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Abstract

Sodium polyacrylate (Na-PA) is a super absorbent polymer, which is commonly used in diverse hygiene

products. The polymer is currently produced from fossil feedstock and its production consequently leads

to adverse environmental impacts. Na-PA production from sugars present in pulp mill side streams can

potentially be a successful way to achieve a more sustainable production of this polymer. In order to guide the

development of a novel biochemical process for producing Na-PA, a life cycle assessment was done in which

Na-PA produced from side streams of thermo-mechanical pulp (TMP) and sulfite pulp mills were compared.

Furthermore, a comparison was made with Na-PA produced from fossil resources. The results show that the

main determinant of the environmental impact of the bio-based Na-PA production is the free sugar content

in the side streams. The lowest environmental impact is achieved by the least diluted side streams. More

diluted side streams require larger amounts of energy for concentration, and, if the diluted streams are not

concentrated, processes such as hydrolysis and detoxification, and fermentation are the environmental hotspots.

Furthermore, the higher the yield of the fermentation process, the lower the environmental impact will be.

Lastly, the production of bio-based Na-PA led to a lower global warming potential for some of the considered

pulp mill side streams, but all of the other impacts considered were higher, when compared to fossil-based

Na-PA production. Therefore, in parallel with efforts to develop a high-yield yeast for the fermentation process,

technology developers should focus on low energy concentration processes for the side streams.
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1. Introduction

The environmental issues pertaining to the fossil resources along with their increased scarcity are the main

drivers of exploring new technologies for bio-based products manufacturing. As a consequence, in the near

future, bio-based fuels, chemicals and materials are expected to achieve a larger market share (van Haveren

et al., 2008). The substitution of non-renewable feedstocks with renewable ones and the reduction of the

direct environmental impact during production are two relevant strategies for developing a sustainable product.

However, the current production of bio-based products which is mostly based on 1st generation feedstocks such

as corn, sugarcane and rapeseed, is in direct competition with the food and feed industry. This competition

raises ethical and environmental concerns regarding the sustainability of bio-products (Cherubini, 2010) and

much effort is put into shifting to lignocellulosic feedstock (non-food crops or second generation), which is

very attractive since it is the most abundant and renewable resource on Earth (Chen, 2015). In this study the

use of lignocellulosic residue, released in the form of diluted side streams discharged from pulp mills, is the

feedstock considered for the production of sodium polyacrylate.

Sodium polyacrylate (Na-PA) is commonly applied as a super-absorbent polymer in hygiene products

and is currently produced from fossil feedstock in conventional refineries. In parallel a new process is in its

early stages of development where a bio-based polymer is engineered (BASF, 2014). The main innovative

part of the process in development is the conversion of the fermentable sugars into 3-hydroxypropionic acid

(3-HP) by genetically modified yeast. 3-HP was selected in a report by the US Department of Energy as

one of the most promising platform chemicals for production of high-value bio-based chemicals or materials

(Valdehuesa et al., 2013). Developing new added value products is highly relevant for the pulp and paper

industry which is losing economic value due to, among other factors, high energy and fibre prices, and the

decrease in paper consumption. This industry needs to explore new revenue streams (Janssen et al., 2008), and

the use of the side streams for producing polyacrylates in an integrated biorefinery is an opportunity to increase

its competitiveness. The production of Na-PA is also of interest for several hygiene companies situated in

Sweden (e.g. SCA), which are currently importing the polymer.

Life cycle assessment (LCA) is a method used to determine the environmental burdens of multiple varied

products and processes. It has been successfully applied to determine the environmental impacts associated

with bio-based products that are typically manufactured in biorefineries. Most LCA studies in this field have

focused on first and second generation biofuels, which can be explained by the high interest in replacing fossil

fuel in the transportation sector (Cherubini, 2010). In contrast, fewer studies have considered biopolymer

production based on second generation lignocellulosic feedstocks, with polyhydroxyalkanoate (PHA) being
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one exception (Koller et al., 2013; Shahzad et al., 2013). To the authors’ knowledge, there are no studies

analyzing bio-based Na-PA production from an environmental perspective. However, in one study poly-itaconic

acid, which has properties similar to Na-PA, produced from wood and corn feedstock, was assessed using LCA

(Nuss and Gardner, 2013). As in the present study, the environmental burdens were compared with fossil-based

Na-PA. Additionally a more recent study analyzed acrylic acid produced from corn feedstock (Nuss, 2015).

