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Radiation in simulations of high intensity laser-matter interaction
ERIK WALLIN
Department of Physics
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Abstract

We consider electromagnetic waves propagating in plasmas, with two main
themes covered. First nonlinear plasma theory and wave-wave interaction.
Here a wave-wave symmetry, the Manley-Rowe relations, is used as a method
of determining the physicality of modified plasma fluid equations.

Secondly, we consider radiation emission in simulations of laser-matter
interaction where we develop a method of calculating high frequency ra-
diation from relativistic particles, which is not included in particle-in-cell
simulations. This is benchmarked against radiation reaction losses and also
used in order to compare the radiation between cases where either classical
or QED equations of motion are used.

KEYWORDS: plasma, nonlinear dynamics, Manley-Rowe, particle-in-cell,
synchrotron radiation, radiation reaction
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Chapter 1

Introduction

The main theme in this thesis is modelling of radiation in laser-plasma
interaction. Mainly the numerical modelling of the emission of synchrotron
radiation from relativistic particles in a plasma interacting with a super-
intense laser will be covered. However, we will also consider nonlinear wave-
wave interaction in a magnetised plasma.

Since the invention of chirped pulse amplification [1] in the 1980s the
maximum intensity of lasers has seen a steady increase. Present laser sys-
tems are able to focus ultra short pulses with a duration of the order of
∼ 10fs to spot sizes of ∼ 1µm (e.g. Hercules [2] with a duration of 30 fs
and a spot size of 1.3µm). The total energy of these pulses is not so big, of
the order of 1-10 J, but the short duration and small spot size means the
maximum intensity is of the order of 1022 − 1023 W/cm2. This intensity is
equivalent to focusing all sun light that reach the earth to a spot size of ≈ 1
mm2. When such an intense laser pulse hit something, be it a metal or a
gas, the atoms will be ionized to form a plasma. For the most intense lasers
the prepulse, even if it is much less intense than the main pulse, will be of
sufficient intensity to ionize atoms, and the target is already a plasma when
the main pulse arrives. Thus the study of ultra-intense lasers interacting
with matter is the study of laser-plasma interaction.

Many of the effects in laser-plasma interactions are highly nonlinear and
difficult to analyse analytically. For such problems computer simulations
are a great tool. These may be of different types, e.g. single-particle codes,
Vlasov codes and particle-in-cell (PIC) codes. The PIC method [3, 4] has
become a standard method for simulations of laser-plasma interaction. Here
the plasma is modelled as an ensemble of particles moving in an electromag-
netic field defined on a grid. For each iteration the charge- and current
densities are weighted to the grid. These are then used to solve the updated
fields and the forces from these fields are weighted back to the particles,
which propagate according to their equation of motion, and the process is
repeated.
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2 CHAPTER 1. INTRODUCTION

As we will see, particles whose velocity approach the speed of light, c,
emit electromagnetic radiation with a typical frequency

ωc =
3

2
ωHγ

3 (1.1)

where ωH is the instantaneous cyclotron frequency of the particle and γ =
(1 − v2/c2)−1/2 is the relativistic Lorentz factor. For γ � 1 the radiation
is of very high frequency, which the PIC scheme is unable to reproduce.
Practically there is the problem that the space and time resolution of the
grid provide a limit of how small wavelengths (large frequencies) can be
resolved. More importantly, there is a fundamental limitation in the PIC
scheme due to the fact that it is the macroscopic properties of the plasma
that are simulated. For the scheme to give correct results for high intensity
simulations, single particle effects like this must instead be handled in some
other way. This will be discussed in this thesis, and Paper II and III provide
numerical methods for extending the validity of the particle-in-cell scheme.
This is important in order to properly model the physics in extreme laser-
matter interaction.

The outline is as follows. Chapter 2 gives an introduction to plasma
theory, presenting the properties and main equations governing a plasma
as well as examples of linear plasma waves and nonlinear effects. The final
section of the chapter gives an introduction to paper I, on three-wave in-
teraction and Manley-Rowe relations in quantum hydrodynamics. Chapter
3 describes the particle-in-cell method of plasma simulations and problems
related to including all relevant radiation in simulations of high intensity
laser-matter interaction. Chapter 4 covers the theory of electromagnetic ra-
diation with a focus on the radiation from relativistic particles as well as
radiation reaction, the back reaction on the radiating particle. In chapter
5 the numerical methods for calculation of high frequency radiation used in
papers II and III are presented. Finally, chapter 6 contains a summary of
the papers included in the thesis.

The three papers covered in this thesis all adapt a different system of
units, SI, Gaussian CGS and natural units; all depending on the convention
in their respective subfield. In this thesis I will adapt Gaussian CGS units
in general, except in section 2.5 covering details of Paper I where SI units
will be used.



Chapter 2

Plasma

A plasma is an ionized gas. Most plasmas are weakly coupled, such that the
kinetic energy of a particle is greater than the potential energy due to the
nearest neighbour [7]. Heating a gas, eventually the electrons will separate
from the atoms to form a gas of electrons and ions, i.e. a plasma. Plasma
is often referred to as the forth state of matter and if we look around in
the universe we see that it is by far the most abundant, with e.g. our sun
constituting a plasma.

