
Thesis for the Degree of Doctor of Philosophy

Internalizing Parametricity

Guilhem Moulin

Department of Computer Science and Engineering
Chalmers University of Technology

Göteborg, Sweden 2016

Internalizing Parametricity
Guilhem Moulin
ISBN 978-91-7597-384-5

© 2016 Guilhem Moulin

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 4065
ISSN 0346-718X

Technical Report 126D
Department of Computer Science and Engineering
Programming Logic Research Group

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 1000

Printed at Chalmers
Göteborg, Sweden 2016

Abstract

Parametricity results have recently been proved for dependently-typed
calculi such as the Calculus of Constructions. However these results
are meta theorems, and although the theorems can be stated as inter-
nal propositions, they cannot be proved internally. In this thesis, we
develop a dependent type-theory in which each instance of the para-
metricity theorem, including those for open terms, can be proved inter-
nally. For instance we can prove inside the system that each term of type
(𝑋 ∶ ⋆) → 𝑋 → 𝑋 is an identity.
We show three successive proposals for a solution to this problem, each
an improvement of the previous one. In the first one we introduce a de-
pendent type theory with special syntax for hypercubes. In the second
proposal we outline a colored type theory, which provides a simplifica-
tion of the type theory with hypercubes. In the third and final proposal,
we give a more definite presentation of the colored type theory. We also
prove its consistency by a modification of the presheaf model of depen-
dent type theory.
We believe that our final colored type theory is simple enough to provide
a basis for a proof assistant where proofs relying on parametricity can be
performed internally.

Keywords: Polymorphism, Parametricity, Type structure, Lambda Cal-
culus, Presheaf Model.

iii

This thesis is based on the following publications:

1. J.-P. Bernardy and G. Moulin. A computational inter-
pretation of parametricity. In Proceedings of the 27th An-
nual IEEE Symposium on Logic in Computer Science, pages
135–144, 2012

2. J.-P. Bernardy and G. Moulin. Type theory in color. In
Proceedings of the 18th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP ’13, pages 61–72.
ACM, 2013

3. J.-P. Bernardy, T. Coquand, and G. Moulin. A presheaf
model of parametric type theory. volume 319, pages
67–82, 2015. The 31st Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXXI)

Contents

Introduction 1

1 Pure type systems with an internalized parametricity theorem 9
1 Proofs for free . 12

1.1 Pure type systems 13
1.2 Logical relations, from PTS to PTS 13

2 Towards internalizing parametricity 17
2.1 Aim and example . 17
2.2 Internalization . 19
2.3 Parametricity of parametricity 21
2.4 A syntax for hypercubes 23
2.5 The interpretation of hypercubes 26
2.6 Exchanging dimensions 27
2.7 Dimension checks 30

3 A calculus with an internal parametricity theorem 31
3.1 Definitions . 31
3.2 Properties of the parametric interpretation 36
3.3 Confluence . 38
3.4 Abstraction . 42
3.5 Subject reduction . 44
3.6 Reduction-preserving model into the underlying

PTS . 45

2 Type theory in color 51
1 Introduction . 51
2 Programming and reasoning with colors 52

2.1 Colored lists . 52

v

2.2 Types as predicates 53
2.3 Colored pairs . 54
2.4 Multiple colors . 55
2.5 Conclusion . 58

3 CCCC: A Core Calculus of Colored Constructions 58
3.1 CC as a PTS . 59
3.2 Colors, taints and modalities 59
3.3 Obliviousness and variable lookup 61
3.4 Erasure . 63
3.5 Types as predicates 64
3.6 Example . 66
3.7 Analysis . 66
3.8 Type-checking with colors 70

4 Extensions . 71
4.1 Inductive definitions 71
4.2 Colored pairs . 71
4.3 Abstraction over colors 73

5 Discussion and related work 73
6 Conclusion and future work 76

3 A new type theory in color and its presheaf model 79
1 Introduction . 79
2 Syntax and typing rules . 83

2.1 Underlying type theory 83
2.2 Nominal extension 85
2.3 Parametric extension 86
2.4 Full system . 91

3 Meta-properties of the type theory 94
4 Parametricity . 95

4.1 Examples . 96
4.2 General results . 98
4.3 Iterating parametricity 99

5 Presheaf model . 102
5.1 Background . 102
5.2 The category pI and the notion of 𝐼-sets 106
5.3 Presheaf model of the parametric type theory . . . 109

5.4 Validity results . 117
6 Related Work . 130
7 Future work and conclusion 131

Bibliography 133

A Additional proofs for chapter 1 139

B Definition of CCCC 167

C Proof details for chapter 2 171

Acknowledgements

I wish to thank my advisors Peter Dybjer and Jean-Philippe Bernardy
for their patience and valuable guidance along the way. Special thanks
to Peter for his tireless readings and numerous corrections and other im-
provements on earlier versions of this thesis; and to Jean-Philippe whose
intuition gave birth to the papers included here. Thanks also to Thierry
Coquand for stepping in as co-supervisor during the last few months,
after Jean-Philippe left the department.

I am also grateful to Tarmo Uustalu for accepting the role of opponent for
my defense; and to Thorsten Altenkirch, Patrik Jansson, Rasmus Ejlers
Møgelberg and Andreas Abel for accepting to sit in the grading commit-
tee.

Thanks to my colleagues and students, who make the CSE department
such a great place to work at, especially to my office mates and friends
Simon Huber, Bassel Mannaa, Anders Mörtberg and Fabian Ruch. Last
but not least, our office’s sofa deserves my thanks for its flawless support
along the years, as well the poor coffee machine in the lunch room for
working most of the time despite the heavy load I put on it.

ix

Introduction

Reynolds [1983] proved a general abstraction theorem (sometimes also cal-
led parametricity theorem) about polymorphic functions in System F. For
instance, he proved that if 𝑓 is a term of type ∀𝑋.𝑋 → 𝑋 (the type of
the polymorphic identity), then for any two sets 𝑆1 and 𝑆2, any relation
𝑅 ⊆ 𝑆1 ×𝑆2 and any 𝑥1 ∈ 𝑆1 and 𝑥2 ∈ 𝑆2, one has 𝑅([𝑓]𝑆1

(𝑥1), [𝑓]𝑆2
(𝑥2))

whenever (𝑥1, 𝑥2) ∈ 𝑅, where the set-theoretic function [𝑓]𝑆 ∈ 𝑆𝑆 de-
notes the meaning of 𝑓 instantiated with the set assignment 𝑆. As he
puts it, in essence, the semantics of any expression maps related environments
into related values.
Furthermore, Reynolds noted that one can replace binary relations by 𝑛-
ary relations in the abstraction theorem, in particular by unary relations
(predicates). In the previous example, one obtains that for any set 𝑆, any
predicate 𝑃 ⊆ 𝑆 and any 𝑥 ∈ 𝑆, 𝑃([𝑓]𝑆(𝑥)) holds whenever 𝑃(𝑥) does. In
other words [𝑓]𝑆(𝑥) is Leibniz-equal to 𝑥, i.e., [𝑓]𝑆 must be the identity
function on 𝑆.
Wadler [1989] illustrated by many examples how this result is useful for
reasoning about functional programs. Indeed, the parametricity theo-
rem is used to justify equalities between syntactic terms. For instance, in
a total language with Polymorphism à la ML, one can deduce that for any
program 𝑓 ∶ 𝑋 → 𝑋 (where the type variable 𝑋 is implicitly universally
quantified at the top level) and type 𝐴 and 𝑎 ∶ 𝐴, one has 𝑓 𝑎 = 𝑎 (where
= denotes the Leibniz equality). Or perhaps more interestingly, if 𝑟𝑋 is a
polymorphic program of type 𝑋⋆ → 𝑋⋆, where 𝑋⋆ is the type of lists of
type 𝑋, then for any two types 𝐴 and 𝐵 and function 𝑓 ∶ 𝐴 → 𝐵, one has
that 𝑓 ⋆ ∘ 𝑟𝐴 = 𝑟𝐵 ∘ 𝑓 ⋆ (where 𝑓 ⋆ ∶ 𝐴⋆ → 𝐵⋆ is obtained by applying 𝑓 on
each element of the input list). These equalities are in turn used to justify
rewrite rules in functional compiler optimizations, and merge multiple
function calls into one, or remove intermediate structures [Johann, 2002].
In a system with dependent function types and a universe 𝒰 , such as the
Logical Framework [Nordström et al., 1990], it is possible to state such an
abstraction result in a purely syntactic way [Bernardy et al., 2012]. For

1

instance, if a function 𝑓 has type

(𝑋 ∶ 𝒰) → 𝑋 → 𝑋,

then each instance of 𝑓 is Leibniz equal to the identity function, i.e., the
following type is inhabited:

(𝑋 ∶ 𝒰) → (𝑃 ∶ 𝑋 → 𝒰) → (𝑥 ∶ 𝑋) → 𝑃 𝑥 → 𝑃(𝑓 𝑋 𝑥)

Bernardy et al. [2012] showed that for any term 𝑎 ∶ 𝐴 in (strong enough)
dependent type theories the conclusion and proof of Reynolds’ meta-
theorem can respectively be expressed as a syntactic type and term of
that theory. They defined a meta-operator ⟦·⟧ (called the parametric in-
terpretation) by induction on the raw syntax, and proved that ⟦𝑎⟧ ∶ ⟦𝐴⟧ 𝑎
whenever 𝑎 ∶ 𝐴, where ⟦𝐴⟧ expands to the (unary) parametricity theorem
for the type 𝐴. For instance, a function 𝜆(𝑥 ∶ 𝐴).𝑏 of type (𝑥 ∶ 𝐴) → 𝐵 is
mapped via ⟦·⟧ to 𝜆(𝑥 ∶ 𝐴).𝜆(̇𝑥 ∶ ⟦𝐴⟧ 𝑥).⟦𝑏⟧, which proves the parametric-
ity theorem (𝑥 ∶ 𝐴) → (̇𝑥 ∶ ⟦𝐴⟧ 𝑥) → ⟦𝐵⟧ 𝑏. And if 𝑓 is a function of type
(𝑋 ∶ 𝒰) → 𝑋 → 𝑋, then ⟦𝑓 ⟧ is of type

⟦(𝑋 ∶ 𝒰) → 𝑋 → 𝑋⟧ 𝑓
= (𝑋 ∶ 𝒰) → (�̇� ∶ ⟦𝒰⟧ 𝑋) → ⟦𝑋 → 𝑋⟧ (𝑓 𝑋)
= (𝑋 ∶ 𝒰) → (�̇� ∶ ⟦𝒰⟧ 𝑋) → (𝑥 ∶ 𝑋) → (̇𝑥 ∶ ⟦𝑋⟧ 𝑥) → ⟦𝑋⟧ (𝑓 𝑋 𝑥)
= (𝑋 ∶ 𝒰) → (�̇� ∶ ⟦𝒰⟧ 𝑋) → (𝑥 ∶ 𝑋) → (̇𝑥 ∶ �̇� 𝑥) → �̇� (𝑓 𝑋 𝑥)

which, since ⟦𝒰⟧ 𝑋 ≝ 𝑋 → 𝒰 (the type of predicates on 𝑋), proves that
𝑓 𝑋 𝑥 is Leibniz-equal to its second input 𝑥.

While the conclusion of Reynolds’ abstraction theorem has been inter-
nalized in the above statement, the whole theorem is still a meta impli-
cation. What happens if we try to internalize this meta implication and
replace it with an object implication? The parametricity theorem of the
polymorphic identity becomes the following syntactic type:

(𝑓 ∶ (𝑋 ∶ 𝒰) → 𝑋 → 𝑋) →
(𝑋 ∶ 𝒰) → (�̇� ∶ 𝑋 → 𝒰) → (𝑥 ∶ 𝑋) → �̇� 𝑥 → �̇� (𝑓 𝑋 𝑥) (†)

However this type is not inhabited.
Therefore users relying on the parametricity conditions have postulated
it as an axiom instead [Chlipala, 2008, Atkey et al., 2009, Pouillard, 2011].
However, because proofs of postulates are constants, they do not have a
computational interpretation, thus the parametricity conditions can only
be used in computationally-irrelevant positions.

2

The question we address in this thesis is whether the type theory can
be extended so that the type corresponding to each instance of the para-
metricity theorem is indeed inhabited. In particular, we are trying to
develop a type theory where the type (†) above is inhabited.

A property of the above parametricity interpretation is that each bound
variable 𝑥 is duplicated into a pair (𝑥, ̇𝑥) of 𝑥 itself and its parametric-
ity proof ̇𝑥. In other words, the parametricity proof of bound variables
is always in scope. Thus defining ⟦𝑥⟧ ≝ ̇𝑥 in the variable case of the
induction always leads to well-scoped terms.
Unfortunately this definition does not work in the extension we are en-
visioning, because the type expressing the parametricity theorem in its
general form, namely 𝑇 ≝ (𝑋 ∶ 𝒰) → (𝑥 ∶ 𝑋) → ⟦𝑋⟧ 𝑥, would not be well-
scoped (⟦𝑋⟧ = �̇� is not in scope). However we know that any closed type
𝐴 is parametric, and that ⟦𝐴⟧ proves its parametricity theorem. Hence
each instance 𝑇 𝐴 is a valid type (although not necessarily inhabited, as
shown by the above example (†)).
A way around the problem, explored by Bernardy and Moulin [2011], is
to change the definition of the parametric interpretation ⟦·⟧ on free vari-
ables. In this work, they introduced a new syntactic construction ⌈⌈·⌉⌉ and
defined ⟦𝑥⟧ to be the term ⌈⌈𝑥⌉⌉ when 𝑥 is free, and the variable ̇𝑥 otherwise.
The computation of ⟦·⟧ is later resumed when the variable is substituted
for a concrete term: ⌈⌈𝑥⌉⌉[𝑥 ↦ 𝑢] ≝ ⟦𝑢⟧. This coincides with the substitu-
tion behavior on bound variables: indeed for a bound variable 𝑥 one has
⟦𝑥[𝑥 ↦ 𝑢]⟧ = ⟦𝑥⟧[𝑥 ↦ 𝑢][̇𝑥 ↦ ⟦𝑢⟧] = ̇𝑥[̇𝑥 ↦ ⟦𝑢⟧] = ⟦𝑢⟧. Since ⌈⌈𝑥⌉⌉ is the
parametricity proof associated with 𝑥, the new constructor comes with
the following typing rule:

Param
Γ ⊢ 𝐴 ∶ 𝒰

Γ, 𝑥 ∶ 𝐴 ⊢ ⌈⌈𝑥⌉⌉ ∶ ⟦𝐴⟧ 𝑥

from which one can derive that
Γ ⊢ 𝑎 ∶ 𝐴

Γ ⊢ ⟦𝑎⟧ ∶ ⟦𝐴⟧ 𝑎

This effectively internalizes the parametricity theorem, since an inhabi-
tant of (𝑋 ∶ 𝒰) → (𝑥 ∶ 𝑋) → ⟦𝑋⟧ 𝑥 is given by

𝜆(𝑋 ∶ 𝒰).𝜆(𝑥 ∶ 𝑋).⌈⌈𝑥⌉⌉

In particular, an inhabitant of (†) is given by

𝜆(𝑓 ∶ (𝑋 ∶ 𝒰) → 𝑋 → 𝑋).
𝜆(𝑋 ∶ 𝒰).𝜆(�̇� ∶ 𝑋 → ⋆).𝜆(𝑥 ∶ 𝑋).𝜆(̇𝑥 ∶ �̇� 𝑥). ⌈⌈𝑓⌉⌉ 𝑋 �̇� 𝑥 ̇𝑥

3

Considering the Calculus of Constructions with a universe 𝒰 of types
and another universe ⋆ of propositions, ⟦𝒰⟧ 𝑥 ≝ 𝑥 → ⋆ is defined as the
type of predicates on 𝑥 ∶ 𝒰 . One may remark that this definition forbids
nested parametricity. Indeed if 𝐴 ∶ 𝒰 and 𝑥 ∶ 𝐴 then ⟦𝐴⟧ 𝑥 ∶ ⋆ hence
the system does not permit the application of the Param rule on the ⟦𝐴⟧
itself.

However by the Curry-Howard isomorphism parametricity proofs are
also programs, hence one might want them to compute, or even derive
the parametricity condition of their type, which is not permitted by the
above solution.

In a system with fully internalized parametricity there is nothing pre-
venting nested uses of the parametricity theorem. However as shown by
Bernardy and Moulin [2012] and as hinted at below, this yields technical
difficulties. For instance one could use two instances of the above Param
rule to type the term ⟦𝜆(𝑥 ∶ 𝐴).⌈⌈𝑥⌉⌉⟧ (which proves that parametricity it-
self is parametric). On the one hand since one has 𝜆(𝑥 ∶ 𝐴).⌈⌈𝑥⌉⌉ ∶ (𝑥 ∶
𝐴) → ⟦𝐴⟧ 𝑥, one obtains the type of ⟦𝜆(𝑥 ∶ 𝐴).⌈⌈𝑥⌉⌉⟧ by application of the
Param rule:

⟦(𝑥 ∶ 𝐴) → ⟦𝐴⟧ 𝑥⟧ ⌈⌈𝑥⌉⌉ = (𝑥 ∶ 𝐴) → (̇𝑥 ∶ ⟦𝐴⟧ 𝑥) → ⟦⟦𝐴⟧⟧ 𝑥 ̇𝑥 ⌈⌈𝑥⌉⌉

(using the fact that the parametric interpretation duplicates bindings and
applications). On the other hand, the term ⟦𝜆(𝑥 ∶ 𝐴).⌈⌈𝑥⌉⌉⟧ is not in normal
form, and naively reduces to 𝜆(𝑥 ∶ 𝐴).𝜆(̇𝑥 ∶ ⟦𝐴⟧ 𝑥).⟦⌈⌈𝑥⌉⌉⟧ = 𝜆(𝑥 ∶ 𝐴).𝜆(̇𝑥 ∶
⟦𝐴⟧ 𝑥).⌈⌈ ̇𝑥⌉⌉, which is of type

(𝑥 ∶ 𝐴) → (̇𝑥 ∶ ⟦𝐴⟧ 𝑥) → ⟦⟦𝐴⟧⟧ 𝑥 ⌈⌈𝑥⌉⌉ ̇𝑥.

(Indeed the body of the function is a parametricity witness of level 2, so
it is natural to apply ⌈⌈·⌉⌉ on ̇𝑥 which is a parametricity witness of level 1;
moreover since ̇𝑥 ∶ ⟦𝐴⟧ 𝑥, Param yields ⌈⌈ ̇𝑥⌉⌉ ∶ ⟦⟦𝐴⟧ 𝑥⟧ ̇𝑥 = ⟦⟦𝐴⟧⟧ 𝑥 ⌈⌈𝑥⌉⌉ ̇𝑥.)
Hence the previous term has two types, which differ in that the iterated
parametricity type ⟦⟦𝐴⟧⟧ is used with its second and third arguments
swapped. As shown by Bernardy and Moulin [2012], the problem comes
from the fact that the syntax does not support a way to associate 𝑥 with
̇𝑥 and “remember” that the latter is a parametricity proof of the former.

One could bind them as a pair (𝑥, ̇𝑥) ∶ (𝑥 ∶ 𝐴) × (⟦𝐴⟧ 𝑥) instead, using
(𝑥 ∶ 𝐴) × 𝐵 for the dependent sum Σ𝑥 ∶ 𝐴.𝐵. For nested parametricity, it
would then be tempting to use a tuple

(𝑥, ̇𝑥, ̈𝑥, …) ∶ (𝑥 ∶ 𝐴) × (̇𝑥 ∶ ⟦𝐴⟧ 𝑥) × (̈𝑥 ∶ ⟦⟦𝐴⟧⟧ (𝑥, ̇𝑥, ̇𝑥)) × …

(the length of which being the nesting level of applications of parametric-
ity). However, as hinted at above, this does not work due to the swap-
ping problem; one has to nest pairs as well, leading to an exponential

4

structure and a combinatorial explosion:

(𝑥0, 𝑥1) ∶ (𝑥0 ∶ 𝐴) × (⟦𝐴⟧𝑥0)
((𝑥00, 𝑥01), (𝑥10, 𝑥11)) ∶ (𝑥0 ∶ (𝑥00 ∶ 𝐴) × (⟦𝐴⟧𝑥00))×

((𝑥10 ∶ ⟦𝐴⟧(𝜋1𝑥0)) × (⟦⟦𝐴⟧⟧(𝑥0, 𝑥10)))
⋮

Since the nested pairs are well-balanced, at level 𝑛 the left-hand side can
be seen as a hypercube of dimension 𝑛. (Each application of parametric-
ity adds a dimension to the cube, doubling the number of its vertices.)
Bernardy and Moulin [2012] have developed such a system with hyper-
cube bindings and applications, as well as a new operator swapping the
vertices. However the manipulation of hypercubes is cumbersome, feels
too ad-hoc, and makes the system too technical to be suitable for the in-
ternal language of a proof assistant. A first attempt to simplify it has been
made by Bernardy and Moulin [2013]: instead of using a single para-
metricity operation ⟦·⟧, in this system each occurrence of parametricity
is annotated with a fresh color, which essentially corresponds to a name
for the new dimension added to the hypercube (in other words to the out-
ermost pair, as shown above). Moreover a color erasure operator allows
“extraction” of terms and types of a given color, which corresponds to
accessing faces or vertices of hypercubes. The Param rule is modified ac-
cordingly to enforce the freshness condition. The color annotations allow
the system to distinguish between multiple applications of parametric-
ity. For instance, considering

𝑝 ∶ (𝑥 ∶ 𝐴) → ⟦𝐴⟧ 𝑥
𝑝 ≝ 𝜆(𝑥 ∶ 𝐴). ⌈⌈𝑥⌉⌉

an application of the Param rule yields

⟦𝑝⟧ ∶ ⟦(𝑥 ∶ 𝐴) → ⟦𝐴⟧ 𝑥⟧ 𝑝
= (𝑥 ∶ 𝐴) → (𝑥̇ ∶ ⟦𝐴⟧ 𝑥) → ⟦⟦𝐴⟧ 𝑥⟧ (𝑝 𝑥)
= (𝑥 ∶ 𝐴) → (𝑥̇ ∶ ⟦𝐴⟧ 𝑥) → ⟦⟦𝐴⟧⟧ 𝑥 𝑥̇ ⌈⌈𝑥⌉⌉

while one the other hand one can reduce ⟦·⟧ to get

⟦𝑝⟧ = 𝜆(𝑥 ∶ 𝐴). 𝜆(𝑥̇ ∶ ⟦𝐴⟧ 𝑥). ⟦⌈⌈𝑥⌉⌉⟧
= 𝜆(𝑥 ∶ 𝐴). 𝜆(𝑥̇ ∶ ⟦𝐴⟧ 𝑥). ⌈⌈𝑥⌉̇⌉

thus by two applications of the Param rule one obtains

⟦𝑝⟧ ∶ (𝑥 ∶ 𝐴) → (𝑥̇ ∶ ⟦𝐴⟧ 𝑥) → ⟦⟦𝐴⟧ 𝑥⟧ 𝑥̇
= (𝑥 ∶ 𝐴) → (𝑥̇ ∶ ⟦𝐴⟧ 𝑥) → ⟦⟦𝐴⟧⟧ 𝑥 ⌈⌈𝑥⌉⌉ 𝑥̇

Unlike for the non annotated version, the conversion relation can be de-
fined in such a way that the types ⟦⟦𝐴⟧⟧ 𝑥 𝑥̇ ⌈⌈𝑥⌉⌉ and ⟦⟦𝐴⟧⟧ 𝑥 ⌈⌈𝑥⌉⌉ 𝑥̇ are con-
vertible.

5

Outline

This thesis consists of three chapters, each representing a different stage
in our work aiming at a smooth integration of parametricity with de-
pendent types. (The initial stage [Bernardy and Moulin, 2011] of our
work, which can be seen as an intermediate step between [Bernardy et al.,
2012] and chapter 1, is not included in this thesis.) In particular, chapters
1 and 2 describe complex and preliminary calculi which are subsumed
by chapter 3. Indeed, as we explain below, the calculus from chapter 1
feels too ad-hoc and technical, and its meta-theory is not satisfactory;
while chapter 2 attempts to simplify the syntax, the meta-theory remains
largely unchanged.

Chapter 1 is a copy (omitting the abstract and acknowledgements, and
with minor layout changes) of my Licentiate Thesis [Moulin, 2013], which
in turn is an extended version of [Bernardy and Moulin, 2012]. This
thesis was defended on January 30, 2014 with Thorsten Altenkirch as
discussion leader. In this chapter we show how to extend any strong
enough Pure Type System (such as the Calculus of Constructions) with
new rules, including a Parametricity Rule, which all have computational
content. More specifically, we precisely define the system outlined above,
where the syntax supports a notion of hypercubic structure. Then we
prove that all instances of the abstraction theorem can be both expressed
and proved in the calculus itself. Finally, by defining a reduction-preserv-
ing interpretation from our system to the underlying PTS, we show how
to derive desired meta properties such as Church-Rosser and strong nor-
malization.

In chapter 2, a copy (with minor layout changes) of [Bernardy and Moulin,
2013], we propose to extend the Calculus of Constructions with a notion
of colors and a color erasure operator. We show how the result is a more
powerful type theory: some definitions and proofs may be omitted as
they become trivial; it becomes easier to program with precise types; and
some propositions that were impossible to prove now become provable
thanks to the erasure operator which reveals some structural invariants.
We further extend the system with a Param rule; which yields the system
from chapter 1 where hypercubes are kept implicit and their dimensions
are being given color names instead. Finally as with chapter 1, we show
via a reduction-preserving interpretation that some important proper-
ties of our extension, such as Church-Rosser and strong normalization,
are inherited from that of the underlying system. We also conjecture that
our extension and its properties apply to the Calculus of Inductive Con-
structions as well.

Chapter 3 is a major revision of [Bernardy et al., 2015]. There, we con-
sider Martin-Löf’s Logical Framework [Nordström et al., 1990] as the un-

6

derlying type theory, and extend it with nominal and parametric rules.
Although this theory has a syntactic notion of color (which we use to dis-
tinguish between multiple iterations of parametricity) and color erasure,
it differs from the extension presented in chapter 2 in that binding and
typing judgments are not indexed with the set of color names in scope:
instead, color names are only present in the raw syntax. This allows for
a simpler system than the one presented in chapter 2. We finally equip
our system with presheaf semantics following Bezem et al. [2013]; unlike
the syntactic models described above, this model is compositional and
provides denotational semantics.

Statement of personal contribution

As written above, this thesis is largely based on three co-authored pa-
pers. My technical contributions are as follows:

A Computational Interpretation of Parametricity

I worked together with Jean-Philippe Bernardy on the definition of the
syntax, including the two novel features of the calculus, namely the hy-
percubes and the cube rotation operator. Proofs of confluence and the
substitution lemma are mine, as well as the construction of the syntactic
model. On the other hand the examples, as well as the proof of genera-
tion and subject reduction properties, are due to Jean-Philippe Bernardy
only. I am also the author of the material which is not in the LICS paper
but included in my Licentiate Thesis, such as the details in the proof of
the abstraction theorem.

Type Theory in Color

The calculus itself and the type-checking algorithm are due to Jean-Philip-
pe Bernardy. I am responsible for the normalization proof and am the
sole author of the fork of the Agda proof assistant to include colors in its
core theory.

A Presheaf Model of Parametric Type Theory

The definition of the syntax is due to Jean-Philippe Bernardy and me to-
gether, after he made the crucial remark that not requiring parametricity
types to compute leads to a simpler system. While I wrote the proofs of
the validity results, the idea behind the model itself, especially the 𝐼-sets
and the category of colors and partial injections, are due to Thierry Co-
quand. I am also the author of the material which is not in the MFPS

7

paper but included in this chapter, in particular of the syntax modifi-
cation (such as the introduction of rays) and of the proof details for the
validity results.

8

Chapter 1

Pure type systems with an
internalized parametricity
theorem

Introduction

Parametricity, as formally stated by Reynolds [1983], expresses that poly-
morphic functions must behave uniformly. This is done by interpreting a
type 𝐴 as a relation ⟦𝐴⟧ ∶ 𝐴 → 𝐴 → ⋆ such that ⟦𝐴⟧ 𝑎 𝑎 for every 𝑎 ∶ 𝐴. In
other words this result, known as the abstraction theorem, says that every
type gives a theorem which holds for any of its inhabitants.
The study of parametricity, starting with Reynolds’ work, is typically
semantic: the abstraction theorem was originally proved for types of
system F, and the concern was then to construct a model capturing its
polymorphic character. Later Mairson [1991], followed by Abadi et al.
[1993], developed a more syntactic approach: types were interpreted in
another calculus (of proofs and propositions), and for each proof term,
they showed how to construct a proof term inhabiting the relational in-
terpretation of its types.
Bernardy et al. [2010], Bernardy and Lasson [2011] have more recently
shown how to extend the relational interpretation to some dependent
type theories, such as the Calculus of Constructions [Coquand and Huet,
1988] or Martin-Löf’s Intuitionistic Type Theory [1984]. They also show
how terms, types and their relational interpretations as proofs and propo-
sitions can all be expressed in the same calculus.
For instance, in the Calculus of Constructions, the interpretation of any
𝑓 ∶ ∀𝐴 ∶ ⋆. 𝐴 → 𝐴 gives that it must be an identity, in other words that 𝑥

9

is Leibniz-equal to 𝑓 𝐴 𝑥 for each 𝑥 ∶ 𝐴:

∀𝐴 ∶ ⋆. ∀𝑥 ∶ 𝐴. 𝑥 ≡𝐴 𝑓 𝐴 𝑥 (1)

where the Leibniz equality 𝑥 ≡𝐴 𝑦 is defined (for 𝐴 ∶ ⋆ and 𝑥, 𝑦 ∶ 𝐴) as
∀𝑃 ∶ (𝐴 → ⋆). 𝑃 𝑥 → 𝑃 𝑦.

The notion of parametricity, in particular the abstraction theorem, is used
in numerous applications when reasoning about functional programs
[Wadler, 1989], for instance to prove the correctness of short-cut fusion
[Gill et al., 1993, Johann, 2002]. One also needs to rely on parametricity
conditions when using Church-encoding to represent datatypes [Plotkin
and Abadi, 1993].
Parametricity theorems have also been used for richer calculi such as
the Calculus of Inductive Constructions [Pfenning and Paulin-Mohring,
1990, Keller and Lasson, 2012], for instance to prove the correctness of
well-scoped representations of 𝜆-terms [Chlipala, 2008, Pouillard, 2011].
Indeed, an informal justification of the fact that all inhabitants of the fol-
lowing inductive definition (here in Agda syntax, and due to Pouillard
[2011]) are well-scoped lies in the fact that the index 𝑉 is abstract, hence
the only way to introduce new variables is by abstraction.

data Term (𝑉 ∶ ⋆) ∶ ⋆ where

var ∶ 𝑉 → Term𝑉
app ∶ Term𝑉 → Term𝑉 → Term𝑉
abs ∶ Term (Maybe𝑉) → Term𝑉

However, the parametricity property, i.e., the fact that every term satis-
fies the parametric interpretation of its type, has not been known to be
provable in the system in which the type is expressed. In particular, the
following property cannot be proved in the Calculus of Constructions or
Martin-Löf’s Intuitionistic Type Theory, hence cannot be proved either in
existing proof assistants based on these systems, such as Coq [The Coq
development team, 2016] or Agda [Norell, 2007].

𝑓 ∶ ∀(𝐴 ∶ ⋆). 𝐴 → 𝐴
𝐴 ∶ ⋆
𝑥 ∶ 𝐴

𝑓 𝐴 𝑥 ≡𝐴 𝑥

(Were ≡ stands for the Leibniz equality defined above.)

On the other hand, one may notice that the parametricity condition asso-
ciated with the polymorphic identity is the missing assumption to prove
this property.

10

In fact, users relying on the parametricity conditions have postulated the
parametricity axiom [Chlipala, 2008, Atkey et al., 2009, Pouillard, 2011].
However, this approach has a fundamental drawback: because the pos-
tulate does not have a computational interpretation, parametricity con-
ditions can only be used in computationally-irrelevant positions. Also,
Wadler [2007] has shown that, given extensionality, induction schemes
associated with datatypes can be deduced directly from their Church-
encoding. However, to conveniently program with these encodings one
needs to use the parametricity conditions in computationally relevant
positions. For instance the natural numbers can be encoded in the Cal-
culus of Constructions as the polymorphic type

N ≝ ∀𝑋 ∶ ⋆. 𝑋 → (𝑋 → 𝑋) → 𝑋,

since any inhabitant 𝑛 of this type cannot inspect the parameter 𝑋. The
free theorem associated with any such Church Numeral 𝑛 ∶ N is:

∀𝑋 ∶ ⋆. ∀𝑃 ∶ (𝑋 → ⋆).
∀𝑧 ∶ 𝑋. 𝑃 𝑧 →
∀𝑠 ∶ 𝑋 → 𝑋. (∀𝑥 ∶ 𝑋. 𝑃 𝑥 → 𝑃 (𝑠 𝑥)) →
𝑃 (𝑛 𝑧 𝑠)

which, in extensional theories, can be used to derive the usual induction
principle for 𝑛 ∶ ℕ [Wadler, 2007]:

∀𝑃 ∶ (ℕ → ⋆). (∀𝑚 ∶ ℕ. 𝑃 𝑚 → 𝑃 (succ𝑚)) → 𝑃 𝑛

Related work

This chapter is an extended version of [Bernardy and Moulin, 2012], and
does not reflect the state of the art on Internalized Parametricity. Several
related papers have been written since our paper was published in the
2012 LICS Proceedings; we briefly present a few of them below:

Keller and Lasson [2012] extended relational parametricity to the Cal-
culus of Inductive Constructions (CIC). They added a new, non-informa-
tive, sort hierarchy inhabited by the codomain of parametric relations,
which forbids nested application of parametricity. They also prove the
Abstraction Theorem for CIC, and provide a Coq tactic for constructing
proof terms by parametricity.