In the present assessment, acrylic acid is polymerized to form Na-PA, but it is produced from pulp mill side

streams. Although many studies considered biomass residue from agriculture and forestry activities as the

feedstock, few investigated the production of bio-products from industrial waste streams, such as diluted side

streams from pulp mills. One relevant study is the assessment of ethanol and potassium acetate production

from a diluted side stream released at a hardboard facility (Liu and Shonnard, 2014). The aim of the study

was to compare the bio-products with their fossil-based counterparts and to account for the changes to the

initial hardboard plant due to the presence of the integrated biorefinery. Another relevant study considered an

integrated pulp mill biorefinery where several output products such as cellulose, lignosulfonate and bioethanol,

which is a by-product derived from the diluted black liquor side stream, were assessed (González-Garcı́a et al.,

2011). The study was conducted in order to determine the environmental burdens of a dissolving pulp mill

integrated biorefinery and the distribution of the environmental impacts of different value added products

that are obtained together with the cellulose. LCAs of bio-based products have generally been done using

data that describe industrial-scale processes, and thus assess the manufacturing of these products at a mature

development stage. However, LCA can also be used to assess the environmental impact of processes that are

still at an early development stage, as is the case in the current study. Shibasaki et al. (2007) developed a

methodology to assess the environmental impact of such processes and pointed out that scale-up effects cannot

be neglected when these are compared to processes that run at an industrial scale. This can, for instance, be

done by considering the yield of the process in development. In this case, LCA is used as a tool that can direct

the technology development when comparing the fossil-based and bio-based alternatives from an environmental

point of view. By identifying environmental hotspots a more benign design of the new bioprocess technology

can be achieved at an early stage of development (Krotscheck and Narodoslawsky, 1996).

The purpose of the LCA in this paper is to compare the production of renewable, bio-based sodium

polyacrylate and its non-renewable, fossil-based counterpart. The polymer is assumed to be produced in

an integrated biorefinery concept from fermentable sugars present in diluted side streams derived from two

different pulp mills a thermo-mechanical pulping mill and a sulfite pulp mill.
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2. Materials and methods

2.1. Description of the analyzed system

The technical system contains three main activities: production of sodium polyacrylate (Na-PA), auxiliary

processes and transportation. The production of Na-PA is analyzed from cradle to the polymerization plant’s

gate, which includes forestry activities, pulp mill operations and polymer production (Fig. 1). Auxiliary

processes are the production of energy and chemicals, which are used for the polymer manufacturing. The

transportation is accounted for providing chemicals and raw material to the pulp mills where the polymer is

produced. Two different pulp and paper facilities are investigated here: a thermo-mechanical pulp (TMP) mill

in Sundsvall and a sulfite pulp mill in Örnsköldsvik, both located in Sweden.

2.1.1. Forestry activities

The round wood used in the pulp mills is harvested in Sweden where several forestry activities are

considered: primary processes such as seedling production, silviculture operation, logging activities; secondary

hauling and auxiliary processes such as fertilizer production, energy carriers and ancillary material (Liptow

et al., 2013). Following the forestry activities, the round wood is transported to the pulp mill where the wood

fraction is separated into cellulose and several by-products (Fig. 2).

2.1.2. TMP pulp mill

Spruce wood with a moisture content of 50 % is the feedstock used for pulp production. Approx. 7 % of the

round wood is bark which is burned in a boiler to produce energy. The wood chips obtained from the chipping

machine are sent to the thermo-mechanical pulping (TMP) process. The TMP process is energy intensive

and consumes as much as 2.2 kW h kg−1 pulp wood (Fig. 2). Most of the energy (66 %) used in the TMP

process is recovered in the form of low quality steam which is further cleaned with a yield of 95 % (Institute

for Industrial Productivity, 2013). From the TMP process the pulp (99 % of the dry wood fraction) is further

sent to the washing process, and the TMP side stream which contains 1 % of the dry wood fraction is used in

the production of Na-PA. Due to its diluted nature, the TMP side stream is concentrated prior to the hydrolysis

and detoxification process. Two methods have been tested: evaporation (TMP-E) and ultra-filtration together

with evaporation (TMP-UE) (see Table 1 for the description of the side streams).

2.1.3. Sulfite pulp mill

Similar to the TMP pulp mill, the wood logs are debarked first (the bark is used for heat production) and

then sent to the chipping machine. The wood logs used are 40 % spruce and 60 % pine with a moisture content
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of 50 %. Next, the wood chips are sent to the cooking process where sodium hydroxide and sulfite are added to

the process. From the cooking process, side stream 1 (SS1) which contains approx. 10 % of the wood fraction,

is released (Fig. 2). The cooking broth is further washed and the cellulose is separated (approx. 48 % of

the wood fraction). Black liquor from the washing process is recovered and sent to the evaporation process.

From this process, a part of the black liquor (containing approx. 14 % of the total wood fraction) is used for

bioethanol production. The same stream of black liquor, named here side stream 2 (SS2) (Fig. 2), is used for

the production of Na-PA. Side stream 4 (SS4) with less than 0.1 % of the wood fraction, lignosulfonates (24 %

of wood fraction), and sludge (approx. 4 % of the wood fraction) are also obtained from the evaporation process

(Fig. 2). Following the ethanol production where most of the available feedstock is used in the production of

ethanol, side stream 3 (SS3) with a content of approx. 5 % of the total wood fraction is released (Fig. 2). All

the four side streams released are used for acrylic acid production.

2.1.4. Polymer production

The side streams enter the hydrolysis process where fermentable sugars are released. This process is the

same for all the side streams. However, the concentration and detoxification procedures differ for the different

side streams.