2.1 Plasma properties

The fact that the particles in the plasma are electrically charged makes the
properties of a plasma vastly different from a gas. The movement of the
charged particles will give rise to electromagnetic (EM) fields, and these
fields will in turn affect the motion of the particles. One important plasma
concept is that of Debye shielding [8, 9]. If one introduce a test charge qT in
a plasma of density n and temperature T the surrounding particles will be
affected by the field from the test charge and will move to try to cancel this
field. This shielding is more efficient the denser and colder the plasma is,
and the effect is that the test charge is effectively shielded a few distances
λD away, where the Debye length is given by

λD =

√
kT

4πne2
(2.1)

where k is Boltzmann’s constant and −e the charge of the electron. In
Fig. (2.1) the electric potential for a free charged particle and the effect of
Debye shielding on a charged particle in a plasma can be seen, where there
is an additional exponential drop such that for particles a distance r � λD
away the test charge is effectively shielded. It turns out that another way to
define what is a plasma is to demand that a cube with the sides of the Debye
length should contain many particles, nλ3

D � 1 (if this was not true then

3
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Figure 2.1: The figure shows the electric potential of a point charge with and
without Debye shielding.

there would be no particles there to do the shielding). This is equivalent to
demanding that the typical kinetic energy of the particles should be larger
than the typical potential energy due to the nearest neighbour [7].

The fact that the particles in a plasma can generate, and respond to,
EM fields enables it to support many different types of waves, especially if
one apply an external magnetic field. If we consider an ion-electron plasma
the ions are much heavier than the electrons, with e.g. the proton being
∼ 2000 times heavier than the electron. This makes the electrons much more
mobile and unless the considered waves are of low frequency, the ions will
not have time to move and can be regarded as a neutralizing background
with all the density perturbations due to the electrons. If one introduce
a density perturbation for the electrons in an otherwise neutral plasma,
the charge separation will give rise to an electric field. This will force the
electrons back towards their original position, but due to their velocity they
will overshoot in the other direction, creating plasma oscillations, oscillating
with a frequency given by the plasma frequency

ωp =

√
4πnee2

me
(2.2)

where ne and me are the electron density and mass. If the plasma has
a nonzero temperature T these oscillations can propagate in the form of
Langmuir waves. This can be described by the dispersion relation, giving
the relation between the frequency ω and wave number k of the wave. For
a Langmuir wave the dispersion relation is

ω2 = ω2
p + 3k2v2

e , (2.3)
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valid for ve � ωp/k, where ve = kBT/m is the thermal velocity of the
electrons. From the dispersion relation one can deduce several important
properties of the wave, e.g. group velocity (the speed of a wave envelope)
and dispersion (the spreading of a wave envelope).

Another type of wave in a plasma is the electromagnetic plasma wave.
Similarly to in vacuum this is a wave with a transverse E- and B-field, with
the difference that the speed of the wave is affected by the plasma. Here the
dispersion relation is given by

ω2 = ω2
p + k2c2 (2.4)

where c is the speed of light and ωp is the plasma frequency defined in
Eq. (2.2). The case of an electromagnetic wave in vacuum can be retrieved
by letting the plasma density approach zero, such that ωp → 0 with the
dispersion relation given by ω2 = k2c2.

For an electromagnetic wave with frequency ω travelling in vacuum and
entering a plasma, the possibility of propagating in the plasma depends on
the plasma frequency. If ω < ωp then there are no real solutions for k in
Eq. (2.4) and the wave can not propagate in the plasma, but will instead
be exponentially damped. On the other hand, ω > ωp gives real valued
solutions of k and the electromagnetic wave can propagate in the plasma.
Thus, depending on the plasma frequency (and hence directly on the density)
the plasma can either be transparent or opaque for EM radiation. For a laser
with frequency ω the critical density is given by

ncrit =
meω

2

4πe2
(2.5)

where for densities n ≤ ncrit the plasma is underdense and transparent in
the absence of collisions, and for densities n ≥ ncrit the plasma is overdense
and opaque.

2.2 Plasma equations

The two main ways of modelling a plasma are the kinetic and fluid plasma
descriptions.

2.2.1 Kinetic description

In kinetic theory the plasma is described by the distribution functions fs(r,v, t)
representing the number of particles of species s, (usually s = e, i for elec-
trons and ions) at position r with velocity v, at time t. The evolution of
this system in time is then given by the Vlasov equation [10]

∂fs(r,v, t)

∂t
+ v · ∂fs(r,v, t)

∂r
+

qs
ms

(
E +

v

c
×B

)
· ∂fs(r,v, t)

∂v
= 0, (2.6)
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together with Maxwell’s equations

∇ ·E = 4πρ (2.7)

∇ ·B = 0 (2.8)

∇×E = −1

c

∂B

∂t
(2.9)

∇×B =
4π

c
J +

1

c

∂E

∂t
(2.10)

for the fields, where E is the electric field, B is the magnetic field, ρ is the
charge density and J is the current density. The latter two are given from
the distribution functions by

ρ(r) =
∑
s

qs

∫
fs(r,v, t)d

3v (2.11)

and

J(r) =
∑
s

qs

∫
vfs(r,v, t)d

3v (2.12)

respectively. The Vlasov equation is probably the most important plasma
equation and can describe a large variety of plasma phenomenon. It does
not take collisions into account, however for a weakly coupled plasma where
nλ3

D � 1 the collisional effects are small compared to the collective plasma
effects [9].

2.2.2 Fluid description

The fluid description is a simplification of the Vlasov equation, where each
species of the plasma is considered an interpenetrating fluid. The equations
are derived by taking velocity moments of the Vlasov equation. In principle
the result is an infinite series of equations of three dimensions, replacing the
six-dimensional Vlasov equation. In practice though, the series is truncated
using physical arguments to give a limited amount of equations, typically
two or three. Integrating the Vlasov equation over all velocities results in
the continuity equation,

∂ns
∂t

+∇ · (nsvs) = 0 (2.13)

with ns = ne,i(r) and vs = ve,i(r) representing the density and velocity of
the electrons and ions respectively. The continuity equation describes the
fact that the fluid is not created nor destroyed. Multiplying the Vlasov
equation by v and integrating over all velocities results in the momentum
equation

∂vs
∂t

+ (vs · ∇) vs = − ∇P
nsms

+
qs
ms

(
E +

vs
c
×B

)
(2.14)
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describing the effect of forces on the fluid. Fluid theory is a rather crude
approximation of kinetic theory. As such there are situations where it is
easier to work with and where it gives the same result as kinetic theory.
However, the dependence of the velocity distribution is lost and effects where
this is of importance can not be calculated using fluid theory, e.g. Landau
damping [11].