Bernardy and Moulin [2013] developed an alternative presentation of
the calculus presented in this chapter, in which hypercubes are kept im-
plicit and their dimensions (called colors) are named; the ability to abstract

11

over dimensions removes the need for some of the technicalities we de-
veloped earlier in [Bernardy and Moulin, 2012]. In addition, an erasure
operator reveals some structural invariants, hence some definitions and
proofs may be omitted as they become trivial. In fact, the latter paper
was an attempt to make the calculus presented here easier to use as a
programming language.

Krishnaswami and Dreyer [2013] built a parametric model of the Ex-
tensional Calculus of Constructions. They focus on soundness properties
and show how to derive equality results (such as some common postu-
lates on Church-encoded data) from parametricity conditions. However,
the fact that parametricity is modelled in an extensional theory makes it
impractical to use their model to build a programming language.

Atkey et al. [2014] describe parametric models of predicative and im-
predicative Dependent Type Theories in reflexive graphs, which are in
turn seen as Categories with Families. In the impredicative case, they
show how to take advantage of parametricity to derive the existence of
initial algebras for all indexed functors.

Outline

After recalling previous work by Bernardy et al. [2010] in section 1, we
show in section 2 how to extend any strong enough Pure Type System 𝒪
(such as the Calculus of Constructions) with new rules, including a Para-
metricity Rule, which all have a computational content. More specifically,
we describe a new system and show how to adapt the previous result
in order to achieve internalization. In the latter subsections, we expose
some of the technical problems encountered, and the solutions we found,
namely the introduction of hypercubes. In section 3 we give a formal pre-
sentation of our calculus, and state and prove important meta-properties
of our system. In particular, we prove that all instances of the abstraction
theorem can be both expressed and proved in the calculus itself. Finally,
by defining a reduction-preserving interpretation from our system to the
underlying PTS 𝒪 in section 3.6, we show how to derive desired meta
properties properties such as Church-Rosser and strong normalization.

1 Proofs for free

This section is a reminder and synthesis of previous work by Bernardy
et al. [2010] and Bernardy and Lasson [2011], which the present work is
largely based on.

12

1.1 Pure type systems

Pure Type Systems (PTSs) are a family of 𝜆-calculi, parameterized by a
set of sorts 𝒮 , a set of axioms 𝒜 ⊆ 𝒮 × 𝒮 and set of rules ℛ ⊆ 𝒮 × 𝒮 ×
𝒮 . The various syntactic forms of quantifications (and corresponding
abstraction and application) are syntactically unified, and one needs to
inspect sorts to identify which form is meant. The axioms 𝒜 give the
typing rules for sorts, and ℛ determines which forms of quantification
exist in the system. Many systems (e.g., the Calculus of Constructions or
System F) are examples of PTSs.
The syntax of PTS terms is the following:

Term ∋ 𝐴, … , 𝑈 ≝ 𝑠 sort
| 𝑥 variable
| 𝐴 𝐵 application
| 𝜆𝑥 ∶ 𝐴. 𝐵 abstraction
| ∀𝑥 ∶ 𝐴. 𝐵 product

The product ∀𝑥 ∶ 𝐴. 𝐵 may also be written 𝐴 → 𝐵 when 𝑥 does not occur
free in 𝐵. In the rest of this document we assume a given PTS specifi-
cation (𝒮 , 𝒜 , ℛ), and we name the calculus arising from that specifica-
tion 𝒪 . In particular, a suitable 𝒪 is the Calculus of Constructions, the
typing rules of which can be expressed in a PTS fashion by choosing the
following specification: the general definition for PTSs below.

𝒮 = {⋆, □}
𝒜 = {(⋆, □)}
ℛ = {(⋆, ⋆, ⋆), (⋆, □, □), (□, ⋆, ⋆), (□, □, □)}

1.2 Logical relations, from PTS to PTS

In this section we recall the relational interpretation of terms and types of
the PTS 𝒪 into another PTS, here called ⟦𝒪⟧, following the construction
of [Bernardy et al., 2010, Bernardy and Lasson, 2011].
In any PTS, types and terms in 𝒪 can respectively be interpreted in ⟦𝒪⟧
as predicates and proofs that the terms satisfy the predicates. Each type
can be interpreted as a predicate that its inhabitants satisfy; and each term
can be turned into a proof that it satisfies the predicate of its type. Usual
presentations of parametricity use binary relations, but for simplicity of
notation we present here a unary version. The generalization to arbitrary
arity is straightforward, as shown by Bernardy and Lasson [2011].
In the following we define what it means for a term 𝐶 to satisfy the predi-
cate generated by a type 𝑇 (which we write 𝐶 ∈ ⟦𝑇⟧); and the translation
from a program 𝐶 of type 𝑇 to a proof ⟦𝐶⟧ that 𝐶 satisfies the predicate.

13

(𝑠1, 𝑠2) ∈ 𝒜⊢ 𝑠1 ∶ 𝑠2
Axiom

Γ ⊢ 𝐴 ∶ 𝐵 Γ ⊢ 𝐶 ∶ 𝑠
Γ, 𝑥 ∶ 𝐶 ⊢ 𝐴 ∶ 𝐵

Weakening

Γ ⊢ 𝐹 ∶ (∀𝑥 ∶ 𝐴. 𝐵) Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ 𝐹 𝑎 ∶ 𝐵[𝑎/𝑥]

Application

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵 Γ ⊢ (∀𝑥 ∶ 𝐴. 𝐵) ∶ 𝑠
Γ ⊢ (𝜆𝑥 ∶ 𝐴. 𝑏) ∶ (∀𝑥 ∶ 𝐴. 𝐵)

Abstraction

Γ ⊢ 𝐴 ∶ 𝑠1 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝑠2
Γ ⊢ (∀𝑥 ∶ 𝐴. 𝐵) ∶ 𝑠3

Product (𝑠1, 𝑠2, 𝑠3) ∈ ℛ

Γ ⊢ 𝐴 ∶ 𝐵 Γ ⊢ 𝐵′ ∶ 𝑠 𝐵 =𝛽 𝐵′

Γ ⊢ 𝐴 ∶ 𝐵′

Conversion

Γ ⊢ 𝐴 ∶ 𝑠
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴

Start

Figure 1: Typing rules of the Pure Type System specified by (𝒮 , 𝒜 , ℛ)

14

More precisely, we define (Definition 4) two mutually recursive func-
tions 𝑇 ↦ ⟦𝑇⟧ and 𝑇 ↦ (⋅ ∈ ⟦𝑇⟧), by induction on the structure of
the raw term 𝑇. These interpretations respectively take terms and types
in 𝒪 , and return proofs and propositions in ⟦𝒪⟧. Let (𝒮 , 𝒜 , ℛ) be the
specifications of the PTS 𝒪 ; then those of ⟦𝒪⟧ are

𝒮 ′ = 𝒮
𝒜 ′ = 𝒜
ℛ′ = {(𝑠1, 𝑠2, 𝑠2) ∣ (𝑠1, 𝑠2, 𝑠3) ∈ ℛ} ∪ ℛ (2)

Before we formally define the interpretation, let us begin by stating the
abstraction theorem for 𝒪 and ⟦𝒪⟧: Any well-typed term of 𝒪 is inter-
preted as a proof that it satisfies the parametricity condition of its type
[Bernardy and Lasson, 2011].
Theorem 1 (Abstraction). If Γ ⊢𝒪 𝐴 ∶ 𝐵 ∶ 𝑠, then

⟦Γ⟧ ⊢⟦𝒪⟧ ⟦𝐴⟧ ∶ ({𝐴} ∈ ⟦𝐵⟧) ∶ 𝑠

(Where {𝐴} is 𝐴 in which each free variable 𝑦 in Γ is renamed to 𝑦0 in the
extended context ⟦Γ⟧, defined below.)
Furthermore, if 𝒪 is consistent, for instance if 𝒪 is the Calculus of Constructions,
then so is ⟦𝒪⟧ [Bernardy and Lasson, 2011].

A property of the translation ⟦⋅⟧ is that whenever 𝑥 ∶ 𝐴 is free in 𝑇, there
are two variables 𝑥0 and 𝑥1 in ⟦𝑇⟧, where 𝑥1 witnesses that 𝑥0 satisfies
the parametricity condition of its type (𝑥1 ∶ 𝑥0 ∈ ⟦𝐴⟧). This means that
the translation needs to be extended to contexts, as follows:

⟦♢⟧ = ♢
⟦Γ, 𝑥 ∶ 𝐴⟧ = ⟦Γ⟧, 𝑥0 ∶ {𝐴}, 𝑥1 ∶ 𝑥0 ∈ ⟦𝐴⟧

It is important to notice that this definition assumes a global renaming
from each variable 𝑥 to fresh variables 𝑥0 and 𝑥1. (The renaming will be
made local in further sections.)
A raw term 𝑇 in 𝒪 is syntactically translated, by mutual induction on its
structure, to both a proof term ⟦𝑇⟧ in ⟦𝒪⟧, and to a predicate 𝐶 ↦ (𝐶 ∈
⟦𝑇⟧). We separate these two interpretations in the presentation below.

• The translation of a variable is done by looking up the correspond-
ing parametric witness in the context.

⟦𝑥⟧ = 𝑥1

• The case for abstraction adds a witness that the input satisfies the
relational interpretation of its type and returns the relational inter-
pretation of the body.

⟦𝜆𝑥 ∶ 𝐴. 𝐵⟧ = 𝜆𝑥0 ∶ {𝐴}. 𝜆𝑥1 ∶ 𝑥0 ∈ ⟦𝐴⟧. ⟦𝐵⟧

15

• The application follows the same pattern: the function is passed a
witness that the argument satisfies the interpretation of its type.

⟦𝐴 𝐵⟧ = ⟦𝐴⟧ {𝐵} ⟦𝐵⟧

• If the term has another syntactic form, namely a product or a sort,
then it is a type (𝑇). Thus we can use 𝜆-abstraction to create a pred-
icate and check that the abstracted variable 𝑧 satisfies the relational
interpretation of the type in the body (𝑧 ∈ ⟦𝑇⟧).

⟦𝑠⟧ = 𝜆𝑧 ∶ 𝑠. 𝑧 → 𝑠
⟦∀𝑥 ∶ 𝐴. 𝐵⟧ = 𝜆𝑧 ∶ (∀𝑥0 ∶ {𝐴}. {𝐵}).

𝜆𝑥0 ∶ {𝐴}. 𝜆𝑥1 ∶ 𝑥0 ∈ ⟦𝐴⟧.
(𝑧 𝑥) ∈ ⟦𝐵⟧

We now need to define the proposition 𝐶 ∈ ⟦𝑇⟧ which, as it can be seen
in Theorem 1, is the type of ⟦𝐶⟧ for any well-typed 𝐶 ∶ 𝑇.

• Because types in a PTS are abstract, no predicate can discriminate
between them, hence any predicate over a type 𝐶 can be used to
witness that 𝐶 satisfies the relational interpretation of its sort 𝑠.

𝐶 ∈ ⟦𝑠⟧ = 𝐶 → 𝑠

• If the type is a product (∀𝑥 ∶ 𝐴. 𝐵), then 𝐶 must be a function, and
it satisfies the relational interpretation of its type if and only if it
maps satisfying inputs to satisfying outputs.

𝐶 ∈ ⟦∀𝑥 ∶ 𝐴. 𝐵⟧ = ∀𝑥0 ∶ {𝐴}. ∀𝑥1 ∶ 𝑥0 ∈ ⟦𝐴⟧. (𝐶 𝑥0) ∈ ⟦𝐵⟧

• For any other syntactic form for a type 𝑇, namely a variable, an
application or a lambda, 𝐶 ∈ ⟦𝑇⟧ is defined using the interpreta-
tion ⟦⋅⟧ given above: 𝐶 ∈ ⟦𝑇⟧ = ⟦𝑇⟧ {𝐶}.

𝐶 ∈ ⟦𝑥⟧ = 𝑥1 {𝐶}
𝐶 ∈ ⟦𝐴 𝐵⟧ = ⟦𝐴⟧ {𝐵} ⟦𝐵⟧ {𝐶}

𝐶 ∈ ⟦𝜆𝑥 ∶ 𝐴. 𝐵⟧ = 𝜆𝑥1 ∶ {𝐶} ∈ ⟦𝐴⟧. ⟦𝐵⟧

A direct reading of Theorem 1 is as a typing judgment about translated
terms: if 𝐴 has type 𝐵, then ⟦𝐴⟧ has type {𝐴} ∈ ⟦𝐵⟧. However, it can

16

also be understood as an abstraction theorem for 𝒪 : if a program 𝐴 has
type 𝐵 in Γ, then 𝐴 satisfies the relational interpretation of its type ({𝐴} ∈
⟦𝐵⟧). Remember that {𝐴} is merely the term 𝐴, but using variables in ⟦Γ⟧
instead of Γ. In particular, if 𝐴 is closed then {𝐴} = 𝐴. If we were to study
binary parametricity, ⟦Γ⟧ would contain two related environments (and
witnesses that they are properly related). Therefore 𝐴 would have two
possible interpretations {𝐴}, each obtained by picking variables out of
each copy of the environment, and ⟦𝐴⟧ would be a proof that the two
possible interpretations of 𝐴 are related.

One can show by induction on raw terms that whenever 𝐶 ∶ 𝑇 ∶ 𝑠, we
have:

⟦𝑇⟧ ∶ {𝑇} → 𝑠 𝐶 ∈ ⟦𝑇⟧ =𝛽 ⟦𝑇⟧ {𝐶} ∶ 𝑠 {𝐶} ∶ {𝑇}

One may wonder why we mutually define two interpretations, since in-
stead one could be defined from the other using the above equality. The
advantage of the distinction, as described by Bernardy and Lasson [2011],
is that it makes derivations in ⟦𝒪⟧ follow the same structure as those
in 𝒪 . Indeed, if we were using the same interpretation both for types and
terms, derivations in ⟦𝒪⟧ would be cluttered by extra uses of the conver-
sion rule, as it was earlier presented by Bernardy et al. [2010]. Further-
more, preserving cuts makes the congruence of our model (Lemma 16)
trivial.

In general the PTS ⟦𝒪⟧, where parametricity conditions are expressed,
extends the source system 𝒪 . However, for rich enough systems, such
as the calculus of constructions, they can be identical [Bernardy et al.,
2010, Bernardy and Lasson, 2011]. Indeed, the PTS specifications are then
closed under the parametric interpretation, presented at the beginning
of this section. We now show how to extend such a system 𝒪 to a new
calculus 𝒫 with internalized parametricity.

2 Towards internalizing parametricity

In this section we describe and motivate our system step by step, start-
ing from a Pure Type System (such as the Calculus of Constructions)
and extending it with our new constructions. In this section we gradu-
ally motivate and informally describe the system we envision. The full
specification of our calculus can be found in definitions 3 to 8.

2.1 Aim and example

Let us assume a PTS 𝒬 satisfying (2) (i.e., 𝒬 = ⟦𝒬⟧), such as the Calcu-
lus of Constructions. This means that both types and their parametric-

17

ity conditions can be expressed in 𝒬. Thus one can hope that for ev-
ery term 𝐴 of type 𝐵, we can get a witness ⟦𝐴⟧ that it is parametric
({𝐴} ∈ ⟦𝐵⟧). Even though this holds for closed terms, it is not so for
open terms, because the context where ⟦𝐴⟧ is meaningful is “bigger”
than that where 𝐴 is: for each free variable 𝑥 ∶ 𝐴 in Γ, we need a vari-
able 𝑥1 ∶ 𝑥 ∈ ⟦𝐴⟧ in ⟦Γ⟧. In other words, given Γ ⊢𝒬 𝐴 ∶ 𝐵 we have
⟦Γ⟧ ⊢𝒬 ⟦𝐴⟧ ∶ {𝐴} ∈ ⟦𝐵⟧. However if we are to use this judgment inside a
proof or a program, we are bound to the context encountered, hence we
cannot extend it with explicit parametric witnesses for each free variable.
What we really want is to derive each free theorem rather than postulating
the precise instances, and to be able to rely on parametricity conditions in
the same context. Therefore, we need the following judgment to be valid:

Γ ⊢𝒬 ⟦𝐴⟧ ∶ 𝐴 ∈ ⟦𝐵⟧.

The aim of this work is to find a system 𝒫 such that the following propo-
sition is verified.

Proposition 1 (Internal Parametricity). If Γ ⊢𝒫 𝐴 ∶ 𝐵, then

Γ ⊢𝒫 ⟦𝐴⟧ ∶ 𝐴 ∈ ⟦𝐵⟧

That is, the free theorem associated with each inhabited type 𝐵 can be proved in
the system 𝒫 itself, regardless of whether 𝐵 is closed or not.

In that case, for any term 𝐴, terms of 𝒫 can invoke the fact that 𝐴 is
parametric, by writing ⟦𝐴⟧. The notations ⟦𝐴⟧ and 𝐴 ∈ ⟦𝐵⟧ for 𝒫 will be
defined later in this section, following and extending their homonyms
in 𝒪 .
Such a system would allow a full internalization of Reynolds’ abstraction
theorem seen in the introduction, in the sense that variables and impli-
cation no longer need to be expressed at the meta-level:

Example 1. Assume that 𝒫 extends the Calculus of Constructions. Let us
consider the following instance of Internal Parametricity:

Γ ≝ 𝑓 ∶ (∀𝑎 ∶ ⋆. 𝑎 → 𝑎), 𝑎 ∶ ⋆, 𝑥 ∶ 𝑎 𝐴 ≝ 𝑓 𝐵 ≝ ∀𝑎 ∶ ⋆. 𝑎 → 𝑎

Then applying internal parametricity gives:

𝑓 ∶ (∀𝑎 ∶ ⋆. 𝑎 → 𝑎), 𝑎 ∶ ⋆, 𝑥 ∶ 𝑎 ⊢𝒫 𝑓 ∶ ∀𝑎 ∶ ⋆. 𝑎 → 𝑎 ⟹
𝑓 ∶ (∀𝑎 ∶ ⋆. 𝑎 → 𝑎), 𝑎 ∶ ⋆, 𝑥 ∶ 𝑎 ⊢𝒫 ⟦𝑓 ⟧ ∶ ∀𝑎 ∶ ⋆. ∀𝑃 ∶ 𝑎 → ⋆.

∀𝑥 ∶ 𝑎. 𝑃 𝑥 →
𝑃 (𝑓 𝑎 𝑥)

18

We are thus able to prove that any function of type ∀𝑎 ∶ ⋆. 𝑎 → 𝑎 is an identity,
as we hinted at in the introduction. The formulation of the theorem within 𝒫
and its proof term are as follows.

identities ∶ ∀𝑓 ∶ (∀𝑎 ∶ ⋆. 𝑎 → 𝑎). ∀𝑎 ∶ ⋆. ∀𝑥 ∶ 𝑎. 𝑓 𝑎 𝑥 ≡ 𝑥
identities = 𝜆𝑓 . 𝜆𝑎. 𝜆𝑥. ⟦𝑓 ⟧ 𝑎 (⋅ ≡ 𝑥) 𝑥 (refl 𝑎 𝑥)

where the infix ≡ stands for Leibniz equality described in the introduction, and
for 𝑎 ∶ ⋆ and 𝑥 ∶ 𝑎, (⋅ ≡ 𝑥) denotes the predicate of terms Leibniz-equal to 𝑥:
(⋅ ≡ 𝑥) ≝ ∀𝑦 ∶ 𝑎. 𝑦 ≡ 𝑥; refl 𝑎 𝑥 ∶ 𝑥 ≡ 𝑥 is merely the identity function
𝜆𝑃 ∶ (∀𝑥 ∶ 𝑎. ⋆). 𝜆𝑝 ∶ 𝑃 𝑥. 𝑝
If identities is applied to a “concrete” identity function, such as 𝑓 = 𝜆𝑎 ∶ ⋆. 𝜆𝑥 ∶
𝑎. 𝑥, then 𝑓 𝑎 𝑥 reduces to 𝑥, and the theorem specializes to reflexivity of equality:

identities 𝑓 ∶ ∀𝑎 ∶ ⋆. ∀𝑥 ∶ 𝑎. 𝑥 ≡ 𝑥

After reduction, the proof no longer mentions ⟦⋅⟧:

identities 𝑖 →𝛽 𝜆𝑎. 𝜆𝑥. ⟦𝑓 ⟧[𝜆𝑎 ∶ ⋆. 𝜆𝑥 ∶ 𝑎. 𝑥/𝑓] 𝑎 (⋅ ≡ 𝑥) 𝑥(refl 𝑎 𝑥)
= 𝜆𝑎. 𝜆𝑥. ⟦𝜆𝑎 ∶ ⋆. 𝜆𝑥 ∶ 𝑎. 𝑥⟧ 𝑎 (⋅ ≡ 𝑥) 𝑥(refl 𝑎 𝑥)
= 𝜆𝑎. 𝜆𝑥. (𝜆𝑎. 𝜆𝑎1. 𝜆𝑥.𝜆𝑥1. 𝑥1) 𝑎(⋅ ≡ 𝑥)𝑥(refl 𝑎 𝑥)

→𝛽 𝜆𝑎. 𝜆𝑥. refl 𝑎 𝑥

(Where →𝛽 stands for the 𝛽 reduction in 𝒫 , which we will define below in Def-
inition 6.)

It is to be noted that when applying Theorem 1 instead of Internal Parametricity
to the above instance, the context Γ is extended to

𝑓 ∶ (∀𝐴 ∶ ⋆. 𝐴 → 𝐴), 𝑓1 ∶ ∀𝐴 ∶ ⋆.∀𝑃 ∶ 𝐴 → ⋆.∀𝑥 ∶ 𝐴.𝑃 𝑥 → 𝑃 (𝑓 𝐴 𝑥),
𝐴 ∶ ⋆, 𝑃 ∶ 𝐴 → ⋆,
𝑥 ∶ 𝐴, 𝑝 ∶ 𝑃 𝑥

Hence in identities , one cannot rely on a parametricity witness for 𝑓 without
asserting it. And in a proof assistant, free variables will only ever be instantiated
by 𝜆-terms, which are known to be parametric by Theorem 1.
However Theorem 1 and internal parametricity coincide on closed instances (i.e.,
when Γ is the empty context).

2.2 Internalization

We will now give an overview of our system 𝒫 . This system is obtained
by starting from a PTS 𝒪 such that 𝒪 = ⟦𝒪⟧, for instance the Calculus of
Constructions, and adding several constructions. In the present section
we give motivations for the new constructions, and present the precise

19

syntax and inference rules of system 𝒫 later in definitions 3 to 8. We
emphasize that the motivations given in this section are informal, and
consistency of the system and other fundamental properties are proved
later in sections 3.3 to 3.6.
We have seen that the abstraction theorem (Theorem 1) for PTSs gives
us something very close to internal parametricity, except that for each
free variable 𝑥 ∶ 𝐴 in Γ, we need an explicit witness that 𝑥 is parametric
(𝑥1 ∶ 𝑥 ∈ ⟦𝐴⟧) in the environment.
However, we know that every closed term is parametric. Therefore, ulti-
mately, we know that for each possible concrete term 𝑎 that can be substi-
tuted for a free variable 𝑥, it is possible to construct a concrete term ⟦𝑎⟧
to substitute for 𝑥1. This means that the witness of parametricity for 𝑥
does not need to be given explicitly (if 𝑥 is bound). Therefore we allow
to access such a witness via the new syntactic form ⌈⌈𝑥⌉⌉. This intuition
justifies the addition of the substitution rule

⌈⌈𝑥⌉⌉[𝑎/𝑥] = ⟦𝑎⟧

as well as the following typing rule, expressing that if 𝑥 is found in the
context, then it is valid to use ⌈⌈𝑥⌉⌉, which witnesses that 𝑥 satisfies the
parametricity condition of its type.

Γ ⊢ 𝐴 ∶ 𝑠
Γ, 𝑥 ∶ 𝐴 ⊢ ⌈⌈𝑥⌉⌉ ∶ 𝑥 ∈ ⟦𝐴⟧

Note that because of this new construction ⌈⌈⋅⌉⌉, the system 𝒫 that we are
defining in this section is not a Pure Type System. However it extends
any PTS 𝒪 such that 𝒪 = ⟦𝒪⟧.
At the same time, we must amend the parametric interpretation to keep
track of which variables have been assigned an explicit witness, and which
variables must wait for a concrete term. For instance in Example 1, only
the bound variables of the identity 𝑓 were assigned explicit witnesses.
The parametric witnesses of a free variable 𝑥 is given by our new syntac-
tic construct ⌈⌈𝑥⌉⌉, while that of a bound variable 𝑦 is picked directly from
the context as 𝑦1. Hence we need to keep track of free variables when
defining the interpretation; we write the list of assignments as an index
to ⟦⋅⟧, and extend 𝐴 ∈ ⟦𝐵⟧ to 𝐴 ∈ ⟦𝐵⟧𝜉 accordingly. (From here on, we
let ⟦𝐴⟧ mean ⟦𝐴⟧∅.) For example, abstraction is translated as follows:

⟦𝜆𝑥 ∶ 𝐴. 𝐵⟧𝜉 = 𝜆𝑥0 ∶ {𝐴}𝜉 . 𝜆𝑥1 ∶ 𝑥0 ∈ ⟦𝐴⟧𝜉 . ⟦𝐵⟧𝜉,𝑥↦(𝑥0,𝑥1)

and other cases are modified accordingly. In particular, the interpreta-

20

tion of variables becomes the following1.

⟦𝑥⟧𝜉 = 𝑥1 if 𝑥 ↦ (𝑥0, 𝑥1) ∈ 𝜉
⟦𝑥⟧𝜉 = ⌈⌈𝑥⌉⌉ if 𝑥 ∉ 𝜉

and {⋅} is generalized in a similar fashion: {𝐴}𝜉 is 𝐴 where each free
variable in 𝑥 ∈ 𝜉 is replaced with 𝑥0, while variables that are not in 𝜉
remain untouched.

The difference of treatment between free and bound variables is illus-
trated in the following example:

𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵 ⟹ 𝑥 ∶ 𝐴 ⊢ ⟦𝑏⟧ ∶ 𝑏 ∈ ⟦𝐵⟧
⊢ 𝜆𝑥 ∶ 𝐴. 𝑏 ∶ ∀𝑥 ∶ 𝐴. 𝐵 ⟹ ⊢ 𝜆𝑥0 ∶ 𝐴.𝜆𝑥1 ∶ 𝑥0 ∈ ⟦𝐴⟧. ⟦𝑏⟧{𝑥↦(𝑥0,𝑥1)} ∶

∀𝑥0 ∶ 𝐴.∀𝑥1 ∶ 𝑥0 ∈ ⟦𝐴⟧. 𝑏 ∈ ⟦𝐵⟧{𝑥↦(𝑥0,𝑥1)}

The above construction solves the issue of context extension. That is,
every term 𝐴 of a PTS 𝒬 can be proved parametric by using ⟦𝐴⟧ with-
out extending the context where 𝐴 is typeable. Another aspect of the
result is that, assuming parametricity on variables, the parametricity for
all terms can be derived. This means that, in a language featuring para-
metricity, the parametric construction can be used on any term, but in
normal forms, ⌈⌈⋅⌉⌉ only appears on variables, possibly in a nested way.
Unfortunately, internal parametricity does not quite hold at this stage,
after the mere extension of the original calculus with the constructor ⌈⌈⋅⌉⌉.
Indeed, as we show in the next section, Subject Reduction does not hold.

2.3 Parametricity of parametricity

Assuming that 𝒫 has Internalized Parametricity (Proposition 1), the fact
that all values are parametric is also captured by the following theorem
(internalized inside the calculus):

parametricity ∶ ∀𝑎 ∶ ⋆. ∀𝑥 ∶ 𝑎. 𝑥 ∈ ⟦𝑎⟧
parametricity = 𝜆𝑎 ∶ ⋆. 𝜆𝑥 ∶ 𝑎. ⌈⌈𝑥⌉⌉

Since all terms are assumed parametric, it should be possible to apply ⟦⋅⟧
to the above term. For a closed type 𝐴 ∶ ⋆, consider the term

⟦parametricity 𝐴⟧ = 𝜆𝑥0 ∶ 𝐴.𝜆𝑥1 ∶ 𝑥0 ∈ ⟦𝐴⟧. ⟦⌈⌈𝑥⌉⌉⟧{𝑥↦(𝑥0,𝑥1)}

So far, we have not defined our meta-operation ⟦⋅⟧𝜉 on the new construc-
tor ⌈⌈𝑥⌉⌉ of our system 𝒫 (where 𝑥 is a free variable). A perhaps natural

1Careful readers might worry that we discard the index in the second case. An informal
justification is that if 𝑥 has no explicit witness, then the free variables of its type do not
either; thus types are preserved by this equation.

21

idea is to exchange the two occurrences of the parametric interpretation,
by defining ⟦⌈⌈𝑥⌉⌉⟧𝜉 = ⟦⟦𝑥⟧𝜉 ⟧. In our case, that leads to

⟦⌈⌈𝑥⌉⌉⟧{𝑥↦(𝑥0,𝑥1)} = ⟦⟦𝑥⟧{𝑥↦(𝑥0,𝑥1)}⟧ = ⌈⌈𝑥1⌉⌉

which is a proper normal form. Unfortunately, this definition does not
preserve types (and therefore breaks subject reduction). Indeed, assum-
ing 𝑥 ∶ 𝐴, the expression ⟦⌈⌈𝑥⌉⌉⟧{𝑥↦(𝑥0,𝑥1)} has different types before and
after reduction. Internal Parametricity gives ⌈⌈𝑥⌉⌉ ∶ ⟦𝐴⟧ 𝑥. By Abstraction
(giving an explicit parametric witness for 𝑥), we get

⟦⌈⌈𝑥⌉⌉⟧{𝑥↦(𝑥0,𝑥1)} ∶ ⟦⟦𝐴⟧ 𝑥⟧{𝑥↦(𝑥0,𝑥1)} {⟦𝑥⟧}{𝑥↦(𝑥0,𝑥1)} (3)

∶ ⟦⟦𝐴⟧⟧{𝑥↦(𝑥0,𝑥1)} 𝑥0 ⟦𝑥⟧{𝑥↦(𝑥0,𝑥1)} ⌈⌈𝑥0⌉⌉

∶ ⟦⟦𝐴⟧⟧𝑥0 ⟦𝑥⟧{𝑥↦(𝑥0,𝑥1)} ⌈⌈𝑥0⌉⌉
∶ ⟦⟦𝐴⟧⟧𝑥0 𝑥1 ⌈⌈𝑥0⌉⌉

On the other hand, by Abstraction we have ⟦𝑥⟧{𝑥↦(𝑥0,𝑥1)} ∶ ⟦𝐴⟧ 𝑥0, and by
application of Internal Parametricity, we obtain

⟦⟦𝑥⟧{𝑥↦(𝑥0,𝑥1)}⟧ = ⌈⌈𝑥1⌉⌉ ∶ ⟦⟦𝐴⟧ 𝑥0⟧ 𝑥1 (4)

∶ ⟦⟦𝐴⟧⟧ 𝑥0 ⌈⌈𝑥0⌉⌉ 𝑥1

That is, in the above example, the reduction rule suggested above has
the effect to swap the second and third arguments to ⟦⟦𝐴⟧⟧ in the type,
which means that Subject Reduction would not hold if we were to have
the above, naive rule.
However, one observes that, for a closed type 𝐴, the relation ⟦⟦𝐴⟧⟧ 𝑥 is
symmetric, i.e., ⟦⟦𝐴⟧⟧ 𝑥 𝐵 𝐶 is isomorphic to ⟦⟦𝐴⟧⟧ 𝑥 𝐶 𝐵. Thus the swap-
ping observed above is harmless, and it is sufficient to deal with it in a
technical fashion.

Example 2. For instance, the relation ⟦⟦(𝑎 ∶ ⋆) → 𝑎 → 𝑎⟧⟧ 𝑓 is symmetric for
any 𝑓 . That is,

⟦⟦(𝑎 ∶ ⋆) → 𝑎 → 𝑎⟧⟧ 𝑓 𝑓1 𝑓2 and ⟦⟦(𝑎 ∶ ⋆) → 𝑎 → 𝑎⟧⟧ 𝑓 𝑓2 𝑓1

are isomorphic for all 𝑓1, 𝑓2 of type ⟦(𝑎 ∶ ⋆) → 𝑎 → 𝑎⟧ 𝑓 .
Indeed, ⟦⟦(𝑎 ∶ ⋆) → 𝑎 → 𝑎⟧⟧ 𝑓 𝑓1 𝑓2 expands to

∀𝑎 ∶ ⋆. ∀𝑃 ∶ 𝑎 → ⋆.
∀𝑄 ∶ 𝑎 → ⋆. ∀𝑅 ∶ (𝑥 ∶ 𝑎) → 𝑃 𝑥 → 𝑄 𝑥 → ⋆.

∀𝑥 ∶ 𝑎. ∀𝑝 ∶ 𝑄 𝑥.
∀𝑞 ∶ 𝑇 𝑥. ∀𝑟 ∶ 𝑅 𝑥 𝑝 𝑞.