The TMP mill side stream is concentrated 50 times via either evaporation (TMP-E) or ultra-filtration and

evaporation (TMP-UE) (see 2.1.2). Approx. 33 % of the sugars are lost from the streams when they are ultrafil-

trated. Next, the concentrated TMP side streams are chemically hydrolyzed with sulfuric acid. Additionally,

the TMP-E side stream is detoxified with sodium dithionite in order to reduce the inhibitory conditions in

the fermentation process. The TMP-UE side stream is not detoxified, because laboratory tests showed no

improvement in the fermentation yields (personal communication). The four side streams from the sulfite

pulp mill are not concentrated, and they are used as released from the pulp mill (Table 1). All the sulfite pulp

mill side streams are chemically hydrolyzed by adding 2.5 % sulfuric acid to the medium. Finally, in order to

reduce the amount of inhibitors during the fermentation the sulfite pulp mill side streams are detoxified with

sodium hydroxide (personal communication, Chalmers University of Technology, March 2014).

Yeast metabolizes the fermentable sugars from the side streams in the fermentation process and converts

them into 3-hydroxypropionic acid (3-HP). 90 % of the maximum theoretical yield of the β-alanine metabolic

pathway (86 %) is assumed as the conversion yield (Borodina et al., 2015). The resulting 3-HP is recovered

from the fermentation broth in a series of flash vessels. The recovered 3-HP is then sent to the dehydration

process where phosphoric acid is added as a catalyst to convert 3-HP into acrylic acid with a yield of 97.5 %

(Cie et al., 2012). Then, a three step-distillation process takes place from which purified acrylic acid (99.99 %)
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is obtained. Most of the bottom product (approx. 99 %) is recovered and sent back to the dehydration process.

The highly concentrated acrylic acid is polymerized in order to produce Na-PA. A solution polymerization

process is assumed because it is the most common process used in the industry at the moment (Sanderson and

Sadiku, 2003). Acrylic acid is first neutralized with sodium hydroxide, which is followed by the polymerization

process that is initiated with a small quantity of ammonium peroxydisulphate ((NH4)2S2O8). 98 % of the total

acrylic acid monomer is polymerized in the process (Sanderson and Sadiku, 2003).

2.2. LCA description

2.2.1. Set-up of the LCA

Although fossil-based and bio-based Na-PA are made from different feedstocks (fossil oil and lignocel-

lulose), and two different processes for the production of the monomer, acrylic acid, are used, it is assumed

that both have the same functionality and quality. Thus, the functional unit is an amount of Na-PA and the

reference flow is 1 kg of Na-PA. The LCA follows an attributional approach due to the defined goals of the

study which are: 1) to identify the environmental hotspots in order to direct the development, and 2) to compare

the bio-based polymer from the different pulp mill side streams with the fossil-based polymer. A partitioning

of the environmental impact based on the mass of the flows was used, where needed. The results of the LCA

are intended for academic researchers, technology developers and decision makers from involved industries.

The life cycle impact assessment was carried out using the CML characterization method (Guinée et al.,

2002) and the impact categories examined in this study are:

• Global warming potential (GWP)

The use of biomass instead of petroleum as feedstock for polymer production can reduce global warming.

However, to what extent depends on many factors, such as geographical boundaries of the study,

technology used, type of feedstock, etc. Therefore, it is highly relevant to consider this impact category.

It should be noted that biogenic carbon emissions are considered as climate neutral and are not accounted

for in this study, although several recent studies have contested the climate neutrality of biomass

(McDermott et al., 2015; McKechnie et al., 2011).

• Eutrophication potential (EP)

The use of nutrients, which contain nitrogen and phosphorus and are used in the fermentation process,

may lead to increased eutrophication of soil and water.

• Acidification potential (AP)

The release of SO2 and NH3 is due to incomplete combustion of biomass and fossil fuel, which has an

impact on the acidity of water and soil.
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• Photochemical ozone creation potential (POCP)

The ozone is created in the presence of NOx, emitted due to incomplete combustion of fossil fuels and

biomass, and sunlight.

Renewable and non-renewable energy used (REU and NREU) (Frischknecht et al., 2007) during the production

of Na-PA are also accounted for. Direct and indirect land use change are omitted from this study. The former

one is omitted because the Swedish forest has been well managed for more than a hundred years and no

significant land use change has taken place any more (Swedish Wood, 2012). Indirect land use change is due

to marginal effects on the system modeled, and here an attributional approach is used. Nevertheless, it is

important to underline that the land area required will be considerably higher for the bio-based polymer than

for the fossil-based counterpart.

A baseline model was constructed, and the major assumptions considered in this model were 1) that 90 %

of the maximum theoretical yield of the β-alanine metabolic pathway (86 %) was achieved, and 2) that all

the extra heat required in the process was produced from wood which was modeled using the ‘heat, at cogen

6400kWth, wood, allocation heat’ process (cogen stands for cogeneration of heat and electricity) (Bauer, 2007)

from the ecoinvent database (Frischknecht et al., 2005).

