by L1(U,H) the space of nuclear operators from U to H , de-

fined as the space of elements in L(U,H) for which there exists two sequences

{aj}j∈N ⊂ H , {bj}j∈N ⊂ U such that
∑

j∈N
‖aj‖H‖bj‖U < ∞ and such that

Tf =
∑

j∈N
〈f, bj〉Uaj , for every f ∈ U . Nuclear operators are sometimes

called trace-class operators and form a Banach space normed by

‖T‖L1(U,H) := inf
{∑

j∈N

‖aj‖H‖bj‖U <∞ :

Tf =
∑
j∈N

〈f, bj〉Uaj , ∀f ∈ U
}
.

(1.34)

For operators Q ∈ L1(H) = L1(H,H) the trace is well defined as

Tr(Q) :=
∑
k∈N

〈Qek, ek〉H , (1.35)

where {ek}k∈N is any orthonormal basis for H .

We say that an operator Q ∈ L(U,H) is a Hilbert–Schmidt operator if for

an (hence for any) orthonormal basis {ek}k∈N of U , it holds that∑
k∈N

‖Qek‖2H <∞. (1.36)

We denote by L2(U,H) the space of Hilbert–Schmidt operators, endowed with

the structure of Hilbert space induced by the inner product

〈T,Q〉L2(U,H) :=
∑
k∈N

〈Tek, Qek〉H . (1.37)

It holds that Q ∈ L2(U,H) if and only if Q∗ ∈ L2(H,U), with ‖Q‖L2(U,H) =

‖Q∗‖L2(H,U) and that Q ∈ L2(U,H) if and only if QQ∗ ∈ L1(H), with

Tr(QQ∗) = ‖Q‖2L2(U,H). We denote L2(U,U) by L2(U).

Finally, for Q ∈ L(U), with Q ≥ 0, by denoting with Q
1
2 ∈ L(U) its unique

square positive root, we define the Cameron-Martin space U0 := Q
1
2 (U), the

Hilbert space endowed with the inner product

〈u, v〉U0 := 〈Q− 1
2u,Q− 1

2 v〉H , (1.38)
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where Q− 1
2 indicates the pseudo-inverse of Q

1
2 , i.e.,

Q− 1
2 :=

(
Q

1
2

∣∣∣
Ker(Q

1
2 )⊥

)−1

. (1.39)

It holds that Q
1
2 is an isometric isomorphism between (Ker(Q

1
2 )⊥, 〈·, ·〉U ) and

(U0, 〈·, ·〉U0
), making the latter a Hilbert space as well. The notation L0

2 will

sometimes be used to denote the space of Hilbert–Schmidt operatorsL2(U0, H).

1.4 The abstract parabolic problem

In this section we introduce the prototype problem we investigate in the first part

of the thesis. We assume that V ↪→ H ↪→ V ∗ are as in § 1.3.1, and that a and A

are as in § 1.3.2.

1.4.1 Variational space-time formulations

Although some generalizations of this problem will be considered in the ap-

pended papers (the stochastic version of this problem in Paper A and the version

with random coefficients in Paper C), we present a main overview of the known

results of solvability and of “how to handle” the left-hand side for the prototype

problem defined in its strong form as

u̇(t) +Au(t) = f(t), t ∈ (0, T ],

u(0) = u0.
(1.40)

The first space-time variational formulation of Problem (1.40) is:

u ∈ X : B(u, y) = F (y), ∀y ∈ YH , (1.41)

where y = (y1, y2) and where the following bilinear form and linear functional

have been used:

B : X × YH → R,

B(x, y) :=

∫ T

0

(
〈ẋ(t), y1(t)〉V ∗ V + a(x(t), y1(t))

)
dt+ 〈x(0), y2〉H ,

F : YH → R,

F (y) :=

∫ T

0

〈f(t), y1(t)〉V ∗ V dt+ 〈u0, y2〉H .

(1.42)
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By means of a formal integration by parts we can derive the second space-

time variational formulation

u ∈ YH : B∗(u, x) = F (x), ∀x ∈ X , (1.43)

where the bilinear form B∗(·, ·) and the load functional F are now given by

B∗ : YH ×X → R,

B∗(y, x) :=
∫ T

0

(
〈y1(t),−ẋ(t)〉V V ∗ + a(y1(t), x(t))

)
dt+ 〈y2, x(T )〉H ,

F : X → R,

F (x) :=

∫ T

0

〈f(t), x(t)〉V ∗ V dt+ 〈u0, x(0)〉H .

(1.44)

These two formulations are also often referred to as primal and dual, and the

second is also called weak space-time formulation.

Whenever the solution u of the second problem is regular enough, that is,

when u1 ∈ X , the two formulations are equivalent; in particular the two compo-

nents of the solution are strictly related according to u2 = u1(T ). This is how-

ever not true in general, since the second component of the solution, u2, must

be in general understood as a continuous H-valued version of u1, evaluated at

time t = T . This will be of crucial importance in the stochastic case presented

in Paper A, where the solution will not have the extra regularity required.

Traditionally, the weak-space time formulation is stated in terms of different

spaces, Y and X0,{T}, where the latter is defined as in § 1.3.4 as:

X0,{T} := {x ∈ X : x(T ) = 0}. (1.45)

The difference between the weak space-time formulation with spaces (YH ,X )

and the one with spaces (Y,X0,{T}) is broadly discussed in Paper A and in

Paper B. We can notice how the two formulations are in some sense one the

adjoint of the other, as in (1.5) and (1.6), so that the proof of invertibility of the

operator associated to the bilinear form B(·, ·) is essentially the same in both

cases.

1.4.2 Solvability

In the framework described above, Theorem 1 reduces to the following concrete

statement:
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Theorem 6. If the bilinear form B∗ : YH ×X → R is bounded,

CB := sup
0 �=y∈YH

sup
0 �=x∈X

B∗(y, x)
‖y‖YH

‖x‖X
<∞, (BDD)

then the associated operator B is boundedly invertible if and only if the follow-
ing two conditions are satisfied:

cB := inf
0 �=y∈YH

sup
0 �=x∈X

B∗(y, x)
‖y‖YH

‖x‖X
> 0, (BNB1)

∀x ∈X , sup
0 �=y∈YH

B∗(y, x) > 0. (BNB2)

The proof of this theorem is based on the observation in (1.4), so that The-

orem 6 is proved with swapped spaces. In the appended papers we present and

analyse in great details the validity of the first two conditions and we therefore

refrain from presenting their proofs. Conditions (BDD) and (BNB1) contain in

particular quantitative information of relevance for bounding the norm of the

solution and for introducing the quasi-optimality theory presented in the Sec-

tion 1.5. The condition expressed in (BNB2) is instead only qualitative, and is

never explicitly proved in any of the manuscripts which compose this thesis. For

the sake of completeness we present its proof in this subsection, by following

two different references.

Proof of (BNB2) according to [25]. To prove (BNB2), we start by considering

a basis {φi}∞i=1 for the space V (subspace of a separable Hilbert space) and we

define the family of finite dimensional subspaces Vn := span{φi}ni=1. The key

idea of this proof is to construct for any ỹ ∈ YH an element z ∈ X as the limit

of a solution to a finite dimensional problem, such that

B∗(y, z) =
∫ T

0

a(y, ỹ1) + 〈y, ỹ2〉H , ∀y = (y1, y2) ∈ YH . (1.46)

Using then the coercivity of the bilinear form a(·, ·) will prove the claim.