2.3 Linear theory and plasma waves

As mentioned, a plasma supports a multitude of waves. In order to find these
solutions we linearize the plasma equations; considering small perturbations
of the involved parameters, with e.g. the density written as the sum of two
components

n = n0 + n1(r, t) (2.15)

where n0 is the unperturbed, constant background value and n1 � n0 being
a time- and space dependent perturbation. Depending on the considered
situation, these assumptions will be different and will result in different
wave solutions. We can e.g. consider cases where there is no background
magnetic field, where the background magnetic field is along some direction
or where the magnetic field plays no part at all, resulting in different wave
solutions.

In linear theory we consider the perturbations so small so the product of
two perturbations, e.g. n1E1, is negligible. Thus we only consider results up
to first order in the small perturbations. The result is a system of equations
for the involved perturbations and background values, where wave solutions
can be found by looking for solutions on the form

n1(r, t) = ñ1 exp(−iωt+ ik · r) (2.16)

where ñ1 is the amplitude, k the wave vector and ω the frequency. The
complex expression is used for convenience, and as the equations are linear
the physical solution can be retrieved by taking the real part in the end. The
result is a relation between the frequency ω and the wave vector k, i.e. a dis-
persion relation, mentioned in section 2.1. This procedure, with appropriate
linearization, allow us to derive dispersion relations for a large number of
plasma waves (e.g. Langmuir waves, ion-acoustic waves and electromagnetic
waves), especially if an external magnetic field is present. A simple exam-
ple is if we neglect ion motion and linearize according to ne = n0 + n1(r, t),
E = E1(r, t) and ve = v1(r, t) we can derive the plasma oscillations ω = ±ωp
mentioned above. For further reading on this, see e.g. [9].
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2.4 Nonlinear theory and wave-wave interaction

In nonlinear theory we consider larger perturbations, where the product
of two perturbations can no longer be neglected, as they were in linear
theory. This opens up for several effects not present in linear theory. One
such effect is that of wave-wave interaction, where energy is transferred
between interacting waves. This is in contrast to linear theory, where the
superposition principle applies and energy can not be transferred between
waves in a homogeneous medium.

We consider three interacting waves, with e.g. the electric field given by
(and similar for the magnetic field, density and velocity)

E = E(1)e
i(k(1)r−ω(1)t) + E(2)e

i(k(2)r−ω(2)t) + E(3)e
i(k(3)r−ω(3)t) + c.c. (2.17)

where c.c. denotes the complex conjugate and E(i), ω(i) and k(i) denotes the
amplitude, frequency and wave number of the i:th wave. Here we must add
the complex conjugate to make the expression real from the start, as the
real and imaginary parts are not independent solutions as in linear theory.
We also consider the following relation between the frequencies and wave
vectors of the three waves,

ω(3) = ω(1) + ω(2)

k(3) = k(1) + k(2), (2.18)

which will be necessary in order to derive equations for the evolution of the
wave amplitudes. Here one could consider the case of having one wave from
the start, entering a plasma region. There will be noise in that region, which
could be decomposed into different frequencies. Some of these perturbation
can match with the incoming wave according to the relations in Eq. (2.18)
and those waves can grow, taking energy from the initial wave.

Entering the expression for the fields, densities and velocities on the
form of Eq. (2.17) into the plasma fluid equations, there will be a lot of
nonlinear terms that are products of parts from the three different waves.
For each term in the fluid equations involving a product of two quantities
there will be 62 such nonlinear terms (from the 3 real and 3 imaginary terms
of each quantity). It turns out that not all of these terms are important
when it comes to how the amplitude of each wave will evolve, depending on
their timescale. Only terms oscillating with similar frequencies will be of
importance, as the other will be out of phase and over a longer time their
average contribution will be 0. In order to simplify this, and get expressions
for how the amplitude of each wave (represented as the amplitude of e.g.
the electric field) will develop, one can filter out the frequency of that wave.
By e.g. multiplying Eq. (2.17) by e−i(k(3)r−ω(3)t) and taking the average
over many periods one will single out the E(3) part, as all other terms will
be rapid oscillations giving 0 in average, where as the E(3) part will be
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constant. In a similar manner, using the relations in Eq. (2.18) one can
single out contributing nonlinear terms in the fluid equations. E.g. the
term matching with E(3) from v ×B will be

v(2)B(1) ∝ ei
(

(k(1)+k(2))r−(ω(1)+ω(2))t
)

= ei(k(3)r−ω(3)t). (2.19)

In this manner, we can eventually get equations for how the wave amplitudes
will evolve, on the form

dE∗(3)

dt
= c3E(1)E(2) (2.20)

dE(2)

dt
= c2E

∗
(3)E(1) (2.21)

dE(1)

dt
= c1E(2)E

∗
(3) (2.22)

where we have used linear relation to express all the nonlinear terms as
the same variable (the electric field in this case). ci represent the coupling
coefficients, describing how the different waves couple to each other.

It turns out that there is a restriction in how the waves can exchange
energy, i.e. the coupling coefficients ci must have certain symmetries. These
are called the Manley-Rowe relations [12] and state that the change in energy
of each wave is directly proportional to its frequency. Thus the way the waves
can exchange energy is limited, with the effect being that one can consider
them exchanging energy similar to quantum theory, one wave quanta at the
time.