2.2.2. Data collection

The emission data for the forestry activities were collected for 1 m3 s.u.b. (solid wood under bark) of wood

from Liptow et al. (2013). Operating data of the pulp mills (yields, chemicals and energy) were collected from

the industrial partners involved in the project through personal communication. Data for the concentration

of the TMP pulp mill side streams were gathered from lab experiments (personal communication, Chalmers

University of Technology, March 2014). The energy needed to evaporate one liter of water was assumed to be

0.47 MJ heat (Cie et al., 2012). For the hydrolysis, detoxification and fermentation processes (nutrients only),

most of the foreground data originated from lab experiments (personal communication, Chalmers University

of Technology, March 2014). It was assumed that these data also apply at an industrial scale process. Data

related to recovery of 3-HP, energy required in the fermentation process, distillation and dehydration were

collected from a simulation of the acrylic acid production process done by Cie et al. (2012). The data for the

polymerization process were collected from literature (Sanderson and Sadiku, 2003).

In a sensitivity analysis, the malonyl-CoA metabolic pathway, which is another pathway to produce 3-HP

and has a maximum theoretical yield of 67 % (Chen et al., 2014), was tested for the system under study. For

both metabolic pathways (β-alanine and malonyl-CoA), the fermentation yield for which bio-based Na-PA

has a lower environmental impact than the fossil-based Na-PA, were determined. Furthermore, in order to
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determine what would be the impact of concentrating the highly diluted side streams from the sulfite pulp

mill side streams (SS3 and SS4, Fig. 2 and Table 1), similar to the TMP side stream, they were assumed to

be concentrated prior to the fermentation process in another sensitivity analysis. It was assumed that SS3

was concentrated 6 times prior to the hydrolysis process whereas SS4 was concentrated 50 times. When

concentrated via ultra-filtration a 33 % sugar loss was also assumed, as was the case for the TMP-UE side

stream. An increase of inhibitory conditions due to the applied concentration process which may also require a

detoxification process, was not considered in this analysis. Lastly, it was assumed in the baseline that only

biomass heat is used for the extra heat required in the bio-based polymer production. This may however not

be attainable. Therefore, several cases in which fossil fuel was used as an additional fuel were constructed

(see results in sensitivity analysis). The ecoinvent process ‘heat, heavy fuel oil at industrial furnace 1 MW’

(Jungbluth, 2007) was used to model this.

The ‘acrylic acid, at plant’ ecoinvent process was used to model the fossil-based acrylic acid production

(Althaus et al., 2007). The fossil-based N-PA was assumed to be produced in The Netherlands (NL) and thus

the energy mix for NL was employed from the ecoinvent database. The bio-based Na-PA production was

assumed to be co-located at the pulp mills and therefore the energy mix for Sweden (SE) was employed. The

polymerization process used for both types of Na-PA was assumed to be the same. The only difference is the

energy mix applied due to different locations of the plants (NL and SE). Processes from the ecoinvent database

were also used to model the production and transportation of the chemicals needed in the bio-based acrylic

acid production process, and for the auxiliary processes (electricity and heat production and use). Most of the

chemicals needed in the processes were found in the ecoinvent database whereas for the missing chemicals

stoichiometry or literature data were used (see Supplementary data). The chemicals were assumed to be

produced at the nearest location to the pulp mills (see Supplementary data). All the data collected were used for

calculation of the mass and energy balances in a spreadsheet. The resulting inventory data (see Supplementary

data) were then implemented in the open source LCA software openLCA (Ciroth, 2007), and the life cycle

impact assessment was run.

3. Results and discussion

The results for the baseline are shown in Figs. 3 and 4 for all the four environmental impact categories

considered (GWP, AP, EP, POCP), and REU and NREU, respectively. Each bar chart shows the results for the

bio-based Na-PA produced from the side streams co-located at the two pulp mills, and for their fossil-based

counterpart. At first glance, the results show that Na-PA produced from four of the side streams (TMP-E,
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TMP-UE, SS1 and SS2) have a lower GWP than the fossil-based Na-PA. However, fossil-based Na-PA shows

a lower environmental impact for the other environmental impact categories considered (EP, AP, and POCP).

Furthermore, the impacts of biogenic carbon emissions were not included in the analysis, and these emissions

may increase the GWP of the biopolymer production from the side streams. It stands to reason that due to the

slow growth rate of trees in a Nordic forest (from which the sugars in the pulp mill side streams originate), the

bio-based polymer should be applied in a product with a longer life span in order to minimize the impact of

biogenic carbon emissions. Na-PA produced from three side streams (TMP-UE, SS1 and SS2) have a lower

NREU than the fossil-based Na-PA, and Na-PA produced from all side streams have a much higher REU than

their fossil-based counterpart. Regardless of the side stream used for the production of Na-PA and the possible

changes in energy mix, the total energy use (REU+NREU) in the production of the bio-based polymers is

always higher than in the production of the fossil-based polymer. The interpretation of the results is detailed in

the next sections.