Given any ỹ = (ỹ1, ỹ2) ∈ YH , consider the finite dimensional problem of

seeking zn(t) =
∑(n)

i=1 z
(n)
i (t)φi such that

〈ξn,−żn(t)〉H + a(ξn, zn(t)) = a(ξn, ỹ1(t)), ∀ξn ∈ Vn, ∀t ∈ [0, T ),

zn(T ) =

n∑
i=1

ỹ2,iφi,

(1.47)
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where
∑n

i=1 ỹ2,iφi → ỹ2 in H for n → ∞. Such a problem admits a unique

solution zn ∈ C ([0, T ];Vn), whose derivative żn belongs to L2((0, T );Vn). The

first claim is that the sequence (zn)n∈N is bounded in Y . In fact, by integrating

in time (1.47) and choosing ξn = zn, one can get∫ T

0

〈zn,−żn〉H dt+

∫ T

0

a(zn, zn) dt =

∫ T

0

a(zn, ỹ1) dt, (1.48)

i.e.,

‖zn(0)‖2H + 2

∫ T

0

a(zn, zn) dt = 2

∫ T

0

a(zn, ỹ1) dt+ ‖zn(T )‖2H . (1.49)

Thus, using the coercivity of a(·, ·), for any ε > 0 one gets:

2Amin

∫ T

0

‖zn‖2V ≤ 2

∫ T

0

a(zn, zn) dt

≤ ‖zn(0)‖2H + 2

∫ T

0

a(zn, zn) dt

= 2

∫ T

0

a(zn, ỹ1) dt+ ‖zn(T )‖2H

≤ 2Amax

∫ T

0

√
ε‖zn‖V

1√
ε
‖ỹ1‖V dt+ 2‖ỹ2‖2H ,

(1.50)

where in the last step, without loss of generality, it has been assumed that

‖zn(T )‖H ≤
√
2‖ỹ2‖H . Moreover, by means of the elementary inequality

2ab ≤ a2 + b2, one can obtain

2Amin

∫ T

0

‖zn‖2V

≤ Amax

(∫ T

0

ε‖zn‖2V dt+

∫ T

0

1

ε
‖ỹ1‖2V dt

)
+ 2‖ỹ2‖2H .

(1.51)

Dividing now by 2Amin and choosing ε = Amin

Amax
the inequality becomes∫ T

0

‖zn‖2V ≤
1

2

∫ T

0

‖zn‖2V dt+
A2

max

2A2
min

∫ T

0

‖ỹ1‖2V dt+
1

Amin
‖ỹ2‖2H , (1.52)

leading to ∫ T

0

‖zn‖2V dt ≤ A2
max

A2
min

∫ T

0

‖ỹ1‖2V dt+
2

Amin
‖ỹ2‖2H , (1.53)
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i.e., to

‖zn‖2Y ≤
A2

max

A2
min

‖ỹ1‖2Y +
2

Amin
‖ỹ2‖2H , ∀n ∈ N, (1.54)

that proves the claim. Moreover for any 1 ≤ i ≤ n and for any θ ∈ C ([0, T ];R)

such that θ(0) = 0, if zn is the solution to the finite dimensional problem (1.47),

it follows that∫ T

0

〈φi,−żn(t)〉Hθ(t) dt =

∫ T

0

a(φi, ỹ1(t)− zn(t))θ(t) dt, (1.55)

thus, using integration by parts,∫ T

0

〈φi, zn(t)〉H θ̇(t) dt

= 〈φi, zn(T )〉Hθ(T ) +

∫ T

0

a(φi, ỹ1(t)− zn(t))θ(t) dt.

(1.56)

Since (zn)n∈N is a bounded sequence in Y , there exists a subsequence (znk
)k∈N

weakly convergent to an element z ∈ Y . Using such a subsequence and taking

the limit in the equation above, it follows that for any n ∈ N∫ T

0

〈φi, z(t)〉H θ̇(t) dt

= 〈φi, z(T )〉Hθ(T ) +

∫ T

0

a(φi, ỹ1(t)− z(t))θ(t) dt

= 〈φi, ỹ2〉Hθ(T ) +

∫ T

0

a(φi, ỹ1(t)− z(t))θ(t) dt.

(1.57)

In particular this last equation holds for any θ ∈ D((0, T );R), where D denotes

the classical space of test functions.

It then follows that by interpreting ż ∈ D∗((0, T );V ) ↪→ D∗((0, T );V ∗),

〈φi,−ż(θ)〉H = 〈φi,

∫ T

0

A∗(ỹ1(t)− z(t))θ(t) dt〉H , (1.58)

which reads

− ż = A(ỹ1 − z) in D∗((0, T );V ∗). (1.59)

Since ỹ1 − z ∈ Y and A : Y → L2((0, T );V ∗) is bounded, it follows that

ż ∈ L2((0, T );V ∗), i.e., z ∈ X .
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By replacing it in (1.57), after another integration by parts, one can thus

obtain z(T ) = ỹ2 and, by density of D((0, T );R) ⊗ V in YH , it is possible to

finally obtain that for any y ∈ YH

B∗(y, z) =
∫ T

0

a(y1, ỹ1) dt+ 〈y2, ỹ2〉H . (1.60)

If we then choose y = ỹ, we have that for any y ∈ YH

sup
x∈X

B∗(y, x) ≥ B∗(y, z)

=

∫ T

0

a(y1, y1) dt+ 〈y2, y2〉H ≥ min {1, Amin}‖y‖2YH
,

(1.61)

and (BNB2) is hence proved.

Proof of (BNB2) according to [27]. The second way to prove (BNB2) relies on

proving that if there exists a y ∈ YH such that

B∗(y, x) = 0, ∀x ∈ X , (1.62)

then it must hold that y = 0.

To this end we observe that for all x ∈ C∞((0, T );V ) the following in-

equality holds:∫ T

0

〈y1(t),−ẋ(t)〉V V ∗ dt =

∫ T

0

− 〈y1(t), Ax(t)〉V V ∗ dt

≤ Amax‖x‖L2((0,T );V )‖y‖L2((0,T );V )

(1.63)

Since C∞((0, T );V ) is dense in L2((0, T );V ), we can conclude from (1.63)

that y1 has a weak derivative in L2((0, T );V )∗ � L2((0, T );V ∗), that is y1 ∈ X .

If we integrate by parts in (1.62), we can see that y1 is the solution to

〈x(T ), y2(T )− y1(T )〉H + 〈x(0), y1(0)〉H

+

∫ T

0

(
〈ẏ1(t) +Ay1(t), x(t)〉V V ∗

)
dt = 0.

(1.64)

By using suitable test functions x ∈ X , we can derive that:

ẏ1 +Ay1 = 0,

y1(T )− y2(T ) = 0,

y1(0) = 0.

(1.65)

By using these facts and by choosing x = y1 in (1.62), we can finally conclude

that y1 = 0 and y2 = 0.
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Provided that the three conditions (BDD), (BNB1) and (BNB2) are satisfied,

the first and the second space-time formulation of (1.40) admit a unique solu-

tion whenever the load functional F defined in (1.42) and (1.44) belongs to the

proper dual space. It is not difficult to see that this is the case whenever u0 ∈ H

and f ∈ L2((0, T );V ∗). Problem (1.41) admits therefore a unique solution,

which satisfies the following bound:

‖u‖H1((0,T );V,V ∗) ≤
1

cB

(
‖u0‖2H + ‖f‖2L2((0,T );V ∗)

) 1
2

. (1.66)

Similarly, Problem (1.43) admits also a unique solution, which satisfies the fol-

lowing bound:

‖u‖L2((0,T );V ) ≤
1

cB

(
‖u0‖2H + ‖f‖2L2((0,T );V ∗)

) 1
2

. (1.67)

It is important to notice at this point that the results of invertibility of B∗ and

B hold independently from the choice of the right-hand side. This means that

for whatever choice of functional F , such that it belongs to the dual space of X
or of YH , the problem is uniquely solvable. This property is of particular rele-

vance for the weak space-time formulation, because a broader class of functional

than the one presented in (1.44) can actually be proven to belong to X ∗. This

class includes, amongst others, stochastic integrals and nowhere differentiable

functions.

1.5 Quasi-optimality

The main advantage of using the inf-sup theory described in Section 1.2 is the

possibility of deriving results of quasi-optimality in a natural way. The impor-

tance of a quasi-optimality result is that it states the equivalence between the

error of the method we investigate and the best possible error that would be

committed by approximating the solution with a function living in the same sub-

space where the discrete solution lives. In particular, from the quasi-optimality

result, we can deduce error bounds of optimal order, and this is an implication,

rather than an equivalence.