2.5 Manley-Rowe relations for quantum hydrody-
namics

If we denote the total energy of each wave W(i), then the Manley-Rowe
relations can be written as

1

ω(3)

dW(3)

dt
= − 1

ω(1)

dW(1)

dt
= − 1

ω(2)

dW(2)

dt
. (2.23)

Thus the change in energy of each wave is proportional to its frequency. The
Manley-Rowe relation is fulfilled for all the common plasma equations, e.g.
the Vlasov equation and the fluid equations described previously. The fact
that an equation fulfil the Manley-Rowe relations is related to an underlying
Hamiltonian mathematical structure [13, 14].

For a physical theory to be sound, one often demand it to fulfil a num-
ber of relations, such as conservation of energy, momentum and angular
momentum. In Paper I [15] we consider the Manley-Rowe relations as an
additional criteria in separating physical from unphysical models, in order
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to verify the form of the Bohm de Broglie term in quantum hydrodynamics.
The momentum equation (here in SI units),(

∂

∂t
+ v · ∇

)
v =

q

m
(E + v ×B)− ∇P

nm
+

h̄2

2m2
∇
(

1√
n
∇2√n

)
(2.24)

with the Bohm de Broglie term (right most term) represents the simplest
quantum hydrodynamic equation [16, 17, 18]. The Bohm de Broglie term is
usually small and can be neglected, but for high density, low temperature
plasmas [17] it is of importance. Eq. (2.24) can be derived in several ways
[18, 19], but none with total mathematical rigour.

We find the Manley-Rowe relations for quantum hydrodynamics, but
starting from a more general form of the Bohm de Broglie term

h̄2

2m2
∇
(

1

nξ
∇2nξ

)
(2.25)

with the hope of showing that this is only valid for the case ξ = 1/2. From
an expression for the total energy of the wave (given by electric, magnetic,
kinetic, pressure and Bohm de Brogile contributions) as

W(i) =
ε0
2

E(i) ·E∗(i) +
1

2µ0
B(i) ·B∗(i)

+
∑
s

[
msn0s

2
v(i)s · v∗(i)s +

(
γsP0s

2n2
0s

+
ξh̄2k2

(i)

4msn0s

)
n(i)sn

∗
(i)s

]
(2.26)

we derive expressions for the change in energy of each wave. After some
lengthy algebra we arrive at the main result, here expressed for wave 3,

dW(3)

dt
= ω(3)

∑
s

[
− ims

2

(
n(1)sv(2)s · v∗(3)s + n(2)sv(1)s · v∗(3)s

+ n∗(3)sv(1)s · v(2)s

)
− iγs(γs − 2)P0s

n3
0s

n(1)sn(2)sn
∗
(3)s

+
iξh̄2

8msn2
0s

[
k2

(1) + k2
(2) + k2

(3) − (2ξ − 1)k(1) · k(2)

]
n(1)sn(2)sn

∗
(3)s

− msωcs
2ω(3)

n0s

(
k(2)z

ω(2)
−
k(1)z

ω(1)

)
v∗(3)s ·

(
v(1)s × v(2)s

) ]
+ c.c. (2.27)

Even if it is not entirely trivial to see, all terms except the one proportional to
(2ξ−1) are symmetric with respect to the different waves, thus fulfilling the
Manley-Rowe relations. For the Manley-Rowe relations to hold in general,
that term must be 0, and thus ξ = 1/2 as is the case in the Bohm de Broglie
term. This adds further weight to the derivation and physical soundness of
the equations for quantum hydrodynamics. The the fact that the Manley-
Rowe relations is only fulfilled for the case of ξ = 1/2 also demonstrates
that the Manley-Rowe relations is a useful criterion for separating physical
equations from unphysical ones.



Chapter 3

Particle-in-cell scheme

3.1 Classical particle-in-cell scheme

The PIC scheme is a method of plasma simulations [3, 4] which has become
a standard tool for large scale plasma simulations. Here the plasma consists
of an ensemble of particles moving within a grid representing the simulated
space. To advance the system in time, Maxwell’s equations (Eqs. 2.7 - 2.10)
for the electric- and magnetic field in each grid point and the equation of
motion for the particles are solved self consistently.

There are different numerical methods for the field solver (e.g. FDTD
[20, 4] or spectral [21] methods) and the position of each component of the
field can vary within the grid cell, but for all cases the fields are considered to
be placed discretely on the grid, with particles moving continuously (up to
computer number precision) there in. The steps in the method can be seen
in Fig. (3.1). For each particle and iteration the position and velocity of the
particles are weighted to the grid to get the charge- and current densities
ρ(r) and J(r). These are then used in Maxwell’s equations in order to update
the values of the E- and B-fields. Finally the field values are weighted to
the position of each particle and the equation of motion is solved in order to
update the position and momentum of the particle, after which the process
restarts for another iteration. In a typical simulation the number of particles
under consideration is much too great to include all in the simulation, due to
memory limitations (e.g. the 1018 particles in 1 cm3 of a typical gas would
require ∼ 5 × 107 TB of memory to store the position and momentum of
each particle). In PIC one instead consider super particles, each representing
a larger number of real particles. However, given a certain field the super
particles follow the same path as real particles would do, as the charge to
mass ratio is the same. The equation of motion for the particles is given by
the Lorentz force, F = q(E + v/c×B), where the Boris scheme [22] is the
most common particle pusher. This is an efficient leap-frog method where
first half the acceleration due to the electric field is applied, then a rotation

11
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Weight particles
to ρ and J

Weight fields to
particles

Move particles

Solve Fields

dt

ρ(r),J(r)E(r),B(r)

Figure 3.1: The figure shows the classical PIC scheme.

due to the magnetic field and finally the other half of the contribution due
to the electric field.