3.1. TMP pulp mill

Except for GWP, the environmental impacts of TMP-UE Na-PA (Na-PA produced from the TMP-UE side

stream) are up to approx. 4 times lower than those of TMP-E Na-PA. For example, the AP of TMP-UE and

TMP-E Na-PA are 2.2 × 10−2 kg SO2-eq and 8.0 × 10−2 kg SO2-eq, respectively. The difference in GWP is

not as big, but still significant at 3.7 kg CO2-eq for TMP-UE Na-PA and 2.0 kg CO2-eq for TMP-E Na-PA,

respectively. The GWP of fossil-based Na-PA is 3.8 kg CO2-eq, (Fig 3a), and Na-PA produced from the TMP

side stream thus performs better from a climate impact point-of-view. The results for REU and NREU show

similar trends as in the case of the impact categories (Fig. 4), and it can be concluded that combining ultra-

filtration and evaporation is the better method to concentrate the TMP side stream. However, the environmental

gains of using ultra-filtration as the concentration process are reduced due to the loss of fermentable sugars by

33 % from the side stream. The loss of sugars affects the environmental performance of TMP-UE due to an

increase of wood required to produce 1 kg of Na-PA (TMP-UE needs approx. 0.33 m3 s.u.b. and TMP-E needs

approx. 0.22 m3 s.u.b. of wood). Nevertheless, this loss of sugars is not high enough to cause an increase in the

impact that would exceed the impacts related to the evaporation process in the case of TMP-E Na-PA.

The concentration process is the main environmental hotspot due to its significant energy use (Fig. 3).

There is however one exception, the GWP of TMP-UE Na-PA, in which case the environmental hotspots

are the fermentation process (37 %) followed by the polymerization process (32 %). This is due to the

increased use of nutrients and chemicals required to overcome the loss of fermentable sugars (33 %). The

polymerization process has a significant contribution and is discussed separately in section 3.3 for all the side
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streams. In the case of TMP-E Na-PA, the detoxification process contributes significantly to the AP and POCP

impact categories (8 % and 19 %, respectively). This is due to the use of sodium dithionite (Na2S2O4) in the

detoxification process.

The highest contributor to REU is the concentration process for both TMP-E (95 %) and TMP-UE (74 %)

Na-PA, because all process energy needed is generated from biomass in the baseline (Fig. 4). The TMP process

is energy intensive and contributes significantly to the NREU results. However, only 1 % of the total electricity

used in this process is allocated to the TMP side stream. The pulping process contributes 31 % to TMP-UE

Na-PA and 23 % to TMP-E Na-PA. Nevertheless, the contribution to the environmental impact categories

(GWP, EP, AP and POCP) is insignificant, because non-renewable energy in Sweden consists to a large extent

of nuclear energy which contributes little to these impact categories.

3.2. Sulfite pulp mill

At the sulfite pulp mill, the side streams are not concentrated prior to the fermentation process. Na-PA

that is produced from the side streams with a relatively high concentration of fermentable sugars (26 g L−1 for

SS1 and 41 g L−1 for SS2) has an environmental impact that is 2 to 3 times lower than Na-PA produced from

SS3 (8.9 g L−1 of fermentable sugars). For instance, the GWP of SS1 Na-PA and SS2 Na-PA are 2.9 kg and

2.1 kg CO2-eq, respectively, compared to a GWP of 7.1 kg CO2-eq for SS3 Na-PA (Fig. 3). The production

of Na-PA from SS4, which has a GWP of 138 kg CO2-eq, is an extreme case because the fermentable sugar

concentration in this stream (0.45 g L−1) is very low compared to the other side streams. The environmental

impact of SS4 Na-PA is two orders of magnitude higher than that of Na-PA produced from the other side

streams and their fossil-based counterpart. The results for all the other impact categories (AP, EP, POCP),

and REU and NREU, follow the same pattern (Figs. 3 and 4). These results underline that more diluted side

streams require larger quantities of wood feedstock, chemicals and energy in order to produce 1 kg of Na-PA

(see Supplementary data), and this consequently increases the environmental impacts.

The main hotspots are the hydrolysis and detoxification, and fermentation processes for all the environ-

mental impact categories. In the case of GWP, these two hotspots contribute 30 % and 41 % to the impact of

the SS1 polymer, 25 % and 36 % to the impact of the SS2 polymer, 37 % and 49 % to the impact of the SS3

polymer, and 41 % and 54 % to the impact of the SS4 polymer, respectively (Fig 3a). The contribution of these

processes is within the same range for all other impact categories (from 20 % to 58 %). The production of

sulfuric acid (used in the hydrolysis process), sodium hydroxide (used for detoxification of the side streams)

and ammonium sulfate (used as nutrient in the fermentation process) which cause emissions of carbon dioxide,

sulfur dioxide, phosphate, and nitrogen oxide, contribute most to all impact categories considered.
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The process for recovering the 3-HP from the fermentation broth is the main contributor to REU for Na-PA

produced at the sulfite pulp mill. This is due to the large quantities of biomass energy required in this recovery

process (Fig. 4a). The contribution of the recovery process in case of SS3 and SS4 Na-PA to GWP is approx.

3.2 % and 3.7 %, respectively. It should be noted however that this contribution is higher for EP, AP and POCP

(11 %, 15 % and 7 % for SS3, respectively; 14 %, 18 % and 8 % for SS4, respectively).