𝑅 (𝑓 𝑎 𝑥) (𝑓1 𝑎𝑃𝑥𝑝)(𝑓2 𝑎𝑄𝑥𝑞)

22

If 𝜑 ∶ ⟦⟦(𝑎 ∶ ⋆) → 𝑎 → 𝑎⟧⟧ 𝑓 𝑓1 𝑓2, an inhabitant of

⟦⟦(𝑎 ∶ ⋆) → 𝑎 → 𝑎⟧⟧ 𝑓 𝑓2 𝑓1

is given by swapping the abstractions of respectively 𝑃 and 𝑄, and 𝑝 and 𝑞:

𝜆𝑎. 𝜆𝑃. 𝜆𝑄. 𝜆𝑅. 𝜆𝑥. 𝜆𝑝. 𝜆𝑞. 𝜆𝑟. 𝜑 𝑎 𝑄 𝑃 (𝜆𝑥. 𝜆𝑝. 𝜆𝑞. 𝑅 𝑥 𝑞 𝑝) 𝑥 𝑞 𝑝 𝑟

In the light of this observation, we introduce a special-purpose operator
(pronounced exchange) ⋅ ‡𝜋 , which applies the given permutation 𝜋 to
the arguments of relations, and which permutes their types in the same
way.

Γ ⊢ 𝐴 ∶ 𝐵
Γ ⊢ 𝐴 ‡𝜋 ∶ 𝐵 ‡𝜋

This rule generalizes the above example to open terms and types. In-
deed, when instantiated to Example 2, the new operator merely swaps
the abstractions:

⊢ 𝜑 ∶ ⟦⟦(𝑎 ∶ ⋆) → 𝑎 → 𝑎⟧⟧ 𝑓 𝑓1 𝑓2
⊢ 𝜑 ‡(1,2) ∶ ⟦⟦(𝑎 ∶ ⋆) → 𝑎 → 𝑎⟧⟧ 𝑓 𝑓2 𝑓1

Thanks to this operation we can now properly define the parametric in-
terpretation on the constructor ⟦⋅⟧, in a way that preserves types. The
above situation now becomes:

⟦⟦𝑥⟧⟧{𝑥↦(𝑥0,𝑥1)} = ⟦⟦𝑥⟧{𝑥↦(𝑥0,𝑥1)}⟧ ‡(1,2) .

However, supporting exchange (⋅ ‡) requires deep changes in the syntax,
exposed in the next section.

2.4 A syntax for hypercubes

In order to support the swapping operation, we need to indicate the role
of each of the arguments to the relations explicitly, in the syntax. To
this end, we amend the abstract syntax, and introduce a new version
of application where arguments are tied together in a cubical structure.
For instance, the type of ⟦⟦𝑥⟧⟧{𝑥↦(𝑥0,𝑥1)}, which was written before as
⟦⟦𝐴⟧⟧ 𝑥0 𝑥1 ⌈⌈𝑥0⌉⌉, is now written

⟦⟦𝐴⟧⟧• (𝑥0 𝑥1
⌈⌈𝑥0⌉⌉ ⋅) .

that is, the 3 arguments of the relation ⟦⟦𝐴⟧⟧ are tied together into an
(incomplete) 2 × 2 matrix. Its counterpart, corresponding to the former

23

⟦⟦𝐴⟧⟧ 𝑥0 ⌈⌈𝑥0⌉⌉ 𝑥1, can now be obtained by merely transposing the matrix:

(⟦⟦𝐴⟧⟧• (𝑥0 𝑥1
⌈⌈𝑥0⌉⌉ ⋅)) ‡(1,2) =𝛽 ⟦⟦𝐴⟧⟧• (𝑥0 ⌈⌈𝑥0⌉⌉

𝑥1 ⋅)

One could understand hypercube application as a macro denoting a (2𝑛−
1)-place application. However, we need to make this explicit in the syn-
tax to be able to perform exchanges without extra complication of the
analysis of terms. Indeed, having grouped the arguments allows us to
massage them all at once in the 𝛽-reduction and parametric interpreta-
tion; however they should really be read in their “linearized” form, such
as the ⟦⟦𝐴⟧⟧ 𝑥0 𝑥1 ⌈⌈𝑥0⌉⌉ above.
In general, we need to remember the grouping of arguments when ap-
plying the relational interpretation. Essentially, one iteration of the rela-
tional interpretation transforms an application of an argument into ap-
plication of two arguments. After a second iteration, there will be four
arguments, and 2𝑛 after 𝑛 iterations. (We must change the abstract syntax
of application to group these 2𝑛 arguments together.) Abstraction and
product follow the same pattern as application. Hence, we can arrange
our bindings as oriented 𝑛-cubes in general. Using overbar to denote
cube meta-variables, the syntax becomes the following:

Term = 𝐴 �̄� application (of hypercubes)
| 𝜆 ̄𝑥 ∶ ̄𝐴. 𝐵 abstraction (of hypercubes)
| ∀ ̄𝑥 ∶ ̄𝐴. 𝐵 function space
| …

In the above, a binding ̄𝑥 ∶ �̄� introduces 2𝑛 variables 𝑥𝑖, where 𝑖 is any
bit-vector of size 𝑛, and 𝑛 is the dimension of �̄�. Consider the binding
̄𝑥 ∶ �̄�. If �̄� has dimension zero, it stands for a single binding 𝑥 ∶ 𝐵. If it has

dimension 1, it contains a type 𝐵0, and a predicate 𝐵1 over 𝐵0. Abusing
matrix notation, one could write

̄𝑥 ∶ (𝐵0
𝐵1

) as a shorthand for the two bindings (𝑥0 ∶ 𝐵0
𝑥1 ∶ 𝐵1𝑥0

)

At dimension two, the cube �̄� contains a type 𝐵00, two predicates 𝐵01 and
𝐵10 over 𝐵00, and a relation 𝐵11, between 𝐵00, 𝐵10 𝑥00, and 𝐵01 𝑥00.

̄𝑥 ∶ (𝐵00 𝐵01
𝐵10 𝐵11

) means (𝑥00 ∶ 𝐵00 𝑥01 ∶ 𝐵01 𝑥00
𝑥10 ∶ 𝐵10 𝑥00 𝑥11 ∶ 𝐵11 𝑥00 𝑥01 𝑥10

)

Since we refer to each vertex by its position in the hypercube, we define
hypercubes of dimension 𝑛 as mappings from bit-vectors of length 𝑛 to
terms. We write

[𝑖 ↦ 𝐵𝑖]𝑛
𝑖∈2𝑛 and [𝑖 ↦ 𝐵𝑖 ⌋𝑛

𝑖∈2𝑛−1

24

respectively for plain and incomplete cubes (those that lack an element
at index 1…1, called top index in the following) of dimension 𝑛.

We furthermore need a special syntax for the introduction, elimination
and formation of relations, which correspond to application, abstraction
and quantification over incomplete cubes. Such a cube is found for ex-
ample in the type of 𝑥11 above. Using a check ̌⋅ to denote incomplete
cube (i.e., one of those with 2𝑛 − 1 vertices) meta-variables:

Term = 𝐴•�̌� relation membership
| 𝜆• ̌𝑥 ∶ ̌𝐴. 𝐵 relation formation
| ̌𝐴 •→ 𝑠𝑛 relation space
| …

Using this syntax, we can finally write the type of 𝑥11, previously lin-

earized as 𝐵11 𝑥00 𝑥01 𝑥10, in the form we need: 𝐵11• (𝑥00 𝑥01
𝑥10 ⋅). The

type of 𝐵11 is (𝐵00 𝐵01
𝐵10 ⋅) •→ 𝑠. For a plain cube �̄� of arbitrary dimen-

sion, we have 𝑥1…1 ∶ 𝐵1…1•(̄𝑥//1…1) and 𝐵𝑖 ∶ (�̄�//𝑖) •→ 𝑠, where �̄�//1…1
denotes the cube �̄� with the top vertex removed. Further generalizing,
𝑥𝑖 is a witness that the sub-cube found by removing all the dimensions 𝑑
such that 𝑖𝑑 = 0 satisfies the relation 𝐵𝑖:

𝑥𝑖 ∶ 𝐵𝑖•(̄𝑥//𝑖)

where �̄�//𝑖 is the cube obtained by discarding the elements of the cube �̄�
for each dimension 𝑑 where 𝑖𝑑 = 0, and then removing the top vertex.

�̄�//𝑖 = [𝑗 ↦ 𝐵𝑗&𝑖 ⌋||𝑖||
𝑗∈2||𝑖||−1

where ||𝑖|| = ∑𝑑 𝑖𝑑 and & is the pointwise and between bitvectors:

(𝑏𝑗)&(0𝑖) = 0(𝑗&𝑖)
(𝑏𝑗)&(1𝑖) = 𝑏(𝑗&𝑖)

𝐵𝑖 is then a relation over the corresponding sub-cube of �̄�, which is writ-
ten formally:

𝐵𝑖 ∶ (�̄�//𝑖) •→ 𝑠

Remark. In this presentation, free theorems, or more generally logical relations,
can only take an incomplete cube (of 2𝑛 −1 vertices) as argument, whereas their
proofs involve applications of full cubes. In particular, partial applications of a
parametric relation are not allowed. We should also stress that the syntax is an
extension of the underlying PTS, which can be recovered by restricting to cubes
of dimension zero.

25

2.5 The interpretation of hypercubes

Having given the new syntax of terms, we can express the relational in-
terpretation using this new syntax. The interpretation of a cube increases
its dimension; to each element is associated its interpretation:

⟦ ̄𝐴⟧𝜉 = ⎡⎢
⎣

0𝑖 ↦ {𝐴𝑖}𝜉
1𝑖 ↦ ⟦𝐴𝑖⟧𝜉

⎤⎥
⎦

dims �̄�+1

𝑖∈2dims �̄�

If a binding ̄𝑥 has been extended by the interpretation, a variable 𝑥𝑖 is
then interpreted as 𝑥1𝑖.

⟦𝑥𝑖⟧𝜉,𝑥 = 𝑥1𝑖

The interpretation of terms mentioning full cubes (of size 2𝑛 for some 𝑛)
is the following:

⟦𝐴 �̄�⟧𝜉 = ⟦𝐴⟧𝜉 ⟦�̄�⟧𝜉

⟦𝜆 ̄𝑥 ∶ ̄𝐴. 𝐵⟧𝜉 = 𝜆 ̄𝑥 ∶ ⟦ ̄𝐴⟧𝜉 . ⟦𝐵⟧𝜉,𝑥↦(𝑥0,𝑥1)

𝐶 ∈ ⟦∀ ̄𝑥 ∶ ̄𝐴. 𝐵⟧𝜉 = ∀ ̄𝑥 ∶ ⟦ ̄𝐴⟧𝜉 . (𝐶 (̄𝑥/01…1)) ∈ ⟦𝐵⟧𝜉,𝑥↦(𝑥0,𝑥1)

The interpretation of the cubes of size 2𝑛 − 1 used for relations requires
some care. Because the index 1…1 is missing in such a cube, applying
the same method as for full cubes leaves two elements missing, at in-
dices 1…1 and 01…1. The former is supposed to be missing (because
the resulting cube is also incomplete), but the latter is dependent on the
context. Hence we introduce the following notation for interpretation of
incomplete cubes where the “missing element” is explicitly specified to
be 𝐵:

(⟦ ̌𝐴⟧𝜉 ⊕ 𝐵) =
⎡⎢⎢
⎣

0𝑖 ↦ {𝐴𝑖}𝜉
1𝑖 ↦ ⟦𝐴𝑖⟧𝜉
01…1 ↦ 𝐵

⎥
⎥
⎥
⎦

dims �̌�+1

𝑖∈2dims �̌�−1

The parametric interpretation of the special forms for relation formation,
membership and product are as follows2.

𝐶 ∈ ⟦ ̌𝐴 •→ 𝑠⟧𝜉 = (⟦ ̌𝐴⟧𝜉 ⊕ 𝐶) •→ 𝑠
𝐶 ∈ ⟦𝐴•�̌�⟧𝜉 = ⟦𝐴⟧𝜉 •(⟦�̌�⟧𝜉 ⊕ 𝐶)
⟦𝜆• ̌𝑥 ∶ ̌𝐴. 𝐵⟧𝜉 = 𝜆• ̌𝑥 ∶ (⟦ ̌𝐴⟧𝜉 ⊕ (𝜆• ̌𝑥 ∶ ̌𝐴. 𝐵)).

𝑥01…1 ∈ ⟦𝐵⟧𝜉,𝑥↦(𝑥0,𝑥1)

2Note that the missing element (the right hand-side of the ⊕ operator) is always a sub-
term of the expression we start with.

26

They are a straightforward consequence of the usual parametric interpre-
tation and our choice of grouping arguments in cubes. Readers familiar
with realizability interpretations for the Calculus of Constructions (in
the style for example of [Paulin-Mohring, 1989]) will notice a similarity
here: the interpretation of a function space adds a quantification; and
the other forms behave accordingly. Note that the form 𝐴•�̌� is always a
type, and therefore we interpret it as such.
We now revisit nested parametricity (presented above in section 2.3):

Example 3 (Nested application of ⟦⋅⟧).

⟦parametricity 𝐴⟧ = 𝜆 ̄𝑎 ∶ ⟦(𝐴)⟧. ⌈⌈𝑎1⌉⌉ ‡(01)

where ̄𝑎 ∶ ⟦(𝐴)⟧ can be understood as (𝑎0
𝑎1

) ∶ (𝐴
𝑎0 ∈ ⟦𝐴⟧). There we have on

the one hand

⟦parametricity 𝐴⟧ ∶ (parametricity 𝐴) ∈ ⟦∀𝑎 ∶ 𝐴. ∈ ⟦𝐴⟧⟧
= (𝜆𝑎 ∶ 𝐴. ⌈⌈𝑎⌉⌉) ∈ ⟦∀𝑎 ∶ 𝐴. ∈ ⟦𝐴⟧⟧

= ∀ ̄𝑎 ∶ ⟦(𝐴)⟧. ⟦𝐴⟧2• (𝑎0 𝑎1
⌈⌈𝑎0⌉⌉ ⋅)

while on the other hand

𝑎1 ∶ 𝑎0 ∈ ⟦𝐴⟧ = ⟦𝐴⟧• (𝑎0
⋅)

hence

⌈⌈𝑎1⌉⌉ ‡(01) ∶ (𝑎1 ∈ ⟦𝑎0 ∈ ⟦𝐴⟧⟧) ‡(01)

= ⟦𝐴⟧2• (𝑎0 ⌈⌈𝑎0⌉⌉
𝑎1 ⋅) ‡(01)

= ⟦𝐴⟧2• (𝑎0 𝑎1
⌈⌈𝑎0⌉⌉ ⋅)

So Subject Reduction no longer fails as it did for the system without hypercubes
presented in section 2.3.

2.6 Exchanging dimensions

Given the above definition of cubes, we can take advantage of the fact
that vertices are tied to the structure and define an operation that ap-
plies an arbitrary permutation of its dimensions. For dimension 𝑛 = 0 or

27

𝑛 = 1, there is no non-trivial permutation. In the case of a square (𝑛 = 2),
there is a single non-trivial permutation, which is a simple swapping of
the elements at indices 01 and 10. For higher dimensions (𝑛 ≥ 3), the
elements of the cube are multidimensional themselves (the element at
index 𝑖 has dimension ||𝑖||). Thus, one must take care to perform the ex-
change properly for each element. For instance, performing an exchange
of dimensions 1 and 2 in a cube ̄𝑥 for 𝑛 = 3 involves exchanging dimen-
sions 0 and 1 of the element 𝑥011. Indeed, exchanging the dimensions 1
and 2 in the cube has the effect of exchanging dimensions in the square
occupied by 𝑥011; so an exchange has to be performed on 𝑥011 to restore
the cube structure. Geometrically, exchanging the dimensions as above
corresponds to twisting the cube: two faces are swapped, and the two
other are twisted. The situation is shown graphically in the following
picture.

𝑥000 𝑥001

𝑥010 𝑥011

𝑥100 𝑥101

𝑥110 𝑥111

=

𝑥000 𝑥010

𝑥001 𝑥011 ‡(01)

𝑥100 𝑥110

𝑥101 𝑥111 ‡(12)

In general, applying a permutation 𝜋 on the dimensions of a cube ̄𝐶 is
done as follows:

Definition 1 (Cube exchange).

̄𝐶 ‡𝜋 = [𝑖 ↦ 𝐶𝜋(𝑖) ‡𝜋/𝑖]dim ̄𝐶
𝑖∈2dim �̄�

Where 𝜋/𝑖 stands for the permutation 𝜋 restricted to the dimensions 𝑑 where
𝑖𝑑 = 1.
Incomplete cubes are permuted in the same way (simply omitting the top vertex).

Definition 2. If 𝜋 is a permutation {𝑑 ↦ 𝑥𝑑},
𝜋/𝑖 = canon{𝑑 ↦ 𝑥𝑑 ∣ 𝑖𝑑 = 1}, where canon maps the domain and co-
domain of the function {𝑑 ↦ 𝑥𝑑 ∣ 𝑖𝑑 = 1} to the set {0..||𝑖|| − 1}, preserving the
order. Renaming the dimensions in the permutation ensures that sub-cubes can
be treated just like normal cubes.

28

Example 4. If 𝜋 = {0 ↦ 0, 1 ↦ 2, 2 ↦ 1} swaps dimensions 1 and 2, we have

𝑖 {𝑑 ↦ 𝜋(𝑑) ∣ 𝑖𝑑 = 1} 𝜋/𝑖
001 {2 ↦ 1} {0 ↦ 0}
010 {1 ↦ 2} {0 ↦ 0}
100 {0 ↦ 0} {0 ↦ 0}
011 {1 ↦ 2, 2 ↦ 1} {0 ↦ 1, 1 ↦ 0}
101 {0 ↦ 0, 2 ↦ 1} {0 ↦ 0, 1 ↦ 1}
110 {0 ↦ 0, 1 ↦ 2} {0 ↦ 0, 1 ↦ 1}

Applying a permutation to terms is then a matter of permuting all the
cubes encountered:

(𝐴 �̄�) ‡𝜋
𝜉 = 𝐴 ‡𝜋

𝜉 �̄� ‡𝜋
𝜉

(𝜆 ̄𝑥 ∶ ̄𝐴. 𝐵) ‡𝜋
𝜉 = 𝜆 ̄𝑥 ∶ ̄𝐴 ‡𝜋

𝜉 .𝐵[̄𝑥 ‡𝜋 / ̄𝑥] ‡𝜋
𝜉,𝑥

(∀ ̄𝑥 ∶ ̄𝐴. 𝐵) ‡𝜋
𝜉 = ∀ ̄𝑥 ∶ ̄𝐴 ‡𝜋

𝜉 .𝐵[̄𝑥 ‡𝜋 / ̄𝑥] ‡𝜋
𝜉,𝑥

(and similarly for the incomplete cubes). It remains to explain the inter-
action with the special constructs, ⟦⋅⟧ and ⋅ ‡⋅ itself. We do so by listing
four laws which hold in our calculus.
The first law is not surprising: the composition of exchanges is the ex-
change of the composition.

𝐴 ‡𝜌 ‡𝜋 =𝛽 𝐴 ‡𝜋∘𝜌 (5)

Regarding the interactions between ⟦⋅⟧ and ⋅ ‡𝜋 , recall first that the re-
lational interpretation adds one dimension to cubes. By convention, the
dimension added by ⟦⋅⟧ is at index 0, and all other dimensions are shifted
by one. Therefore, the relational interpretation of an exchange merely
lifts the exchange out, and shifts indices by one in its permutation, leav-
ing dimension 0 intact.

⟦𝐴 ‡𝜋⟧ =𝛽 ⟦𝐴⟧ ‡𝜋+1 (6)

where 𝜋 + 1 denotes the permutation {𝑑 ↦ 𝜋(𝑑 − 1) ∣ 0 < 𝑑 ≤ dim 𝜋}.

The law that motivates the introduction of exchanges is the following:

⟦⟦𝐴⟧⟧𝜉 =𝛽 ⟦⟦𝐴⟧𝜉 ⟧ ‡(01) (7)

This law can also be explained by the convention that ⟦⋅⟧ always increases
each existing dimension and inserts a new dimension 0. By commuting
the uses of parametricity, dimensions are swapped, and the exchange
operator restores the order.
Last, one can also simplify exchanges in the presence of symmetric terms.
We know that a term ⟦𝐴⟧𝑛 is symmetric in its 𝑛 first dimensions. Thus,

29

applying a permutation that touches only dimensions 0..𝑛 − 1 to such a
term has no effect. Formally, we have:

⟦𝐴⟧𝑛 ‡(𝑥1 𝑥2…𝑥𝑚) =𝛽 ⟦𝐴⟧𝑛 if ∀𝑖 ∈ 1..𝑚, 𝑥𝑖 < 𝑛 (8)

We have argued before that it suffices to provide parametricity only for
variables, and that the construct ⟦⋅⟧ acts as a “macro” on other constructs.
The situation is the same in the presence of dimension exchanges: (6)
explains how to compute the parametricity witness of an exchange. For
the ⋅ ‡𝜋 construct, the situation is analogous: it suffices to provide the
construct for variables, possibly enclosed by ⌈⌈⋅⌉⌉ themselves, while it is a
macro on all other forms.
The reason is that the above laws give a way to compute the exchange for
any term which is not a parametricity witness (the result is given in Defi-
nition 5). When we want to be explicit about exchange being the syntactic
construct, we write simply x †𝜋 . The syntax fragment for parametricity
and exchange is as follows.

Var ∈ 𝑥, 𝑦, 𝑧
Param ∈ x ≝ 𝑥 variable

| ⌈⌈x⌉⌉ parametric witness
Term ∈ 𝑎, … , 𝑢 ≝ x †𝜋 permutation of dimensions

| …

2.7 Dimension checks

If a permutation acts on dimensions 0 to 𝑛 − 1, then every cube where it
is applied to must exhibit at least 𝑛 dimensions. So far we have not dis-
cussed this restriction, which is the final feature of the system to present.
To implement it we choose to amend the syntax and annotate sorts with
the dimension of the type which inhabits it. Since the sort 𝑠 at dimension
𝑛 is written 𝑠𝑛, we can capture the restriction in the following exchange
rule.

Γ ⊢ 𝐴 ∶ 𝐵 Γ ⊢ 𝐵 ∶ 𝑠𝑛
dim(𝜋) ≤ 𝑛

Γ ⊢ 𝐴 ‡𝜋 ∶ 𝐵 ‡𝜋

(However, as with the Param rule, only the version where the term 𝐴 is
a variable is added to our typing rules; this is enough, since the general
rule can be derived.)

If a type inhabits a sort of dimension 𝑛, then all the quantifications found
inside the type must be over cubes of dimension at least 𝑛. This is en-
forced by modifying the product rule as follows:

Γ ⊢ ̄𝐴 ∶ 𝑠𝑛
1 Γ, ̄𝑥 ∶ ̄𝐴 ⊢ 𝐵 ∶ 𝑠𝑚

2
Γ ⊢ (∀ ̄𝑥 ∶ ̄𝐴. 𝐵) ∶ 𝑠𝑚⊓𝑛

3
Product (𝑠1, 𝑠2, 𝑠3) ∈ ℛ

30

Similarly, relations found in the type must be over cubes of dimension 𝑛.

3 A calculus with an internal parametricity the-
orem

Having concluded the informal presentation of our system 𝒫 , we now
focus on a detailed description and will end with proofs of some funda-
mental meta-properties such as confluence (Theorem 3), strong normal-
ization (Theorem 9), and consistency (Theorem 8).

3.1 Definitions

We start this section with the full definition of system 𝒫 , parameterized
on a PTS specification (𝒮 , 𝒜 , ℛ).

Definition 3 (Abstract syntax of 𝒫).

Sort ∋ 𝑠, 𝑠1, 𝑠2, 𝑠3 ≝ 𝒮
Var ∈ 𝑥, 𝑦, 𝑧
Param ∈ x ≝ 𝑥 variable

| ⌈⌈x⌉⌉ parametric witness
Term ∈ 𝑎, … , 𝑢 ≝ x †𝜋 permutation of dimensions

𝐴, … , 𝑈 | 𝑠𝑛 sort at dimension 𝑛
| 𝐴 �̄� application (of hypercubes)
| 𝜆 ̄𝑥 ∶ �̄�. 𝐵 abstraction (of hypercubes)
| ∀ ̄𝑥 ∶ �̄�. 𝐵 function space
| 𝐴•�̌� relation membership
| 𝜆• ̌𝑥 ∶ �̌�. 𝐵 relation formation
| �̌� •→ 𝑠𝑛 relation space

Cube ∋ �̄� ≝ [𝑖 ↦ 𝐴𝑖]𝑛
𝑖∈2𝑛 cube of size 2𝑛

Cube′ ∋ �̌� ≝ [𝑖 ↦ 𝐴𝑖 ⌋𝑛
𝑖∈2𝑛−1 cube of size 2𝑛 − 1

Context ∋ Γ, ∆ ≝ ♢ empty context
| Γ, 𝑥 ∶ 𝐴 context extension

Where [𝑖 ↦ 𝐴𝑖]𝑛
𝑖∈2𝑛 (resp. [𝑖 ↦ 𝐴𝑖 ⌋𝑛

𝑖∈2𝑛−1) denotes a balanced binary tree
(resp. a balanced binary tree without the lower-right leaf) of depth 𝑛, where for
each bit-vector 𝑖 of length 𝑛, the vertex 𝐴𝑖 is the leaf reached from the root by
following the left child on 1’s and right one on 0’s.

The cube bindings can be defined formally once we introduce some convenient
notations:

• 2𝑛 stands for all bit-vectors of size 𝑛; and 2𝑛 − 1 stands for all bit-vectors
of size 𝑛, except 1…1.

31

• ind(̄𝐴) stands for 2dims �̄�; and ind(̌𝐴) stands for 2dims �̌� − 1.

• ̄𝑥 ∶ ̄𝐴 stands for the bindings 𝑥𝑖 ∶ 𝐴𝑖•(̄𝑥//𝑖) where 𝑖 ∈ ind(̄𝐴); and ̌𝑥 ∶ ̌𝐴
stands for the bindings 𝑥𝑖 ∶ 𝐴𝑖•(̌𝑥//𝑖) where 𝑖 ∈ ind(̌𝐴).

• Similarly, ̄𝐴 ∶ 𝑠𝑛 stands for 𝐴𝑖 ∶ ̄𝐴//𝑖 •→ 𝑠||𝑖|| and ̌𝐴 ∶ 𝑠𝑛 stands for 𝐴𝑖 ∶
̌𝐴//𝑖 •→ 𝑠||𝑖||.

Definition 4 (Relational interpretation of raw terms).

⟦⌈⌈𝑥⌉⌉𝑛⟧𝜉 = ⌈⌈𝑥⌉⌉𝑛+1 (in particular, ⟦𝑥⟧𝜉 = ⌈⌈𝑥⌉⌉ for 𝑛 = 0) if 𝑥 ∉ 𝜉
⟦⌈⌈𝑥𝑖⌉⌉𝑛⟧𝜉 = ⌈⌈𝑥1𝑖⌉⌉𝑛 †(0..𝑛) (in particular, ⟦𝑥𝑖⟧𝜉 = 𝑥1𝑖 for 𝑛 = 0) if 𝑥 ∈ 𝜉

⟦x †𝜋⟧𝜉 = ⟦x⟧𝜉 †𝜋+1

⟦𝜆 ̄𝑥 ∶ �̄�. 𝐵⟧𝜉 = 𝜆 ̄𝑥 ∶ ⟦�̄�⟧𝜉 . ⟦𝐵⟧𝜉,𝑥↦(𝑥0,𝑥1)

⟦𝜆• ̌𝑥 ∶ �̌�. 𝐵⟧𝜉 = 𝜆• ̌𝑥 ∶ (⟦�̌�⟧𝜉 ⊕ (𝜆• ̌𝑥 ∶ �̌�. 𝐵)).
𝑥01…1 ∈ ⟦𝐵⟧𝜉,𝑥↦(𝑥0,𝑥1)

⟦𝐴 �̄�⟧𝜉 = ⟦𝐴⟧𝜉 ⟦�̄�⟧𝜉

⟦𝑇⟧𝜉 = 𝜆 ̌𝑧 ∶ (𝑇
⋅). 𝑧0 ∈ ⟦𝑇⟧𝜉 if 𝑇 is ∀, • or 𝑠𝑛

𝐶 ∈ ⟦𝑠𝑛⟧𝜉 = (𝐶
⋅) •→ 𝑠𝑛+1

𝐶 ∈ ⟦∀ ̄𝑥 ∶ �̄�. 𝐵⟧𝜉 = ∀ ̄𝑥 ∶ ⟦�̄�⟧𝜉 . (𝐶 (̄𝑥/01…1)) ∈ ⟦𝐵⟧𝜉,𝑥↦(𝑥0,𝑥1)

𝐶 ∈ ⟦�̌� •→ 𝑠𝑛⟧𝜉 = (⟦�̌�⟧𝜉 ⊕ 𝐶) •→ 𝑠𝑛+1

𝐶 ∈ ⟦𝐴•�̌�⟧𝜉 = ⟦𝐴⟧𝜉 •(⟦�̌�⟧𝜉 ⊕ 𝐶)

𝐶 ∈ ⟦𝑇⟧𝜉 = ⟦𝑇⟧𝜉 •(𝐶
⋅) if 𝑇 is not ∀, • nor 𝑠𝑛

⟦♢⟧𝜉 = ♢
⟦Γ, 𝑥 ∶ 𝐴⟧𝜉,𝑥↦(𝑥0,𝑥1) = ⟦Γ⟧𝜉 , 𝑥0 ∶ 𝐴, 𝑥1 ∶ 𝑥0 ∈ ⟦𝐴⟧𝜉 if 𝑥 ∈ 𝜉

⟦Γ, 𝑥 ∶ 𝐴⟧𝜉 = ⟦Γ⟧𝜉 , 𝑥 ∶ 𝐴 if 𝑥 ∉ 𝜉

⟦�̄�⟧𝜉 = ⎡⎢
⎣

0𝑖 ↦ {𝐴𝑖}𝜉
1𝑖 ↦ ⟦𝐴𝑖⟧𝜉

⎤⎥
⎦

dims �̄�+1

𝑖∈2dims �̄�

(⟦�̌�⟧𝜉 ⊕ 𝐵) =
⎡⎢⎢
⎣

0𝑖 ↦ {𝐴𝑖}𝜉
1𝑖 ↦ ⟦𝐴𝑖⟧𝜉
01…1 ↦ 𝐵

⎥
⎥
⎥
⎦

dims �̌�+1

𝑖∈2dims �̌�−1

32

Definition 5 (Term exchange).

⌈⌈𝑥⌉⌉𝑛 †𝜌 ‡𝜋
𝜉 = ⌈⌈𝑥⌉⌉𝑛 †𝜌 if 𝑥 ∈ 𝜉

⌈⌈𝑥⌉⌉𝑛 †𝜌 ‡𝜋
𝜉 = ⌈⌈𝑥⌉⌉𝑛 †normal𝑛(𝜋∘𝜌) if 𝑥 ∉ 𝜉

(𝐴 �̄�) ‡𝜋
𝜉 = 𝐴 ‡𝜋

𝜉 �̄� ‡𝜋
𝜉

(𝜆 ̄𝑥 ∶ ̄𝐴. 𝐵) ‡𝜋
𝜉 = 𝜆 ̄𝑥 ∶ ̄𝐴 ‡𝜋

𝜉 .𝐵[̄𝑥 ‡𝜋 / ̄𝑥] ‡𝜋
𝜉,𝑥

(∀ ̄𝑥 ∶ ̄𝐴. 𝐵) ‡𝜋
𝜉 = ∀ ̄𝑥 ∶ ̄𝐴 ‡𝜋

𝜉 .𝐵[̄𝑥 ‡𝜋 / ̄𝑥] ‡𝜋
𝜉,𝑥

(𝐴•�̌�) ‡𝜋
𝜉 = 𝐴 ‡𝜋

𝜉 •�̄� ‡𝜋
𝜉

(𝜆• ̌𝑥 ∶ ̌𝐴. 𝐵) ‡𝜋
𝜉 = 𝜆• ̌𝑥 ∶ ̌𝐴 ‡𝜋

𝜉 .𝐵[̄𝑥 ‡𝜋 / ̄𝑥] ‡𝜋
𝜉,𝑥

(̌𝐴 •→ 𝑠𝑛) ‡𝜋
𝜉 = ̌𝐴 ‡𝜋

𝜉
•→ 𝑠𝑛

𝑠𝑛 ‡𝜋
𝜉 = 𝑠𝑛

Where normal𝑛(𝜋) removes all cycles of 𝜋 entirely contained in 0..𝑛 − 1.

The 𝛽-reduction of the underlying PTS extends naturally to hypercube
redexes.

Definition 6 (Reduction).

(𝜆 ̄𝑥 ∶ ̄𝐴. 𝑏) ̄𝑎 ⟶ 𝑏[̄𝑎/ ̄𝑥]
(𝜆• ̌𝑥 ∶ ̌𝐴. 𝑏)• ̌𝑎 ⟶ 𝑏[̌𝑎/ ̌𝑥]

Where 𝑏[̄𝑎/ ̄𝑥] (resp. 𝑏[̌𝑎/ ̌𝑥]) denotes the 2dim ̄𝑎 (resp. 2dim ̌𝑎 − 1) substitutions
𝑏[𝑥𝑖/𝑎𝑖 ∣ 𝑖 ∈ 2dim ̄𝑎] (resp. 𝑏[𝑥𝑖/𝑎𝑖 ∣ 𝑖 ∈ 2dim ̌𝑎 − 1]).
We do not specify a reduction strategy, and the 𝛽-reduction ⟶ can be applied
anywhere in a term, including under abstraction or application.

We write =𝛽 the reflexive, symmetric, transitive closure of the reduction ⟶.

Definition 7 (Substitution). In addition to the usual congruence rules, we
extend the substitution meta-operation to our two new syntactic constructs.

⌈⌈𝑥⌉⌉[𝑎/𝑥] = ⟦𝑎⟧∅
𝑥 †𝜋[𝑎/𝑥] = 𝑎 ‡𝜋

∅

33

Definition 8 (Typing rules of 𝒫).