If we denote by wh ∈ Wh the discrete solution to (1.5) on the couple of

spaces (Wh, Vh), subspaces of (W,V ), the quasi-optimality constant is defined
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as the smallest constant q for which the following inequality holds:

‖w − wh‖W ≤ q inf
v∈Wh

‖w − v‖W . (1.68)

The first result of quasi-optimality can be traced back to Céa, under the as-

sumption of having the same Hilbert space W as both test and trial space, and by

assuming that the bilinear form defining problem (1.5) is symmetric and coer-

cive, with coercivity constant αB . Under these assumptions, q could be bounded

from above as

q ≤
√

CB

αB
. (1.69)

The great contribution of Babuška, in [3], was to get rid of these restrictive

assumptions, proving in the setting described in Section 1.2 that an upper bound

for q is given by

q ≤ 1 +
CB

chB
. (1.70)

This estimate was finally sharpened by Xu and Zikatanov in [31], where by

exploiting the properties of idempotent operators onto Hilbert spaces, the authors

achieved a sharper upper bound for q, given by

q ≤ CB

chB
. (1.71)

A major contribution in the investigation of the quasi-optimality theory for

Petrov-Galerkin discretizations of evolution problems based on a space time for-

mulation can be found in [27]. The author investigates a particular choice of

discretization that leads to the backward Euler time stepping. The theory of

quasi-optimality is first analysed in an abstract way, proving a counterpart for

the estimate in (1.71) for the case of non-conforming discretizations, to then

achieve concrete quasi-optimal error estimates for a spatial semidiscretization,

for a temporal semidiscretization, and for a fully discrete scheme based on a

temporal evolution that resembles the backward Euler time stepping. The author

shows in particular how the best quasi-optimality constant is equal to the norm

of the Ritz projection from the space where the continuous solution lives, W , to

the space where the discrete solution lives, Wh. In the case of spatial semidis-

crete schemes, it is shown that the boundedness of the L2(H1)-projection is a
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sufficient and necessary condition for the stability of the method and for the

quasi-optimality of the error estimates. These estimates constitute the starting

point and main inspiration for Paper B and Paper C:

• In Paper B the results of quasi-optimality are used to derive schemes that

are superconvergent at the temporal nodes, based on a temporal discretiza-

tion with piecewise polynomial of arbitrary degree q.

• In Paper C we extend the results of quasi-optimality to evolution problems

with random coefficients, in the spirit of what is done for elliptic problems

in [9] and [28]. The possibility of keeping track of all the constants ap-

pearing in the error estimates, and of how they depend on each other,

allows us to treat numerics for equations with stochastically unbounded

and non-uniformly coercive coefficients. We thus generalize some recent

results for these problems, where having uniformly bounded and coercive

coefficients was a necessary assumption (see, for example, [16]).

1.6 Probabilistic tools

In this section we try to recap the main concepts and tools needed in order to

introduce stochastic partial differential equations, and we establish the notation

and the preliminaries needed to facilitate the reading of Paper A and C.

1.6.1 The probabilistic environment

We assume that the Hilbert space (H, 〈·, ·〉H) is endowed with its Borel sigma-

algebra, denoted by B(H), and with a probability measure μ. A random variable

is any measurable function X : (H,B(H)) → (R,B(R)), and its law is given

by μ ◦ X−1. We say that a probability measure μ on (H,B(H)) is Gaussian

if for every v ∈ H , v∗ has a Gaussian law as a real-valued random variable on

(H,B(H), μ), where v∗ is defined as v∗(u) := 〈v, u〉H .

We recall that a finite measure μ on (H,B(H)) is Gaussian if and only if its

Fourier transform satisfies the following

μ̂(u) = ei〈m,u〉H− 1
2 〈Qu,u〉H , (1.72)

for some m ∈ H , Q ∈ L(H), with Q ≥ 0 and Tr(Q) < ∞. This is often

denoted by μ = N(m,Q), where m and Q are respectively called mean and co-
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variance operator. A Gaussian measure is uniquely characterized by these two

quantities. The definition may be naturally extended to any H-valued random

variable X on a probability space (Ω,Σ,P), that from now on will be assumed

to be complete, by saying that X is a Gaussian random variable if it is a mea-

surable map such that P ◦ X−1 = N(m,Q). It holds in particular that for any

u, v ∈ H:

E

[
〈X,u〉H

]
= 〈m,u〉H ,

E

[
〈X −m,u〉H〈X −m, v〉H

]
= 〈Qu, v〉H ,

E

[
‖X −m‖2H

]
= Tr(Q).

(1.73)

An equivalent characterization of Gaussian random variables can be given in

terms of the eigenpairs of their covariance operator.

Given m ∈ H and Q ∈ L(H), with Q ≥ 0 and Tr(Q) < ∞, we say that

X : (Ω,Σ,P)→ (H,B(H)) is Gaussian, with X = N(m,Q), if and only if

X = m+
∑
k∈N

√
λkβkek, (1.74)

where the (λk, ek)’s are the eigenpairs of Q, the βk’s are independent real-valued

random variables, with βk = N(0, 1) if λk > 0 or with βk = 0 otherwise. The

series converges in L2(Ω,Σ,P;H).

Given [0, T ] ⊂ R, an H-valued stochastic process {X(t)}t∈[0,T ] is a set of

H-valued random variables X(t) on (Ω,Σ,P). Given two stochastic processes

{X(t)}t∈[0,T ] and {Y (t)}t∈[0,T ], we say that they are modifications (or versions)

of each other if P({X(t) �= Y (t)}) = 0 for all t ∈ [0, T ] and that they are

indistinguishable if P(∪t∈[0,T ]{X(t) �= Y (t)}) = 0.

1.6.2 Wiener processes and martingales

An H-valued process {W (t)}t∈[0,T ] with almost surely continuous paths, such

that W (0) = 0 and such that it has independent, Gaussian distributed incre-

ments, i.e., P ◦ (W (t)−W (s))−1 = N(0, Q(t− s)), t > s, is called a nuclear
Q-Wiener process. As in the case of H-valued Gaussian distributed random

variables, also Q-Wiener processes have an equivalent characterization in terms

of the eigenpairs of the covariance operator. Given m ∈ H and Q ∈ L(H), with

Q ≥ 0 and Tr(Q) < ∞, we say that {W (t)}t∈[0,T ] is an H-valued Q-Wiener



22 INTRODUCTION, part 1

process, with X = N(m,Q), if and only if

W (t) = m+
∑
k∈N

√
λkβk(t)ek, (1.75)

where the (λk, ek)’s are the eigenpairs of Q, the βk’s are independent real-valued

standard Brownian motions on (Ω,Σ,P) if λk > 0, βk = 0 otherwise. Here the

series converges in L2(Ω,Σ,P;C ([0, T ];H)).

A filtration {Σt}t∈[0,T ] is called normal if Σ0 contains all the null-sets of Σ

and if Σt = Σt+ := ∩s>tΣs for every t ∈ [0, T ]. If not otherwise specified

we will always assume that Σt, t ∈ [0, T ], is a normal filtration. A process

{X(t)}t∈[0,T ] is said to be adapted to {Σt}t∈[0,T ] if X(t) is Σt-measurable for

any t ∈ [0, T ]. It is said to be predictable if, considered as a mapping from

Ω × [0, T ], it is measurable with respect to the sigma algebra generated by the

left-continuous processes. It is said to be progressively measurable if for any

time t ∈ [0, T ] the map (s, ω) �→ X(s, ω) is B([0, t])⊗ Σt-measurable.

We say that {W (t)}t∈[0,T ] is a Q-Wiener process with respect to the fil-

tration {Σt}t∈[0,T ] if {W (t)}t∈[0,T ] is adapted to {Σt}t∈[0,T ] and if the random

variable (W (t)−W (s)) is independent of Σs for every s ∈ [0, t]. It holds in par-

ticular that if {W (t)}t∈[0,T ] is an H-valued Q-Wiener process on (Ω,Σ,P), then

it is possible to construct a normal filtration with respect to which {W (t)}t∈[0,T ]

is an H-valued Q-Wiener process.