The PIC method has turned out to be applicable for plasma simulations
in a large number of regimes, with the original method extended to include
e.g. collisions [23] and ionization [24]. However, present and coming [25,
26, 27] high intensity laser facilities present regimes where the PIC method
fails to take into account the emission of high frequency radiation. For
even further increase in intensity other problems will arise, related to the
fundamental change of physics as quantum electrodynamics (QED) have to
be considered. In the following chapters we will consider the first of these
problems.



Chapter 4

Electromagnetic radiation

In classical theory electromagnetic radiation comes in the form of waves,
generated from accelerated charges. This is in contrast to quantum theory,
where the radiation is considered a particle, the photon, with the energy of
each photon proportional to its frequency according to E = hf where h is
Planck’s constant and f the frequency.

We will start in section 4.1 by considering the classical electromagnetic
theory and how radiation is emitted from accelerated charges, with a focus
on how this can be used in numerical schemes. We will then proceed by
looking at the energy loss for an emitting particle, and finally briefly consider
the quantum mechanical effect of discrete photon emission. In chapter 5 we
consider the implementation of the numerical scheme for emission of classical
synchrotron radiation in Paper II [28]. In section 5.2 this is benchmarked
to the energy loss due to RR [28] and in section 5.3 a comparison between
classical and quantum emission is made, as in paper III [29].

4.1 Radiation from moving charges

The evolution of electric and magnetic fields and their origin are described
by Maxwell’s equations, Eqs. (2.7-2.10). There is a solution of Maxwell’s
equations in vacuum where oscillating transverse electric and magnetic fields
propagate as a wave with velocity c, the speed of light. The wavelengths of
this radiation can vary greatly, with e.g. radio waves in the kilometer (103

m) wavelength scale and gamma rays in the picometer (10−12 m) wavelength
scale. These waves are generated by the acceleration of charged particles.

Given the path of a charged particle the radiation it emits can be calcu-
lated. The energy emitted per unit solid angle and unit frequency interval
is given by [5]

d2I

dωdΩ
=

e2

4π2c

∣∣∣∣∣
∫ ∞
−∞

n× [(n− β)× β̇]

(1− β · n)2
exp(iω(t− n · r(t)/c))dt

∣∣∣∣∣
2

(4.1)
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where n is a unit vector in the direction toward the observer, β = v/c is
the particle velocity and r(t) is the position of the particle. This equation
is in the form of an integral over all time (of nonzero acceleration β̇) and
is not suitable to use in numerics, for several reasons. First of all it is very
computationally expensive to save particle positions for all time-steps, and
secondly this also prevents real time calculation of the emitted radiation.

It turns out that this can be simplified for the case of relativistic particles,
whose velocity is close to c.

4.2 Radiation from relativistic particles

When the particle velocities v approach the speed of light c, Newtonian
theory is no longer valid and one must take effects of special relativity into
account. This states that no massive particle can surpass the speed of light,
c ≈ 3 × 108m/s. Many effects in special relativity are proportional to the
Lorentz factor,

γ =
1√

1− v2

c2

, (4.2)

where v is the speed of the particle and c is the speed of light. For non-
relativistic particles this is very close to unity, but for particles approaching
c it grows very quickly, as seen in Fig. (4.1). A particle with velocity
very close to c can still be further accelerated to increase its kinetic energy,
Ek = mc2(γ − 1) but the predominant effect will not be an increase in its
velocity, which will only increase marginally closer to c. Instead effects such
as time dilation and length contraction will see the particle measure time
and distance differently.

It turns out that for relativistic particles the calculation of emission
of radiation can be simplified. The emission from relativistic particles is
concentrated withing an angle 1/γ about its propagation direction. For rel-
ativistic particles with γ � 1 we can then to a good approximation consider
all radiation as emitted along the propagation direction, removing the angu-
lar dependence from the equations. Furthermore, radiation emitted due to
transverse acceleration (v ⊥ a) is a factor γ2 greater than that due to linear
acceleration (v ‖ a). This means that for relativistic particles the radiation
due to linear acceleration can be neglected [5, 6] and one can consider all
the radiation of the particle to be due to transverse acceleration. This opens
up the possibility of describing the radiation from a relativistic particle by
considering it to be in an instantaneous circular motion, with radius r and
circular frequency ωH .
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Figure 4.1: The figure shows the relativistic Lorentz factor.

4.2.1 Synchrotron radiation

Synchrotron radiation is the name for radiation emitted from a relativistic
particle in circular motion, where v ⊥ a. This can for example be achieved
with a charged particle gyrating in an external magnetic field, as seen in
Fig. (4.2). We consider an electron going around in a circle of radius r with
velocity v. The angular frequency is then given by ωH = v/r. For a non-
relativistic electron the typical frequency of the emitted radiation is ∼ ωH .
However, as the the particle becomes relativistic the typical frequency of the
emitted radiation is instead ωc, defined as [6]

ωc =
3

2
ωHγ

3, (4.3)

and thus the emitted frequency is greatly increased for particles with γ � 1.
The rotation of the particle can be thought of as being due to a perpendicular
external magnetic field Heff of field strength

Heff =
γmcωH

e
. (4.4)

The frequency spectra of the emitted radiation can then be written as

∂I

∂ω
=

√
3

2π

e3Heff

mc2
F

(
ω

ωc

)
(4.5)

where F (ξ) is the first synchrotron function [5, 6] given by

F (ξ) = ξ

∫ ∞
ξ

K5/3(ξ)dξ (4.6)
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H

Figure 4.2: The figure shows two cases of a charged particle gyrating in a magnetic
field. Blue/dashed line represent the case where radiation reaction is taken into
account and the particle loose a substantial amount of energy in each lap due to
radiation. Red line represent the case where radiation reaction is not taken into
account.

with K5/3(ξ) being a modified Bessel function. This is such that most of the
radiation is emitted around the typical frequency ωc, as seen in Fig. (4.3).
Integrating this over all frequencies we get the total radiated power as

I =
4e3Heffωc

9mc2
=

2e4H2
eff

3m2c3
γ2. (4.7)

For a fixed field Heff the power scales as γ2, thus being dominated by high
energy particles.