(𝑠1, 𝑠2) ∈ 𝒜⊢ 𝑠𝑛
1 ∶ 𝑠𝑛

2

Axiom

Γ ⊢ 𝐴 ∶ 𝐵 Γ ⊢ 𝐶 ∶ 𝑠𝑛

Γ, 𝑥 ∶ 𝐶 ⊢ 𝐴 ∶ 𝐵
Weakening

Γ ⊢ 𝐹 ∶ (�̌� •→ 𝑠𝑛) Γ ⊢ ̌𝑎 ∶ �̌�
Γ ⊢ 𝐹• ̌𝑎 ∶ 𝑠𝑛

Rel-elim

Γ, ̌𝑥 ∶ �̌� ⊢ 𝐵 ∶ 𝑠𝑛 Γ ⊢ �̌� ∶ 𝑠𝑛

Γ ⊢ (𝜆• ̌𝑥 ∶ �̌�. 𝐵) ∶ (�̌� •→ 𝑠𝑛)
Rel-intro

Γ ⊢ �̌� ∶ 𝑠𝑛
1

Γ ⊢ (�̌� •→ 𝑠𝑛
1) ∶ 𝑠𝑛

2

Rel-form (𝑠1, 𝑠2) ∈ 𝒜

Γ ⊢ 𝐹 ∶ (∀ ̄𝑥 ∶ �̄�. 𝐵) Γ ⊢ ̄𝑎 ∶ �̄�
Γ ⊢ 𝐹 ̄𝑎 ∶ 𝐵[̄𝑎/ ̄𝑥]

Application

Γ, ̄𝑥 ∶ �̄� ⊢ 𝑏 ∶ 𝐵 Γ ⊢ (∀ ̄𝑥 ∶ �̄�. 𝐵) ∶ 𝑠𝑛

Γ ⊢ (𝜆 ̄𝑥 ∶ �̄�. 𝑏) ∶ (∀ ̄𝑥 ∶ �̄�. 𝐵)
Abstraction

Γ ⊢ �̄� ∶ 𝑠𝑛
1 Γ, ̄𝑥 ∶ �̄� ⊢ 𝐵 ∶ 𝑠𝑚

2

Γ ⊢ (∀ ̄𝑥 ∶ �̄�. 𝐵) ∶ 𝑠𝑚⊓𝑛
3

Product (𝑠1, 𝑠2, 𝑠3) ∈ ℛ

Γ ⊢ 𝐴 ∶ 𝐵 Γ ⊢ 𝐵′ ∶ 𝑠𝑛 𝐵 =𝛽 𝐵′

Γ ⊢ 𝐴 ∶ 𝐵′

Conversion

Γ ⊢ 𝐴 ∶ 𝑠𝑛

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴
Start

Γ ⊢ x ∶ 𝐴
Γ ⊢ ⌈⌈x⌉⌉ ∶ x ∈ ⟦𝐴⟧∅

Param

Γ ⊢ x ∶ 𝐴 Γ ⊢ 𝐴 ∶ 𝑠𝑛
dim(𝜋) ≤ 𝑛

Γ ⊢ x †𝜋 ∶ 𝐴 ‡𝜋

Exchange

Where the typing judgment Γ ⊢ ̄𝑎 ∶ ̄𝐴 stands for the conjunction of the judg-
ments Γ ⊢ 𝑎𝑖 ∶ 𝐴𝑖•(̄𝑎//𝑖) for 𝑖 ∈ ind(̄𝐴); and Γ ∈ ̌𝑎 ∶ ̌𝐴 stands for the conjunc-
tion of the judgments Γ ⊢ 𝑎𝑖 ∶ 𝐴𝑖•(̌𝑎//𝑖) for 𝑖 ∈ ind(̌𝐴).

The syntactic changes made to the system require results to be adapted
accordingly. In the case of Example 1, (proving that any function of type
∀𝑎 ∶ ⋆. 𝑎 → 𝑎 is an identity), the definition of Equality must be amended
to make it inhabit ⋆1. This mostly involves augmenting the dimension of
cubes by adding unit types as indices:

34

Eq ∶ ∀𝑎 ∶ ⋆.𝑎 → (𝑎
⋅) •→ ⋆1

Eq = 𝜆𝑎 ∶ ⋆. 𝜆𝑥 ∶ 𝐴. 𝜆•(𝑦
⋅) ∶ (𝑎

⋅). ∀ (–
𝑃) ∶ ⎛⎜⎜⎜

⎝

⊤

(𝑎
⋅) •→ ⋆1

⎞⎟⎟⎟
⎠

.

⎛⎜⎜⎜
⎝

⊤

𝑃•(𝑥
⋅)

⎞⎟⎟⎟
⎠

→ 𝑃•(𝑦
⋅)

The proof term needs fewer amendments:

identities ∶ ∀𝑓 ∶ (∀𝑎 ∶ ⋆. 𝑎 → 𝑎).

∀𝑎 ∶ ⋆. ∀𝑥 ∶ 𝑎.Eq 𝑎 (𝑓 𝑎 𝑥)•(𝑥
⋅)

identities = 𝜆𝑓 . 𝜆𝑎. 𝜆𝑥. .⟦𝑓 ⟧ (𝑎
Eq 𝑎 𝑥) (𝑥

refl 𝑎 𝑥)

⟦𝑓 ⟧ ∶ ∀ (𝑎0
𝑎1

) ∶ (⋆
𝑎0

•→ ⋆1) . ∀ (𝑥0
𝑥1

) ∶ (𝑎0
𝑎1

) . 𝑎1•(𝑓 𝑎0𝑥0)

We have now defined our system 𝒫 . In the remainder of this section we
prove the main meta-theoretic results about the system. More precisely,
we prove confluence in section 3.3, the abstraction and parametricity the-
orems in section 3.4, and subject reduction in section 3.5. We then define
in section 3.6 a reduction-preserving interpretation of 𝒫 into the under-
lying PTS 𝒪 , hence model the former in the latter. This model is done
by introducing explicit witnesses of parametricity for all variables. Pro-
vided that consistency and strong normalization hold for 𝒪 (for instance
when 𝒪 is the Calculus of Constructions), we can then derive from the
model that they also hold for our system 𝒫 .
Dependencies between these results can be summarized by the following
directed graph:

35

Syntax
(definitions 3–7)

Typing rules
(definition 8)

Confluence
(theorem 3)

Abstraction & Parametricity theorems
(theorems 4 & 5)

Subject-Reduction
(theorem 6)

Modelling 𝒫 in 𝒪
(section 3.6)

Consistency
(theorem 8)

Strong Normalization
(theorem 9)

3.2 Properties of the parametric interpretation

We start by proving weakening and commutation lemmas for our para-
metric interpretation. These lemmas are used to prove confluence (sec-
tion 3.3), and abstraction and parametricity theorems (section 3.4).

Lemma 1. For each term 𝐴 and each variable 𝑧 not free in 𝐴, we have:

i) ⟦𝐴⟧𝜉,𝑧↦(𝑧0,𝑧1) = ⟦𝐴⟧𝜉 ; and

ii) {𝑎}𝜉,𝑧↦(𝑧0,𝑧1) ∈ ⟦𝐴⟧𝜉,𝑧↦(𝑧0,𝑧1) = {𝑎}𝜉 ∈ ⟦𝐴⟧𝜉 for all terms 𝑎.

Proof. By simultaneous induction on the structure of the raw term 𝐴.
Details can be found in appendix A.

⋅ †𝜋 commutes with ⌈⌈⋅⌉⌉, but the permutation needs to be lifted.

Lemma 2. For each term 𝐴 ∶ 𝑠𝑚 and each 𝜌 of dimension at most 𝑚, we have:

⟦𝐴 ‡𝜌
𝜁 ⟧

𝜉
= ⟦𝐴⟧𝜉 ‡1+𝜌

𝜁

Proof. By induction on the structure of the raw term 𝐴. Details can be
found in appendix A.

36

When exchanging two occurrences of the parametric interpretation, one
needs to permute the cube variables that are explicit in both interpreta-
tions:

Lemma 3. For each term 𝐴, we have:

⟦⟦𝐴⟧𝜉 ⟧
𝜁

= ⟦⟦𝐴⟧𝜁 ⟧
𝜉
[̄𝑥 †(01) / ̄𝑥 ∣ 𝑥 ∈ 𝜉 ∩ 𝜁] ‡(01)

𝜉∩𝜁

Proof. By structural induction on the raw term 𝐴. Details can be found
in appendix A.

In particular, when 𝜉 is empty:

Corollary 1. For each term 𝐴, we have:

⟦⟦𝐴⟧𝑚⟧𝜁 = ⟦⟦𝐴⟧𝜁 ⟧𝑚 ‡(0…𝑚)

Note that (7) is a special case of this result, taking 𝑚 = 0.

The parametric interpretation commutes with the substitution, but a spe-
cial treatment is required when the variable to be substituted for is either
free or known to the interpretation.

Lemma 4 (⟦⋅⟧ and substitution, part 1). For each term 𝐴, and each variable
𝑧 not in 𝜉 , we have:

i) ⟦𝐴[𝑢/𝑧𝑖]⟧𝜉 = ⟦𝐴⟧𝜉,𝑧[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]; and

ii) {𝑎[𝑢/𝑧𝑖]}𝜉 ∈ ⟦𝐴[𝑢/𝑧𝑖]⟧𝜉 = ({𝑎}𝜉,𝑧 ∈ ⟦𝐴⟧𝜉,𝑧)[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖].

Lemma 5 (⟦⋅⟧ and substitution, part 2). For each term 𝐴, for variable 𝑧 not
free in 𝐴 or contained in 𝜉 , we have:

i) ⟦𝐴[𝑢/𝑧𝑖]⟧𝜉 = ⟦𝐴⟧𝜉 [{𝑢}𝜉 /𝑧0𝑖]; and

ii) {𝑎[𝑢/𝑧𝑖]}𝜉 ∈ ⟦𝐴[𝑢/𝑧𝑖]⟧𝜉 = ({𝑎}𝜉 ∈ ⟦𝐴⟧𝜉)[{𝑢}𝜉 /𝑧0𝑖].

Proof. By simultaneous induction on the structure of the raw term 𝐴.
Details can be found in appendix A.

The last lemma of this section states that our parametric interpretation
uniformly expands cubes:

Lemma 6 (Symmetry). For each term 𝐴, ⟦𝐴⟧𝑛 is symmetric in its 𝑛 first di-
mensions. More specifically,

i) ⟦𝐴⟧𝑛
𝜉 ‡𝜋

𝜉 = ⟦𝐴⟧𝑛
𝜉 ‡normal𝑛(𝜋)

𝜉 ; and

ii) (𝑎 ∈ ⟦𝐴⟧𝑛
𝜉) ‡𝜋

𝜉 = (𝑎 ∈ ⟦𝐴⟧𝑛
𝜉) ‡normal𝑛(𝜋)

𝜉 .

37

Proof. By simultaneous induction on the structure of the raw term 𝐴.
Details can be found in appendix A.

Lemma 7 (⋅ ‡⋅ and substitution). If 𝜉 does not contain either 𝑧 or any of the
free variables of 𝐸, then

𝐴[𝐸/𝑧] ‡𝜋
𝜉 = 𝐴 ‡𝜋

𝜉 [𝐸/𝑧] for all 𝜋.

Proof. By induction on A. The only interesting case is the one for vari-
ables, with 𝑥 = 𝑧:

⌈⌈𝑧⌉⌉𝑛 †𝜌[𝐸/𝑧] ‡𝜋
𝜉 = ⟦𝐸⟧𝑛 ‡𝜌 ‡𝜋

𝜉

= ⟦𝐸⟧𝑛 ‡normal𝑛(𝜋∘𝜌) by Lem. 6

= ⌈⌈𝑧⌉⌉𝑛 ‡normal𝑛(𝜋∘𝜌)[𝐸/𝑧]
= ⌈⌈𝑧⌉⌉𝑛 †𝜌 ‡𝜋

𝜉 [𝐸/𝑧]

Lemma 8 (Substitution).

𝐴[𝐸/𝑧][𝐸′/𝑧′] = 𝐴[𝐸′/𝑧′][𝐸[𝐸′/𝑧′]/𝑧]

Proof. By induction on 𝐴; the only non-trivial case is for the parametric
witnesses ⌈⌈𝑧⌉⌉𝑛:

⌈⌈𝑧⌉⌉𝑛 †𝜋[𝐸/𝑧][𝐸′/𝑧′] = ⟦𝐸⟧𝑛
∅[𝐸′/𝑧′] ‡𝜋

= ⟦𝐸[𝐸′/𝑧′]⟧𝑛
∅ ‡𝜋 = ⌈⌈𝑧⌉⌉𝑛 †𝜋[𝐸′/𝑧′][𝐸[𝐸′/𝑧′]/𝑧]

by Lemmas 5 and 7.

3.3 Confluence

We now check that the Church-Rosser property holds, that is, we ver-
ify that the order in which the reductions are performed does not mat-
ter. To prove this property, we define a parallel reduction (following the
Tait/Martin-Löf technique), and show that the diamond property holds
for this reduction.

38

Definition 9 (Parallel nested reduction).

Refl
𝐴 ▷ 𝐴

𝛽
𝑏 ▷ 𝑏′ ̄𝑎 ▷ ̄𝑎′

(𝜆 ̄𝑥 ∶ ̄𝐴. 𝑏) ̄𝑎 ▷ 𝑏′[̄𝑎′/ ̄𝑥]
𝛽•

𝑏 ▷ 𝑏′ ̌𝑎 ▷ ̌𝑎′

(𝜆• ̌𝑥 ∶ ̌𝐴. 𝑏)• ̌𝑎 ▷ 𝑏′[̌𝑎′/ ̌𝑥]

App-Cong
𝐹 ▷ 𝐹′ ̄𝑎 ▷ ̄𝑎′

𝐹 ̄𝑎 ▷ 𝐹′ ̄𝑎′ App•-Cong
𝐹 ▷ 𝐹′ ̌𝑎 ▷ ̌𝑎′

𝐹• ̌𝑎 ▷ 𝐹′• ̌𝑎′

Abs-Cong
̄𝐴 ▷ ̄𝐴′ 𝑏 ▷ 𝑏′

𝜆 ̄𝑥 ∶ ̄𝐴. 𝑏 ▷ 𝜆 ̄𝑥 ∶ ̄𝐴′. 𝑏′ Abs•-Cong
̌𝐴 ▷ ̌𝐴′ 𝑏 ▷ 𝑏′

𝜆• ̌𝑥 ∶ ̌𝐴. 𝑏 ▷ 𝜆• ̌𝑥 ∶ ̌𝐴′. 𝑏′

All-Cong
̄𝐴 ▷ ̄𝐴′ 𝐵 ▷ 𝐵′

∀ ̄𝑥 ∶ ̄𝐴. 𝐵 ▷ ∀ ̄𝑥 ∶ ̄𝐴′. 𝐵′
All•-Cong

̌𝐴 ▷ ̌𝐴′

̌𝐴 •→ 𝑠𝑛 ▷ ̌𝐴′ •→ 𝑠𝑛

With ̄𝐴 ▷ ̄𝐴′ iff. for all 𝑖, 𝐴𝑖 ▷ 𝐴′
𝑖 (and similarly for ̌𝐴 ▷ ̌𝐴′).

We now need to prove congruence lemmas for the parallel reduction ▷,
for each of our 3 meta-operators: parametric interpretation ⟦⋅⟧, term ex-
change ⋅ ‡, and substitution.

Lemma 9 (Congruence of ⟦⋅⟧). If 𝐴 ▷ 𝐴′, then for all 𝜉 ,

i) ⟦𝐴⟧𝜉 ▷ ⟦𝐴′⟧𝜉 ; and
ii) 𝑎 ∈ ⟦𝐴⟧𝜉 ▷ 𝑎′ ∈ ⟦𝐴′⟧𝜉 for all 𝑎 ▷ 𝑎′.

Proof. By induction on 𝐴 ▷ 𝐴′:

• The case of Refl is trivial.

• For 𝛽, one expects

⟦(𝜆 ̄𝑥 ∶ ̄𝐴. 𝑏) ̄𝑎⟧𝜉 ▷ ⟦𝑏′[̄𝑎′/ ̄𝑥]⟧𝜉 ,

knowing 𝑏 ▷ 𝑏′ and ̄𝑎 ▷ ̄𝑎′.

⟦(𝜆 ̄𝑥 ∶ ̄𝐴. 𝑏) ̄𝑎⟧𝜉
= {by def. of ⟦⋅⟧𝜉 }

(𝜆 ̄𝑥 ∶ ⟦ ̄𝐴⟧𝜉 . ⟦𝑏⟧𝜉,𝑥) ⟦ ̄𝑎⟧𝜉
▷ {by 𝛽, Refl and IH}

⟦𝑏′⟧𝜉,𝑥[⟦ ̄𝑎′⟧𝜉 / ̄𝑥]
= {by Lemma 4}

⟦𝑏′[̄𝑎′/ ̄𝑥]⟧𝜉

39

• The case of 𝛽• is similar.

• The cases of ⋆-Cong are straightforward using the definition of ⟦⋅⟧.

Lemma 10 (Congruence of ⋅ ‡⋅). If 𝐴 ▷ 𝐴′, then for all 𝜉 and 𝜋, one has

𝐴 ‡𝜋
𝜉 ▷𝐴′ ‡𝜋

𝜉

Proof. By induction on 𝐴 ▷ 𝐴′. The only interesting cases are for the 𝛽-
and 𝛽•-reductions. For 𝛽 (𝛽• is similar), we have

((𝜆 ̄𝑥 ∶ ̄𝐴. 𝑏) ̄𝑎) ‡𝜋
𝜉

= {by def. of ⋅ ‡𝜋
𝜉 }

(𝜆 ̄𝑥 ∶ ̄𝐴 ‡𝜋
𝜉 . 𝑏[̄𝑥 ‡𝜋

𝜉 / ̄𝑥] ‡𝜋
𝜉,𝑥) ̄𝑎 ‡𝜋

𝜉
▷ {by 𝛽, Refl and IH}

𝑏′[̄𝑥 ‡𝜋
𝜉 / ̄𝑥] ‡𝜋

𝜉,𝑥[̄𝑎′ ‡𝜋
𝜉 / ̄𝑥]

= 𝑏′ ‡𝜋
𝜉,𝑥[̄𝑎′ ‡𝜋

𝜉 / ̄𝑥 ‡𝜋
𝜉]

= 𝑏′[̄𝑎′/ ̄𝑥] ‡𝜋
𝜉

Lemma 11 (Congruence of substitution). If 𝐴 ▷ 𝐴′ and 𝐸 ▷ 𝐸′, then

𝐴[𝐸/𝑧] ▷ 𝐴′[𝐸′/𝑧].

Proof. By induction on 𝐴 ▷ 𝐴′:

• For Refl, the expected result follows from an induction on 𝐴 (us-
ing 𝑛 times Lemmas 9 and 10 for the case ⌈⌈𝑧⌉⌉𝑛 ‡𝜋).

• For 𝛽, one expects

((𝜆 ̄𝑥 ∶ ̄𝐴. 𝑏) ̄𝑎)[𝐸/𝑧] ▷ 𝑏′[̄𝑎′/ ̄𝑥][𝐸/𝑧],

knowing 𝑏 ▷ 𝑏′ and ̄𝑎 ▷ ̄𝑎′. We have

((𝜆 ̄𝑥 ∶ ̄𝐴. 𝑏) ̄𝑎)[𝐸/𝑧]
= {by def. of the substitution}

(𝜆 ̄𝑥 ∶ 𝐴[𝐸/𝑧]. 𝑏[𝐸/𝑧]) ̄𝑎[𝐸/𝑧]
▷ {by 𝛽 and IH}

𝑏′[𝐸′/𝑧][̄𝑎′[𝐸′/𝑧]/ ̄𝑥]
= {by Lemma 8}

𝑏′[̄𝑎′/ ̄𝑥][𝐸′/𝑧]

• The case of 𝛽• is similar.

40

• The cases of ⋆-Cong stem from straightforward uses of induction
hypotheses.

Theorem 2 (Diamond property). The rewriting system (▷) has the diamond
property. In other words, for each 𝐴, 𝐵, 𝐵′ such that 𝐵 ◁ 𝐴 ▷ 𝐵′, there exists 𝐶
such that 𝐵 ▷ 𝐶 ◁ 𝐵′

Proof. By induction on the derivations:

• If one of the derivations ends with Refl, one has either 𝐴 = 𝐵, or
𝐴 = 𝐵′. We pick 𝐶 = 𝐵′ in the former case and 𝐶 = 𝐵 in the latter.

• If one of the derivations ends with Abs-Cong, All-Cong, Abs•-
Cong or All•-Cong, the other one has to end with the same rule,
and the result is a straightforward use of the induction hypothesis.

• If one of the derivations ends with App-Cong, the other one has to
end with App-Cong, or with 𝛽. The first case is straightforward; in
the second one, one has

(𝜆 ̄𝑥 ∶ ̄𝐴′. 𝑏′) ̄𝑎′ ◁ (𝜆 ̄𝑥 ∶ ̄𝐴. 𝑏) ̄𝑎 ▷ 𝑏″[̄𝑎″/ ̄𝑥]

with 𝜆 ̄𝑥 ∶ ̄𝐴′. 𝑏′ ◁ 𝜆 ̄𝑥 ∶ ̄𝐴. 𝑏, 𝑏 ▷ 𝑏″ and ̄𝑎′ ◁ ̄𝑎 ▷ ̄𝑎″

The situation is summarized in the diagram below. In more details,
the end of the derivation of 𝜆 ̄𝑥 ∶ ̄𝐴′. 𝑏′ ◁ 𝜆 ̄𝑥 ∶ ̄𝐴. 𝑏 has to be either
Abs-Cong, or Refl. In the first case (the last one is similar), one has

̄𝐴′ ◁ ̄𝐴 and 𝑏′ ◁ 𝑏.

By induction hypothesis there exists 𝑏‴, ̄𝑎‴ such that 𝑏′ ▷ 𝑏‴ ◁ 𝑏″

and ̄𝑎′ ▷ ̄𝑎‴ ◁ ̄𝑎″.

The result follows by 𝛽 and Lemma 11:

(𝜆 ̄𝑥 ∶ ̄𝐴′. 𝑏′) ̄𝑎′ ▷ 𝑏‴[̄𝑎‴/ ̄𝑥] ◁ 𝑏″[̄𝑎″/ ̄𝑥]

41

(𝜆 ̄𝑥 ∶ ̄𝐴. 𝑏) ̄𝑎

(𝜆 ̄𝑥 ∶ ̄𝐴′. 𝑏′) ̄𝑎′ 𝑏″[̄𝑎″/ ̄𝑥]

𝑏‴[̄𝑎‴/ ̄𝑥]

Abs-
Con

g

̄𝑎′ ◁
̄𝑎, 𝑏
′ ◁

𝑏 𝛽𝑏 ▷
𝑏 ″,

̄𝑎 ▷
̄𝑎 ″

𝛽

𝑏 ′▷
𝑏 ‴

,
̄𝑎 ′▷

̄𝑎 ‴
Lem

ma 11

𝑏‴
◁

𝑏″ ,
̄𝑎‴
◁

̄𝑎″

• The case for App•-Cong is similar.

• If both derivations end with the same 𝛽 or 𝛽• rule, the result is a
straightforward use of the induction hypothesis and Lemma 11.

Theorem 3 (Church-Rosser property). Our calculus system has the conflu-
ence (Church-Rosser) property that is, for each 𝐴, 𝐵, 𝐵′ such that 𝐵 ⟵⋆ 𝐴 ⟶⋆

𝐵′, there exists 𝐶 such that 𝐵 ⟶⋆ 𝐶 ⟵⋆ 𝐵′

Proof. Direct consequence of Theorem 2, using the equality ▷⋆ =⟶⋆.

3.4 Abstraction

In this section we check that our main goal, the integration of parametric-
ity (see Proposition 1), is achieved by the design that we propose. (In
particular, internalized parametricity holds for the Param rule itself.) At
the same time, we check that the abstraction theorem also holds for our
calculus. We do so by proving Lemma 12, which subsumes both theo-
rems.

Lemma 12 (Generalized abstraction). Assuming that 𝜉 conforms to Γ,
i) Γ ⊢ 𝐴 ∶ 𝐵 ⇒ ⟦Γ⟧𝜉 ⊢ ⟦𝐴⟧𝜉 ∶ {𝐴}𝜉 ∈ ⟦𝐵⟧𝜉

ii) Γ ⊢ 𝐴 ∶ 𝐵 ⇒ ⟦Γ⟧𝜉 ⊢ {𝐴}𝜉 ∶ {𝐵}𝜉

iii) Γ ⊢ 𝐵 ∶ 𝑠𝑛 ⇒ ⟦Γ⟧𝜉 , 𝑥 ∶ 𝐵 ⊢ 𝑥 ∈ ⟦𝐵⟧𝜉 ∶ 𝑠𝑛+1

Proof. The proof is done by simultaneous induction on the derivation
tree, and is similar to the proof of the Abstraction Theorem by Bernardy

42

and Lasson [2011]. The new parts occur in the special handling of the
Start and Param rules. The proof of each sub-lemma can be sketched as
follows (the full proof can be found in appendix A):

i) The cases of abstraction and application stem from the fact that
their respective relational interpretations follow the same pattern
as the relational interpretation of the product. The case of a vari-
able 𝑥 (Start) is more tricky: if 𝑥 ∈ 𝜉 , then the context contains
an explicit witness of parametricity for 𝑥. This witness is used to
justify the translated judgment. If 𝑥 ∉ 𝜉 , then we can use the para-
metricity rule on 𝑥 to translate the typing judgment. The Param
rule is handled similarly, with the additional complexity that an
exchange of dimensions must be added when 𝑥 ∉ 𝜉 .

ii) This sub-lemma is used to justify weakening of contexts in the other
sub-lemmas. It is a consequence of the thinning lemma and the fact
that the interpretation of types in always well-typed (see the third
item below).

iii) This sub-lemma expresses that if 𝐵 is a well-sorted type, then so is
𝑥 ∈ ⟦𝐵⟧. It is easy to convince oneself of that result by checking
that the translation of a type always yields a relation, and that the
translation of a relation is itself a relation.

Remark. In summary, and roughly speaking, Lemma 12 replaces the occur-
rences of Start (resp. Param) for variables not in 𝜉 by Param (resp. nested
Param + Exchange). Occurrences on Start (resp. Param) for variables in 𝜉
are preserved.

Theorem 4 (Abstraction).

i) Γ ⊢ 𝐴 ∶ 𝐵 ⇒ ⟦Γ⟧𝜉 ⊢ ⟦𝐴⟧𝜉 ∶ ({𝐴}𝜉 ∈ ⟦𝐵⟧𝜉), where 𝜉 contains all the
variables in Γ.

ii) Furthermore, if the original judgment makes no use of Param, the result-
ing judgment does not either.

Proof.

i) Direct consequence of Lemma 12i.

ii) In the proof of Lemma 12i, if 𝜉 is full, then the target derivation
trees contains Param iff. Param occurs in the derivation tree for
Γ ⊢ 𝐴 ∶ 𝐵.

43

Theorem 5 (Parametricity). Each term, no matter if is closed or opened, sat-
isfies the parametricity condition of its type:

Γ ⊢ 𝐴 ∶ 𝐵 ⇒ Γ ⊢ ⟦𝐴⟧ ∶ (𝐴 ∈ ⟦𝐵⟧)

Proof. Take 𝜉 empty in Lemma 12i. (We recall that ⟦Γ⟧∅ = Γ.)

Definition 10. 𝜉 conforms to Γ iff. 𝜉 contains a suffix of Γ.

Remark. ⟦⋅⟧ preserves conforming indices: if 𝜉 conforms to Γ and 𝐴 is well-
typed in Γ, the definition of ⟦𝐴⟧𝜉 makes only recursive calls with conforming
substitutions.

Proof. By induction on the typing derivation. In the definition of ⟦⋅⟧𝜉 ,
every bound variable in a term is added to the index 𝜉 in recursive calls.

3.5 Subject reduction

In this section we prove subject reduction (preservation of types). Since
parametricity acts as a typing rule for ⟦⋅⟧, subject reduction for our cal-
culus stems directly from it. We start by discussing basic properties gen-
erally attributed to PTSs, which subject reduction (Theorem 6) depends
on.
The weakening of contexts behaves in our calculus exactly in the same
way as in all PTSs. Indeed, the usual thinning lemma holds.

Lemma 13 (Thinning). Let Γ and Δ be legal contexts such that Γ ⊆ Δ. Then
Γ ⊢ 𝐴 ∶ 𝐵 ⟹ Δ ⊢ 𝐴 ∶ 𝐵.

Proof. As in [Barendregt, 1992, Lemma 5.2.12].

The generation lemma for our calculus must account for the new para-
metricity construct.

Lemma 14 (Generation). The statement of the lemma is the same as that of
the generation lemma for PTS [Barendregt, 1992, Lemma 5.2.13], but with the
additional case for the Param rule:

• If Γ ⊢ ⌈⌈𝑥⌉⌉ ∶ 𝐶 then there exists 𝐵 such that Γ ⊢ 𝐵 ∶ 𝑠𝑛, (𝑥 ∶ 𝐵) ∈ Γ, and
𝐶 =𝛽 𝑥 ∈ ⟦𝐵⟧.

Proof. As in [Barendregt, 1992]:

44

• We follow the derivation Γ ⊢ ⌈⌈𝑥⌉⌉ ∶ 𝐶 until ⌈⌈𝑥⌉⌉ is introduced. It can
only be done by the following rule

Δ ⊢ 𝐵 ∶ 𝑠𝑛
Δ, 𝑥 ∶ 𝐵 ⊢ ⌈⌈𝑥⌉⌉ ∶ 𝑥 ∈ ⟦𝐵⟧

Param

with 𝐶 =𝛽 𝑥 ∈ ⟦𝐵⟧, and (Δ, ̄𝑥 ∶ 𝐵) ⊆ Γ. The conclusion stems from
Lemma 13.

Theorem 6 (Subject Reduction). If 𝐴 ⟶ 𝐴′ and Γ ⊢ 𝐴 ∶ 𝑇, then

Γ ⊢ 𝐴′ ∶ 𝑇

Proof. Most of the technicalities of the proof by Barendregt [1992], con-
cern 𝛽-reduction, and are not changed by our addition of parametricity.
Hence we discuss here only the handling of the parametricity construct:
our task is to check that substituting a concrete term 𝑎 for 𝑥 in ⌈⌈𝑥⌉⌉ pre-
serves the type of the expression.
Facing a term such as ⌈⌈𝑥⌉⌉ in context Γ, we know by generation that it
must have type 𝑥 ∈ ⟦𝐵⟧ (for some type 𝐵 valid in Γ, and 𝑥 ∶ 𝐵). We can
then prove that substituting a term 𝑎 of type 𝐵′ (where 𝐵′ is convertible to
𝐵) for 𝑥 preserves the type of the expression. Indeed, the expression then
reduces to ⟦𝑎⟧, which has type 𝑎 ∈ ⟦𝐵′⟧ by Theorem 5. In turn, 𝑎 ∈ ⟦𝐵′⟧
is convertible to 𝑥 ∈ ⟦𝐵⟧ by Lemma 9.