Given a Banach space V , we say that a V -valued random variable X ,

X : (Ω,Σ,P)→ (V,B(V )), (1.76)

is Bochner integrable if it is measurable and if∫
Ω

‖X(ω)‖V dP(ω) <∞. (1.77)

A V -valued stochastic process {M(t)}t∈[0,T ] on (Ω,Σ,P) is said to be a mar-
tingale with respect to a filtration {Σt}t∈[0,T ] if:

E(‖M(t)‖V ) <∞, ∀t ∈ [0, T ],

{M(t)}t∈[0,T ] is adapted to {Σt}t∈[0,T ],

E(M(t)|Σs) = M(s), ∀0 ≤ s ≤ t.

(1.78)

We denote by M 2
T (V ) the space of V -valued {Σt}t∈[0,T ]-adapted martin-
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gales with almost surely continuous paths, M(t), such that

sup
t∈[0,T ]

∫
Ω

‖M(t)‖2V dP <∞. (1.79)

The space M 2
T (V ) has a Banach space structure when endowed with the norm

‖M‖M2
T (V ) := sup

t∈[0,T ]

(
E

[
‖M(t)‖2V

]) 1
2

=
(
E

[
‖M(T )‖2V

]) 1
2

, (1.80)

where the last equality follows from Doob’s maximal inequality. In particular,

any H-valued Q-Wiener process {W (t)}t≥0, defined on (Ω,Σ,P), with respect

to a normal filtration {Σt}t≥0, belongs to M 2
T (H) for any positive T .

1.6.3 Stochastic integrals

The first references for the theory of stochastic integral can be traced back to

Wiener, when the integrand is deterministic (see [30]), and to Ito (see [17]),

when the integrand is stochastic. More actual references for a complete and

comprehensive introduction to the topic are given by, for example, [12] or [19].

Given a pair of separable Hilbert spaces (H, 〈·, ·〉H) and (U, 〈·, ·〉U ), we say that

a L(U,H)-valued process {Φ(t)}t∈[0,T ] is elementary if there exists a sequence

0 = t0 ≤ . . . ≤ tN = T such that

Φ(t) =

N−1∑
i=0

Φi χ(ti,ti+1), (1.81)

where each Φi is a strongly Σti -measurable L(U,H)-valued random variable

that only takes a finite number of values in L(U,H). The space of elementary

processes is usually denoted by E .

For an elementary process Φ ∈ E its stochastic integral with respect to a

U -valued Q-Wiener process is defined as:∫ t

0

Φ(s) dW (s) :=

N−1∑
i=0

ΦiΔWi(t), (1.82)

where ΔWi(t) := W (ti+1 ∧ t) − W (ti ∧ t). For any Φ ∈ E , the stochastic

integral is a continuous square-integrable Σt∈[0,T ]-martingale, i.e.,{∫ t

0

ΦdW

}
t∈[0,T ]

∈ M 2
T (H). (1.83)
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In particular its expectation is 0 and the so called Itô-isometry holds:

E

[∥∥∥∥ ∫ T

0

ΦdW

∥∥∥∥2]
= E

[ ∫ T

0

‖Φ(s)Q 1
2 ‖2L2(U,H) ds

]
. (1.84)

For simplicity, the following notation is also used

‖Φ‖2T = E

[ ∫ T

0

‖Φ(s)Q 1
2 ‖2L2(U,H) ds

]
, (1.85)

and ‖ · ‖T defines a norm on E , once we re-define E to be the quotient space

E/E0, where

E0 :=
{
Φ ∈ E : Φ = 0 on Q

1
2 (U), dt⊗ P− a.s.

}
. (1.86)

The stochastic integral thus defines a continuous isometry between the space

(E , ‖ · ‖T ) and the complete space (M 2
T , ‖ · ‖M2

T
), that can hence be extended to

Ē , abstract completion of E , which will be denoted by N 2
W ([0, T ];H) and that

can be explicitly characterized as follows:

N 2
W ([0, T ];H) :=

{
Φ: [0, T ]× Ω→ L0

2 :

Φ is predictable and ‖Φ‖T <∞
}
.

(1.87)

By a localization procedure it is possible to further extend the stochastic integral

to an even broader space by dropping the assumption on the boundedness of the

‖ · ‖T -norm and requiring only that

P

(∫ T

0

‖Φ‖2L0
2
ds <∞

)
= 1. (1.88)

Such a space is denoted by NW ([0, T ];H).

Finally, it is possible to consider even the case when Tr(Q) = ∞, as for

example when Q is the identity operator. Indeed it is always possible to find

a Hilbert space (Ũ , 〈·, ·〉Ũ ) such that the embedding J : U0 → Ũ is Hilbert–

Schmidt and define Q̃ : Ũ → Ũ as Q̃ = JJ∗, so that it is bounded, positive

semi-definite and trace-class. The series

W̃ (t) =
∑
k≥1

βk(t) Jek, t ∈ [0, T ] (1.89)

then converges in M 2
T (Ũ) and defines a Q̃-Wiener process on Ũ , where in par-

ticular Ũ0 = J(U0) and J : U0 → Ũ0 is an isometric isomorphism. The process
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{W̃ (t)}t∈[0,T ] is called cylindrical Wiener process and for processes Φ ∈ N 2
W ,

the stochastic integral with respect to a cylindrical Wiener process is defined as∫ t

0

Φ(s) dW (s) :=

∫ t

0

Φ(s)J−1 dW̃ (s). (1.90)

An extension of the previous definitions is given by the weak stochastic in-
tegral, which is defined for any Φ ∈ NW ([0, T ];H) and for any continuous,

Σt-adapted and H-valued process f as:∫ T

0

〈f(t),Φ(t) dW (t)〉H :=

∫ T

0

Φ̃f (t) dW (t), (1.91)

where Φ̃f (t)(u) := 〈f(t),Φ(t)u〉H for any u ∈ U0. It holds in particular that

Φ̃f : Ω×[0, T ]→ L2(U0,R) is aPT /B(L2(U0,R))-measurable process, whose

norm satisfies

‖Φ̃f (t)‖L2(U0,R) = ‖Φ∗(t)f(t)‖U0 , (1.92)

and ∫ T

0

‖Φ̃f (t)‖2L2(U0,R)
dt

≤ sup
0≤t≤T

‖f(t)‖H
∫ T

0

‖Φ(t)‖2L0
2
dt <∞, P-a.s..

(1.93)

Here PT denotes the predictable sigma-algebra on Ω × [0, T ] and the notation

PT /B(L2(U0,R))-measurable indicates that the process is measurable when its

domain and co-domain are endowed respectively with PT and B(L2(U0,R)) as

sigma-algebras.

1.7 Stochastic evolution equations

In order to facilitate the reading of Paper A, which deals with the stochastic ver-

sion of (1.40), we devote this section to the formal introduction of stochastic

evolution problems. A good reference about this topic, which has been an im-

portant source of inspiration for proving some of the results in Paper A, can be

found in [10].

We assume throughout this whole section that the following objects are

given:
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• A progressively measurable map A : [0, T ]×Ω×V → V ∗, with associated

bilinear form a(·, ·; ·, ·) that is bounded and weakly coercive. This is a

generalization of the operator A defined in § 1.3.2.

• A map f ∈ L2(Ω × (0, T );V ∗) that it is a predictable process with

Bochner integrable trajectories on [0, T ].

• A Q-Wiener process {W (t)}t∈[0,T ], where we assume that the covariance

operator Q ∈ L(H) is trace class, or, equivalently, that Q1/2 ∈ L2(H).

The problem of interest reads, in its abstract formulation:

dU(t) +A(t)U(t) dt = f(t) dt+ dW (t), t ∈ (0, T ],

U(0) = U0.
(1.94)

Such a notation, with dW (·), is purely symbolical and indeed refers to an un-

derlying stochastic integral equation. In order to give it a meaning, we have to

introduce a formal and well defined concept of solution. This is done in great

detail in the first part of Paper A and here we only recall the main features.