4.3 Radiation reaction

As a particle emits EM radiation is looses energy. In the non-relativistic case
this energy is extremely small compared to the kinetic energy of the particle
and can be neglected. For relativistic particles this no longer is the case,
and for highly relativistic particles the emitted energy can be a substantial
part of the particle kinetic energy and the energy loss must be taken into
account in the motion of the particle, see Fig. 4.2. This is the radiation
reaction (RR) and it has long been a problem how this should be accounted
for. In fact, this is where classical electrodynamics fails and for a proper
handling one must turn to QED. Even so, there still exist a regime where
the effects of radiation reaction can be considered classically. The energy
loss due to RR is then relatively small compared to the kinetic energy of the
particles and the RR loss can be considered as a continuous friction term
(compared to QED where there is a probability of emission, and the process
is stochastic). One can add a term for the energy loss due to RR to the
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Figure 4.3: The figure shows the spectra of synchrotron radiation

equation of motion of the particle

F = FEM + FRR. (4.8)

where FEM is the Lorentz force. The expression for FRR is then given from
demanding that the work performed is the same as the energy of the emitted
radiation. This gives the Abraham-Lorentz equation [5] which has the prob-
lem of containing a third order derivative. This is untypical in physics and
means that is it not enough to specify the initial position and velocity of the
particle for the problem to be properly defined, as is customary. Furthermore
it allows “runaway solutions”, where the particle would be continuously ac-
celerated even without an external force! This is clearly unphysical, but the
problem can be removed by approximating the third order derivative using
the Lorentz force, FEM. The result is the Landau-Lifshitz (LL) equation,
valid for |FRR| � |FEM| in the instantaneous rest frame of the particle. In
relativistic covariant form this is given by [6]

fµ =
2

3

er0

c
∂γF

µνuνu
γ

+
2

3
r2

0

[
FµαFανu

ν + (Fναu
α)(F νβuβ)uµ

]
(4.9)
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where Fµν is the electromagnetic field tensor and r0 = e2/mec
2 is the “clas-

sical electron radius”. In vector form this becomes

Frad =
2

3

r0e

c
γ

[(
∂

∂t
+ v ·∇

)
E +

1

c
v ×

(
∂

∂t
+ v ·∇

)
H

]

+
2

3
r2

0

(
E×B +

1

c

[
B× (B× v) + (v ·E)E

]

− γ2

c

[(
E +

1

c
v ×B

)2

−
(

E · v
c

)2
]

v

)
(4.10)

The LL equation has been shown to be consistent with QED up to first
order in the fine structure constant α ≈ 1/137 [30].

4.4 QED effects

If the energy of the gyrating particle we considered in section 4.2.1 is further
increased, then eventually the typical energy h̄ωc of the emitted photons will
be comparable to the kinetic energy of the particle. This can be described
by the dimensionless parameter

χ =
2h̄ωc

3γmc2
, (4.11)

where for χ approaching 1 the classical theory is not valid and one must turn
to QED. The problem with the classical expressions are two. Firstly, the
classical equations of photon emission does not provide a proper cutoff and
will eventually predict the emission of photons with greater energy than
the kinetic energy of the particle itself, as described by the χ parameter.
Secondly, in this regime the energy loss can not be considered a continuous
process but must be treated as a stochastic process with a certain probabil-
ity of emission. Thus a particle, even if it is accelerated, could propagate
without emitting radiation for some distance and then emit a substantial
part of its energy at some instance. This is in contrast to the classical case
where the radiation is emitted continuously, and results in a different dy-
namics for the particles. According to QED one could imagine a particle
moving further into a region of intense electric and magnetic fields (i.e. the
focus of a laser pulse) than it would according to the classical theory, as it
in each instant is not certain to loose energy due to radiation.

In paper III [29] we consider a relativistic electron colliding with an
intense laser pulse and examine the difference in the radiation patterns de-
pending on if the classical- or the QED equations for the particle motion
and energy loss are used.



Chapter 5

Numerical methods and
results

In the following chapter the numerical methods used in the papers included
in the thesis are discussed. The numerical scheme for calculating the emis-
sion of high frequency radiation is developed and benchmarked in paper II
[28]. This is then applied in comparison with QED in paper III [29].

5.1 Simulations of high intensity laser-matter in-
teraction

In simulations of high intensity laser-matter interaction lasers of intensity
up to 1023W/cm2 are considered. These pulses are capable of accelerating
electrons to relativistic velocities within a wavelength. As seen in Eq. (4.3)
the frequency of the emitted radiation is greatly increased for relativistic
particles with γ � 1, and correspondingly the wavelength is decreased.

This poses a problem to the PIC scheme. Not only is there an issue
that the spatial and temporal resolutions dx and dt provide a cutoff for
the radiation that can be resolved by the grid, such that radiation with
wavelength λ ≤ dx (or frequency f ≥ 1/dt) can not be resolved. There is
also the fundamental problem that the PIC scheme would not reproduce the
correct radiation, even if the grid resolution was greatly improved. This is
related to the fact that the PIC idea is to use super-particles, representing a
large number of real particles. As they have the same charge-to-mass ratio
as real particles they follow the same path as the effect of the Lorentz force is
the same. However, not all equations have this simple dependence on charge
over mass, with e.g. the intensity of the high frequency radiation in Eq. (4.7)
scaling as e4/m2. The emission of high frequency radiation can be seen as a
single particle, microscopic effect that is not taken into account by the PIC
scheme, which instead focus on the collective, macroscopic behaviour of the
plasma. In order to include this physics the PIC scheme must be extended.