3.6 Reduction-preserving model into the underlying PTS

In this section we present a formalization of the intuitive model pre-
sented in section 2.2. We developed a “high-level” calculus 𝒫 suitable to
internalize parametricity results; we now model our system 𝒫 into the
underlying PTS 𝒪 , which can be seen as “low-level” in that context.
Each term is mapped to a term where parametricity witnesses are passed
explicitly. Simultaneously, contexts are extended with explicit witnesses:
in a first approximation, each binding 𝑥 ∶ 𝐴 is replaced by a multiple
binding 𝑥 ∶ 𝐴, ̆𝑥 ∶ 𝑥 ∈ ⟦𝐴⟧. This means that ⌈⌈𝑥⌉⌉ can be interpreted by the
corresponding variable ̆𝑥 in the context. In fact, this is really what the
term ⌈⌈𝑥⌉⌉ means, as shown by the reduction rule ⌈⌈𝑥⌉⌉[𝑢/𝑥] ⟶ ⟦𝑢⟧.
The following table shows how some example terms can be interpreted
(for the sake of readability we omit type annotations in the abstractions,
since they play no role in these examples):

original term 𝐴 its interpretation ⦉𝐴⦊
𝜆𝑥. ⌈⌈𝑥⌉⌉ 𝜆𝑥. 𝜆 ̆𝑥. ̆𝑥

(𝜆𝑥. ⌈⌈𝑥⌉⌉) (𝑦 𝑧) (𝜆𝑥. 𝜆 ̆𝑥. ̆𝑥) (𝑦 𝑧) (̆𝑦 𝑧 ̆𝑧)
(𝜆𝑥. ⌈⌈𝑥⌉⌉) (𝜆𝑦. ⌈⌈𝑦⌉⌉) (𝜆𝑥. 𝜆 ̆𝑥. ̆𝑥) (𝜆𝑦. 𝜆 ̆𝑦. ̆𝑦) (𝜆𝑦. 𝜆 ̆𝑦′. 𝜆 ̆𝑦. 𝜆 ̆̆𝑦. ̆̆𝑦)

45

Note that the third row in the above table shows how an instance of
nested parametricity is modelled: the second argument (the parametric-
ity witness of the first argument 𝜆𝑦. 𝜆 ̆𝑦. ̆𝑦), is itself expanded by adding
an explicit witnesses ̆̆𝑦 of level two.
Given that the interpretation is sound with respect to 𝒪 (Theorem 7) and
that it preserves reductions (Lemma 16), we obtain strong normalization
(Theorem 9). The rest of the section is devoted to defining the model
formally, and proving its soundness.
In general, the transformation is not trivial, because of the interaction
between functions and their arguments, occurring in the App rule. If a
function uses parametricity on one of its argument, calls to the function
must also compute explicit parametricity witnesses. (This may in turn
trigger the need for more explicit witnesses at the call site). Furthermore,
if the function is passed to another function, this will create further needs
for explicit witnesses.
As we have seen above, each binding 𝑥 ∶ 𝐴 should be replaced by 𝑥 ∶
𝐴, … , ̆𝑥𝑛 ∶ 𝑥 ∈ ⟦𝐴⟧𝑛 for some 𝑛. Our main task is to compute an 𝑛 that
would be big enough to make all the parametricity witnesses ⌈⌈𝑥⌉⌉𝑘 ex-
plicit. To do so, we use an intermediate representation of the typing
derivation, containing some constraints on the 𝑛’s, by annotation of the
derivation tree, as in figure 2. We assume without loss of generality that
variable names are distinct, so the 𝑛’s are given by a (partial) valuation
𝜖 ∶ Var → ℕ defined on each cube variable. This annotation of the deriva-
tion with constraints is an instance of a technique known as type-based
analysis [Svenningsson, 2007].
The Application and Rel-Elim rules require special care. Indeed, we
need to “lift” the inequalities of the right sub-tree 𝔱, since if 𝐹 has to
be extended to a term of type ∀⟦𝑥 ∶ 𝐴⟧𝑛. 𝐵, then it has to be fed with
𝑛 extra parametricity witnesses ⟦𝑎⟧ ⋯ ⟦𝑎⟧𝑛, hence the context has to be
extended enough to contain ̆𝑦𝑛, for each 𝑦 free in 𝑎. Note that the con-
straints 𝑒 + 𝜖(𝑥) ≤ 𝜖(𝑦) we add in the Application and Rel-Elim rule are
more restrictive than the corresponding 𝑒 ≤ 𝜖(𝑦) that are in 𝔱, so one can
simply ignore the latter.
We need to check that the system of constraints has a solution. In fact, the
simplex it defines is unbounded: indeed, the only place where a variable
appears on the left-hand side of a constraint is in Application and Rel-
Elim when we “lift by 𝑥” the constraints in the sub-tree 𝔱; it cannot create
any cycle, since 𝑥 does not appear in 𝔱.
With our notion of cubes instead of usual bindings, extending the con-
text with an explicit witness corresponds to adding one dimension to the
cube. However, we a priori only need to access one of the new vertices,
the one for which the new dimension is set to one. Hence in general,
each of the 2dims �̄� vertices 𝑥𝑖 of a binding ̄𝑥 ∶ ̄𝐴 will be extended with

46

Γ ⊢ 𝐹 ∶ (∀ ̄𝑥 ∶ �̄�. 𝐵) 𝔱 ∶∶ Γ ⊢ ̄𝑎 ∶ �̄� {𝑒 + 𝜖(𝑥) ≤ 𝜖(𝑦) | 𝑒 ≤ 𝜖(𝑦) ∈ 𝔱}
Γ ⊢ 𝐹 ̄𝑎 ∶ 𝐵[̄𝑎/ ̄𝑥]

Application

Γ ⊢ 𝐹 ∶ (∀• ̌𝑥 ∶ �̌�. 𝑠𝑛) 𝔱 ∶∶ Γ ⊢ ̌𝑎 ∶ �̌� {𝑒 + 𝜖(𝑥) ≤ 𝜖(𝑦) | 𝑒 ≤ 𝜖(𝑦) ∈ 𝔱}
Γ ⊢ 𝐹• ̌𝑎 ∶ 𝑠𝑛

Rel-Elim

Γ ⊢ 𝐴 ∶ 𝑠𝑚 𝑛 ≤ 𝜖(𝑥)
Γ, 𝑥 ∶ 𝐴 ⊢ ⌈⌈𝑥⌉⌉𝑛 ‡𝜋 ∶ (𝑥 ∈ ⟦𝐴⟧𝑛) ‡𝜋

Param/𝑛

dim 𝜋 ≤ 𝑚 + 𝑛

Figure 2: Typing rules extended with constraints on the valuation 𝜖.
Rules omitted here remain unchanged (see Definition 8). The notation
𝑒 ≤ 𝜖(𝑦) ∈ 𝔱 expresses that the constraint appears in the sub-derivation
𝔱. (For the sake of conciseness, we merged the rules Start, Param and
Exchange into Param/𝑛 here.)

𝑥𝑗𝑖 ∶ 𝑥𝑖 ∈ ⟦𝐴𝑖•(̄𝑥//𝑖)⟧𝑘 for 0 ≤ 𝑘 ≤ 𝜖(𝑥) and 𝑗 = 0𝜖(𝑥)−𝑘1𝑘.

Permutations on variables yield yet another difficulty, as one can see in
the example 𝜆𝑥 ∶ 𝐴. 𝜆𝑦1 ∶ 𝑥 ∈ ⟦𝐴⟧. ⌈⌈𝑦1⌉⌉ ‡(12). (The cubes have been
flattened for the sake of readability.) Here, ⌈⌈𝑦1⌉⌉ ‡(12) ∶ ⟦𝐴⟧2 𝑥 𝑦1 ⌈⌈𝑥⌉⌉
while ⌈⌈𝑦1⌉⌉ ∶ ⟦𝐴⟧2 𝑥 ⌈⌈𝑥⌉⌉ 𝑦1. Our solution is to not only extend the con-
text with explicit parametricity witnesses, but also with explicit permuted
parametricity witnesses. Hence a possible interpretation of the previous
term in the naked system 𝒪 is the following:

𝜆𝑥0 ∶ 𝐴.𝜆𝑥1 ∶ (⟦𝐴⟧ 𝑥0).
𝜆𝑦01 ∶ (⟦𝐴⟧ 𝑥0). 𝜆𝑦11 ∶ (⟦𝐴⟧2 𝑥0 𝑥1 𝑦01).

𝜆𝑦(12)
11 ∶ (⟦𝐴⟧2 𝑥0 𝑦01 𝑥1). 𝑦(12)

11

We are not focusing on the minimal extension here, and we add wit-
nesses for each possible permutation. It is however possible to refine
this extension, since for instance the relations are symmetric in the new
dimensions, hence we can ignore permutation cycles that are entirely
contained in these new dimensions.

Definition 11 (Interpretation which inserts explicit witnesses). Writing

47

𝔖𝑛 to be the group of permutations on {0, … , 𝑛 − 1},

⦉𝑠𝑛⦊ = 𝑠

⦉⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋⦊ = 𝑥𝜋
𝑗𝑖 where 𝑗 =

𝜖(𝑥)
⏞⏞⏞⏞⏞0 … 0 1 … 1⏟

𝑛

⦉𝜆 ̄𝑥 ∶ ̄𝐴. 𝐵⦊ = 𝜆⦉ ̄𝑥 ∶ ̄𝐴⦊. ⦉𝐵⦊
⦉∀ ̄𝑥 ∶ ̄𝐴. 𝐵⦊ = ∀⦉ ̄𝑥 ∶ ̄𝐴⦊. ⦉𝐵⦊

⦉𝐹 𝑥 ̄𝑎⦊ = ⦉𝐹⦊ {⦉⟦𝑎𝑖⟧𝑘 ‡𝜋⦊ ∣ 𝑖 ∈ ind(̄𝑎), 𝑘 ≤ 𝜖(𝑥),
𝜋 ∈ 𝔖𝑘+dims ̄𝑎 }

⦉𝜆• ̌𝑥 ∶ ̌𝐴. 𝐵⦊ = 𝜆⦉ ̌𝑥 ∶ ̌𝐴⦊. ⦉𝐵⦊
⦉∀• ̌𝑥 ∶ ̌𝐴. 𝑠𝑛⦊ = ∀⦉ ̌𝑥 ∶ ̌𝐴⦊. 𝑠

⦉𝐹•𝑥 ̌𝐴⦊ = ⦉𝐹⦊ {⦉⟦𝑎𝑖⟧𝑘 ‡𝜋⦊ ∣ 𝑖 ∈ ind(̌𝑎), 𝑘 ≤ 𝜖(𝑥),
𝜋 ∈ 𝔖𝑘+dims ̌𝑎 }

⦉♢⦊ = ♢
⦉Γ, 𝑥𝑖 ∶ 𝐴⦊ = ⦉Γ⦊, ⦉𝑥𝑖 ∶ 𝐴⦊

We introduce a new macro ⦉𝑥𝑖 ∶ 𝐴⦊, which expands to the following multiple
bindings:

⦉𝑥𝑖 ∶ 𝐴 ∶ 𝑠𝑛⦊ = {𝑥𝜋
𝑗𝑖 ∶ ⦉(𝑥𝑖 ∈ ⟦𝐴⟧𝑘) ‡𝜋⦊ ∣ 𝑘 ≤ 𝜖(𝑥),

𝑗 = 0𝜖(𝑥)−𝑘1𝑘,
𝜋 ∈ 𝔖𝑘+𝑛 }

Bindings of cube variables are merely “flattened”, using our previously defined
macro:

⦉ ̄𝑥 ∶ ̄𝐴⦊ = {⦉𝑥𝑖 ∶ 𝐴𝑖•(̄𝑥//𝑖)⦊ ∣ 𝑖 ∈ ind(̄𝐴)}
⦉ ̌𝑥 ∶ ̌𝐴⦊ = {⦉𝑥𝑖 ∶ 𝐴𝑖•(̌𝑥//𝑖)⦊ ∣ 𝑖 ∈ ind(̌𝐴)}

The essence of the model defined by ⦉⋅⦊ is that a parametricity witness
⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋 is adequately modeled by the variable 𝑥𝜋

0…01…1𝑖, that is, if 𝑥 has
type 𝐴, then 𝑥1 ∶ 𝑥 ∈ ⟦𝐴⟧, etc.

Lemma 15 (⦉⋅⦊ and substitution).

⦉𝐴[𝑎𝑖/𝑥𝑖]⦊ = ⦉𝐴⦊[⦉⟦𝑎𝑖⟧𝑘 ‡𝜋⦊/𝑥𝜋
𝑗𝑖 , 𝑘 ≤ 𝜖(𝑥), 𝑗 = 0𝜖(𝑥)−𝑘1𝑘, 𝜋 ∈ …]

Proof. By induction on 𝐴; we illustrate how the proof proceeds by show-
ing only the case for variables, since all the other cases stem from straight-

48

forward uses of the induction hypotheses.

⦉⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋[𝑎𝑖/𝑥𝑖]⦊ = ⦉⟦𝑎𝑖⟧𝑛 ‡𝜋⦊
= 𝑥𝜋

𝑗𝑖 [⦉⟦𝑎𝑖⟧𝑛 ‡𝜋⦊/𝑥𝜋
𝑗𝑖]

= ⦉⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋⦊[⦉⟦𝑎𝑖⟧𝑘 ‡𝜋⦊/𝑥𝜋
𝑗𝑖 , …]

Lemma 16 (Congruence of ⦉⋅⦊). If Γ ⊢ 𝐴 ∶ 𝐵 with 𝐴 ⟶ 𝐴′, then

⦉𝐴⦊ ⟶+ ⦉𝐴′⦊.

Proof. By induction on 𝐴 ⟶ 𝐴′.

Finally, we are now able to prove the soundness of our model, by proving
that the transformation yields well-typed terms in 𝒪 .

Theorem 7 (Soundness). If Γ ⊢𝒫 𝐴 ∶ 𝐵, then

⦉Γ⦊ ⊢𝒪 ⦉𝐴⦊ ∶ ⦉𝐵⦊.

Proof. We proceed by induction on the derivation; however the proof
requires a stronger induction hypothesis when the derivation Γ ⊢𝒫 𝐴 ∶ 𝐵
starts with the Application rule. See appendix A for details.

Theorem 8 (Consistency). If 𝒪 is consistent, then so is 𝒫 , our system ex-
tended with Param.

Proof. Since ⦉⋅⦊ transports the empty type from 𝒫 to 𝒪 , by Theorem 7
any inhabitant of the empty type in 𝒫 would give one in 𝒪 .

Theorem 9 (Strong Normalization). If 𝒪 is strongly normalizing, then so
is 𝒫 .

Proof. Assume Γ ⊢ 𝐴 ∶ 𝐵 and consider a chain of reductions 𝐴 ⟶𝑛 𝐴′.
We have ⦉𝐴⦊ ⟶𝑚 ⦉𝐴′⦊, and 𝑚 ≥ 𝑛 by Lemma 16. We also have that ⦉𝐴⦊
is typeable in 𝒪 , by Theorem 7. Therefore, only finite chains of reductions
are possible.

49

50

Chapter 2

Type theory in color

1 Introduction

Intelligent use of color in a written argument can go a long way into con-
veying an idea. But how convincing can it really be? Consider the case
of the computer scientist Philip Wadler, who is fond of using color in his
papers. On multiple occasions, Wadler [2003, 2007, 2012] presents a pro-
gramming language and its type-system, and shows that, by erasing the
appropriate parts of the type-system, a logic appears. This is done by a
straightforward but clever use of colors. Typically, in the presentation of
a typing rule, the program parts are written in blue. The corresponding
logic rule appears if one erases that color. As Wadler suggests, one can
see the erasure simply by putting on blue glasses.

𝑓 ∶𝐴 → 𝐵 𝑢 ∶𝐴
𝑓  𝑢 ∶𝐵

𝑓 ∶𝐴 → 𝐵 𝑢 ∶𝐴
𝑓  𝑢 ∶𝐵

Typing rule for application After erasure: modus ponens

The relationship between the programming language and the logic is
deep: for every aspect of the language, there is a “blue part” that can be
erased away to obtain the corresponding logical concept. For example,
a computation step on the programming side yields a cut-elimination
step on the logic side. That is, Wadler does not play mindlessly with
colors, he is consistent; he follows in fact a precise (however unwritten)
logic of colors1. In fact, his “proofs by putting on glasses” are extremely
compelling.
In this paper, we set-out to formalize this kind of reasoning with colors
as an extension of dependent type theory. The result is a more powerful

1A meta-level logic, not to be confused with the object logics studied by Wadler.

51

type theory: some definitions and proofs may be omitted as they be-
come trivial; it becomes easier to program with precise types; and some
propositions that were impossible to prove now become provable.
In section 2 we demonstrate how one can program and reason with col-
ors via a number of examples, and introduce the fundamental concepts
of type theory with color at the same time. In section 3, we describe
CCCC (the main technical contribution of this paper), a core calculus of
constructions with colors, and prove meta-theoretical properties (subject-
reduction, normalization). In section 4, we discuss some possible exten-
sions of CCCC. Related work is discussed in section 5, and we conclude
in section 6.

2 Programming and reasoning with colors

In this section we explain how we envision a full-featured type theory
with color (TTC) would be designed, in the form of a short tutorial. We
assume familiarity with a proof assistant based on type theory such as
Coq [The Coq development team, 2016] or Agda [Norell, 2007].

2.1 Colored lists

We start with an example similar in structure, but significantly simpler
than those presented by Wadler. In the standard inductive definition of
lists, the structure of the list does not depend on the elements it contains.
Hence, it makes sense to color the elements: erasing that color yields a
meaningful definition. In fact, the result is structurally equal to the usual
unary representation of natural numbers:

ℕ = ⌊List 𝑎⌋𝑖

(In this section we assume a color 𝑖 that we render in blue. Even though
we strongly recommend reading the colored version, we index an 𝑖-tainted
typing with 𝑖, so readers can make sense of what follows even if it is
printed in black and white.)

𝑑𝑎𝑡𝑎 List (𝑎 ∶𝑖 ⋆) ∶ ⋆
stop ∶ List 𝑎
more ∶ (𝑥 ∶𝑖 𝑎) →List 𝑎 → List 𝑎

𝑑𝑎𝑡𝑎 List (𝑎 ∶𝑖 ⋆) ∶ ⋆
stop ∶ List 𝑎
more ∶ (𝑥 ∶𝑖 𝑎) →List 𝑎 → List 𝑎

As in Wadler’s examples, the relationship between colored objects and
their erasure carries over everywhere. For example, erasing color from a
given list yields its length — and the typing relation is preserved.

52

more ′𝑏′ (more ′𝑙′ (more ′𝑢′ stop)) ∶ List Char
more ′𝑏′ (more ′𝑙′ (more ′𝑢′ stop)) ∶ List Char

Concatenation yields addition; assuming 𝑎 ∶𝑖 ⋆ :

(+) ∶ List 𝑎 → List 𝑎 → List 𝑎
stop + 𝑥𝑠 = 𝑥𝑠
more 𝑥 𝑥𝑠 + 𝑦𝑠 = more 𝑥 (𝑥𝑠 + 𝑦𝑠)
(+) ∶ List 𝑎 → List 𝑎 → List 𝑎
stop + 𝑥𝑠 = 𝑥𝑠
more 𝑥 𝑥𝑠 + 𝑦𝑠 = more 𝑥 (𝑥𝑠 + 𝑦𝑠)

This structural relation is a benefit of abiding to color discipline: color-
less parts shall never refer to tainted ones, and in return one gets some
equalities for free. For example, the length of the concatenation is the ad-
dition of the lengths. This proposition requires a proof in Agda or Coq,
but thanks to colors, it holds by definition. Writing ⌊𝑡⌋𝑖 for the 𝑖-erasure
of 𝑡, we have

⌊𝑥𝑠 + 𝑦𝑠⌋𝑖 = ⌊𝑥𝑠⌋𝑖 + ⌊𝑦𝑠⌋𝑖

In fact, TTC does not have a special purpose operator for erasure: the
context determines whether variables refer to complete objects or to their
erasures. For example in the following signature, the annotation 𝑖 indi-
cates that type of the first argument of < is any type which yields ℕ after
erasing 𝑖. (We will say that 𝑥𝑠 is oblivious to 𝑖 in the definition of <.)

(<) ∶ (𝑥𝑠 ∶ 𝑖 ℕ) → (𝑦 ∶ ℕ) → Bool

Hence, if 𝑥𝑠 ∶ List 𝑎 then 𝑥𝑠 < 5 is a valid expression2; and it tests whether 𝑥𝑠
has less than 5 elements. The expression 3 < 5 is also type-correct, be-
cause the erasure is idempotent. In general, it has no effect on terms
which do not mention the erased color (⌊ℕ⌋𝑖 = ℕ).
We note that substitution behaves specially on oblivious arguments. Con-
sider again the expression 𝑥𝑠 < 5. In it, one can substitute for 𝑥𝑠 a con-
crete list containing information. The remarkable feature is that in the
resulting term, the erased list will stand for 𝑥𝑠. For example:

(𝑥𝑠 < 5)[more ′𝑏′ (more ′𝑙′ (more ′𝑢′ stop))/𝑥𝑠]
= more ′𝑏′ (more ′𝑙′ (more ′𝑢′ stop)) < 5
= 3 < 5

2.2 Types as predicates

By using colored types, one effectively specifies structural invariants. For
example, the type of the above concatenation operation constrains the

2We take the liberty to use decimal notation for unary naturals.

53

length of its result. In our TTC it is possible to reveal these invariants
explicitly by viewing types as predicates, and terms as proofs that the
predicates are satisfied by the 𝑖-erasure. This is done by modularizing
the typing judgment. For example, under the modality 𝑖, the type of lists
is seen as a predicate over ℕ. To indicate that the judgment is modulated,
the typing operator (colon) is indexed with 𝑖.

List (𝑎 ∶𝑖 ⋆) ∶𝑖 (𝑥𝑠 ∶ 𝑖 ℕ) → ⋆

Any typing can be so modulated. For example, a list 𝑥𝑠 ∶ List 𝑎 becomes
a proof that ⌊𝑥𝑠⌋𝑖 satisfies the List 𝑎 seen as a predicate.

𝑥𝑠 ∶𝑖 List 𝑎  • 𝑖 𝑥𝑠

(To avoid confusion we write predicate test using the • 𝑖 operator. For-
mally it is just the application corresponding to 𝑖-oblivious abstraction.)
Likewise, the concatenation returns a list whose length is the sum of the
lengths of its inputs.

(+) ∶𝑖 (𝑥𝑠 ∶ List 𝑎) → (𝑦𝑠 ∶ List 𝑎) → List 𝑎  • 𝑖 (𝑥𝑠 + 𝑦𝑠)

(To make sense of the above typings, recall that the second argument
to List becomes a natural number after erasing 𝑖; in general a variable
𝑥𝑠 ∶𝑖 List 𝑎  • 𝑖 𝑛 stands for a list of size 𝑛.)
Additionally, we remark that even though every type becomes a pred-
icate, the computations (or data) that it represents do not essentially
change. Taking our list example, the union of the types List 𝑎  • 𝑖 𝑛 for
any 𝑛 ∶ ℕ is isomorphic to List 𝑎 seen as a type. Hence, assuming one
has existential quantification, the type 𝐴 ∶ ⋆ remains available as a type
under the modality 𝑖, as ∃𝑥.𝐴 𝑥 ∶ ⋆. Hence, one can continue to use types
as types, even under a colored typing, referring implicitly to the above
existential construction. For the sake of concision we will take advantage
of this shortcut in section 2.4.

2.3 Colored pairs

Another (dual) way to introduce colors is via pairs. A colored pair type,
whose general form is written (𝑥 ∶ 𝐴) ×𝑖 𝐵, is similar to the usual type
Σ(𝑥 ∶ 𝐴) 𝐵 (in particular 𝑥 may occur in 𝐵). The difference is that 𝐵 is
tainted with the color 𝑖; and 𝐴 is oblivious to 𝑖. Given 𝑎 ∶ 𝐴 and 𝑏 ∶𝑖 𝐵[𝑎/𝑥]
one can construct an inhabitant of the pair type. As usual, colors must
match: 𝑎,𝑖 𝑏 ∶ (𝑥 ∶ 𝐴) ×𝑖 𝐵 is valid only if 𝑏 is tainted and 𝑎 is oblivious
to 𝑖. Erasure extracts the first component of a pair, and interpreting a
pair as a predicate yields its second component. The following example
illustrates how colored pairs can be used to prove some parametricity

54

properties. Assume the following (𝑖-oblivious) context.

𝑓 ∶ (𝑎 ∶ ⋆) → 𝑎 → 𝑎
𝑏 ∶ ⋆
𝑦 ∶ 𝑏

Then we can define

𝑡 ∶ (𝑥 ∶ 𝑏) ×𝑖 (𝑥 ≡ 𝑦)
𝑡 = 𝑓  ((𝑥 ∶ 𝑏) ×𝑖 (𝑥 ≡ 𝑦)) (𝑦,𝑖 refl)

By definition of erasure:
⌊𝑡⌋𝑖 = 𝑓  𝑏 𝑦 (1)

The above equation can also be intuited by looking at 𝑡 under 𝑖-glasses:

𝑓  ((𝑥 ∶ 𝑏) ×𝑖 (⌊𝑥⌋𝑖 ≡ 𝑦)) (𝑦,𝑖 refl)

In an 𝑖-modulated typing, one implicitly refers to the colored component
of pairs, and we therefore have: 𝑡 ∶𝑖 ⌊𝑡⌋𝑖 ≡ 𝑦. By (1) we obtain

𝑡 ∶𝑖 𝑓  𝑏 𝑦 ≡ 𝑦

This result is normally obtained by a logical relation argument outside the
theory, while it is internalized here — albeit via a judgment with an extra
color. (A fully formal version of this example is presented in section 4.)
It may be worth stressing that, if one were to use a regular pair type,
then, because 𝑓 is abstract, the first component of 𝑡 would not compute.
In contrast, erasure is defined even on neutral terms.

2.4 Multiple colors

We propose to support arbitrarily many colors. This feature is important
for compositionality: it ensures that one can always mark a binding as
tainted without corrupting interactions with the rest of the program. In-
deed the other parts of the programs will use other, orthogonal colors.
For example, the List 𝑎 type described above is sufficient, there is no need
to define a version without color. If one needs to access the elements of
the list in a function, one simply taints its typing with the color. For ex-
ample, a summation function may be given the type sum ∶𝑖 List ℕ → ℕ.
The taint will be transitively inherited by any function using sum (which
can in turn use other colors at will).
In fact, it is advisable to use colors even more effectively, and instead
define sum by erasure. Assume the following definition of concat, where
the nested lists use a different color 𝑗 for the type 𝑎 of elements, which

55

we render in red. (In the type of concat, 𝑎 occurs in an 𝑖-tainted context,
so it is tainted both with 𝑖 and 𝑗. We have 𝑎 ∶𝑖𝑗 ⋆, and we render it with
the combination of blue and red: magenta).

concat ∶𝑖 List (List 𝑎) → List 𝑎
concat stop = stop
concat (more 𝑥 𝑥𝑠) = 𝑥 + concat 𝑥𝑠

Then one can obtain sum by erasing 𝑗 from concat: (sum = ⌊concat⌋𝑗).
This would be impossible with a single color: attempting to erase the
elements of the inner lists would erase the whole function.
Another use for multiple colors is to nest pairs. One cannot nest pairs
differing on a same given color, because this would break the rule that
either side of an 𝑖-colored pair must respectively be oblivious to 𝑖 or be
tainted with it. However one can nest pairs which use different colors.
The general form of 𝑗-colored pairs nested inside an 𝑖-colored one is the
following:

(𝑥 ∶ (𝑤 ∶ 𝐴) ×𝑗 𝐵[𝑤]) ×𝑖 ((𝑧 ∶ 𝐶[𝑥]) ×𝑗 𝐷[𝑥, 𝑧])

𝐶 can only refer to the 𝑗-oblivious part of 𝑥. 𝐶 may not refer to the 𝑗-
tainted part of 𝑤, since it does not carry that color itself. Looking at the
above type successively with 𝑖 and 𝑗 glasses3:

(𝑥 ∶ (𝑤 ∶ 𝐴) ×𝑗 𝐵[𝑤]) ×𝑖 ((𝑧 ∶ 𝐶[𝑥]) ×𝑗 𝐷[𝑥, 𝑧])
(𝑥 ∶ (𝑤 ∶ 𝐴) ×𝑗 𝐵[𝑤]) ×𝑖 ((𝑧 ∶ 𝐶[𝑥]) ×𝑗 𝐷[𝑥, 𝑧])

Using nested pairs is syntactically inconvenient, hence in the rest of the
section we use a record-like syntax. Using record syntax, the above pair
would be written

{𝑤 ∶ 𝑖𝑗 𝐴; 𝑦 ∶ 𝑖 𝐵[𝑤]; 𝑧 ∶ 𝑗 𝐶[𝑤]; 𝐷((𝑤,𝑗 𝑦) , 𝑧)}

The following example illustrates how multiple colors can be used to
program with relations. Assume a definition of streams Stream ∶ ⋆ → ⋆.
Stream is a functor as witnessed by map ∶ (𝑎 ∶ ⋆) → (𝑏 ∶ ⋆) → (𝑎 → 𝑏) →
Stream 𝑎 → Stream 𝑏, with usual definitions. Assume furthermore the

3The analogy to perceptual colors still holds here: magenta both appears blue under
blue glasses and red under red glasses. (I.e., it fades into the background in both cases.)
The analogy breaks only when one uses too many colors: most humans can only perceive
three primary colors, while we allow an unbounded number of colors in TTC.

56

following abstract context:

nth ∶ (𝑎 ∶ ⋆) → Stream 𝑎 → ℕ → 𝑎
𝑎 ∶ ⋆
𝑏 ∶ ⋆
𝑓 ∶ 𝑎 → 𝑏

𝑥𝑠 ∶ Stream 𝑎
𝑛 ∶ ℕ

We define:

𝑟 ∶ ⋆
𝑟 = {𝑥 ∶ 𝑖 𝑎; 𝑦 ∶ 𝑗 𝑏; 𝑓  𝑥 ≡ 𝑦}
𝑢 ∶ 𝑎 → 𝑟
𝑢 = 𝜆𝑧.{𝑥 =𝑧; 𝑦 =𝑓  𝑧; refl}
𝑡 ∶ 𝑟
𝑡 = nth  𝑟 (map 𝑢 𝑥𝑠) 𝑛

= nth  {𝑥 ∶ 𝑖 𝑎; 𝑦 ∶ 𝑗 𝑏; 𝑓  𝑥 ≡ 𝑦}
(map (𝜆𝑧.{𝑥 =𝑧; 𝑦 =𝑓  𝑧; refl}) 𝑥𝑠) 
𝑛

Erasing colors from 𝑡 yields:

⌊𝑡⌋𝑖 = nth 𝑎 (map id𝑎 𝑥𝑠)𝑛 = nth 𝑎 𝑥𝑠 𝑛
⌊𝑡⌋𝑗 = nth 𝑏 (map 𝑓  𝑥𝑠)𝑛

Indeed, looking at 𝑡 respectively under 𝑖-colored and 𝑗-colored glasses:

nth  {𝑥 ∶ 𝑖 𝑎; 𝑦 ∶ 𝑗 𝑏; 𝑓  𝑥 ≡ 𝑦} (map (𝜆𝑧.{𝑥 =𝑧; 𝑦 =𝑓  𝑧; refl}) 𝑥𝑠) 𝑛
nth  {𝑥 ∶ 𝑖 𝑎; 𝑦 ∶ 𝑗 𝑏; 𝑓  𝑥 ≡ 𝑦} (map (𝜆𝑧.{𝑥 =𝑧; 𝑦 =𝑓  𝑧; refl}) 𝑥𝑠) 𝑛

Now, viewing 𝑡 under the 𝑖 then {𝑖, 𝑗}-modalities:

𝑡 ∶ 𝑟
𝑡 ∶𝑖 𝑟 ⌊𝑡⌋𝑖
𝑡 ∶𝑖,𝑗 𝑟 ⌊𝑡⌋𝑖 ⌊𝑡⌋𝑗

𝑡 ∶𝑖,𝑗 𝑓 ⌊𝑡⌋𝑖 ≡ ⌊𝑡⌋𝑗

𝑡 ∶𝑖,𝑗 𝑓 (nth  𝑎 𝑥𝑠 𝑛) ≡ nth  𝑏 (map 𝑓  𝑥𝑠) 𝑛

Hence writing nth  𝑎 𝑥𝑠 𝑛 as 𝑥𝑠 !! 𝑛, we obtain the expected commuting law

𝑓 (𝑥𝑠 !! 𝑛) ≡ map 𝑓  𝑥𝑠 !! 𝑛.

57

2.5 Conclusion

A motto of programming with dependent types is to use more and more
types to express one’s intentions more and more precisely. However,
there is a drawback to precise types: hard work is often required to con-
vince a type-checker that programs inhabit them. We observe that the
use of colors is a way to specify invariants in types which does not com-
plicate user code. For instance we have seen that it is just as easy to pro-
gram with colored lists as with regular ones, and length invariants are
captured. Furthermore, the system can automatically discover equations
which would require a proof without the use of colors.
One cannot “go wrong” by using more colors in a library. In the worst
case, colors can simply be ignored by the users of the library. In the best
case, they serve to specify invariants concisely, facilitate reasoning, and
provide a variant of the library to the user for each possible erasure com-
bination.
We have implemented a prototype of TTC as an extension of the Agda
proof assistant. The prototype, in its current version at the time of writ-
ing, features colored bindings and abstraction over colors, but is still
lacking erasure, oblivious bindings and colored pairs. The prototype,
together with a short tutorial for it, can be obtained online at http://
www.cse.chalmers.se/~mouling/Parametricity/TTC.html.

3 CCCC: A Core Calculus of Colored Construc-
tions

In this section we present CCCC (the Core Calculus of Colored Con-
structions) which is the formal core of the TTC we envision. Technically,
CCCC is an extension of CC (the plain Calculus of Constructions [Co-
quand and Huet, 1988]) with the notion of color informally introduced
in the previous section. Even though we use CC as a base, we do not rely
on its specifics. Along the lines presented here, it is conceivable to con-
struct a variant of any type-system with colors, including intuitionistic
type theory [Martin-Löf, 1984].
The rest of the section describes the main features of CCCC in pedagog-
ical order. A summary is shown in appendix B for reference. We em-
phasize that we describe only on the core features of TTC. Some features
used in the previous section will not be included here, even though we
believe they could be included with limited effort.
Even though we continue to render some expressions in color as a visual
aid, the formal system does not rely on them in any way. This section
can be read in black and white without any loss in precision.

58

http://www.cse.chalmers.se/~mouling/Parametricity/TTC.html
http://www.cse.chalmers.se/~mouling/Parametricity/TTC.html

3.1 CC as a PTS

We use CC as a base, so we recall briefly its definition, using a pure type
system [Barendregt, 1992] presentation. The typing rules are as follows:

Conv
Γ ⊢ 𝑎 ∶ 𝐴 𝐴 =𝛽 𝐴′

Γ ⊢ 𝑎 ∶ 𝐴′

Axiom
⊢ Γ

Γ ⊢ ⋆ ∶ □

Var
⊢ Γ 𝑥 ∶ 𝐴 ∈ Γ

Γ ⊢ 𝑥 ∶ 𝐴

Prod
Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝑠

Γ ⊢ (𝑥 ∶ 𝐴) → 𝐵 ∶ 𝑠

Abs
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵

Γ ⊢ 𝜆𝑥 ∶ 𝐴.𝑏 ∶ (𝑥 ∶ 𝐴) → 𝐵

App
Γ ⊢ 𝐹 ∶ (𝑥 ∶ 𝐴) → 𝐵 Γ ⊢ 𝑢 ∶ 𝐴

Γ ⊢ 𝐹 ∙ 𝑢 ∶ 𝐵[𝑢/𝑥]

To limit clutter we omit the well-formedness conditions of types 𝐴 and
𝐵 in the rule Abs. The product (𝑥 ∶ 𝐴) → 𝐵 may be also written 𝐴 → 𝐵
when 𝑥 does not occur free in 𝐵, and we generally omit the application
operator ∙. The metasyntactic variable 𝑠 ranges over the sorts ⋆ and □.
The context-lookup relation (𝑥 ∶ 𝐴 ∈ Γ) is straightforward, and the
context-formation rules are:

Empty

⊢ ♢

Bind
⊢ Γ Γ ⊢ 𝐴 ∶ 𝑠

⊢ Γ, 𝑥 ∶ 𝐴

Traditional presentations of PTSs, including that of Barendregt [1992],
use another formulation, which integrates the context-lookup, context-
formation and typing rules. Instead of the Var rule, one has the fol-
lowing Weakening and Start rules, and axioms can only be used in the
empty context.