We say that a continuous H-valued (Σt)-adapted process {U(t)}t∈[0,T ] is

a variational solution1 to (1.94) if for its dt ⊗ P equivalence class Û we have

Û ∈ L2(Ω× (0, T ), dt⊗ P;V ) and P-a.s.

U(t) = U(0)−
∫ t

0

A(s)Ū(s) ds+

∫ t

0

f(s) ds+

∫ t

0

dW (s), (1.95)

for any t ∈ [0, T ], where Ū is any V -valued progressively measurable dt ⊗ P

version of Û . The following Itô formula holds:

E

[
‖U(t)‖2H

]
= E

[
‖U0‖2H

]
+

∫ t

0

E

[
2 〈A(s)Ū(s), Ū(s)〉V ∗ V + ‖Q 1

2 ‖L2(H)

]
ds,

(1.96)

and, for any t ∈ [0, T ], we have that

E

[
sup

t∈[0,T ]

‖U(t)‖2H
]
<∞. (1.97)

1See [24, Chapt. 4].
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If the operator A is now possibly unbounded, independent of ω and t, and

defined on a certain domain D(A), A : D(A) ⊂ H → H , as in § 1.3.3, an H-

valued, predictable stochastic process {U(t)}t∈[0,T ] which is Bochner integrable

P-a.s. and satisfies

〈U(t), v〉H = 〈U(0), v〉H −
∫ t

0

〈U(s), A∗v〉H ds

+

∫ t

0

〈f(s), v〉H ds+

∫ t

0

〈 dW (s), v〉H ,

(1.98)

P-a.s., ∀v ∈ D(A∗), t ∈ [0, T ], is called a weak solution2 to (1.94). If −A
is the generator of a strongly continuous semigroup S(·) in H and if∫ T

0

‖S(t)Q 1
2 ‖2L2(H) dt <∞, (1.99)

then the unique weak solution coincides with the mild solution, whose expres-

sion is given for all t ∈ [0, T ] by:

U(t) = S(t)U0 +

∫ t

0

S(t− s)f(s) ds+

∫ t

0

S(t− s) dW (s). (1.100)

Assuming for simplicity that f = 0, it is known, see for example [32],

that the mild solution, in the hypothesis that U0 ∈ L2(Ω; Ḣβ), where Ḣβ :=

D(A
β
2 ), and that ‖A β−1

2 ‖L0
2
<∞ for some β ≥ 0, satisfies for any t ∈ [0, T ]

‖U(t)‖L2(Ω;Ḣβ) ≤ C
(
‖U0‖L2(Ω;Ḣβ) + ‖A

β−1
2 ‖L0

2

)
, (1.101)

and, in particular, if Q is a trace-class operator,

‖U(t)‖L2(Ω;Ḣ1) ≤ C
(
‖U0‖L2(Ω;Ḣ1) + [Tr(Q)]

1
2

)
. (1.102)

Several results about the numerical approximation of the mild solution with

semidiscrete or fully discrete schemes are known in literature; however we will

not mention them, considering that the main goal with the appended papers is

not to deal with numerics for this type of problems. The reader can refer to the

survey article [18] and references therein in order to get an idea about the state

of the art of this topic.

2See [12].
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1.8 Two motivating examples of stochastic evolu-
tion equations

Stochastic evolution equations in infinite dimensions are a natural generalization

of stochastic ordinary equations and beside a natural mathematical interest, their

theory has motivations coming also from other fields, such as physics, chem-

istry and biology. We present in this section two examples, taken from [12], of

stochastic PDE’s coming from biology and from physics.

Stochastic semilinear equations have been used in population genetics to

model changes in the structure of population in both time and space. Given a

population p(t, ·) at a time t ≥ 0, a way to model the mass distribution of p is

given by the equation

dp(t, ξ) = aΔp(t, ξ) dt+ b
√
p+(t, ξ) dW, ξ ∈ R

d. (1.103)

Here a and b are positive constants and W is a H-valued Wiener process with

nuclear covariance operator Q. The space H is in this case given by L2(Rd), the

operator A is given by aΔ, with domain D(A) := H2(Rd), and

(Ψx)u(ξ) := b
√
x+(ξ)u(ξ). (1.104)

For more details about this example, the reader can refer to [14, Appendix I].

Another example is given by the stochastic diffusion-reaction equation. The

equation reads, in its deterministic form:

∂u

∂t
(t, ξ) = σ2 ∂

2u

∂ξ2
(t, ξ) + f(u(t, ξ)), t ≥ 0, ξ ∈ [0, T ]. (1.105)

The many-particles nature of a real system, leads to having internal fluctuations,

which can be modelled according to the following equation:

∂u

∂t
(t, ξ) = σ2 ∂

2u

∂ξ2
(t, ξ) + f(u(t, ξ)) + Ẇ (t, ξ), t ≥ 0, ξ ∈ [0, T ], (1.106)

with Ẇ being a temporal and spatial white noise. This equation is clearly of

the same type as (1.94), and constitute a further motivation for investigating this

sort of problems. For more details about this last example, the reader is referred

to [2].
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1.9 Summary of Paper A

In Paper A we deploy the idea of Section 1.4 in connection with the linear

stochastic heat equation. The paper provides the first application of the inf-sup

theory in order to prove existence and uniqueness for the solution to the linear

stochastic heat equation, once the problem is formulated in a weak space-time

form. This approach offers two advantages: results of existence and unique-

ness are obtained in a relatively simple way and the problem is set up in a way

that naturally allows Petrov-Galerkin discretization. This kind of approach has

been widely used by other authors in the deterministic case (see [21, 25, 29]),

and in a stochastic/random setting (see [16, 26]). Our work can be viewed as a

tool to be used for future research on numerical aspects of the same equation,

in the same way as the deterministic counterpart of this theory has been used

in the past to construct and analyse numerical solutions of evolution equations.

In particular, the comprehensive analysis of our concept of solution, the consis-

tency with known concepts of solutions, the bounds derived for the norm of the

solution, and the sufficient conditions to have further spatial regularity, are of

crucial importance when deriving error bounds for the numerical solution of the

same equation. Although the core of our work is based on a linear problem with

additive noise, which is the setting in which the inf-sup theory naturally takes

place, we also show how our findings extend to more general equations, possibly

semilinear and with multiplicative noise.

1.10 Summary of Paper B

In Paper B we use the weak space-time formulation of the heat equation in order

to investigate the numerical property of the schemes obtained by discretizing the

problem on proper piecewise polynomial tensor subspaces. The novelty in the

approach we propose is to exploit the presence of a pointwise component of the

solution otherwise neglected in other works (see [21] or [29], for example). This

component is the pointwise evaluation of the solution one would obtain by dis-

cretizing the problem stated in its first space-time variational formulation, with

polynomials of one degree higher with respect to time (see Chapter 3 for more

details). We prove that this component of the solution can be constructed on

any arbitrary grid point, and has the remarkable property of giving superconver-

gence of the error, with order 2(q + 1), with q being the polynomial degree of
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the numerical solution, and where the error is measured with respect to the norm

max ‖ · ‖H .