19
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We solve this by imposing methods of incorporating the radiation in the
form of particles.

Classically EM radiation was considered to be a wave, exhibiting wave
like properties such as interference in two-slit experiments. Here light going
through two nearby slits not only add up, but interfere such as there are
spots on the screen behind where the intensity of light is smaller when both
slits are open than when one of them is closed. Electrons and protons on the
other hand has been considered particles, exhibiting particle like properties
such that they come in discrete packages. However, it turned out that there
were situations in which the wave description for EM radiation was insuffi-
cient and this instead had to be considered as particles, e.g. to explain the
cut-off frequency in the photoelectric effect. Here light is shone at a metal
which then emits electrons as it absorbs the energy of the light. However,
below the cut-off frequency no electrons are emitted, independent of the in-
tensity of the light, indicating that the energy is passed in discrete packages,
quantas with energy proportional to their frequency. Likewise classical par-
ticles such as electrons and protons turned out have wave like properties in
certain situations, such as interference in two slit-experiments as mentioned
above. This insufficiency of being able to describe these phenomena as ei-
ther of these two, to us well defined and separate, cases is resolved by QED.
Here everything is considered as particles, but whose motion is governed
by probabilities given by the square of a corresponding complex amplitude.
This regains the discrete nature of particles at the same time as it enable
the wave like properties through interference between amplitudes of different
outcomes.

Thus, the notion of EM radiation as photons is a quantum description.
Here we consider the high frequency radiation to be particles, and we call
them “photons” in a more semi-classical fashion, using the simple relation
between the frequency f of the light and the energy of the “photon” E = hf .

5.2 Monte Carlo method for synchrotron radia-
tion

In order to calculate the emitted radiation from high energy particles we
use a Monte Carlo (MC) model: We calculate the spectra according to the
frequency spectra for synchrotron radiation, Eq. (4.5), and then we sample
from this through a method involving (pseudo) random numbers. Each
emission then involves picking a frequency from the spectra, and emission is
determined according to how probable emission of that frequency is. This
is a lightweight method where we in average get the correct number of
emissions for each frequency interval and can build statistics from this (e.g.
frequency and angular spectra).

From values of particle position and momentum before and after the
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equation of motion is applied, we can calculate what efficient magnetic field
Heff this represent. This is the magnetic field, perpendicular to the par-
ticle motion, that would cause the same transverse change in the particle
momentum, and for a relativistic particle this is given by

Heff =
mcγ

e

1

∆t

√
p2dp2 − (p · dp)2

p2
(5.1)

where p is the momentum and dp the change in momentum of the particle,
valid when the change in momentum is much smaller than the momentum,
∆p⊥/p� 1. Heff determines the typical frequency ωc of the emitted radia-
tion given by

ωc =
3eHeff

2mc
γ2 (5.2)

and thus the spectra of the emitted radiation. We wish to pick a frequency
ω and using the spectrum ∂I(ω)/∂ω determine if a photon with such a
frequency is to be emitted. We want to do this in a clever way in order to
reduce noise and speed up computations. On the one hand we wish to allow
for picking a wide range of frequencies, but on the other hand we do not
want to pick frequencies with extremely small probability of emission too
often, as this would be a waste of computational time.

To solve this we generate ω according to a distribution function S(ω),
so that frequencies for which the probability of emission are large are more
often selected. This is then compensated for by decreasing the probability
of emission by the corresponding values. In order to do this numerically,
without resorting to tabulated values, one need a function which is easily
integrable, which is not the case for the synchrotron function. However, we
can construct a simplified function S(x) using the asymptotic values of the
synchrotron function. Thus our simplified function approaches the values of
the synchrotron function for the extreme cases of ω → 0 and ω →∞. This
function is chosen as

S(x) =

{
4/3x1/3 if x < a,
7/9e−x if x > a,

(5.3)

where the constant a ≈ 0.69021 is determined such that
∫∞

0 S(x) = 1. We
can then calculate

P (ω) =

∫ ∞
0

S(x)dx (5.4)

and find its inverse ω(P ) such that we can pick the frequency as ω = ω(R)
where R is a (pseudo) random number R ∈ [0, 1]. The number of photons
of frequency ω is then given by

dN =
dI
dω (ω)

h̄ωS(ω/ωc)
∆t (5.5)



22 CHAPTER 5. NUMERICAL METHODS AND RESULTS

where ∆t is the time-step. If a photon should be emitted is then determined
by comparing dN to another (pseudo) random number R′ ∈ [0, 1], where a
photon is emitted if dN ≥ R′.

The scheme is limited in that it does not take interference between emis-
sion at different time-steps into account. However, for applications in high
intensity laser matter interaction it is reasonable to neglect this [28].

Also, even if the approximation used in Eq. (5.1) is generally very good
for relativistic particles, situations can occur in PIC simulations where it
is violated, due to the Boris scheme particle pusher. One can imagine rare
events where a particle is decelerated to a low energy by the first half of the
electric field, and because of this it is then greatly rotated by the magnetic
field. When the final half of the electric field then is applied the particle
momentum will have turned completely. This gives a large change in mo-
mentum ∆p⊥ and a small average momentum p, greatly overestimating Heff

with the effect of rare, much too energetic emissions. We solve this issue by
imposing the limit ∆p⊥/p ≤ 1 in the calculation of Heff.