Start
Γ ⊢ 𝐴 ∶ 𝑠

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴

Weakening
Γ ⊢ 𝐴 ∶ 𝐵 Γ ⊢ 𝐶 ∶ 𝑠

Γ, 𝑥 ∶ 𝐶 ⊢ 𝐴 ∶ 𝐵

While the presentation of Barendregt economizes a couple of derivation
rules, it has the disadvantage to conflate separate concepts in a single def-
inition. Consequently, is it harder to extend, and modern presentations
tend to use separate context-lookup and context-formation relations.

3.2 Colors, taints and modalities

We assume an infinite supply of color names; the metasyntactic vari-
ables 𝑖 and 𝑗 stand for them in the remainder of this chapter. We call an

59

ordered set of such color names a taint and use 𝜃 or 𝜄 to range over taints.
A color may be introduced in the context by its name. After such a men-
tion, terms may contain 𝑖-tainted parts, but also non 𝑖-tainted parts. In
contrast, before the mention of 𝑖, terms are 𝑖-oblivious: they cannot de-
pend on 𝑖 in any way.
Our typing judgment Γ ⊢ 𝐴 ∶𝜃 𝐵 is indexed by a taint 𝜃, which must be
a subset of the colors present in Γ. The presence of a given color 𝑖 in 𝜃
indicates how 𝑖 can be used in 𝐴 and 𝐵.

• 𝑖 ∉ 𝜃 indicates that 𝐴 is not tainted with 𝑖. A term 𝐴 typed in such
a taint may still mention the color 𝑖. For example 𝜆(𝑥 ∶𝑖 𝑇) →𝑎 is
allowed. However, the usage of 𝑖-tainted variables is forbidden in
the target (𝑎) of the term. For example 𝜆(𝑥 ∶𝑖 𝑇) →𝑥 is forbidden.

• 𝑖 ∈ 𝜃 indicates that the term 𝐴 is tainted with 𝑖. In such a judg-
ment, using 𝑖-tainted variables is allowed in the targets of terms
and types. Remark: it does not make sense to erase 𝑖 from a judg-
ment using this taint; conceptually the whole typing is tainted, so
erasure would entirely remove it.

For each taint 𝜃 we have two sorts ⋆𝜃 and □𝜃, with the axiom ⋆𝜃 ∶ □𝜃.
The conversion rule merely preserves taints.

Conv
Γ ⊢ 𝑎 ∶𝜃 𝐴 𝐴 =𝛽 𝐴′

Γ ⊢ 𝑎 ∶𝜃 𝐴′

Axiom
⊢ Γ

Γ ⊢ ⋆𝜃 ∶𝜃 □𝜃

A variable binding 𝑥 ∶𝜓 𝐴 does not only carry a taint, but also a modal-
ity. (𝜓 and 𝜑 range over modalities.) A modality is composed of two
disjoint sets of colors (say 𝜓 = (𝜃, 𝜄) with 𝜃 ∩ 𝜄 = ∅) that constrain what
kind of term 𝑢 can be substituted for 𝑥. The first set 𝜃 is the taint of 𝑢.
The second set 𝜄 is an “anti-taint”: a set of colors which 𝑢 must be obliv-
ious to. We often use the compact notation 𝑖1…𝑖𝑛, 𝑗1 …𝑗𝑛 for the modal-
ity ({𝑖1…𝑖𝑛}, {𝑗1…𝑗𝑛}). Similarly we will write 𝑗 ∈ 𝜓 to mean that 𝑗 is
found in the second set. Using this notation, the following two contexts
are equivalent (one can substitute one for another without changing the
provability of a judgment):

Γ, 𝑥 ∶ 𝐴, 𝑖, Δ
Γ, 𝑖, 𝑥 ∶ 𝑖 𝐴, Δ

That is, declaring a variable before 𝑖, or declaring it 𝑖-oblivious explicitly
are equivalent. The product and abstraction rules can change the modal-

60

ity of the type quantified over; the application rule behaves accordingly.

Prod
Γ, 𝑥 ∶𝜓 𝐴 ⊢ 𝐵 ∶𝜃 𝑠

Γ ⊢ (𝑥 ∶𝜓 𝐴) → 𝐵 ∶𝜃 𝑠

Abs
Γ, 𝑥 ∶𝜓 𝐴 ⊢ 𝑏 ∶𝜃 𝐵

Γ ⊢ (𝜆𝑥 ∶𝜓 𝐴.𝑏) ∶𝜃 (𝑥 ∶𝜓 𝐴) → 𝐵

App
Γ ⊢ 𝐹 ∶𝜃 (𝑥 ∶𝜓 𝐴) → 𝐵 Γ ⊢ 𝑢 ∶𝜓 𝐴

Γ ⊢ 𝐹 •𝜓 𝑢 ∶𝜃 𝐵[𝑢/𝑥]

(where the metasyntactic variable 𝑠 now ranges over the sorts ⋆𝜄 or □𝜄,
for any 𝜄.) To be able to merely forward modalities, we need to extend
the judgment to support arbitrary modalities 𝜑, not just taints 𝜃, as we
do at the beginning of the next section.
We generally omit the modality annotation on applications, because they
are easily inferred from the context. One can embed any derivation from
CC into CCCC simply by using the empty taint everywhere.

3.3 Obliviousness and variable lookup

We extend the typing judgment to support any modality 𝜓 (not just a
taint) as follows:

Definition 1 (Oblivious judgment).

If 𝜓 = (𝜃, 𝜄) then Γ ⊢ 𝐴 ∶𝜓 𝐵 ≝ ⌊Γ⌋𝜄 ⊢ 𝐴 ∶𝜃 𝐵

This captures the intuition that 𝐴 and 𝐵 are oblivious to every color in 𝜄.
Indeed, erasure removes all mentions of 𝑖 from the context Γ for every
𝑖 ∈ 𝜄 (a complete definition and justification of erasure is given in the
following section). In particular, if 𝑥 ∶ 𝐴 ∈ Γ, then Γ ⊢ 𝑥 ∶ 𝑖 ⌊𝐴⌋𝑖; in
words, referencing a variable from an 𝑖-oblivious judgment yields only
a witness of the 𝑖-erased type.
Hence, variable lookup requires equality of taints, not merely inclusion:

Var
⊢ Γ 𝑥 ∶𝜃 𝐴 ∈ Γ

Γ ⊢ 𝑥 ∶𝜃 𝐴

There are two ways to access an 𝑖-oblivious variable 𝑥. First, it is accessi-
ble in an 𝑖-oblivious judgment, as can be seen by expanding Definition 1:

Γ, 𝑥 ∶ 𝑖 𝐴, Δ ⊢ 𝑥 ∶ 𝑖 𝐴 ≝ ⌊Γ⌋𝑖, 𝑥 ∶ 𝐴, ⌊Δ⌋𝑖 ⊢ 𝑥 ∶ 𝐴

61

Second, it can be accessed from an 𝑖-aware judgment, as formalized in
the context-lookup rules:

Start

𝑥 ∶𝜃 𝐴 ∈ Γ, 𝑥 ∶(𝜃,𝜄) 𝐴

Col. Wk
𝑥 ∶𝜃 𝐴 ∈ Γ 𝑖 ∉ 𝜃

𝑥 ∶𝜃 𝐴 ∈ Γ, 𝑖

Wk
𝑥 ∶𝜃 𝐴 ∈ Γ

𝑥 ∶𝜃 𝐴 ∈ Γ, 𝑦 ∶𝜓 𝐵

The Col. Wk rule ensures that 𝑥 is accessible from an 𝑖-aware context
(but not an 𝑖-tainted one), even if it is declared before the introduction the
color 𝑖. The Start rule plays a similar role: 𝑥 can be explicitly oblivious
to any set of colors, it does not change its accessibility.
Consider as an example the following definition, a variant of Leibniz
equality.

𝑥 ≡𝑖
𝑎 𝑦 ≝ (𝑃 ∶𝑖 (𝑧 ∶ 𝑖 𝑎) → ⋆𝑖)→𝑃 𝑥→𝑃 𝑦

One can verify that it is a well-colored type as follows. Let Δ = 𝑎 ∶ ⋆, 𝑥 ∶
𝑎, 𝑦 ∶ 𝑎:

⋮
Δ ⊢ 𝑦 ∶ 𝑎

Definition 1 Δ, 𝑖, … ⊢ 𝑦 ∶ 𝑖 𝑎
App Δ, 𝑖, 𝑃 ∶𝑖 (𝑧 ∶ 𝑖 𝑎) → ⋆𝑖, 𝑞 ∶𝑖 𝑃 𝑥 ⊢ 𝑃 𝑦 ∶ ⋆𝑖Prod

Δ, 𝑖 ⊢ 𝑥 ≡𝑖
𝑎 𝑦 ∶𝑖 ⋆𝑖

With refl𝑖 ≝ 𝜆(𝑃 ∶𝑖 ⋆).𝜆(𝑞 ∶𝑖 𝑃).𝑞, one can also derive 𝑎 ∶ ⋆, 𝑥 ∶ 𝑎, 𝑖 ⊢ refl𝑖 ∶𝑖
𝑥 ≡𝑖

𝑎 𝑥.
In order to use ≡ as an equality, we need to access oblivious variables
from non-oblivious contexts, as we explain in this paragraph. The key
difference between ≡ as defined above and the usual Leibniz equality
here is that we use propositions 𝑃 of type (𝑥 ∶ 𝑖 𝑎) → ⋆𝑖; that is, the
parameter of 𝑃 is 𝑖-oblivious.
Thanks to the context lookup rules, a variable 𝑥 ∶ 𝑖 Bool may be used
even in an 𝑖-aware context, so one can construct a proposition 𝑄𝑖 of the
right type which returns truth if the Boolean is true and falsity otherwise.
Then one can obtain falsity from true ≡Bool false by substituting 𝑄𝑖 for 𝑃.
Assuming a definition Test ∶𝑖 Bool → ⋆𝑖 which does the adequate case
analysis on booleans, one has:

⋮
𝑥 ∶ Bool ∈ 𝑖, 𝑥 ∶ 𝑖 Bool

Var𝑖, 𝑥 ∶ 𝑖 Bool ⊢ 𝑥 ∶ Bool
App 𝑖, 𝑥 ∶ 𝑖 Bool ⊢ Test 𝑥 ∶𝑖 ⋆𝑖

Abs 𝑖 ⊢ 𝜆(𝑥 ∶ 𝑖 Bool).Test 𝑥 ∶𝑖 (𝑥 ∶ 𝑖 Bool) → ⋆𝑖
Def. 𝑖 ⊢ 𝑄𝑖 ∶𝑖 (𝑥 ∶ 𝑖 Bool) → ⋆𝑖

62

3.4 Erasure

Color erasure is defined by structural induction on terms. The effect on
each modality is the following. Applying 𝑖-erasure on an 𝑖-tainted bind-
ing removes it. The 𝑖-erasure of a non 𝑖-tainted binding is the binding of
the erasure. Erasing 𝑖 from an 𝑖-oblivious binding has no effect besides
removing the mention of 𝑖 .
Erasure of product, abstraction and application follows directly from the
behavior on bindings. Erasure preserves all variable occurrences, as well
as sorts. In the following table we sum up all cases. The erasure of
terms which do not mention a modality are show in the first column.
For terms which mention a modality, we show the various cases in vari-
ous columns. The first column shows the case where the color does not
occur anywhere in the modality. The second one shows the case where 𝑖
occurs as a taint. The third one shows the case where the 𝑖 occurs as an
anti-taint.

𝑖 ∉ 𝜓 𝑖 ∈ 𝜓 𝜓 = 𝜑, 𝑖
⌊𝑥⌋𝑖 = 𝑥
⌊𝑠⌋𝑖 = 𝑠

⌊(𝑥 ∶𝜓 𝐴) → 𝐵⌋𝑖 = (𝑥 ∶𝜓 ⌊𝐴⌋𝑖) → ⌊𝐵⌋𝑖 ⌊𝐵⌋𝑖 (𝑥 ∶𝜑 𝐴) → ⌊𝐵⌋𝑖
⌊𝜆𝑥 ∶𝜓 𝐴.𝑏⌋𝑖 = 𝜆𝑥 ∶𝜓 ⌊𝐴⌋𝑖.⌊𝑏⌋𝑖 ⌊𝑏⌋𝑖 𝜆𝑥 ∶𝜑 𝐴.⌊𝑏⌋𝑖

⌊𝐹 •𝜓 𝑎⌋𝑖 = (⌊𝐹⌋𝑖) •𝜓 ⌊𝑎⌋𝑖 ⌊𝐹⌋𝑖 (⌊𝐹⌋𝑖) •𝜑 𝑎

⌊Γ, 𝑥 ∶𝜓 𝐴⌋𝑖 = ⌊Γ⌋𝑖, 𝑥 ∶𝜓 ⌊𝐴⌋𝑖 ⌊Γ⌋𝑖 ⌊Γ⌋𝑖, 𝑥 ∶𝜑 𝐴
⌊Γ, 𝑗⌋𝑖 = ⌊Γ⌋𝑖, 𝑗
⌊Γ, 𝑖⌋𝑖 = Γ

Lemma 1 (Erasure preserves typing). If Γ ⊢ 𝐴 ∶𝜃 𝐵 and 𝑖 ∉ 𝜃 then ⌊Γ⌋𝑖 ⊢
⌊𝐴⌋𝑖 ∶𝜃 ⌊𝐵⌋𝑖.

Proof. By induction on the derivation. The proof relies on the color-
discipline enforced by the typing rules.

This lemma means that erasure makes sense as a meta-level definition.
The precondition is important: erasing 𝑖 makes no sense on an 𝑖-tainted
term; conceptually the whole term would be erased in that case. This
justifies for example the case for sorts in the definition: the precondition
guarantees that erasure will not be applied to a sort ⋆𝑖. In the system, we
use erasure only in situations where this precondition is satisfied.
Erasure is used in the definition of substitution (whose full definition is
given in appendix B): when substituting in an oblivious argument, or in
the type of an oblivious parameter, one needs to erase the substitutee.
For example:

(𝑓 • 𝑖 𝑢)[𝑡/𝑥] = 𝑓 [𝑡/𝑥] • 𝑖 𝑢[⌊𝑡⌋𝑖/𝑥]

63

Note that if 𝑥 is 𝑖-tainted, the type-system prevents any occurrence of 𝑥
in 𝑢, ensuring that the precondition of Lemma 1 is respected.

We have not yet defined how to reduce terms in CCCC, but it is worth
mentioning already that erasure preserves computation. A proof is given
later in Lemma 2 of appendix C.

if 𝐴 ⟶⋆ 𝐵, then ⌊𝐴⌋𝑖 ⟶⋆ ⌊𝐵⌋𝑖, for any color 𝑖.

3.5 Types as predicates

By modulating a judgment with a color 𝑖, a type 𝐵 becomes a predicate
over ⌊𝐵⌋𝑖

4. The erasure of a term 𝐴 of type 𝐵 satisfies the type 𝐵 seen as
a predicate.
The parametric interpretation defined by Bernardy et al. [2010], can be
extended to our theory with colors:

⟦𝑥⟧𝑖 = 𝑥𝑖

⟦𝜆𝑥 ∶𝜓 𝐴.𝑏⟧𝑖 = 𝜆𝑥 ∶𝜓 𝐴.𝜆𝑥𝑖 ∶𝜓,𝑖 𝑥 ∈𝜓 ⟦𝐴⟧𝑖.⟦𝑏⟧𝑖 if 𝑖 ∉ 𝜓
= ⟦𝑏⟧𝑖 if 𝑖 ∈ 𝜓
= 𝜆𝑥 ∶𝜑 𝐴.⟦𝑏⟧𝑖 if 𝜓 = 𝜑, 𝑖

⟦𝐹 •𝜓 𝑎⟧𝑖 = ⟦𝐹⟧𝑖 •𝜓 𝑎 •𝜓,𝑖 ⟦𝑎⟧𝑖 if 𝑖 ∉ 𝜓
= ⟦𝐹⟧𝑖 if 𝑖 ∈ 𝜓
= ⟦𝐹⟧𝑖 •𝜑 𝑎 if 𝜓 = 𝜑, 𝑖

⟦𝑇⟧𝑖 = 𝜆𝑥 ∶𝑖 𝑇.𝑥 ∈ ⟦𝑇⟧𝑖 if 𝑇 is a type

𝐶 ∈𝜓 ⟦𝑠⟧𝑖 = (𝑥 ∶𝜓, 𝑖 𝐶) → 𝑠 if 𝑖 ∉ 𝜓
= 𝑠 if 𝑖 ∈ 𝜓
= (𝑥 ∶𝜑 𝐶) → 𝑠 if 𝜓 = 𝜑, 𝑖

𝐶 ∈𝜓 ⟦(𝑥 ∶𝑖 𝐴) → 𝐵⟧𝑖 =
(𝑥 ∶𝜓 𝐴) → (𝑥𝑖 ∶𝜓,𝑖 𝑥 ∈𝜓 ⟦𝐴⟧𝑖) → (𝐶 •𝜓 𝑥) ∈𝜓 ⟦𝐵⟧𝑖 if 𝑖 ∉ 𝜓

= 𝐶 ∈𝜓 ⟦𝐵⟧𝑖 if 𝑖 ∈ 𝜓
= (𝑥 ∶𝜑 𝐴) → (𝐶 •𝜑 𝑥) ∈𝜑 ⟦𝐵⟧𝑖 if 𝜓 = 𝜑, 𝑖

𝐶 ∈𝜓 ⟦𝑇⟧𝑖 = ⟦𝑇⟧𝑖 •𝜓, 𝑖 ⌊𝑇⌋𝑖 if 𝑇 is not a type

Theorem 1 (Parametricity of closed terms). If ⊢ 𝐴 ∶𝜃 𝐵 and 𝑖 ∉ 𝜃, then

⊢ ⟦𝐴⟧𝑖 ∶𝜃,𝑖 ⟦𝐵⟧𝑖 •𝜃, 𝑖 ⌊𝐴⌋𝑖
4With the exception of terms of sort annotated with that color. For example, ⋆𝑖 ∶𝑖 □𝑖

and not ⋆𝑖 ∶𝑖 ⋆𝑖 → □𝑖. This feature prevents an “infinite descent” into deeper and deeper
predicates.

64

Proof. The proof uses the standard techniques of logical relations, ex-
tended to dependent types by Bernardy et al. [2010].

We wish however not to be limited to closed terms, and want parametric-
ity even on open terms. The presence of colors allows5 to add the follow-
ing rule, which internalizes the reinterpretation of terms as predicates
and proofs.

Param
Γ ⊢ 𝐴 ∶𝜃 𝐵 𝑖 ∉ 𝜃
Γ ⊢ 𝐴 ∶𝜃,𝑖 𝐵 •𝜃, 𝑖 ⌊𝐴⌋𝑖

This rule is a generalization of Theorem 1 and it allows to deduce, within
the calculus, theorems which could only be obtained meta-theoretically
otherwise. However, in this paper, the treatment of logical relations dif-
fers from the usual one: a type is not interpreted as a predicate (via the
above transformation of terms and types ⟦·⟧), but is directly used as such
in an 𝑖-modulated judgment.
In order to use 𝑇 as a predicate we extend reduction rules as follows,
where we recall that 𝑠 ranges over sorts, while 𝑡 ranges over terms.

𝑠𝜃 •𝜑 𝑡 ⟶ (𝑧 ∶𝜑 𝑡) → 𝑠𝜃∪𝜄 (1)
where 𝜑 = (𝜃, 𝜄)

((𝑥 ∶𝜓 𝐴) → 𝐵) •𝜑 𝑡 ⟶ (𝑥 ∶𝜓 𝐴) → (𝐵 •𝜑 𝑡) (2)
if ∃𝑖 such that 𝑖 ∈ 𝜓 and 𝑖 ∈ 𝜑

((𝑥 ∶𝜓 𝐴) → 𝐵) •𝜑 𝑡 ⟶ (𝑥 ∶𝜓 𝐴) → (𝐵 •𝜑 (𝑡 •𝜓 𝑥)) (3)
otherwise

(𝜆𝑥 ∶𝜓 𝐴.𝑏)  •𝜓 𝑡 ⟶ 𝑏[𝑡/𝑥] (4)

• (1): Since a type becomes a predicate, a type of types (a sort) be-
comes a type of predicates. The target sort of the predicate type is
adjusted, in order to obtain a type (and not again a predicate — see
footnote 4).

• (2) and (3): A function 𝑡 satisfies the predicate of a function type
if an argument 𝑥 (which implicitly satisfies the predicate of the
domain 𝐴) is mapped by the function 𝑡 to a value satisfying the
codomain 𝐵. In the case of (2), the modality 𝜑 mandates erasure of
the domain 𝐴, therefore 𝑥 is not given as an argument to 𝑡.

• (4): The 𝛽-reduction is trivially amended to account for colors. The
rules (1,2,3) do not interfere with 𝛽, because they concern other
syntactic forms.

5The issues that one faces when attempting to internalize parametricity in a theory with-
out colors are detailed by Bernardy and Moulin [2012].

65

The cases (1,2,3) agree with the standard interpretation of types as predi-
cates. Bernardy and Moulin [2012], Bernardy et al. [2012] give a detailed
account of logical relations in the presence of dependent types. As an
example, one can check that reduction behaves as expected for the list
concatenation type:

((𝑥𝑠 ∶ List 𝑎) → (𝑦𝑠 ∶ List 𝑎) → List 𝑎) • 𝑖 𝑐
⟶ (𝑥𝑠 ∶ List 𝑎) → ((𝑦𝑠 ∶ List 𝑎) → List 𝑎)  • 𝑖 (𝑐 𝑥𝑠)
⟶ (𝑥𝑠 ∶ List 𝑎) → (𝑦𝑠 ∶ List 𝑎) → List 𝑎  • 𝑖 (𝑐 𝑥𝑠 𝑦𝑠)

3.6 Example

Assume the colors 𝑖 and 𝑗 as well as the context

List𝑖 ∶ (𝑎 ∶𝑖 ⋆𝑖) → ⋆
List𝑗 ∶ (𝑏 ∶𝑗 ⋆𝑗) → ⋆
fold ∶ (𝑎 ∶𝑖 ⋆𝑖) → (𝑏 ∶ ⋆) →

(𝑎 → 𝑏 → 𝑏) → 𝑏 → List𝑖 𝑎 → 𝑏

One can define a variant of the ubiquitous 𝑚𝑎𝑝 function as follows:

𝑚𝑎𝑝 ∶ (𝑎 ∶𝑖 ⋆𝑖) → (𝑏 ∶𝑗 ⋆𝑗) →
(𝑓 ∶𝑗 (𝑥 ∶𝑖 𝑎) → 𝑏) → List𝑖 𝑎 → List𝑗 𝑏

𝑚𝑎𝑝 = 𝜆𝑓 .fold 𝑎 (List𝑗 𝑏) (𝜆 𝑥 𝑥𝑠.more (𝑓  𝑥) 𝑥𝑠) stop

This version of 𝑚𝑎𝑝 is versatile. After erasing 𝑗, the 𝑓 argument disap-
pears and 𝑚𝑎𝑝 becomes a function returning the length of its input. Af-
ter erasing 𝑖, 𝑓 becomes a constant of type 𝑏, the input “list” becomes a
natural number (𝑛), and 𝑚𝑎𝑝 returns a list containing 𝑛 copies of 𝑓 .

3.7 Analysis

In this section we state and prove a number of standard meta-theoretical
results for our calculus. Details can be found in appendix C.

Corollary 1 (Confluence). CCCC has the confluence property.

Proof. A direct consequence of the diamond property and ⟶⋆= ▷⋆.

Lemma 2 (Thinning). Let Γ and Δ be legal contexts such that Γ ⊆ Δ. Then
Γ ⊢ 𝐴 ∶𝜃 𝐵 ⟹ Δ ⊢ 𝐴 ∶𝜃 𝐵.

Proof. As in [Barendregt, 1992, lem. 5.2.12].

66

The generation lemma for PTS can be extended to colored bindings. The
only difficulty is the following. In [Barendregt, 1992], the generation
lemma includes a case for applications. This case is difficult to extend to
our calculus, since application can be done not only on lambda abstrac-
tions, but also on types, when they are used as predicates. Fortunately,
that case is not used in the subject reduction lemma, and therefore we
can omit it from our version of the generation lemma.

Lemma 3 (Generation). The statement is similar to that of [Barendregt, 1992,
lem. 5.2.13]. Points 1. to 4. (constant, variable, product, abstraction) are adapted
in a straightforward manner to colored binding. Point 5. (application) is re-
moved. The following two points are added.

• If Γ ⊢ (𝑠𝜃,𝑖 •𝜃, 𝑖 𝑡) ∶𝜃,𝑖 𝐶, then

Γ ⊢ 𝑡 ∶𝜃, 𝑖 𝑠𝜃 and 𝐶 ≡𝛽 𝑠′
𝜃 with (𝑠, 𝑠′) ∈ 𝒜

• If Γ ⊢ ((𝑥 ∶𝜑 𝐴) → 𝐵) •𝜃, 𝑖 𝑡 ∶𝜃,𝑖 𝐶, then

Γ ⊢ 𝑡 ∶𝜃, 𝑖 ⌊(𝑥 ∶𝜑 𝐴) → 𝐵⌋𝑖 and 𝐶 ≡𝛽 𝑠′
𝜃 with Γ ⊢ (𝑥 ∶𝜑 𝐴) → 𝐵 ∶𝜃 𝑠𝜃

Proof. As in [Barendregt, 1992]: we follow the derivations until 𝑠𝜃,𝑖 (resp.
(𝑥 ∶𝜑 𝐴) → 𝐵) is introduced. It can only be done by the Param rule, and
the conclusion follows from a use of the Thinning Lemma. (An example
of such derivations can be found in figure 1.)

Theorem 2 (Subject reduction). If 𝐴 ⟶ 𝐴′ and Γ ⊢ 𝐴 ∶ 𝑇, then

Γ ⊢ 𝐴′ ∶ 𝑇

Proof. Most of the technicalities of the proof of subject reduction for PTSs
Barendregt [1992] concern 𝛽-reduction, and are not changed by the ad-
dition of colors.
Hence we discuss here only the handling of reduction rules (1) to (3). We
treat first the case of sorts (1):

𝑠𝜃 •𝜑 𝑡 ⟶ (𝑧 ∶𝜑 𝑡) → 𝑠𝜃∪𝜄 (1)
where 𝜑 = (𝜃, 𝜄)

In this case, the Generation Lemma indicates that the derivation tree
must end with an App rule and contain a chain Param-Ax on the left-
hand side of the derivation. A template for such a tree is shown in fig-
ure 1. One can then construct a typing derivation for the reduct, which
ends with the Prod rule, and does not mention Param nor App. The tem-
plate for typing the reduct is also shown in figure 1.

67

⊢ ΓAx Γ ⊢ ⋆ ∶ □Param Γ ⊢ ⋆ ∶𝑖 □ • 𝑖 ⋆
Conv Γ ⊢ ⋆ ∶𝑖 (𝑥 ∶ 𝑖 ⋆) → □𝑖 Γ ⊢ 𝑡 ∶ 𝑖 ⋆

App Γ ⊢ ⋆ • 𝑖 𝑡 ∶𝑖 □𝑖

⟹
⊢ Γ Γ ⊢ 𝑡 ∶ 𝑖 ⋆

Bind ⊢ Γ, 𝑥 ∶ 𝑖 𝑡
Ax Γ, 𝑥 ∶ 𝑖 𝑡 ⊢ ⋆𝑖 ∶𝑖 □𝑖Prod Γ ⊢ (𝑥 ∶ 𝑖 𝑡) → ⋆𝑖 ∶𝑖 □𝑖

Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ ⋆
Prod Γ ⊢ (𝑥 ∶ 𝐴) → 𝐵 ∶ ⋆

Param Γ ⊢ (𝑥 ∶ 𝐴) → 𝐵 ∶𝑖 ⋆ • 𝑖 ⌊(𝑥 ∶ 𝐴) → 𝐵⌋𝑖
Conv Γ ⊢ (𝑥 ∶ 𝐴) → 𝐵 ∶𝑖 ⌊(𝑥 ∶ 𝐴) → 𝐵⌋𝑖 → ⋆𝑖 Γ ⊢ 𝑡 ∶ 𝑖 ⌊(𝑥 ∶ 𝐴) → 𝐵⌋𝑖

App Γ ⊢ ((𝑥 ∶ 𝐴) → 𝐵) • 𝑖 𝑡 ∶𝑖 ⋆𝑖

⟹

Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ ⋆
Param Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶𝑖 ⌊𝐵⌋𝑖 → ⋆𝑖

Γ ⊢ 𝑡 ∶ 𝑖 ⌊(𝑥 ∶ 𝐴) → 𝐵⌋𝑖
App Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 𝑥 ∶ 𝑖 𝐵

App Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 • 𝑖 (𝑡 𝑥) ∶𝑖 ⋆𝑖Prod Γ ⊢ (𝑥 ∶ 𝐴) → 𝐵 • 𝑖 (𝑡 𝑥) ∶𝑖 ⋆𝑖

Figure 1: Proof-reduction templates corresponding to the term-
reductions (1) and (3). The sorts and taint annotations are specialized
to the simplest case to reduce clutter; generalization to arbitrary taints
and sorts is straightforward.

68

Second we treat the case of products (2) and (3).

((𝑥 ∶𝜓 𝐴) → 𝐵) •𝜑 𝑡 ⟶ (𝑥 ∶𝜓 𝐴) → (𝐵 •𝜑 𝑡) (2)
if ∃𝑖 such that 𝑖 ∈ 𝜓 and 𝑖 ∈ 𝜑

((𝑥 ∶𝜓 𝐴) → 𝐵) •𝜑 𝑡 ⟶ (𝑥 ∶𝜓 𝐴) → (𝐵 •𝜑 (𝑡 •𝜓 𝑥)) (3)
otherwise

Again we can use the Generation Lemma to obtain the shape of a deriva-
tion tree of the reducible expression, and obtain a valid typing for the
reduct (also shown in figure 1). In this case the typing of the source in-
volves the chain of rules Param-Prod on the left-hand side of App. The
typing of the reduct ends with Prod.

We have taken the view in our presentation that the reduction rules are
untyped, and therefore subject reduction must recover typings using the
Generation Lemma. An alternative would be to have a typed reduction
relation (this relation usually goes by the name of “judgmental equal-
ity”). In this case the reduction of proof trees shown in figure 1 would
be part of the definition of reduction. The two approaches have been
proved equivalent for arbitrary PTSs by Siles [2010].

Theorem 3 (Normalization). CCCC is strongly normalizing: every sequence
of reductions eventually terminates.

Proof. The new reduction rules, involving Param, are much easier to han-
dle than 𝛽-reduction (rule 4). Indeed, the argument to the application is
not duplicated by these reduction rules.
Hence, one can adapt the proofs of termination of CC to CCCC. At a
high-level, the argument goes as follows. Consider reduction rules (1)
to (3), that we collectively call Param-reductions below. Their effect is
to make the left-hand-side of the •𝜓 operator smaller. This can also be
seen by examining the corresponding typing derivations: the reductions
strictly decrease the size of the tree above the Param rule involved.
Consequently, between each 𝛽-reduction step, there can be only a finite
number of Param-reductions. The question is now: do these Param-
reductions create 𝛽-redexes? The reductions (1) and (2) do not, but (3)
does. However, the new redex is harmless: it lies in an 𝑖-oblivious con-
text, and therefore there is no risk of an (𝑖-aware) Param-reduction to be
created by that redex.
The situation is then that, by importing the proof techniques developed
for CC, one can bound the chains of 𝛽-reductions, and use the above
argument to finitely-bound the Param-reductions occurring between 𝛽-
reduction steps.

69

The above proof is an alternative to that done in earlier work Bernardy
and Moulin [2012], which works by construction a model by translation
into CC. Even though the earlier proof can be adapted to the present
system, we find the above proof more modular, and thus easier to grasp.

3.8 Type-checking with colors

The rules Param and the definition of and oblivious judgment Defini-
tion 1 are not syntax-directed, therefore it may be non-obvious how they
should be used in type-checking. In this subsection we sketch a possible
type-checking algorithm and briefly argue for its soundness. A full de-
scription of the algorithm, together with a completeness proof, is left for
future work.
We assume that the user supplies a term 𝑡, a type 𝑇, a modality 𝜑 and a
context Γ. The task is to reconstruct a derivation of Γ ⊢ 𝑡 ∶𝜑 𝑇.
Most of the implementation of the new rules is realized at the point of
checking a variable (𝑡 = 𝑥). Let us assume that looking up 𝑥 in the con-
text Γ yields 𝑥 ∶𝜓 𝐴.
For each color 𝑖 ∈ Γ we have to take into account its status in 𝜑 and 𝜓.
For simplicity we assume that 𝜑 and 𝜓 contain at most one color; a full
implementation will do the same task for each color independently.

1. 𝑖 ∈ 𝜑. If 𝑖 is not mentioned in 𝜓, then the derivation is the follow-
ing.