1.11 Summary of Paper C

In Paper C we investigate the theory of quasi-optimality for the heat equation

with random coefficients. We assume that both the operator A and the function

f appearing in the equation depend on a random parameter ω. The novelty of

this paper is that the operator A is not assumed to be uniformly coercive and

uniformly bounded with respect to ω. We prove the existence of p-moments of

the solution in terms of the integrability of A and f , by exploiting the inf-sup

theory. The main advantage of our approach is that every constant appearing

in the estimates we provide is known explicitly, so that we can track down all

of them in order to provide the sharpest possible estimate for the norm of the

solution. Under the further assumption that the operator A satisfies a certain

property of “not having its minimum and maximum too far apart as functions

of ω”, we prove a result of quasi-optimality for the error obtained by a Petrov-

Galerkin semidiscretization and full-discretization of the problem similar to the

one used in Paper B. For the semidiscretization, the quasi-optimality constant

that we obtain is in than absolute constant that does not depend on ω, so that

we have optimal rates of convergence in Lp(Ω; ·) under the same assumptions

needed to ensure existence and uniqueness of the solution. In the fully discrete

case we show instead that the quasi-optimality constant has an ω-dependence

which apparently cannot be avoided, and that affects the error estimates.
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2.1 Introduction and motivation

The fourth paper included in this thesis deals with the construction of numerical

schemes for solving a certain non-linear evolution problem so that its energy

and momenta are preserved. This particular equation belongs to a wider tar-

get of equations for which the total energy, either remain constant (conservative

PDE’s), or monotonically decrease with time (dissipative PDE’s). It is in gen-

eral desirable while solving conservative PDE’s to use a numerical scheme that

retains the conservation property. This is both due to the fact that these schemes

will in general be more stable from the numerical point of view, and to the fact

that the properties preserved might have some practical meaning themselves,

from an engineering or physical point of view. The field of structure preserv-

ing numerical integration algorithms, called geometric numerical integration
started in the mid-eighties for symplectic integration of Hamiltonian ODE’s;

in later years there has also been some work on similar approaches for Hamil-

tonian PDE’s. For ODE’s, several unified approaches are well established, and

cover not only the case of conservative and dissipative equations, but also equa-

tions with many other geometric structures, such as the symplectic method for

Hamiltonian systems, the Lie group method for constrained mechanical systems,

methods that preserve first-integrals, and methods for ODE’s evolving on mani-

folds. A good text about structure-preserving methods for ODE’s can be found

in [3]. A comprehensive and unified approach to numerically deal with conser-

vative and dissipative PDE’s, used in Paper D to solve the EPDiff equation, is

the Discrete Variational Derivative Method (DVDM), which we describe in the

next section.

2.2 Discrete Variational Derivative Method

The DVDM is a general theory that easily allows the construction of conserva-

tive/dissipative schemes for real/complex-valued PDE’s. In order to facilitate

the reading, we present it only for a specific case:

• We restrict ourselves to the case of periodic boundary conditions.

• We restrict ourselves to the case of real-valued conservative PDE’s.

This is not a necessary restriction and can easily be avoided. The DVDM is

indeed usable in a more general framework, and covers the following:
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• Non-periodic boundary conditions.

• System of equations.

• Dissipative equations.

• Complex-valued equations

For more details about this, as well as for further details on what is presented

in this section, we refer to [2]. We summarize in Table 2.1 the main features

of DVDM, making a comparison between how the energy is conserved in the

continuous equation and how this can be done for its discretization. The main

Continuous Discrete
Energy function: Discrete energy function:

G(u, ux) Gd(U
(m))

Variational derivative: Discrete variational derivative:
δG
δu

δGd

δ(U(m),U(m+1))

Definition of the PDE: Definition of a FD-scheme:

∂u
∂t = H δG

δu ,
U

(m+1)
k −U

(m)
k

Δt = Hd
δGd

δ(U(m),U(m+1))k
,

H skew-symmetric. Hd skew-symmetric discretization of H .

Consequence: Consequence:

Conservation property Discrete conservation property
du
dt

∫ L

0
G(u, ux) dx = 0

∑K−1
k=0 Gd,k(U

(m+1) − U (m))Δx

Table 2.1: Continuous calculus versus discrete calculus

difference between the discrete variational derivative method, and other structure

preserving methods, is therefore what gets discretized first. With DVDM we

discretize the energy and compute a discrete variation; the conservation property,

together with the definition of the scheme, comes as a side product, while the

conventional approach is to discretize the equations directly, and only thereafter

investigate conservation properties (see figure 2.1).

In order to introduce the next example, we assume to have an inner product

defined on R
K, K ∈ N, by:

〈v,w〉 :=
K−1∑
k=0

vkwkΔx, v,w ∈ R
K. (2.1)
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Energy function:

G(u, ux)

Variational derivative:
δG
δu

Conservation property:
d
dt

J(u) = 0

PDE:
∂u
∂t

= H δG
δu

Variational derivative:
δGd

δ(U(m+1),U(m))

Discrete energy function:

Gd(U(m))

Discrete conservation property:

Jd(U(m+1)) = J(U(m))

Finite difference scheme:

U
(m+1)
k

−U
(m)
k

Δt
=

Hd
δGd

δ(U(m+1),U(m))k

variation

definition

consequence

discrete variation

definition

consequence

suggested approximation

traditional approximation

Continuous calculus Discrete calculus

Figure 2.1: Standard strategy versus DVDM ( [2, Chapter 1])

This induces a natural norm, given by:

‖w‖2 :=

K−1∑
k=0

w2
kΔx, w ∈ R

K. (2.2)

We use the following standard notation for centred finite differences:

δ<1>
k fk :=

fk+1 − fk−1

2Δx
. (2.3)

Example 7. We consider a one-dimensional domain [0, L], with periodic bound-

ary conditions, and we assume that that an energy G is given and it is defined

as:

G(u, ux) =
u2

2
. (2.4)

This gives us a total energy, defined as:

J(u) :=

∫ L

0

G(u, ux) dx. (2.5)
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If we introduce a variation δG
δu , we obtain what is called variational derivative,

which in this case is given by:

δG

δu
= u. (2.6)

The PDE corresponding to the energy G is then constructed having the conser-

vation of the energy as starting point rather than arrival point:

∂u

∂t
=

∂

∂x
u. (2.7)

In this way the conservation property is within the equation itself, and it is not

something imposed in a second moment. It is easy to see that the variation of

the total energy is zero, since

du

dt
J(u) =

du

dt

∫ L

0

G(u, ux) dx =
du

dt

∫ L

0

u2

2
dx = 0. (2.8)

The idea behind the DVDM is to mimic what happens in the continuous case.

For the linear convection equation introduced above, we start by defining a dis-

crete energy, given by

Gd(U
(m)) =

[U (m)]2

2
. (2.9)

Here U denotes the discrete solution we are looking for, and the superscript (m)

refers to a given time instant tm. Having a discrete energy allows us to introduce

a discrete variation to Gd, which is the counterpart to the variational derivative
δG
δu previously used. The term discrete variation has here a very precise mean-

ing, and can be formally defined in mathematical terms, but we refrain from

presenting the details here, and we limit ourselves to observe that it leads to the

following expression:

δGd

δ(U (m), U (m+1))
=

U (m+1) + U (m)

2
. (2.10)

The idea is now to construct a scheme starting from the discrete energy, in the

same way in the continuous case the equation was defined from the energy, and

not the other way round. In this particular case, we have:

U
(m+1)
k − U

(m)
k

Δt
= δ<1>

k

U
(m+1)
k + U

(m)
k

2
, (2.11)
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where δ<1>
k is the discrete counterpart to ∂x. It is now easy to see that:

K−1∑
k=0

Gd,k(U
(m+1))Δx =

K−1∑
k=0

Gd,k(U
(m))Δx. (2.12)

Moreover, we have a further discrete conservation law holds, as a side product:

K−1∑
k=0

U (m)Δx =

K−1∑
k=0

U (m+1)Δx. (2.13)

This does not occur all the time and strongly depend on the kind of discretization

chosen for the energy (see for example Scheme 3 in Paper D and the remark after

Theorem 5).

We can see that we have two main ingredients that are needed in order to

make the DVDM work:

• A discrete variation.

• A scheme based on the discrete variation.

We try to clarify both points, by further exploiting the example given by the

linear convection equation. The discrete variation can be obtained by computing

the quantity:

1

Δt

(K−1∑
k=0

Gd,k(U
(m+1))−

K−1∑
k=0

Gd,k(U
(m))

)
Δx. (2.14)

This fact is true in general, and although formulas for computing the discrete

variational derivative exist, we found it easier and more instructive to compute

the discrete variational derivative directly, case by case. For the discrete energy

Gd introduced in Example 7, this gives:

1

Δt

(K−1∑
k=0

Gd,k(U
(m+1))−

K−1∑
k=0

Gd,k(U
(m))

)
Δx

=
1

Δt

K−1∑
k=0

( (U (m+1)
k )2

2
− (U

(m)
k )2

2

)
Δx

=

K−1∑
k=0

( U
(m+1)
k − U

(m)
k

Δt︸ ︷︷ ︸
Approximation of u̇

)( U
(m+1)
k + U

(m)
k

2︸ ︷︷ ︸
Discrete variational derivative

)
Δx.