3.3. Polymerization process

The polymerization process contributes to all impact categories for Na-PA produced from most side

streams. Its contribution to the GWP of TMP-E, TMP-UE, SS1, and SS2 Na-PA is 17 %, 32 %, 22 % and 29 %,

respectively. For the highly diluted side streams (SS3 and SS4, Table 1) the contribution of the polymerization

process is less significant: it contributes 9 % to SS3 and only 0.1 % to SS4 (Fig. 3a). The results for the GWP

of the polymerization process are reflected in the results for the NREU (Fig 4b). The high contribution to GWP

and NREU is primarily related to the use of sodium hydroxide and the energy mix used in the process (see

Supplementary data). For the other impact categories (AP, EP and POCP) as well as the REU, the contribution

of the polymerization process follows the same trend but it is lower than in the case of GWP and NREU.

In the case of the fossil-based polymer, the contribution of the polymerization process is much higher than

in the case of the bio-based polymers (for GWP it contributes with 53 %). For EP, the polymerization process

contributes up to 77 %. The bio-based and fossil-based production processes use the same amount of energy

in the polymerization process (7.8 MJ) for producing 1 kg of Na-PA. The difference in the results is related

to the different locations of these processes (Sweden and the Netherlands, respectively), and consequently to

the energy mix used in these countries. The Netherlands has a larger share of fossil power in the energy mix.

In other work, the energy mix employed in different countries was also shown to have a large influence on

the environmental impacts in biopolymer production (Shahzad et al., 2013). It should be noted that when the

production of the bio-based polymer becomes viable at an industrial scale, the energy mix for the Netherlands

may have changed and have a larger share of renewable energy and thus have a lower environmental impact.

Furthermore, it is relevant to understand the importance of defining the system boundaries when comparing

bio-based and fossil-based Na-PA with regards to the high contribution of the polymerization process. If the

gate product had been set to the acrylic acid product instead of Na-PA, only TMP-UE and SS2 Na-PA would

have better GWP results than their fossil-based counterpart. However, this would not be the case for all the

other impact categories, and REU and NREU.

In a study of the production of poly-itaconic acid (Nuss and Gardner, 2013), the Itaconix polymerization

process was employed which showed a lower contribution to the environmental impact when compared to
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the results for the polymerization process in the current study. In the study by Nuss and Gardner (2013), the

data regarding the process were collected through personal communication and these data were not further

specified in the paper. Thus, a direct comparison cannot be made between the two types of polymerization

processes. What can be concluded is that the Itaconix process appears to have a lower environmental impact

than the polymerization process that was employed in the current study (Sanderson and Sadiku, 2003).

3.4. Sensitivity analysis

3.4.1. Fermentation yields and metabolic pathways

Several metabolic pathways for converting fermentable sugars into 3-HP have been mentioned in the

literature (Valdehuesa et al., 2013), of which two were considered here. The β-alanine intermediary pathway

(Borodina et al., 2015) with a maximum theoretical yield of 86 % was assumed for the baseline. In the

sensitivity analysis the malonyl-CoA intermediary pathway (Chen et al., 2014) with a maximum theoretical

yield of 67 % was considered. In both cases, it was assumed that the fermentation yield is 90 % of the maximum

theoretical yield.

The GWP of TMP-UE and SS2 Na-PA is lower than the GWP of fossil-based Na-PA in case of the

malonyl-CoA pathway (Fig. 5). In the baseline case, TMP-E and SS1 Na-PA also had a lower GWP (Fig 3a).

This result shows he importance of obtaining high yields in the fermentation. The minimum acceptable yield

of the fermentation process, that is, the fermentation yield at which bio-based Na-PA has a lower GWP when

compared to fossil-based Na-PA, was determined in case of both metabolic pathways. The results show that

overall TMP-UE Na-PA production can be run at lower yields using both pathways, and still have a lower

GWP than the fossil-based polymer (Table 2). TMP-E Na-PA production needs to be run at nearly maximum

theoretical yield in the baseline, and SS1 Na-PA production can be run at a somewhat lower yield. Finally,

SS2 Na-PA production can, as is the case for the TMP-UE polymer, be run at lower yields for both metabolic

pathways.

The metabolic pathways used in this analysis were developed and tested for processing C6 sugars only. It is

important to underline that there is a potential to also use C5 fermentable sugars (Novy et al., 2014; Oreb et al.,

2012). Although most of the research is focusing on developing C6 sugars metabolic pathways (Valdehuesa

et al., 2013), the concentration of C5 sugars in some of the side streams is high enough to be relevant in the

future. To what extent the C5 sugars would contribute to lower environmental impacts is hard to assess at this

moment as no such metabolic pathway and its yield could be found in the literature. However, an increase in

fermentable C6 sugars in the side streams showed a lower environmental impact, and a lower impact thanks to

the use of C5 sugars can be expected.
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The dry matter content or the concentration of fermentable sugars in the fermentation broth was also

discussed in previous studies (Janssen et al., 2014, 2016). The sugar content in the broth can be much higher

than in the present study, from 100 g L−1 to 300 g L−1 of fermentation broth. It was observed that at a higher

sugar (or dry matter) content in the fermentation broth, the yield may decrease and that consequently the

environmental impacts may increase (Janssen et al., 2014, 2016). In contrast, the current study indicates

that highly diluted side streams lead to high environmental impacts as well. This indicates that an optimal

sugar concentration (or dry matter content) should be found in order to minimize the environmental impact.