𝑥 ∶ 𝐴 ∈ ΓVar Γ ⊢ 𝑥 ∶ 𝐴Lemma 1 ⌊Γ⌋𝑖 ⊢ 𝑥 ∶ ⌊𝐴⌋𝑖Definition 1 Γ ⊢ 𝑥 ∶ 𝑖 ⌊𝐴⌋𝑖

Hence we simply check that 𝑇 = ⌊𝐴⌋𝑖. For 𝑖 ∈ 𝜓, then 𝑥 is not
accessible and type-checking reports failure. For 𝑖 ∈ 𝜓 one needs
only to check 𝑇 = 𝐴.

2. If the judgment is 𝑖-aware (𝜑 = ∅), we have three cases. If 𝑖 ∈ 𝜓,
then 𝑥 is not accessible and type-checking reports failure. Other-
wise, then modalities match and we only need to check 𝑇 = 𝐴.
Notably, if 𝑖 ∈ 𝜓, 𝑥 is more oblivious than required, but this is ac-
cepted by the Start rule, which allows arbitrary extra anti-taints in
the binding of the looked-up variable.

3. If 𝑖 ∈ 𝜑, we have two cases. If 𝑖 ∈ 𝜓, then one simply checks
𝑇 = 𝐴. Otherwise, one must take into account Param, that is, check
𝑇 = 𝐴 • 𝑖 𝑥 instead of 𝑇 = 𝐴.

Lastly, when checking a type used as a predicate, that is a term 𝑡 of the
form (Δ → 𝐵) •𝜓 𝑢 (for any telescope Δ) or 𝑠 •𝜓 𝑢 , we reduce the term 𝑡

70

before checking it. The number of reduction steps is at most |Δ|+1 in the
first case or 1 in the second case: the performance hit is minimal.
As usual in type-checking algorithms, all the equality-tests mentioned
above have to be performed up-to the reduction relation, in order to take
into account the Conv rule. This is done using standard means, for ex-
ample normalizing terms before comparison, which is possible thanks
to Theorem 3.

4 Extensions

4.1 Inductive definitions

The definitions presented in the previous section can be extended to
work on inductive types in a straightforward manner, merely recursively
applying the definitions on the types of each component of the induc-
tive type, as we have done in the examples in section 2. The extension
of a similar system to inductive definitions is described in full detail by
Bernardy et al. [2012]. We conjecture that the addition of inductive defi-
nitions does not compromise any meta-theoretical property.

4.2 Colored pairs

In this section we formally introduce colored pairs, and formalize an ex-
ample presented in section 2: inhabitants of the type (𝑎 ∶ ⋆) → 𝑎 → 𝑎
must be the identity function.
The formation and introduction rules (Sum, Pair) are similar to the usual
rules for dependent pairs, with the difference that the modalities track
that the first component is oblivious to the color while the second com-
ponent is tainted.

Sum
Γ, 𝑥 ∶ 𝑖 𝐴 ⊢ 𝐵 ∶𝑖 𝑠

Γ ⊢ (𝑥 ∶ 𝐴) ×𝑖 𝐵 ∶ 𝑠

Pair
Γ ⊢ 𝑎 ∶ 𝑖 𝐴 Γ ⊢ 𝑏 ∶𝑖 𝐵[𝑎/𝑥]

Γ ⊢ 𝑎,𝑖 𝑏 ∶ (𝑥 ∶ 𝐴) ×𝑖 𝐵

We do not provide special elimination rules for colored pairs. Instead,
erasure and Param play this role. The erasure of a pair yields its first
component if colors match, otherwise it acts structurally.

⌊(𝑥 ∶ 𝐴) ×𝑖 𝐵⌋𝑖 = 𝐴
⌊(𝑥 ∶ 𝐴) ×𝑗 𝐵⌋𝑖 = (𝑥 ∶ ⌊𝐴⌋𝑖) ×𝑗 ⌊𝐵⌋𝑖

⌊𝑎,𝑖 𝑏⌋𝑖 = 𝑎
⌊𝑎,𝑗 𝑏⌋𝑖 = ⌊𝑎⌋𝑖,𝑗 ⌊𝑏⌋𝑖

71

We remark that the property that erasure preserves typing is conserved.
In particular:

if Γ ⊢ 𝑝 ∶ (𝑥 ∶ 𝐴) ×𝑖 𝐵 then ⌊Γ⌋𝑖 ⊢ ⌊𝑝⌋𝑖 ∶ 𝐴

Interpreting a pair as a predicate yields the second component if colors
match, otherwise it acts structurally:

((𝑥 ∶ 𝐴) ×𝑖 𝐵) •𝜓, 𝑖 𝑡 = 𝐵[𝑡/𝑥]
((𝑥 ∶ 𝐴) ×𝑗 𝐵) •𝜓 𝑡 = (𝑥 ∶ 𝐴 •𝜓 ⌊𝑡⌋𝑗) ×𝑗 (𝐵 •𝜓 𝑡)

We can now explain fully formally how one can derive that any function
of type (𝑎 ∶ ⋆) → 𝑎 → 𝑎 is indeed an identity function. Let

Γ ≝ 𝑓 ∶ (𝑎 ∶ ⋆) → 𝑎 → 𝑎, 𝑏 ∶ ⋆, 𝑦 ∶ 𝑏
𝑥 ≡𝑎 𝑦 ≝ (𝑃 ∶ 𝑎 → ⋆) → 𝑃 𝑥 → 𝑃 𝑦

𝑡 ≝ 𝑓  ((𝑥 ∶ 𝑏) ×𝑖 (𝑥 ≡𝑏 𝑦)) (𝑦,𝑖 refl𝑖)

Where ≡ refers to the definition of the previous section. We first check
that (𝑥 ∶ 𝑏) ×𝑖 (𝑥 ≡𝑏 𝑦) is well-colored (and well-sorted):

Γ ⊢ 𝑏 ∶ ⋆Erasure Def. ⌊Γ, 𝑖⌋𝑖 ⊢ 𝑏 ∶ ⋆
Definition 1 Γ, 𝑖 ⊢ 𝑏 ∶ 𝑖 ⋆

Γ, 𝑖, 𝑥 ∶ 𝑖 𝑏 ⊢ 𝑥 ∶ 𝑖 𝑏
Γ, 𝑖, 𝑥 ∶ 𝑖 𝑏 ⊢ (𝑥 ≡𝑏 𝑦) ∶𝑖 ⋆𝑖

Sum Γ, 𝑖 ⊢ (𝑥 ∶ 𝑏) ×𝑖 (𝑥 ≡𝑏 𝑦) ∶ ⋆
And proceed with the main result:

⋮
Γ ⊢ 𝑦 ∶ 𝑏 Γ, 𝑖 ⊢ refl𝑖 ∶𝑖 (𝑦 ≡𝑏 𝑦)

PairΓ, 𝑖 ⊢ (𝑦,𝑖 refl𝑖) ∶ (𝑥 ∶ 𝑏) ×𝑖 (𝑥 ≡𝑏 𝑦)
App Γ, 𝑖 ⊢ 𝑓  ((𝑥 ∶ 𝑏) ×𝑖 (𝑥 ≡𝑏 𝑦)) (𝑦,𝑖 refl𝑖) ∶ ((𝑥 ∶ 𝑏) ×𝑖 (𝑥 ≡𝑏 𝑦))
Def. Γ, 𝑖 ⊢ 𝑡 ∶ (𝑥 ∶ 𝑏) ×𝑖 (𝑥 ≡𝑏 𝑦)

Param Γ, 𝑖 ⊢ 𝑡 ∶𝑖 (⌊𝑡⌋𝑖 ≡𝑏 𝑦)
Erasure Def. Γ, 𝑖 ⊢ 𝑡 ∶𝑖 𝑓  𝑏 𝑦 ≡𝑏 𝑦

An essential component of the trick is that 𝑓 is 𝑖-oblivious. Hence it can-
not distinguish in any way between 𝑖-tainted and non 𝑖-tainted terms,
thus we can pass it a colored pair as its type argument.
The trick generalizes: one is able to derive useful properties about a poly-
morphic term 𝑞 of type 𝐴 by construction of an adequate term 𝑝 of type
(𝑥 ∶ 𝐴) ×𝑖 𝐵 such that ⌊𝑝⌋𝑖 = 𝑞. The construction of 𝑞 involves special-
izing a type parameter to a colored pair type involving the property of
interest.
In fact, by pairing a type 𝐴 with a predicate 𝐵[𝑥], the colored pair type
allows to override the default predicate interpretation of the type 𝐴 with
𝐵[𝑥], for a given specific color.

72

4.3 Abstraction over colors

So far we have assumed that colors were available in the context. In a
complete TTC, a mechanism to abstract over colors should be provided.
At this stage we have thought of colors only as a first-order concept, that
is, we propose only first-order quantification over colors.
As such, color abstraction is a relatively modest, straightforward addi-
tion. We need new syntax for abstraction, quantification, and applica-
tion, as well as a constant color (written 𝟎 in the following) used for era-
sure. A notable feature is that one cannot abstract over a color which
is present in the modality; otherwise the color would escape the scope
where it is introduced. Using 𝑘 to range over color names or 𝟎, the typing
rules are as follows:

Col. Abs
Γ, 𝑖 ⊢ 𝐴 ∶𝜃 𝐵 𝑖 ∉ 𝜃

Γ ⊢ 𝜆𝑖.𝐴 ∶𝜃 ∀𝑖.𝐵

Col. App
Γ ⊢ 𝐴 ∶𝜃 ∀𝑖.𝐵

Γ, 𝑘 ⊢ 𝐴 𝑘 ∶𝜃 𝐵[𝑘/𝑖]

and the reduction rules:

(∀𝑖.𝑇)  •𝜓 𝑡 ⟶ ∀𝑖.𝑇 •𝜓 (𝑡 𝑖)
(𝜆𝑖.𝑡) 𝟎 ⟶ ⌊𝑡⌋𝑖
(𝜆𝑖.𝑡) 𝑗 ⟶ 𝑡[𝑗/𝑖]

Erasure must be extended as well to substitute occurrences of colors as
arguments:

⌊𝑡 𝑖⌋𝑖 = ⌊𝑡⌋𝑖 𝟎
⌊𝑡 𝑖⌋𝑗 = ⌊𝑡⌋𝑗 𝑖
⌊𝑡 𝟎⌋𝑖 = ⌊𝑡⌋𝑖 𝟎

⌊𝜆𝑖. 𝑡⌋𝑗 = 𝜆𝑖.⌊𝑡⌋𝑗

With this extension, the subject reduction property depends on Lemma 1.

5 Discussion and related work

Coq-style erasure. Thanks to Paulin-Mohring [1989], Coq features pro-
gram extraction, which is an erasure of proofs to obtain programs. Such
programs are external entities, that is, they cannot be referred to as an
erasure from the Coq script they originate. This shortcoming is reme-
died in TTC. For the purpose of extraction, Coq separates types from
propositions, using different sorts for each, and allows types to depend
on the existence of proofs (but not their structure). In contrast, in the

73

system we present here, untainted terms cannot even depend on the ex-
istence of a tainted term. It is likely that the two notions of erasure can be
combined in a single system, but we leave the study of that combination
to future work.

Agda-style erasure. A number of systems with modalities for erasure
have been proposed [Pfenning, 2001, Mishra-Linger and Sheard, 2008,
Abel and Scherer, 2012], with the interpretation of irrelevance: types mar-
ked with a special modality (usually written 𝑥 ÷ 𝐴) are understood as
proofs, whose inhabitants are irrelevant for the execution of the pro-
grams.
The system presented here bears some similarity to such systems, but
also presents important differences:

• Our binding form 𝑥 ∶𝑖 𝐴 corresponds to the irrelevant binding 𝑥÷𝐴.

• We have, in addition to irrelevant bindings, the complementary
notion (written 𝑥 ∶ 𝑖 𝐴). This allows us to mix erased terms with
non-erased ones, and choose arbitrarily which version we mean. In
contrast, systems with erasure usually fix a specific view on which
parts of a term is accessible.

• We support an arbitrary number of colors instead of a single one,
which is essential for compositionality and to support 𝑛-ary para-
metricity.

• We focus on erasure instead of irrelevance. Previous authors usu-
ally allow the use of the ex falso quod libet principle on irrelevant
assumptions, while we forbid any use of a tainted variable in a non-
tainted context.

Types for language-based security. Our notion of taint is reminiscent
of that used in language-based security. More precisely, our tainted vari-
ables would correspond to variables at high security levels: tainted vari-
ables may be used only in tainted contexts. The present work can be
seen as a generalization of [Abadi et al., 1999] to dependent types. A
difference is that we use modalities instead of a different type former
for security levels. As a consequence, we do not need a monad to relate
security levels. To our knowledge, the combination of dependent types
and security-levels in a type-system has not been realized before.

Ornaments. Relating variants of dependently-typed programs have been
a concern for a long time. The idea of ornamenting inductive struc-
tures have been proposed to remedy this problem [Évariste Dagand and

74

McBride, 2012]. Here, we instead focus on erasure (let the user specify
an ornamented type and recover the relation with its erasure) instead
of specifying ornamentation of already existing types. This is not much
of a difference in practice, because ornaments typically can only be ap-
plied to a single type. An advantage of colors over ornaments is that
colors integrate natively with existing type-theories, while ornamenta-
tion relies on encodings; additionally we get free equalities when work-
ing with erasures, and colored pairs reveal parametricity properties. The
chief advantage of ornaments is that any algebra can be used to ornament
datatypes, while we are limited to structural relations.
Ko and Gibbons [2011] have shown how to compose ornaments. Compo-
sition is lacking from the system presented here, but we plan to support
it in future extensions of TTC. Indeed, if two terms 𝐴 and 𝐵 share an era-
sure (for example 𝐶 = ⌊𝐴⌋𝑖 = ⌊𝐵⌋𝑗), it means that 𝐴 and 𝐵 are to versions
of 𝐶 ornamented differently. Under the same assumption, it is possible
to automatically construct a term 𝐷 such that ⌊𝐷⌋𝑗 = 𝐴, ⌊𝐷⌋𝑖 = 𝐵, and
⌊𝐷⌋𝑖𝑗 = 𝐶. That is, 𝐷 contains both the ornamentations coming from 𝐴
and 𝐵.

Parametricity. Bernardy and Moulin [2012] (expanded as chapter 1 of
this thesis) have described a calculus which internalizes parametricity,
and have shown that higher dimensions are necessary to nest parametric-
ity. The present work has the same model as the previous one (colors
are dimensions under another name). Besides re-framing dimensions as
colors, which we find allows an easier grasp of intuitions, the present
system features a number of technical simplifications:

1. In the system of Bernardy and Moulin [2012], one has to be explicit
about the number of dimensions that a term has. In contrast, here,
the dimensionality of a term is implicit. Indeed, contexts can be
extended with an arbitrary number of dimensions. This means that
a term can always be used in a context which has more (distinct)
colors, whereas previously an explicit conversion had to take place.
In other words, terms can be seen as infinitely-dimensional; but if
they do not mention a dimension explicitly they behave uniformly
over it. In particular, usual 𝜆-terms are uniform, and parametricity
is a consequence of this uniformity.

2. In this paper, we name dimensions, whereas they are numbered
in Bernardy and Moulin [2012]. The situation is analogous to the
issue of the representation of variables in lambda-calculi. One can
either use explicit names or De Brujin indices, and using names is
usually more convenient.

It is worth underlining that the notion of erasure we employ here is not

75

the same as that of Bernardy and Lasson [2011]. Here, we erase the col-
ored component; whereas Bernardy and Lasson [2011] erase the oblivi-
ous components.
Parametricity has more “standard consequences” such as the deduction
of induction principles. Unfortunately, many of these consequence also
require extensionality (Wadler [2007] gives a complete development).
Since extensionality is not well integrated to type theory (let alone TTC)
at the moment, we cannot derive such constructions, at least not without
postulating extensionality.

Higher-dimensional Equality. Recent work on the interpretation of
the equality-type in intensional type theory suggests that it should be
modeled using higher-dimensional structures [Licata and Harper, 2012].
In the present work we support the definition of higher-dimensional
structures via dependencies on colors. In future work we wish to in-
vestigate whether the presence of colors can help encoding the higher-
dimensional structure of equality.
A potential difficulty is that the structure of equality is simplectic, while
we have here a cubic structure (colors are orthogonal). A simplex is how-
ever easily embedded in a cube, so there are grounds to believe that the
two aspects can eventually be integrated.

6 Conclusion and future work

We have described an extension of type theory with colored terms, a no-
tion of color erasure, and a way to interpret colored types as predicates.
We have shown how that extension provides a new kind of genericity,
and how the coloring discipline enforces invariants when writing pro-
grams. We also shown how to reveal these invariants (by typing the
judgment in another modality) and internalize some parametricity re-
sults.
We detailed extensively a core version of that colored type theory, namely
CCCC. In particular, we proved fundamental properties for that system,
such as Church-Rosser’s, subject-reduction, and strong normalization.
We also implemented some features of CCCC in a prototype we aim to
merge into the main stream Agda proof assistant.
Future work chiefly involves unifying colors as presented here with pre-
vious similar notions. On the implementation side, we aim to complete
our prototype with all the features presented in this paper. Besides,
we would like to investigate the feasibility of inference of color anno-
tations before merging our implementation of TTC into the main branch
of Agda. We will then be able to assess the practical power of TTC. A

76

first step in this direction is the retrofitting of the Agda standard library
to use colors.

Acknowledgements

Many ideas underlying this paper have germinated and matured in dis-
cussions with Thierry Coquand, Simon Huber and Patrik Jansson. We
thank Peter Dybjer, Cezar Ionescu, Nicolas Pouillard and Philip Wadler
as well as anonymous reviewers for useful feedback.
This work has been partially funded by the Swedish Foundation for Strate-
gic Research, under grant RAWFP.

77

78

Chapter 3

A new type theory in color
and its presheaf model

1 Introduction

In chapter 1 we defined (by induction on raw expressions) a meta-operator
⟦·⟧, called the parametric interpretation. If 𝑎 ∶ 𝐴 then the type ⟦𝐴⟧ 𝑎 rep-
resented the associated free theorem, and ⟦𝑎⟧ ∶ ⟦𝐴⟧ 𝑎 a proof of it. On
this basis, we defined a calculus where one can prove internally that each
well-typed term 𝑎 satisfies the parametric interpretation of its type. A
property of the parametric interpretation is that it expands each binding
to a double binding with a new parametricity witness. For instance we
defined ⟦𝜆𝑥 ∶ 𝐴. 𝑏⟧ ≝ 𝜆𝑥 ∶ 𝐴. 𝜆 ̇𝑥 ∶ ⟦𝐴⟧ 𝑥. ⟦𝑏⟧ (hence the parametricity
witness ̇𝑥 of 𝑥 is in scope in ⟦𝑏⟧). However on a free variable 𝑥, the para-
metricity witness ̇𝑥 is not in scope and we defined ⟦𝑥⟧ ≝ ⌈⌈𝑥⌉⌉, where ⌈⌈·⌉⌉ is
a new constructor denoting the parametricity witness of a free variable.
Thanks to the internalization we were able to prove the parametricity
theorem (if Γ ⊢ 𝑎 ∶ 𝐴 then Γ ⊢ ⟦𝑎⟧ ∶ ⟦𝐴⟧ 𝑎) not only as a meta-theorem for
the underlying calculus without the constructor ⌈⌈·⌉⌉ (a Pure Type System
such as the Calculus of Constructions [Coquand and Huet, 1988]), but
also for the new system as an internal application (i.e., we proved that
the type (𝑋 ∶ 𝒰) → (𝑥 ∶ 𝑋) → ⟦𝑋⟧ 𝑥 is inhabited). In other words, para-
metricity itself is parametric. As a consequence, we could nest applications
of the parametric interpretation; in particular taking 𝑡 = 𝜆𝑥 ∶ 𝐴. ⌈⌈𝑥⌉⌉, of
type (𝑥 ∶ 𝐴) → ⟦𝐴⟧ 𝑥, as hinted at in the general introduction (and devel-
oped in page 21 of chapter 1) we obtained the following non-convertible

79

types for the term ⟦𝑡⟧:

(𝑥 ∶ 𝐴) → (̇𝑥 ∶ ⟦𝐴⟧ 𝑥) → ⟦⟦𝐴⟧⟧ 𝑥 ̇𝑥 ⌈⌈𝑥⌉⌉; and (1)
(𝑥 ∶ 𝐴) → (̇𝑥 ∶ ⟦𝐴⟧ 𝑥) → ⟦⟦𝐴⟧⟧ 𝑥 ⌈⌈𝑥⌉⌉ ̇𝑥. (2)

In order to avoid such lack of uniqueness of types, we grouped together
each term with its parametricity witness. That is, instead of the two bind-
ings ⟦𝜆𝑥 ∶ 𝐴. …⟧ = 𝜆𝑥 ∶ 𝐴. 𝜆 ̇𝑥 ∶ ⟦𝐴⟧ 𝑥. …, we bound them together as a
pair: ⟦𝜆𝑥 ∶ 𝐴. …⟧ = 𝜆 ̄𝑥 ∶ (𝑥 ∶ 𝐴) × (⟦𝐴⟧ 𝑥). … (where 𝑥 in the body de-
notes the first components of the pair ̄𝑥, and ̇𝑥 denotes its second compo-
nent). When iterating the parametric interpretation, these pairs become
4-tuples, 8-tuples, etc. Therefore after 𝑛 applications we abstracted over
a 2𝑛-long tuple (which we represented as a 𝑛-dimensional hypercube),
while the parametricity predicate was applied to a (2𝑛 − 1)-long tuple
(which we represented as a 𝑛-dimensional hypercube lacking its bottom-
right vertex). Each vertex was annotated using a bit-vector of length 𝑛:
for instance the previous variables 𝑥 and ̇𝑥 respectively correspond to 𝑥0
and 𝑥1. We can view these variables paired as the two endpoints of a
line. Geometrically, the previous types can be seen as

(𝑥0 𝑥1) ∶ ⟦𝐴⟧ → ⟦⟦𝐴⟧⟧
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥0 𝑥1

⌈⌈𝑥0⌉⌉

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

; and (1)

(𝑥0 𝑥1) ∶ ⟦𝐴⟧ → ⟦⟦𝐴⟧⟧
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑥0 ⌈⌈𝑥0⌉⌉

𝑥1

⎞⎟⎟⎟⎟⎟⎟
⎠

. (2)

Applying parametricity to this pair, the line 𝑥0—𝑥1, yields a square by
duplicating the endpoints 𝑥0 and 𝑥1 respectively into the lines 𝑥00—𝑥10
and 𝑥01—𝑥11, that we can view as the two sides of a square. Similarly,
applying parametricity to a square yields a cube, etc.

𝑥0 𝑥1 𝑥00 𝑥01

𝑥10 𝑥11

𝑥000 𝑥001

𝑥010 𝑥011

𝑥100 𝑥101

𝑥110 𝑥111

In chapter 1 we showed how grouping a term together with its para-
metricity witnesses, and defining a cube rotation operator, allowed us

80

to change the definition of the parametric interpretation in a way that it
preserves types.
An alternative approach, explored in chapter 2, is to name each direction:
instead of having a single parametric interpretation operator ⟦·⟧, we get
one for each name (here writing ⟦·⟧𝑖 for the parametric interpretation at
dimension 𝑖 to emphasize the connection with chapter 1). Nesting is still
allowed, with the restriction that each occurrence of parametricity must
be used with a different name (also called color). For instance the previous
hypercubes would become

𝑥 𝑥𝑖
𝑖 𝑥 𝑥𝑖

𝑥𝑗 𝑥𝑖𝑗

𝑖

𝑗 𝑗

𝑖

𝑥 𝑥𝑖

𝑥𝑗 𝑥𝑖𝑗

𝑥𝑘 𝑥𝑖𝑘

𝑥𝑗𝑘 𝑥𝑖𝑗𝑘

𝑖

𝑗

𝑘

𝑗

𝑖

𝑗

𝑖

𝑖

𝑗

(Were we have labelled each edge with colors, and omitted some color
labels 𝑘 on the cube for the sake of readability.) A feature of this calculus
is that each binding can be annotated with a finite set of colors. Hence
hypercubes no longer need to be constructed explicitly. For instance in-
stead of explicitly binding the above square, we would introduce 4 bind-
ings each annotated with a subset of the color set {𝑖, 𝑗} (the order does not
matter):

𝑥 ∶ 𝐴, 𝑥𝑖 ∶𝑖 ⟦𝐴⟧𝑖 𝑥, 𝑥𝑗 ∶𝑗 ⟦𝐴⟧𝑗 𝑥, and 𝑥𝑖𝑗 ∶𝑖𝑗 ⟦⟦𝐴⟧𝑖⟧𝑗 𝑥𝑥𝑖 𝑥𝑗.

Moreover cube rotation can now be achieved by mere color renaming.
The canonical parametricity witness ⟦𝑎⟧ also needs to be parameterized
with a color; it follows that applying parametricity is now a two-fold
operation: 1. pick a fresh color 𝑖, and 2. apply ⟦·⟧𝑖. Furthermore since
in any given context there are only finitely many colors available (one
for each level of parametricity), this limits how many nested levels of
parametricity there can be in a typeable expression.

In the present chapter we will present a new colored type theory (sec-
tion 2) extending Martin-Löf’s Logical Framework, which internalizes
parametricity (as we show in section 4) and can be seen as a simplifica-
tion and generalization of the systems of chapters 1 and 2. In particular
we introduce a new constructor ⦇·, ·⦈, which we call a ray, pairing a term
(then called the origin of the ray) with its parametricity proof. The use
of the name “ray” is motivated by the correspondence with cubical type
theory [Cohen et al., 2015], as we detail later in this section. Unlike be-
fore, the parametricity proof does not depend on a direction. Instead, a
ray ⦇𝑎, 𝑝⦈ can be applied to a fresh color 𝑖 (we write ⦇𝑎, 𝑝⦈@𝑖 for the ap-
plication) to “specify its direction”, which in the calculus from chapter 2

81

corresponds to forming an 𝑖-labelled edge 𝑎 𝑖— 𝑝 with the ray’s compo-
nents as endpoints. Moreover we have a special symbol ‘𝟎’, which when
applied to a ray yields its origin: ⦇𝑎, 𝑝⦈@𝟎 ≡ 𝑎. The second component
of a ray is the parametricity proof of its origin, and is obtained by ap-
plying another operation ·!: ⦇𝑎, 𝑝⦈! ≡ 𝑝. Furthermore a color 𝑖 can be
abstracted over using the notation ⟨𝑖⟩, and if 𝑢 is a ray then the color 𝜂-
expansion yields 𝑢 ≡ (⟨𝑖⟩𝑢)@𝑖. The canonical parametricity witness of a
given term 𝑎 is (⟨𝑖⟩𝑎)!, which as in the previous paragraph is obtained by
first abstracting over a new color (which yields a ray) and then applying
the parametricity operator ·!.
As we will show in Example 1, these new constructions enable us to prove
the proposition (†) internally. (This is not possible with usual pairs and
projections since the first projection does not commute with application.)

(𝑓 ∶ (𝑋 ∶ 𝒰) → 𝑋 → 𝑋) →
(𝐴 ∶ 𝒰) → (𝑃 ∶ 𝐴 → 𝒰) → (𝑎 ∶ 𝐴) → 𝑃 𝑎 → 𝑃 (𝑓 𝐴 𝑎) (†)

However, unlike previous type theories with internalized parametric-
ity [Bernardy and Moulin, 2012, 2013], the system presented here does not
compute parametricity types: for instance, parametricity conditions are
isomorphic to function types, rather than function types themselves. More
precisely, the binary meta-operator ⟦𝐴⟧ ∋ 𝑎 of chapter 1 (computing para-
metricity predicates) corresponds to the syntactic construction (∀𝑖.𝐴) ∋ 𝑎.
Bernardy et al. [2010] showed that ⊢ ⟦𝑎⟧ ∶ ⟦𝐴⟧ ∋ 𝑎 follows from ⊢ 𝑎 ∶ 𝐴;
in our new calculus the conclusion becomes ⊢ (⟨𝑖⟩𝑎)! ∶ (∀𝑖.𝐴) ∋ 𝑎, but
unlike ⟦𝐴⟧ ∋ 𝑎, the type (∀𝑖.𝐴) ∋ 𝑎 does not compute to the free theorem
associated with 𝑎 ∶ 𝐴. For instance while one has

⟦(𝑥 ∶ 𝐴) → 𝐵⟧ ∋ 𝑓 = (𝑥 ∶ 𝐴) → (̇𝑥 ∶ ⟦𝐴⟧ ∋ 𝑥) → ⟦𝐵⟧ ∋ (𝑓 𝑥)

in the system of chapter 1, in our new system the corresponding type
(∀𝑖.((𝑥 ∶ 𝐴) → 𝐵)) ∋ 𝑓 does not reduce to an iterated dependent product
(in fact it does not reduce at all). As we show in section 4, this does not
appear to be a problem in practice.
Furthermore unlike for the previous chapters, we provide (in section 5)
a denotational semantics, in the form of a presheaf model, for this type
theory. This model is a refinement of the presheaf semantics used to
interpret nominal sets with restrictions [Bezem et al., 2013, Pitts, 2014].
Cubical type theory [Cohen et al., 2015] is closely related to our type
theory, but there are some differences. The first difference is that our
theory is about unary predicates (although as we argue in section 4, our
system generalizes to binary parametricity), whereas cubical type theory
is about binary relations. However, we could consider a unary version
of cubical type theory, and use the notation Ray for the unary version of

82

the Path constructor of cubical type theory. Ray would then come with
the following inference rules:

Γ ⊢ 𝐴 Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ Ray𝐴 𝑎

Γ ⊢ 𝐴 Γ, 𝑖 ⊢ 𝑎 ∶ 𝐴
Γ ⊢ ⟨𝑖⟩𝑎 ∶ Ray𝐴 𝑎(𝑖 𝟎)

Γ ⊢ 𝑡 ∶ Ray𝐴 𝑎 Γ ⊢ 𝑖
Γ ⊢ 𝑡@𝑖 ∶ 𝐴

Γ ⊢ 𝑡 ∶ Ray𝐴 𝑎
Γ ⊢ 𝑡@𝟎 ≡ 𝑎 ∶ 𝐴

The type Ray𝐴 𝑎 is analogous to our parametricity type (∀𝑖.𝐴) ∋ 𝑎. For
instance in both cases applying the special symbol ‘𝟎’ to a ray yields its
origin. However in our system the formation rules differ in that a color
is bound in the type 𝐴 as well. Indeed the corresponding rules would be

Γ ⊢ 𝐴 Γ ⊢ 𝑎 ∶ 𝐴@𝟎
Γ ⊢ 𝐴 ∋ 𝑎

Γ, 𝑖 ⊢ 𝐴 Γ, 𝑖 ⊢ 𝑎 ∶ 𝐴
Γ ⊢ (⟨𝑖⟩𝑎)! ∶ (∀𝑖.𝐴) ∋ 𝑎(𝑖 𝟎)

Γ ⊢ 𝑡 ∶ ∀𝑖.𝐴 𝑖 ∉ Γ
Γ, 𝑖 ⊢ 𝑡@𝑖 ∶ 𝐴

Γ ⊢ 𝑡 ∶ ∀𝑖.𝐴
Γ ⊢ 𝑡@𝟎 ∶ 𝐴(𝑖 𝟎)

It is not clear how to prove Example 1 with the version from cubical type
theory, because our method heavily relies on our Pair-Pred rule which
requires a bound color in the type.

2 Syntax and typing rules

In this section we define the syntax and typing rules of our paramet-
ric type theory. We proceed step by step, starting with the underlying
type theory (section 2.1), on top of which we later add the nominal (sec-
tion 2.2) then parametric (section 2.3) fragments. We formally present
our system in section 2.4; the raw syntax and typing rules can respec-
tively be found in Definitions 1 and 2.

2.1 Underlying type theory

We consider Martin-Löf’s Logical Framework [Nordström et al., 1990]
(with an untyped conversion instead of equality judgments), a minimal
type theory with one universe of small types and dependent function
types. We formulate our presentation à la Russel, in that we use the same
notation for the codes for small types and the types themselves.
We consider three kinds of judgments, respectively expressing the cor-
rectness of contexts, correctness of types and well-typeness of terms.

Γ ⊢ Γ ⊢ 𝐴 Γ ⊢ 𝑡 ∶ 𝐴

83

The raw syntax of expressions and context are given by

Expr ∋ 𝐴, 𝐵, 𝑡, 𝑢 ≝ 𝒰 universe of small types
∣ (𝑥 ∶ 𝐴) → 𝐵 dependent function space
∣ 𝑡 𝑢 application
∣ 𝜆(𝑥 ∶ 𝐴).𝑡 abstraction
∣ 𝑥 variable

Ctx ∋ Γ ≝ ♢ empty context
∣ Γ, 𝑥 ∶ 𝐴 context extension

The typing judgments are
Γ ⊢

Empty

♢ ⊢

Ext
Γ ⊢ Γ ⊢ 𝐴

Γ, 𝑥 ∶ 𝐴 ⊢

Γ ⊢ 𝐴

Universe
Γ ⊢

Γ ⊢ 𝒰

Prod
Γ ⊢ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵

Γ ⊢ (𝑥 ∶ 𝐴) → 𝐵

Small
Γ ⊢ 𝐴 ∶ 𝒰

Γ ⊢ 𝐴

Γ ⊢ 𝑎 ∶ 𝐴

Conv
Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝐵 𝐴 ≡ 𝐵

Γ ⊢ 𝑡 ∶ 𝐵

Var
Γ ⊢ 𝐴

Γ, 𝑥 ∶ 𝐴, Δ ⊢ 𝑥 ∶ 𝐴

Abs
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵

Γ ⊢ 𝜆(𝑥 ∶ 𝐴).𝑡 ∶ (𝑥 ∶ 𝐴) → 𝐵

App
Γ ⊢ 𝑡 ∶ (𝑥 ∶ 𝐴) → 𝐵 Γ ⊢ 𝑢 ∶ 𝐴

Γ ⊢ 𝑡 𝑢 ∶ 𝐵[𝑥 ↦ 𝑢]

Prod-𝒰
Γ ⊢ 𝐴 ∶ 𝒰 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝒰

Γ ⊢ (𝑥 ∶ 𝐴) → 𝐵 ∶ 𝒰

The equality used in Conv is defined as the smallest congruence contain-
ing the following 𝛽- and 𝜂-equalities:

𝛽
(𝜆(𝑥 ∶ 𝐴).𝑡) 𝑢 ≡ 𝑡[𝑥 ↦ 𝑢]

𝜂
𝑡 ≡ 𝜆(𝑥 ∶ 𝐴).(𝑡 𝑥)

84

Where 𝑡[𝑥 ↦ 𝑢] denotes the term 𝑡 where the variable 𝑥 is substituted by
the term 𝑢. Substitution is a meta-operation defined on the raw syntax
in Definition 4.