(2.15)
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The two quantities highlighted in the previous equations are the quantities upon

which we construct our scheme:

U
(m+1)
k − U

(m)
k

Δt︸ ︷︷ ︸
Approximation of u̇

=

Discretely skew-symmetric︷ ︸︸ ︷
δ<1>
k

U
(m+1)
k + U

(m)
k

2︸ ︷︷ ︸
Discrete variational derivative

,

(2.16)

where it is crucial to have a discrete operator which is the skew-symmetric dis-

cretization of the continuous one, as it will be more clear in the next equation.

We can now see how and why conservation of the energy happens, by using

(2.16) in (2.15), which gives:

1

Δt

(K−1∑
k=0

Gd,k(U
(m+1))−Gd,k(U

(m))
)
Δx

=
K−1∑
k=0

(U (m+1)
k − U

(m)
k

Δt

)(U (m+1)
k + U

(m)
k

2

)
Δx

=

K−1∑
k=0

(
δ<1>
k

U
(m+1)
k + U

(m)
k

2

)U (m+1)
k + U

(m)
k

2
Δx = 0,

(2.17)

where the last equality holds because δ<1>
k is skew-symmetric with respect to

the discrete inner product introduced in (2.1). Even if at first glance what we

have done might not appear so innovative, since at the end of the day we are do-

ing nothing but rediscovering the Crank–Nicolson scheme, it is worth stressing

some important features, which have been the main motivation for investigating

this method:

• The method works “black box” in more complicated cases, such as non-

linear equations, where the derivation of an energy preserving scheme

might not be so easy.

• The conservation property is not imposed after the derivation of the scheme,

but it comes as a consequence of how the schemes are built.

• There is a general formula to compute all the discrete quantities involved

in the scheme (see [2, Chap.3]), if one does not want to derive them case

by case.

For all these reasons we decide to use the DVDM as the main tool to investigate

the numerical solution of the EPDiff equation.
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2.3 Summary of Paper D

In the paper we construct and investigate numerical methods for the EPDiff

equation. The EPDiff equation can be thought as a multidimensional gener-

alization of the Camassa–Holm equation for shallow water (see [4]), and is of

particular importance in shape analysis, where it can be shown (see [10]) that

the problem of finding the “best” continuous warp between medical images and

shapes, is equivalent to solving the EPDiff equation. The equation has important

features, in particular it is a Hamiltonian system with respect to a Lie-Poisson

structure, which implies that it has conservation laws. For Poisson structure pre-

serving discretizations of the EPDiff equation, the only known approaches are

to use particle methods (see [1, 7]). The Compatible Differencing Algorithm

(CDA, see [5, 6, 9]) is another approach that has been suggested (see [4]), but

it is unclear to what extent such methods preserve structure. Instead of focusing

on conservation of structure, CDA is based on the fact that the equations can

be rewritten in a form that contains divergence, gradient and curl operators. In

this paper we develop energy conserving geometric integrators for the EPDiff

equation, in two spatial dimensions. Our schemes conserve the total energy and,

in some cases, also total momentum. They are based on the DVDM approach

described in Section 2.2 and on a generalization of the DVDM schemes for the

Camassa–Holm equation suggested in [8]. The methods are tested with a se-

ries of benchmark problems of singular wave fronts interactions, first proposed

in [4], and later also used in [1].
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3.1 Excluded from Paper B: Connection between
the discrete solutions to primal and dual space-
time formulation

We collect in this section some results that for reason of space or completeness

have not been included in Paper B, but that are of interest to better grasp the

connection between the method we presented and the “standard method” origi-

nated by a discretization based on the first space-time formulation. We adopt the

notation introduced in Paper B; the results presented below would virtually fit

at the end of Section 3 in the paper, complementing the subsection The roles of
U1 and U2. In order to further clarify the role of each component of the solution

and associate them to a degree of freedom, we need to bridge the gap between

primal and weak discrete formulation, in the same way we did for the contin-

uous formulation in Paper B. We start by considering the original problem and

we assume for simplicity that A does not depend on time:

u̇+Au = f,

u(0) = ξ
(3.1)

The primal space-time formulation leads to the following discretization:

W ∈ Xn
h,k,q+1, Y ∈ Xn

h,k,q,∫ tn

0

〈Ẇ (s) +AW (s), Y (s)〉V ∗ V ds =

∫ tn

0

〈f(s), Y (s)〉V ∗ V ds,

W (0) = ξ.

(3.2)

The weak space-time formulation gives instead:

U1 ∈ Yn
h,k,q, U2 ∈ Vh X ∈ Xn

h,k,q+1,∫ tn

0

〈U1(s),−Ẋ(s) +A∗X(s)〉V V ∗ ds+ 〈U2, X(tn)〉H

=

∫ tn

0

〈f(s), X(s)〉V ∗ V ds+ 〈ξ,X(0)〉H ,

(3.3)

where, in particular, we can split the scheme as in Paper B, to get values U
(i)
2 at

each time point ti. Problem (3.2) and (3.3) have both a unique solution. The next

theorem states that the discrete solution to the primal and to the dual formulation

of (1.40) are in a certain sense the same, whenever f = 0.
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Theorem 8. If W ∈ Xn
h,k,q+1 and U1 ∈ Yn

h,k,q, U2 ∈ Vh are respectively
solutions to (3.2) and (3.3) with f = 0, then:

U
(n)
2 = W (tn),

U1 = Π(q)W.
(3.4)

In particular, if the weak-space time solution is obtained with the splitting pro-
posed in Paper B, it also holds that

U
(i)
2 = W (ti), i = 1, . . . , n, (3.5)

Proof. We consider the pair
(
Π(q)W,W (tn)

)
, for a given tn, where W ∈

Xn
h,k,q+1 is solution to the primal formulation:∫ tn

0

〈Ẇ (s) +AW (s), Y (s)〉V ∗ V ds = 0 ∀Y ∈ Yn
h,k,q. (3.6)

This can be rewritten as∫ tn

0

〈Ẇ (s) +AW (s),Π(q)X(s)〉V ∗ V ds = 0, ∀X ∈ Xn
h,k,q+1. (3.7)

We can integrate by part the first term, obtaining:

n−1∑
i=0

∫
Ii

〈Ẇ (s),Π
(q)
i X(s)〉V ∗ V ds =

n−1∑
i=0

∫
Ii

〈Ẇ (s), X(s)〉V ∗ V ds

=

n−1∑
i=0

(∫
Ii

〈W (s), Ẋ(s)〉V V ∗ ds+

〈W (ti), X(ti)〉H − 〈W (ti−1), X(ti−1)〉H
)
.

(3.8)

The previous expression reduces to:

=

n−1∑
i=0

(∫
Ii

〈Π(q)
i W (s), Ẋ(s)〉V V ∗ ds

)
+ 〈W (tn), X(tn)〉H − 〈ξ,X(0)〉H

=

∫ tn

0

〈Π(q)W (s), Ẋ(s)〉V V ∗ ds+ 〈W (t1), X(t1)〉H − 〈ξ,X(0)〉H .

(3.9)

Thus, for any X ∈ Xn
h,k,q+1 we have:∫ tn

0

〈Π(q)W (s),−Ẋ(s) +A∗X(s)〉V V ∗ ds+ 〈W (tn), X(tn)〉H

= 〈ξ,X(0)〉H .

(3.10)
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Since the solution to such a problem is unique, the first part of the claim follows.

In particular, since tn is arbitrary, the second part of the claim also holds true.

The previous result extends naturally even when f �= 0; now the two solu-

tions are no longer the same but differ up to a term which is proportional to the

interpolation error of f .