The results presented for the baseline are optimistic because the assumed fermentation yield is close to the

maximum theoretical yield.

3.4.2. Fossil energy use

In the baseline, it was assumed that all the process energy needed is generated by combustion of biomass

(Harding et al., 2007). However, the availability of this biomass may be limited. Therefore, several cases were

explored where the energy required to produce 1 kg of bio-based polymer is produced partially from fossil

fuel. In the case of SS2 Na-PA, 43 % of the heat needed in the process can be produced from fossil resources

without causing a higher GWP than fossil-based Na-PA (Table 3). The results also show that Na-PA produced

at the TMP mill are more sensitive to changes in the type of energy source used. Especially, TMP-E Na-PA

production shows a very low tolerance to fossil energy. This is explained by the high energy demand in the

concentration process (Fig. 4a).

3.4.3. Concentration process

SS3 and SS4 Na-PA had the highest environmental impacts in the baseline due to the highly diluted nature

of these side streams (Table 1). Therefore, in order to assess to what extent applying a concentration process to

these streams would result in lower environmental impacts, they were concentrated prior to the fermentation

process, similar to TMP-E and TMP-UE Na-PA, using evaporation, and evaporation and ultra-filtration.

By concentrating the SS3 and SS4 side streams via evaporation, the GWP decreased 3.2 times and 12.6

times, respectively, when compared to the baseline (Fig. 6a). This decrease is due to the lower use of chemicals

and energy in the detoxification and fermentation processes, and due to lower energy demand to recover the

3-HP from the fermentation broth. Moreover, it is important to underline that, in this case, SS3 Na-PA shows

an overall better result than the fossil-based alternative whereas SS4 Na-PA still has a higher GWP. For SS4

Na-PA, the concentration process via evaporation and ultra-filtration showed an even greater improvement in

GWP (21 times) compared to the baseline results (Fig. 6b). On the contrary, the GWP of SS3 Na-PA decreased
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2.9 times compared to the baseline result for GWP. This lower improvement can be explained by the 33 % loss

of sugars from the side stream due to ultra-filtration. Nevertheless, SS3 Na-PA still attains a lower GWP than

fossil-based Na-PA.

3.5. Comparison with relevant studies

The environmental impacts of producing Na-PA of the tested pulp mill side streams were compared with

those published in two other studies (Nuss and Gardner, 2013; Nuss, 2015). The analysis by Nuss and Gardner

(2013) resulted in a lower GWP (1.32 kg CO2-eq) for the manufacturing of poly-itaconic acid than the GWP

of producing Na-PA from all of the side streams tested in the current study (Fig. 3). The GWP of Na-PA

produced from the more concentrated side streams (TMP-UE and SS2) are however in the same range. The

main hotspot in the system analyzed by Nuss and Gardner (2013) was the recovery of itaconic acid from

the fermentation broth which is due to the use of NaOH. In the present study, the recovery process of 3-HP

from the fermentation broth has a minor contribution in all cases, and other processes contribute significantly

(see sections 3.1, 3.2 and 3.3). Nuss (2015) assessed the production of acrylic acid from corn feedstock.

This process, which was based on a process flow diagram from Straathof et al. (2005), resulted in a GWP

of 4.9 kg CO2-eq which is significantly higher than for the production of acrylic acid from side streams SS1,

SS2, TMP-UE and TMP-E in the present study (Fig. 3). The hotspots identified by Nuss (2015) were steam

production and consumption in the distillation process and the glucose extraction in the corn wet milling

process. The energy needed in both these hotspots was mostly generated by burning fossil resources (natural

gas and coal), whereas the energy in the present study was generated by burning biomass.

4. Conclusion

In this study an LCA was done of a novel bio-based process for the production of sodium polyacrylate

(Na-PA) from sugars present in pulp mill side streams. The polymer was produced from five different side

streams released at two different pulp mills (a thermo-mechanical and a sulfite pulp mill) in Sweden. The

environmental impacts of the production of bio-based Na-PA were compared with fossil-based Na-PA, and the

environmental hotspots of their production were identified.

The main determinant of the environmental impact of the bio-based production of Na-PA is the concentration

of the fermentable sugars in the pulp mill side streams. The side streams with the highest concentration of

sugars showed the best results when compared to the fossil-based counterpart. For more diluted side streams,

which were concentrated to increase their sugar content, the concentration process was identified as the

environmental hotspot in the process. Applying a concentration process to the highly diluted side streams prior
14



to the fermentation process lowered the environmental impacts significantly. Combining ultra-filtration and

evaporation to concentrate the side streams resulted in the lowest environmental impacts due to its lower energy

use. When the side streams were not concentrated, considerable amounts of chemicals, nutrients and energy

were required in the detoxification, fermentation and 3-HP recovery processes. Another important determinant

of the environmental impact was the fermentation yield. A higher yield of the fermentation process lowers the

environmental impact. Therefore, yeast strains should be developed to obtain such high yields.