5.2.1 Benchmarking for Laser Wakefield Acceleration

We use the method of radiation emission in two papers. In paper II [28] the
method is developed and implemented into the PIC-code ELMIS [32] and we
perform benchmarking against the radiation loss calculated by the Landau-
Lifshitz equation, Eq. (4.10), for the case of the bubble regime [33] of laser
wakefield acceleration (LWFA) [34, 35]. This is a highly nonlinear process
where an intense laser is shot at a underdense plasma. As the pulse enters the
plasma the ponderomotive force acts to force the light electrons away from
the pulse region, with the heavier ions remaining as a charged background.
This sets up a strong electric field [36, 37, 38], quickly accelerating electrons
behind the pulse to velocities close to the speed of light. The electrons follow
the laser pulse, accelerating to higher and higher energies [39, 40], as well
as radiating high frequency radiation [41, 42]. An illustration of this can be
seen in Fig. (5.1). In Fig. (5.2) the comparison between the energy loss of
the particles as given by the RR force and the emitted energy as calculated
by Eq. (5.5) can be seen, with excellent agreement between them.

5.3 Classical v. quantum radiation emission.

In paper III ([29]) we also make use of the developed scheme for calculation
of synchrotron radiation. Here the scheme is implemented in the single
particle code Simla [43]. In contrast to the PIC method, here we consider
only one particle interacting with an intense laser pulse. The contribution of
this single particle to the fields is negligible and instead of self consistently
solving Maxwell’s equations on a grid as done in the PIC scheme, here we
use analytical expressions for the laser pulse. This gives the possibility of
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Figure 5.1: The figure shows the electron density (green-black) and laser pulse
(red-blue) for a 3D PIC LWFA simulation.
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Figure 5.2: The figure shows a comparison between the energy loss due to RR
(blue) and the energy of the radiation emitted by the Monte Carlo synchrotron
radiation scheme (red).
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Figure 5.3: The figure shows the gamma value of the electron as a function of
time, as it collides with the laser pulse. The white line is for a classical equation of
motion and the heat map (blue to red) is from a number of QED runs.

modelling realistic laser pulses with very small time-steps for the particle
motion.

Simla allows for simulation using either a classical or a QED corrected
equation of motion for the particle. The quantum version uses equations
for emission from QED together with (pseudo)random numbers to model
emission. The effect is that the particles does not loose energy continuously
as in the classical case, but rather in discrete emissions. The particle can
then propagate a certain distance without radiating, and then emit a large
part of its energy as radiation during one time-step. This process is not
deterministic, and we run a large number of QED runs to get a representative
picture of the process.

We consider the head-on collision between a laser pulse and an electron.
As a first step the laser pulse is given by a idealistic Gaussian shape with
relativistic amplitude a0 = 200, with the electrons having γ = 800. As
the electron meets the pulse its energy is decreased, as can be seen in Fig.
(5.3). Here one can also see that the electron Lorentz factor γ is generally
underestimated in the classical case compared to the QED case: the electrons
penetrate further into the laser pulse before loosing energy and the energy of
the electrons after the collision is greater. The resultant angular spectrum of
the radiation can be seen in Fig. (5.4), where one can see that the energy for
smaller θ is overestimated by the classical case (here θ represent the angle
compared to the propagation direction of the laser pulse).
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Figure 5.4: The figure shows a comparison between the angular spectra for the
QED and LL case.

To understand this effect one must consider the typical direction of ra-
diation emission. It is such that for a0 � γ the radiation will be emitted
in the forward direction of the electron propagation, for a0 � γ it will be
emitted in the opposite direction and for a0 = 2γ the predominant direc-
tion of emission is perpendicular to the electron propagation direction [44].
Thus, for a given pulse amplitude a0, the smaller γ is the more the radiation
will be concentrated to smaller angles θ (towards the propagation direction
of the laser pulse). Thus, as the electron energy is underestimated in the
classical case as seen in Fig. (5.3), more energy will be emitted for small θ
than in the corresponding QED case.

The described effect was for the idealised case of a Gaussian shaped pulse
with a single electron. To see that the observed effect is robust enough to be
observed in an experiment we also consider the case of a realistically shaped
pulse with a beam of electrons with a spread in energy and position. The
result is that indeed, the effect is present also here and thus could work as
a signature for en experiment probing radiation reaction.
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Chapter 6

Summary of papers

Paper 1

Three-wave interaction and Manley-Rowe relations in quantum
hydrodynamics

In this paper we show that the equations for quantum hydrodynamics
with a generalized Bohm de Broglie force fulfil the Manley-Rowe relations
only for the standard form of the Bohm de Broglie force. This adds further
weight to the standard expression for the Bohm de Broglie term, whose
derivation to some extent lacks a firm base.

My contribution to this paper was to perform the calculations of the cou-
pled three-wave interaction to show the main result of how the Manley-Rowe
relations where fulfilled. I also contributed to deriving the coupled equations
for the amplitudes and to writing the paper.

Paper 2

Effects of high energy photon emissions in laser generated ultra-
relativistic plasmas: Real-time synchrotron simulations

In this paper we develop a runtime numerical Monte Carlo method for
the calculation of the radiation emission spectra for relativistic particles in
simulations. We test the method by comparing the emitted energy to the
energy loss due to radiation reaction, calculated using the L.L. method, in
a particle-in-cell laser wakefield acceleration simulation. The simulations
show excellent agreement between the two methods.

My contribution to this paper was to develop and implement the numer-
ical method, run the simulations and to writing the paper

27
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Paper 3

Narrowing of the emission angle in high-intensity Compton scat-
tering

In this paper we implement the same principal ideas for the calculation
of the classical radiation spectra of a relativistic particle as used in paper 1,
in the one-particle code Simla [43]. This simulates the collision of a particle
with a realistic laser pulse and is capable of using different equations of
motion, including a stochastic QED one. We compare the radiation spectra
between runs using a classical equation of motion and runs using a QED
equation.

My contribution to this paper was to implement the numerical method
for the emission of classical radiation into the single-particle code and con-
tributing to writing a part of the paper.
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