Theorem 9. Under the same assumptions of Theorem 8, but with f �= 0, such
that f (γ) ∈ L2([0, tn];V ) for some γ ∈ N, then

‖U1 −Π(q)W‖L2((0,tn);V ) + ‖U (n)
2 −W (tn)‖H

≤ Ckθ+1‖f (θ)‖L2((0,tn);V ),
(3.11)

where θ := min{q + 1, γ}. In particular, if the weak-space time solution is
obtained with the splitting proposed in Paper B, it also holds that

‖U1 −Π(q)W‖L2((0,tn);V ) + max
i=1,...,N

‖U (i)
2 −W (ti)‖H

≤ Ckθ+1‖f (θ)‖L2((0,tn);V ).
(3.12)

Proof. The crucial difference with the previous proof is that the non-zero right-

hand side gives us:

B∗
n((U1 −Π(q)W,U

(n)
2 −W (tn), X)

=

∫ tn

0

〈f,X〉V ∗ V ds−
∫ tn

0

〈f,Π(q)X〉V ∗ V ds.
(3.13)

Since the right-hand side is no longer zero, we cannot argue that the two solu-

tions coincides by uniqueness; however, we can bound the norm of the solution

in terms of the data:

‖U1 −Π(q)W‖2L2((0,tn);V ) + ‖U
(n)
2 −W (tn)‖2H ≤ C‖F̃‖2(Xk)∗ , (3.14)

where

F̃n :=

∫ tn

0

〈(I −Π(q))f(s), X(s)〉V ∗ V ds. (3.15)
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Here we can use either |·|Xk
or ‖·‖Xk

to compute the dual norm. Since constants

play no role in this analysis, we decide to use the latter. We have that:∣∣∣F̃n(X)
∣∣∣ = ∣∣∣ ∫ tn

0

〈(I −Π(q))f(s), X(s)〉V ∗ V ds
∣∣∣

=
∣∣∣ ∫ tn

0

〈(I −Π(q))f(s), (I −Π(q))X(s)〉V ∗ V ds
∣∣∣

≤
(∫ tn

0

‖(I −Π(q))f(s)‖2V ds
) 1

2
(∫ tn

0

‖(I −Π(q))X(s)‖2V ∗ ds
) 1

2

≤ C
(N−1∑

i=0

k2θi

∫
Ii

‖f (θ)(s)‖2V ds
) 1

2
(N−1∑

i=0

k2i

∫
Ii

‖Ẋ(s)‖2V ∗ ds
) 1

2

.

(3.16)

This gives us

‖F̃n‖(Xk,‖·‖Xk
)∗ ≤ Ckθ+1‖f (θ)‖L2((0,tn);V ). (3.17)

It follows that

‖U1 −Π(q)W‖L2((0,tn);V ) + ‖U (n)
2 −W (tn)‖H

≤ Ckθ+1‖f (θ)‖L2((0,tn);V ),
(3.18)

which proves the first part of the claim. Since tn is arbitrary, the second part

follows in the same way.
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3.2 Excluded from Paper D:
A possible fourth scheme

We devote this section to the presentation of a possible fourth scheme to solve

the EPDiff, which has been omitted in the final draft. We refer to the appended

paper for the notation and the missing definitions, in order to avoid unnecessary

repetitions. A logical choice for a possible fourth scheme would be based on the

following definition of discrete energy, which combines the definitions used in

scheme 2 and 3:

H
(n+ 1

2 )

k,j =
M

(n+ 1
2 )

1;k,j U
(n+ 1

2 )

1;k,j +M
(n+ 1

2 )

2;k,j U
(n+ 1

2 )

2;k,j

2
. (3.19)

This can be written explicitly as:

H
(n+ 1

2 )

k,j

=
M

(n+1)
1;k,j U

(n+1)
1;k,j +M

(n)
1;k,jU

(n)
1;k,j +M

(n+1)
1;k,j U

(n)
1;k,j +M

(n)
1;k,jU

(n+1)
1;k,j

8

+
M

(n+1)
2;k,j U

(n+1)
2;k,j +M

(n)
2;k,jU

(n)
2;k,j +M

(n+1)
2;k,j U

(n)
2;k,j +M

(n)
2;k,jU

(n+1)
2;k,j

8
.

(3.20)

In particular, if we denote respectively by 2H
(n+ 1

2 )

k,j and 3H
(n+ 1

2 )

k,j the discrete

energies for scheme 2 and scheme 3, it holds that:

H
(n+ 1

2 )

k,j =
1

2

(
2H

(n+ 1
2 )

k,j + 3H
(n+ 1

2 )

k,j

)
. (3.21)

It follows that

1

Δt

J−1∑
j=0

K−1∑
k=0

(H
(n+ 1

2 )

k,j −H
(n− 1

2 )

k,j )ΔxΔy

=
1

2Δt

J−1∑
j=0

K−1∑
k=0

[
(2H

(n+ 1
2 )

k,j − 2H
(n− 1

2 )

k,j ) + (3H
(n+ 1

2 )

k,j − 3H
(n− 1

2 )

k,j )
]
ΔxΔy,

(3.22)

which, in turn, reduces to

=

J−1∑
j=0

K−1∑
k=0

(M (n+1)
1;k,j −M

(n−1)
1;k,j

2Δt

U
(n+1)
1;k,j + 2U

(n)
1;k,j + U

(n−1)
1;k,j

4

+
M

(n+1)
2;k,j −M

(n−1)
2;k,j

2Δt

U
(n+1)
2;k,j + 2U

(n)
2;k,j + U

(n−1)
2;k,j

4

)
ΔxΔy.

(3.23)
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We have the following discrete variational derivative which approximates the

continuous one by

δH

δ(M(n+1),M(n),M(n−1))k,j
:=

⎡⎣U
(n+1)
1;k,j +2U

(n)
1;k,j+U

(n−1)
1;k,j

4
U

(n+1)
2;k,j +2U

(n)
2;k,j+U

(n−1)
2;k,j

4

⎤⎦ . (3.24)

The scheme becomes

M
(n+1)
k,j −M

(n−1)
k,j

2Δt
= −Γ̃(n)

m

δH

δ(M(n+1),M(n),M(n−1))k,j
, (3.25)

where Γ̃
(n)
m is as in Paper D. The following result of conservation holds:

Theorem 10. Under the discrete periodic boundary conditions, the numerical
solution produced by Scheme 4 conserves the following invariant, for each n =

1, 2, . . . :

J−1∑
j=0

K−1∑
k=0

H
(n+ 1

2 )

k,j ΔxΔy =

J−1∑
j=0

K−1∑
k=0

H
( 1
2 )

k,j ΔxΔy. (3.26)

This scheme does not conserve momenta and is computationally more ex-

pensive than the two schemes upon which it is based, and has therefore been

omitted in the analysis presented in Paper D. However, it is worth noticing that

the energy preserved by this scheme is “the real numerical energy” defined at

n + 1
2 , while Scheme 2 and Scheme 3 only preserve part of it, or, otherwise

stated, an alternative definition of numerical energy ad n+ 1
2 .

We append the numerical results obtained for Scheme 4, while testing it

for the same benchmark problem used to test the other schemes. We present a

comparison with Scheme 1, which makes more visible the advantages and the

drawbacks of this scheme.
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Table 3.1: Conservation of the discrete energy

Total Variation ‖ · ‖∞
Scheme 1 1.8529 · 10−8 1.8529 · 10−8

Scheme 4 6.0348 · 10−10 1.9753 · 10−11

Table 3.2: Conservation of the linear momentum in the x-direction

Total Variation ‖ · ‖∞
Scheme 1 3.1130 · 10−9 3.1127 · 10−9

Scheme 4 3.1008 0.0088

Table 3.3: Conservation of the linear momentum in the y-direction

Total Variation ‖ · ‖∞
Scheme 1 2.6557 · 10−16 8.0264 · 10−17

Scheme 4 2.9119 · 10−09 1.7376 · 10−10