The production of sodium polyacrylate based on pulp mill side streams does not always lead to a better

environmental performance when compared to its fossil-based counterpart. Moreover, of the environmental

impacts considered, only the global warming potential shows a better performance for some of the pulp mill

side streams considered. In further developing the bio-based process, the efforts to develop a high-yield

yeast for the fermentation process should be complemented with the consideration of low energy processes to

concentrate the pulp mill side streams.

Supplementary data

Supplementary data are available as an electronic annex.
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Table captions

Table 1
Description of the pulp mill side streams and their concentration of C6 fermentable sugars (see also Fig. 2). The
abbreviations shown in the table are also used to name the sodium polyacrylate produced from the respective side
stream.

Table 2
Minimum yields (in percentage of the max. theoretical yield) for which the biopolymers have a lower GWP than
their fossil-based counterpart

Table 3
Maximum percentage of fossil heat used in the integrated biorefinery for which the biopolymers have a lower GWP
than their fossil-based counterpart
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Figure captions

Fig. 1. Cradle-to-gate system for the evaluation of the sodium polyacrylate production. T denotes transportation.

Fig. 2. Simplified flowchart of the production of sodium polyacrylate in two different integrated pulp mill biorefiner-
ies: a TMP pulp mill and sulfite pulp mill; S.U.B. - solid wood under bark; 3-HP – 3 hydroxypropionic acid; TMP-E
- TMP side stream concentrated via evaporation, TMP-UE - TMP side stream concentrated via ultra-filtration; SS1 -
side stream 1 ; SS2- side stream 2 SS3 - side stream 3; SS4 - side stream 4

Fig. 3. Environmental impacts of the production of the polyacrylate from the selected pulp mill side streams: a. global
warming potential (GWP), b. eutrophication potential (EP), c. acidification potential (AP), and d. photochemical
ozone creation potential (POCP)

Fig. 4. Renewable (REU) and non-renewable energy use (NREU) of the production of the polyacrylate from the
selected pulp mill side streams

Fig. 5. Global warming potential (GWP) results for malonyl-CoA metabolic pathway (90 % of the maximum
theoretical yield

Fig. 6. Global warming potential results (GWP) results for: a. concentrating side streams 3 and 4 via evaporation;
b) concentrating side stream 3 and 4 via ultra-filtration. The values depicted for the other streams (fossil, TMP-E,
TMP-UE, SS1 and SS2) are the same as in Fig. 3a.
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Tables

Table 1

Pulp mill Description Abbreviation C6 fermentable sugars [g L−1]

TMP TMP side stream concentrated via evaporation TMP-E 44
TMP side stream concentrated via ultra-
filtration and evaporation

TMP-UE 66

Sulfite Side stream 1 SS1 26
Side stream 2 SS2 41
Side stream 3 SS3 8.9
Side stream 4 SS4 0.45
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Table 2

Side stream
Metabolic pathway TMP-E TMP-UE SS1 SS2

β-alanine <89 % 48 % 71 % 55 %
Malonyl-CoA n/a 62 % n/a 71 %

2



Table 3

Side stream TMP-E TMP-UE SS1 SS2

% fossil heat <1 % 15 % 25 % 43 %
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Figure 3

Fossil TMP-E TMP-UE SS1 SS2 SS3
0

2

4

6

8

G
W

P
 [

k
g
 C

O
2
-e

q
]

Acrylic acid production (fossil)

Forestry activities

Pulp mill operations

Concentration

Hydrolysis & detoxification

Fermentation

Recovery of 3-HP

Distillation

Polymerization

SS4
0

20

40

60

80

100

120

140

Fossil TMP-E TMP-UE SS1 SS2 SS3
0,0

5,0×10
-3

1,0×10
-2

1,5×10
-2

2,0×10
-2

2,5×10
-2

E
P

 [
k
g
 P

O
4
-e

q
]

SS4
0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Fossil TMP-E TMP-UE SS1 SS2 SS3

Side stream alternatives

0,0

2,0×10
-2

4,0×10
-2

6,0×10
-2

8,0×10
-2

A
P

 [
k
g
 S

O
2
-e

q
]

SS4
0

0,2

0,4

0,6

0,8

Fossil TMP-E TMP-UE SS1 SS2 SS3

Side stream alternatives

0,0

5,0×10
-4

1,0×10
-3

1,5×10
-3

2,0×10
-3

2,5×10
-3

P
O

C
P

 [
k
g
 C

2
H

4
-e

q
]

SS4
0,0

5,0×10
-3

1,0×10
-2

1,5×10
-2

2,0×10
-2

2,5×10
-2

3,0×10
-2

3,5×10
-2

Fossil: Fossil acrylic acid production

TMP-E: TMP side stream concentrated

via evaporation

TMP-UE: TMP side stream concentrated

via ultrafiltration

SS1: Sulphite pulp mill side stream 1

SS2: Sulphite pulp mill side stream 2

SS3: Sulphite pulp mill side stream 3

SS4: Sulphite pulp mill side stream 4

a. b.

c. d.

3



Figure 4
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Figure 5
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Figure 6
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