2.2 Nominal extension

We assume a countably infinite set 𝕀 of symbols, which we also some-
times call colors following [Bernardy and Moulin, 2013], and extend the
type theory presented in the previous section with new syntactic con-
structions for color binders and color application.
The main innovation of the type theory presented here is that terms may
depend on (a finite number of) colors.
We further assume a special symbol 𝟎 ∉ 𝕀. The metasyntactic variables
𝑖, 𝑗, … range over colors, while 𝜑 range over 𝕀 ∪ {𝟎}. The postfix meta-
operator (𝑖 𝜑) denotes substitution of the color 𝑖 by 𝜑 (if 𝜑 ∈ 𝕀) or erasure
of the color 𝑖 (if 𝜑 = 𝟎). It is defined by induction on the raw syntax in
Definition 5.

Expr ∋ 𝐴, 𝑡 ≝ …
∣ ∀𝑖.𝐴 color product
∣ 𝑡@𝜑 color application
∣ ⟨𝑖⟩𝑡 color abstraction

Ctx ∋ Γ ≝ …
∣ Γ, 𝑖 color context extension

ColExt
Γ ⊢

Γ, 𝑖 ⊢

ColPi
Γ, 𝑖 ⊢ 𝐴

Γ ⊢ ∀𝑖.𝐴

ColAbs
Γ, 𝑖 ⊢ 𝑡 ∶ 𝐴

Γ ⊢ ⟨𝑖⟩𝑡 ∶ ∀𝑖.𝐴

ColPi-𝒰
Γ, 𝑖 ⊢ 𝐴 ∶ 𝒰

Γ ⊢ ∀𝑖.𝐴 ∶ 𝒰

ColApp
Γ, ⃗𝚥 ⊢ 𝑡 ∶ ∀𝑖.𝐴 𝑖 ∉ Γ, ⃗𝚥

Γ, 𝑖, ⃗𝚥 ⊢ 𝑡@𝑖 ∶ 𝐴

ColApp-Orig
Γ ⊢ 𝑡 ∶ ∀𝑖.𝐴

Γ ⊢ 𝑡@𝟎 ∶ 𝐴(𝑖 𝟎)

Remark 1. The special symbol 𝟎 can only be used as argument in a color appli-
cation; color names can only be used in color bindings or as argument in a color
application: in particular ⟨𝑖⟩𝑖 violates the syntax. Furthermore, color applica-
tion is linear, in the sense that applying the same color twice (such as in 𝑡@𝑖@𝑖)

85

yields an ill-typed term. Linearity is enforced by the ColApp rule: the color
being applied must be fresh in the conclusion. ⃗𝚥 denotes a list of colors 𝑗1, …, 𝑗𝑛.
Allowing the fresh color 𝑖 to be introduced before ⃗𝚥 enables color swapping; for
instance if Γ ⊢ 𝑡 ∶ ∀𝑖.∀𝑗.𝐴 then one can derive both Γ ⊢ ⟨𝑗⟩⟨𝑖⟩𝑡@𝑖@𝑗 ∶ ∀𝑗.∀𝑖.𝐴
and Γ ⊢ ⟨𝑖⟩⟨𝑗⟩𝑡@𝑖@𝑗 ∶ ∀𝑗.∀𝑖.𝐴.

We call any term of type ∀𝑖.𝐴, such as ⟨𝑖⟩𝑡, a ray. If 𝑡 is a ray we then
say that the term 𝑡@𝟎 is its origin; applying a ray to a color can be seen as
“specifying its direction”. For instance if 𝑡 ∶ ∀𝑖.𝐴 then its origin 𝑡@𝟎 and
the terms 𝑡@𝑗 and 𝑡@𝑘 (respectively of type 𝐴(𝑖 𝟎), 𝐴(𝑖 𝑗) and 𝐴(𝑖 𝑘)) can
be seen geometrically as

𝑡@𝟎
𝑗

𝑘

𝑡@𝑗

𝑡@
𝑘

The conversion definition is amended by the addition of the following 𝛽-
and 𝜂-equalities for colors.

Col-𝛽
(⟨𝑖⟩𝑡)@𝜑 ≡ 𝑡(𝑖 𝜑)

Col-𝜂
𝑡 ≡ ⟨𝑖⟩(𝑡@𝑖)

We remark that since color substitution does not add any redex, unlike
the usual 𝛽-reduction the colored version does not introduce any termi-
nation difficulty.

2.3 Parametric extension

As explained in the introduction, we introduce a new syntactic construc-
tion (in fact a new kind of ray) ⦇𝑎, 𝑝⦈ to pair any term 𝑎 with its para-
metricity witness 𝑝. We also introduce a new postfix constructor ·! cor-
responding to the second projection for such pairs: ⦇𝑎, 𝑝⦈! ≡ 𝑝. The first
projection is obtained by applying the special symbol 𝟎: ⦇𝑎, 𝑝⦈@𝟎 ≡ 𝑎.
Reynolds associates each type with a predicate. Here, each type is asso-
ciated not with a single predicate, but with a predicate for every color.
By making the new pair constructor a term former for our color product,
we are able to distinguish between multiple applications of parametricity
using color abstraction and application. Furthermore the linear property
of ColApp forces nested applications of parametricity to be used with dif-
ferent colors. As shown in the introduction, this property is crucial for a
system where parametricity can be nested.

86

Expr ∋ 𝐴, 𝑃, 𝑎, 𝑝, 𝑢 ≝ …
∣ ⦇𝑎, 𝑝⦈ colored pair
∣ 𝑃 ∋ 𝑎 parametricity type
∣ 𝑢! parametricity proof
∣ Ψ𝐴𝑃 parametricity predicate
∣ Φ𝑡𝑢 parametricity function

The origin of the ray ⦇𝑎, 𝑝⦈ ∶ ∀𝑖.𝐴 is its first component 𝑎. If 𝑎 ∶ 𝐴(𝑖 𝟎),
then a ray from 𝑎 is any 𝑝 ∶ (∀𝑖.𝐴) ∋ 𝑎; they can be paired to form the ray
⦇𝑎, 𝑝⦈ of origin 𝑎.
While we have a single notion of rays, it really hides three kinds of ob-
jects (“term-rays”, “type-rays” and “function-rays”) used respectively for
parametricity proofs, types and functions.

• ·! takes a ray 𝑢 ∶ ∀𝑖.𝐴 and forms a ray from its origin 𝑢@𝟎 ∶ 𝐴(𝑖 𝟎);

• Ψ takes the parametric interpretation of a type 𝐴 (i.e., a predicate
𝑃 ∶ 𝐴 → 𝒰) and forms a ray from 𝐴; and

• Φ takes the parametric interpretation of a dependent function

𝑡 ∶ (𝑥 ∶ 𝐴(𝑖 𝟎)) → 𝐵(𝑖 𝟎),

i.e., a function of rays

𝑢 ∶ (𝑥 ∶ ∀𝑖.𝐴) → (∀𝑖.𝐵[𝑥 ↦ 𝑥@𝑖]) ∋ 𝑡 (𝑥@𝟎),

and forms a ray from 𝑡.

One may remark that the constructors Ψ and Φ are respectively remi-
niscent of the parametricity clauses for sorts and functions types. We
represent the rays ⦇𝑢@𝟎, 𝑢!⦈, ⦇𝐴, Ψ𝐴𝑃⦈, and ⦇𝑡, Φ𝑡𝑢⦈ as follows. The dot
represents a term (resp. type), while the line represents its parametricity
proof (resp. predicate) for an arbitrary dimension.

𝑢!

𝑢@𝟎

Ψ𝐴𝑃

𝐴

Φ𝑡𝑢

𝑡

These rays are typed using In-Abs followed by Param, In-Pred and In-
Fun, respectively.

87

Remark 2. Unlike the systems of Bernardy et al. [2010] or Bernardy and Moulin
[2012], we have constructors for parametricity types, predicates or functions,
rather than a meta-operator. For instance with the earlier calculi one would ob-
tain

⊢ ⟦𝑓 ⟧ ∶ ⟦(𝑥 ∶ 𝐴) → 𝐵⟧ ∋ 𝑓 = (𝑥 ∶ 𝐴) → (̇𝑥 ∶ ⟦𝐴⟧ ∋ 𝑥) → ⟦𝐵⟧ ∋ (𝑓 𝑥)

from ⊢ 𝑓 ∶ (𝑥 ∶ 𝐴) → 𝐵, and

⊢ ⟦𝑃⟧ ∶ ⟦𝐴 → 𝒰⟧ ∋ 𝑃 = (𝑥 ∶ 𝐴) → (̇𝑥 ∶ ⟦𝐴⟧ ∋ 𝑥) → 𝑃 𝑥 → 𝒰

from ⊢ 𝑃 ∶ 𝐴 → 𝒰 . In other words, the types ⟦(𝑥 ∶ 𝐴) → 𝐵⟧ ∋ 𝑓 and
⟦𝐴 → 𝒰⟧ ∋ 𝑃 compute to the free theorem associated with 𝑓 ∶ (𝑥 ∶ 𝐴) → 𝐵 and
𝑃 ∶ 𝐴 → 𝒰 , respectively.
However, in our new system the corresponding types, respectively (∀𝑖.((𝑥 ∶
𝐴) → 𝐵)) ∋ 𝑓 and ∀𝑖.(𝐴 → 𝒰) ∋ 𝑃, do not compute. But as we will show in
section 4.2 these types are isomorphic (Definition 6) to the aforementioned free
theorems.

Out
Γ ⊢ ∀𝑖.𝐴 Γ ⊢ 𝑎 ∶ 𝐴(𝑖 𝟎)

Γ ⊢ (∀𝑖.𝐴) ∋ 𝑎

Out-𝒰
Γ ⊢ ∀𝑖.𝐴 ∶ 𝒰 Γ ⊢ 𝑎 ∶ 𝐴(𝑖 𝟎)

Γ ⊢ (∀𝑖.𝐴) ∋ 𝑎 ∶ 𝒰

In-Pred
Γ ⊢ 𝐴 ∶ 𝒰 Γ ⊢ 𝑃 ∶ 𝐴 → 𝒰

Γ ⊢ Ψ𝐴𝑃 ∶ (∀𝑖.𝒰) ∋ 𝐴

In-Fun
Γ ⊢ 𝑡 ∶ (𝑥 ∶ 𝐴(𝑖 𝟎)) → 𝐵(𝑖 𝟎)

Γ ⊢ 𝑢 ∶ (𝑥 ∶ ∀𝑖.𝐴) → (∀𝑖.𝐵[𝑥 ↦ 𝑥@𝑖]) ∋ 𝑡 (𝑥@𝟎)
Γ ⊢ Φ𝑡𝑢 ∶ (∀𝑖.((𝑥 ∶ 𝐴) → 𝐵)) ∋ 𝑡

In-Abs
Γ ⊢ 𝑎 ∶ 𝐴(𝑖 𝟎) Γ ⊢ 𝑝 ∶ (∀𝑖.𝐴) ∋ 𝑎

Γ ⊢ ⦇𝑎, 𝑝⦈ ∶ ∀𝑖.𝐴

Param
Γ ⊢ 𝑢 ∶ ∀𝑖.𝐴

Γ ⊢ 𝑢! ∶ (∀𝑖.𝐴) ∋ 𝑢@𝟎

One can pair Ψ𝐴𝑃 (resp. Φ𝑡𝑢) with 𝐴 (resp. 𝑡) to obtain a ray. For conve-
nience we define the two following macros:

𝐴⨝ 𝑃 ≝ ⦇𝐴, Ψ𝐴𝑃⦈ ⦉𝑡, 𝑢⦊ ≝ ⦇𝑡, Φ𝑡𝑢⦈

Remark 3. We could have defined ·⨝ · and ⦉·, ·⦊ as syntactic constructors in-
stead of Ψ and Φ, at the expense of additional term formers for rays and equal-
ities between rays. Instead, we derive the two following introduction rules for

88

our new macros:
In-Abs-Pred
Γ ⊢ 𝐴 ∶ 𝒰 Γ ⊢ 𝑃 ∶ 𝐴 → 𝒰

Γ ⊢ 𝐴⨝ 𝑃 ∶ ∀𝑖.𝒰

In-Abs-Fun
Γ ⊢ 𝑡 ∶ (𝑥 ∶ 𝐴(𝑖 𝟎)) → 𝐵(𝑖 𝟎)

Γ ⊢ 𝑢 ∶ (𝑥 ∶ ∀𝑖.𝐴) → (∀𝑖.𝐵[𝑥 ↦ 𝑥@𝑖]) ∋ 𝑡 (𝑥@𝟎)
Γ ⊢ ⦉𝑡, 𝑢⦊ ∶ ∀𝑖.((𝑥 ∶ 𝐴) → 𝐵)

(In-Abs-Pred and In-Pred are interdefinable, and so are In-Abs-Fun and In-
Fun.)

Proof.

In-Abs-Pred. By In-Pred we get Γ ⊢ Ψ𝐴𝑃 ∶ (∀𝑖.𝒰) ∋ 𝐴, and by In-Abs
we deduce Γ ⊢ ⦇𝐴, Ψ𝐴𝑃⦈ ∶ ∀𝑖.𝒰 .

In-Abs-Fun. We get Γ ⊢ Φ𝑡𝑢 ∶ (∀𝑖.(𝐴 → 𝐵)) ∋ 𝑡 by applying In-Fun on
the premises, and deduce Γ ⊢ ⦇𝑡, Φ𝑡𝑢⦈ ∶ ∀𝑖.(𝐴 → 𝐵) from In-Abs.

We also define macros for when a ray is applied to a color:

⦇𝑎 ,𝑖 𝑝⦈ ≝ ⦇𝑎, 𝑝⦈@𝑖 𝐴⨝𝑖 𝑃 ≝ (𝐴⨝ 𝑃)@𝑖 ⦉𝑡 ,𝑖 𝑢⦊ ≝ ⦉𝑡, 𝑢⦊@𝑖

Finally, we extend the definition of the conversion ≡. Since the origin
of the ray ⦇𝑎, 𝑝⦈ is 𝑎, ·@𝟎 is the first projection. Similarly, ·! is the second
projection, since the parametricity witness for the first component is the
second component. We also have 𝜂-expansion on rays.

Pair-Orig
⦇𝑎, 𝑝⦈@𝟎 ≡ 𝑎

Pair-Param
⦇𝑎, 𝑝⦈! ≡ 𝑝

Surj-Param
⦇𝑎@𝟎, 𝑎!⦈ ≡ 𝑎

Surj-Type
Ψ𝑇@𝟎(𝜆(𝑥 ∶ 𝑇@𝟎). (∀𝑖.𝑇@𝑖) ∋ 𝑥) ≡ 𝑇!

Surj-Fun
Φ𝑡@𝟎(𝜆(𝑥 ∶ ∀𝑖.𝐴). (⟨𝑖⟩(𝑡@𝑖)(𝑥@𝑖))!) ≡ 𝑡!

𝐴⨝ 𝑃 forms a ray obtained by pairing the type 𝐴 with its parametric-
ity theorem 𝑃, while · ∋ 𝑎 destroys a ray and applies its parametricity
theorem to 𝑎. Therefore combining the two merely yields 𝑃 𝑎. Similarly,
⦉𝑡, 𝑢⦊ forms a ray obtained by pairing a function with its parametricity
theorem (represented as a function of rays). Therefore applying the ray
to an argument distributes the application over the pair of functions.

Pair-Pred
(∀𝑖.(𝐴⨝𝑖 𝑃)) ∋ 𝑎 ≡ 𝑃 𝑎

Pair-App
⦉𝑡 ,𝑖 𝑢⦊ (𝑎@𝑖) ≡ ⦇𝑡 (𝑎@𝟎) ,𝑖 𝑢𝑎⦈

89

Remark 4. One might think that we could define Φ𝑡𝑢 as the term

⟨𝑖⟩𝜆(𝑥 ∶ 𝐴). ⦇𝑡 𝑥 ,𝑖 𝑢(⟨𝑖⟩𝑥)⦈.

However this term is ill-typed due the double color binding ⟨𝑖⟩: indeed, one
cannot derive 𝑖, 𝑥 ∶ 𝐴 ⊢ ⟨𝑖⟩𝑥 ∶ ∀𝑖.𝐴.

Remark 5. We derive the following rules:
In-Abs-Pred’
Γ ⊢ 𝐴 ∶ 𝒰 Γ ⊢ 𝑃 ∶ 𝐴 → 𝒰

Γ ⊢ ∀𝑖.𝐴⨝𝑖 𝑃 ∶ 𝒰

In-Abs’
Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝑝 ∶ 𝑃 𝑎

Γ ⊢ ⦇𝑎, 𝑝⦈ ∶ ∀𝑖.𝐴⨝𝑖 𝑃

In-Abs𝑖
𝑖 ∉ Γ Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝑝 ∶ 𝑃 𝑎

Γ, 𝑖 ⊢ ⦇𝑎 ,𝑖 𝑝⦈ ∶ 𝐴⨝𝑖 𝑃

In-Abs-Fun𝑖
𝑖 ∉ Γ Γ ⊢ 𝑡 ∶ 𝐴(𝑖 𝟎) → 𝐵(𝑖 𝟎)

Γ ⊢ 𝑢 ∶ (𝑥 ∶ ∀𝑖.𝐴) → (∀𝑖.𝐵[𝑥 ↦ 𝑥@𝑖]) ∋ 𝑡 (𝑥@𝟎)
Γ, 𝑖 ⊢ ⦉𝑡 ,𝑖 𝑢⦊ ∶ 𝐴 → 𝐵

Proof.

In-Abs-Pred’. In-Abs-Pred gives Γ ⊢ 𝐴⨝ 𝑃 ∶ ∀𝑖.𝒰 , hence Γ, 𝑖 ⊢ 𝐴⨝𝑖 𝑃 ∶
𝒰 by ColApp, and Γ ⊢ ∀𝑖.𝐴⨝𝑖 𝑃 ∶ 𝒰 follows by ColPi-𝒰 .

In-Abs’. We remark by Pair-Orig that 𝐴 ≡ ⦇𝐴, Ψ𝐴𝑃⦈@𝟎 = (𝐴⨝ 𝑃)@𝟎,
and Pair-Pred gives that 𝑃 𝑎 ≡ (∀𝑖.(𝐴⨝𝑖 𝑃)) ∋ 𝑎. Hence by Conv we
respectively get Γ ⊢ 𝑎 ∶ ⦇𝐴, Ψ𝐴𝑃⦈@𝟎 and Γ ⊢ 𝑝 ∶ (∀𝑖.(𝐴⨝𝑖 𝑃)) ∋ 𝑎. We
finally deduce Γ ⊢ ⦇𝑎, 𝑝⦈ ∶ ∀𝑖.(𝐴⨝𝑖 𝑃) by In-Abs.

In-Abs𝑖. Direct consequence of In-Abs’ and ColApp.

In-Abs-Fun𝑖. Direct consequence of In-Abs-Fun and ColApp.

Before making the syntax more formal, we start with an example and
note that we can already prove parametricity for the polymorphic iden-
tity. (Which does not come as a surprise since as shown in the introduc-
tion, introducing pairing is not necessary for this example.)

Example 1. The type

(𝑓 ∶ (𝑋 ∶ 𝒰) → 𝑋 → 𝑋) →
(𝐴 ∶ 𝒰) → (𝑃 ∶ 𝐴 → 𝒰) → (𝑎 ∶ 𝐴) → 𝑃 𝑎 → 𝑃 (𝑓 𝐴 𝑎)

is inhabited.
Let Γ be a context with

90

• 𝑓 ∶ (𝑋 ∶ 𝒰) → 𝑋 → 𝑋;
• 𝐴 ∶ 𝒰 ;
• 𝑃 ∶ 𝐴 → 𝒰 ;
• 𝑎 ∶ 𝐴; and
• 𝑝 ∶ 𝑃 𝑎.

We now show how to construct a term of type 𝑃 (𝑓 𝐴 𝑎) in context Γ.
We deduce from In-Abs-Pred and ColApp that Γ, 𝑖 ⊢ 𝐴⨝𝑖 𝑃 ∶ 𝒰 . Furthermore
In-Abs𝑖 gives that Γ, 𝑖 ⊢ ⦇𝑎 ,𝑖 𝑝⦈ ∶ 𝐴⨝𝑖 𝑃. Thus by App and ColAbs we get
Γ ⊢ ⟨𝑖⟩(𝑓 (𝐴⨝𝑖 𝑃) ⦇𝑎 ,𝑖 𝑝⦈) ∶ ∀𝑖.(𝐴⨝𝑖 𝑃), then by Param and Col-𝛽

Γ ⊢ (⟨𝑖⟩(𝑓 (𝐴⨝𝑖 𝑃) ⦇𝑎 ,𝑖 𝑝⦈))! ∶ (∀𝑖.(𝐴⨝𝑖 𝑃)) ∋ (𝑓 (𝐴⨝𝑖 𝑃) ⦇𝑎 ,𝑖 𝑝⦈)(𝑖 𝟎)

Now by definition and Pair-Orig

(𝑓 (𝐴⨝𝑖 𝑃) ⦇𝑎 ,𝑖 𝑝⦈)(𝑖 𝟎) = 𝑓 (𝑖 𝟎) (𝐴⨝𝑖 𝑃)(𝑖 𝟎) ⦇𝑎 ,𝑖 𝑝⦈(𝑖 𝟎) = 𝑓 𝐴 𝑎,

thus by Pair-Pred ((∀𝑖.(𝐴⨝𝑖 𝑃)) ∋ (𝑓 (𝐴⨝𝑖 𝑃) ⦇𝑎 ,𝑖 𝑝⦈)(𝑖 𝟎)) ≡ 𝑃 (𝑓 𝐴 𝑎).
We therefore conclude by Conv, that

Γ ⊢ (⟨𝑖⟩(𝑓 (𝐴⨝𝑖 𝑃) ⦇𝑎 ,𝑖 𝑝⦈))! ∶ 𝑃 (𝑓 𝐴 𝑎)

(We reuse this method, namely introducing a new color with ⟨𝑖⟩ and instancing
the polymorphic function at type ·⨝𝑖 ·, in the other examples of this chapter.)

2.4 Full system

We now formally define our system by giving its raw syntax (Defini-
tion 1) and typing judgments (Definition 2). We also define the untyped
conversion (Definition 3), as well as variable and color substitutions (Def-
initions 4 and 5).

Definition 1 (Raw syntax).

Expr ∋ 𝐴, 𝐵, 𝑃, 𝑡, 𝑢, 𝑎, 𝑝 ≝ 𝒰 universe of small types
∣ (𝑥 ∶ 𝐴) → 𝐵 dependent function space
∣ 𝑡 𝑢 application
∣ 𝜆(𝑥 ∶ 𝐴).𝑡 abstraction
∣ 𝑥 variable

∣ ∀𝑖.𝐴 color product
∣ 𝑡@𝜑 color application
∣ ⟨𝑖⟩𝑡 color abstraction

91

∣ ⦇𝑎, 𝑝⦈ colored pair
∣ 𝑃 ∋ 𝑎 parametricity type
∣ 𝑢! parametricity proof
∣ Ψ𝐴𝑃 parametricity predicate
∣ Φ𝑡𝑢 parametricity function

Ctx ∋ Γ ≝ ♢ empty context
∣ Γ, 𝑥 ∶ 𝐴 context extension

∣ Γ, 𝑖 color context extension

Definition 2 (Typing judgments).
Γ ⊢

Empty

♢ ⊢

Ext
Γ ⊢ Γ ⊢ 𝐴

Γ, 𝑥 ∶ 𝐴 ⊢

ColExt
Γ ⊢

Γ, 𝑖 ⊢

Γ ⊢ 𝐴
Universe

Γ ⊢
Γ ⊢ 𝒰

Prod
Γ ⊢ 𝐴 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵

Γ ⊢ (𝑥 ∶ 𝐴) → 𝐵

Small
Γ ⊢ 𝐴 ∶ 𝒰

Γ ⊢ 𝐴

ColPi
Γ, 𝑖 ⊢ 𝐴

Γ ⊢ ∀𝑖.𝐴

Out
Γ ⊢ ∀𝑖.𝐴 Γ ⊢ 𝑎 ∶ 𝐴(𝑖 𝟎)

Γ ⊢ (∀𝑖.𝐴) ∋ 𝑎

Γ ⊢ 𝑎 ∶ 𝐴
Conv
Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝐵 𝐴 ≡ 𝐵

Γ ⊢ 𝑡 ∶ 𝐵

Var
Γ ⊢ 𝐴

Γ, 𝑥 ∶ 𝐴, Δ ⊢ 𝑥 ∶ 𝐴

Abs
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵

Γ ⊢ 𝜆(𝑥 ∶ 𝐴).𝑡 ∶ (𝑥 ∶ 𝐴) → 𝐵

App
Γ ⊢ 𝑡 ∶ (𝑥 ∶ 𝐴) → 𝐵 Γ ⊢ 𝑢 ∶ 𝐴

Γ ⊢ 𝑡 𝑢 ∶ 𝐵[𝑥 ↦ 𝑢]

Prod-𝒰
Γ ⊢ 𝐴 ∶ 𝒰 Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝒰

Γ ⊢ (𝑥 ∶ 𝐴) → 𝐵 ∶ 𝒰

Out-𝒰
Γ ⊢ ∀𝑖.𝐴 ∶ 𝒰 Γ ⊢ 𝑎 ∶ 𝐴(𝑖 𝟎)

Γ ⊢ (∀𝑖.𝐴) ∋ 𝑎 ∶ 𝒰

ColAbs
Γ, 𝑖 ⊢ 𝑡 ∶ 𝐴

Γ ⊢ ⟨𝑖⟩𝑡 ∶ ∀𝑖.𝐴

In-Abs
Γ ⊢ 𝑎 ∶ 𝐴(𝑖 𝟎) Γ ⊢ 𝑝 ∶ (∀𝑖.𝐴) ∋ 𝑎

Γ ⊢ ⦇𝑎, 𝑝⦈ ∶ ∀𝑖.𝐴

92

ColPi-𝒰
Γ, 𝑖 ⊢ 𝐴 ∶ 𝒰

Γ ⊢ ∀𝑖.𝐴 ∶ 𝒰

In-Pred
Γ ⊢ 𝐴 ∶ 𝒰 Γ ⊢ 𝑃 ∶ 𝐴 → 𝒰

Γ ⊢ Ψ𝐴𝑃 ∶ (∀𝑖.𝒰) ∋ 𝐴

In-Fun
Γ ⊢ 𝑡 ∶ (𝑥 ∶ 𝐴(𝑖 𝟎)) → 𝐵(𝑖 𝟎)

Γ ⊢ 𝑢 ∶ (𝑥 ∶ ∀𝑖.𝐴) → (∀𝑖.𝐵[𝑥 ↦ 𝑥@𝑖]) ∋ 𝑡 (𝑥@𝟎)
Γ ⊢ Φ𝑡𝑢 ∶ (∀𝑖.((𝑥 ∶ 𝐴) → 𝐵)) ∋ 𝑡

ColApp
Γ, ⃗𝚥 ⊢ 𝑡 ∶ ∀𝑖.𝐴 𝑖 ∉ Γ, ⃗𝚥

Γ, 𝑖, ⃗𝚥 ⊢ 𝑡@𝑖 ∶ 𝐴

ColApp-Orig
Γ ⊢ 𝑡 ∶ ∀𝑖.𝐴

Γ ⊢ 𝑡@𝟎 ∶ 𝐴(𝑖 𝟎)

Param
Γ ⊢ 𝑢 ∶ ∀𝑖.𝐴

Γ ⊢ 𝑢! ∶ (∀𝑖.𝐴) ∋ 𝑢@𝟎

Definition 3 (Conversion). The equality used in Conv is defined as the small-
est congruence containing the following equalities:

𝛽
(𝜆(𝑥 ∶ 𝐴).𝑡) 𝑢 ≡ 𝑡[𝑥 ↦ 𝑢]

𝜂
𝑡 ≡ 𝜆(𝑥 ∶ 𝐴).(𝑡 𝑥)

Col-𝛽
(⟨𝑖⟩𝑡)@𝜑 ≡ 𝑡(𝑖 𝜑)

Col-𝜂
𝑡 ≡ ⟨𝑖⟩(𝑡@𝑖)

Pair-Orig
⦇𝑎, 𝑝⦈@𝟎 ≡ 𝑎

Pair-Param
⦇𝑎, 𝑝⦈! ≡ 𝑝

Surj-Param
⦇𝑎@𝟎, 𝑎!⦈ ≡ 𝑎

Surj-Type
Ψ𝑇@𝟎(𝜆(𝑥 ∶ 𝑇@𝟎). (∀𝑖.𝑇@𝑖) ∋ 𝑥) ≡ 𝑇!

Surj-Fun
Φ𝑡@𝟎(𝜆(𝑥 ∶ ∀𝑖.𝐴). (⟨𝑖⟩(𝑡@𝑖)(𝑥@𝑖))!) ≡ 𝑡!

Pair-Pred
(∀𝑖.(𝐴⨝𝑖 𝑃)) ∋ 𝑎 ≡ 𝑃 𝑎

Pair-App
⦉𝑡 ,𝑖 𝑢⦊ (𝑎@𝑖) ≡ ⦇𝑡 (𝑎@𝟎) ,𝑖 𝑢𝑎⦈

Definition 4 (Substitution). For any 𝑡, 𝑣 ∈ Expr, we define the term 𝑡[𝑧 ↦ 𝑣]
(denoting 𝑡 where the variable 𝑧 was replaced by 𝑣) by induction on the raw
syntax of 𝑡. (We assume that the variable 𝑧 is not bound in 𝑡.)

𝒰[𝑧 ↦ 𝑣] = 𝒰
((𝑥 ∶ 𝐴) → 𝐵)[𝑧 ↦ 𝑣] = (𝑥 ∶ 𝐴[𝑧 ↦ 𝑣]) → 𝐵[𝑧 ↦ 𝑣]

(𝑡 𝑢)[𝑧 ↦ 𝑣] = (𝑡[𝑧 ↦ 𝑣]) (𝑢[𝑧 ↦ 𝑣])
(𝜆(𝑥 ∶ 𝐴).𝑡)[𝑧 ↦ 𝑣] = 𝜆(𝑥 ∶ 𝐴[𝑧 ↦ 𝑣]).(𝑡[𝑧 ↦ 𝑣])

𝑥[𝑧 ↦ 𝑣] = 𝑣 if 𝑥 = 𝑧, and 𝑥 otherwise
(∀𝑖.𝐴)[𝑧 ↦ 𝑣] = ∀𝑖.(𝐴[𝑧 ↦ 𝑣])
(𝑡@𝜑)[𝑧 ↦ 𝑣] = (𝑡[𝑧 ↦ 𝑣])@𝜑
(⟨𝑖⟩𝑡)[𝑧 ↦ 𝑣] = ⟨𝑖⟩(𝑡[𝑧 ↦ 𝑣])

93

⦇𝑡, 𝑢⦈[𝑧 ↦ 𝑣] = ⦇𝑡[𝑧 ↦ 𝑣], 𝑢[𝑧 ↦ 𝑣]⦈
(𝑃 ∋ 𝑎)[𝑧 ↦ 𝑣] = (𝑃[𝑧 ↦ 𝑣]) ∋ (𝑎[𝑧 ↦ 𝑣])

(𝑎!)[𝑧 ↦ 𝑣] = (𝑎[𝑧 ↦ 𝑣])!
(Ψ𝐴𝑃)[𝑧 ↦ 𝑣] = Ψ𝐴[𝑧↦𝑣](𝑃[𝑧 ↦ 𝑣])
(Φ𝑡𝑢)[𝑧 ↦ 𝑣] = Φ𝑡[𝑧↦𝑣](𝑢[𝑧 ↦ 𝑣])

Definition 5 (Color erasure and substitution). For any 𝑡 ∈ Expr and 𝜑 ∈
𝕀 ∪ {𝟎}, we define the term 𝑡(𝑗 𝜑) (denoting the color substitution of 𝑗 by 𝑘 if
𝜑 = 𝑘 ∈ 𝕀, or the color erasure of 𝑗 in 𝜑 = 𝟎) by induction on the raw syntax of
𝑡. (We assume that the color 𝑗 is not bound in 𝑡.)

𝒰(𝑗 𝜑) = 𝒰
((𝑥 ∶ 𝐴) → 𝐵)(𝑗 𝜑) = (𝑥 ∶ 𝐴(𝑗 𝜑)) → 𝐵(𝑗 𝜑)

(𝑡 𝑢)(𝑗 𝜑) = (𝑡(𝑗 𝜑)) (𝑢(𝑗 𝜑))
(𝜆(𝑥 ∶ 𝐴).𝑡)(𝑗 𝜑) = 𝜆(𝑥 ∶ 𝐴(𝑗 𝜑)).(𝑡(𝑗 𝜑))

𝑥(𝑗 𝜑) = 𝑥
(∀𝑖.𝐴)(𝑗 𝜑) = ∀𝑖.(𝐴(𝑗 𝜑))
(𝑡@𝜑′)(𝑗 𝜑) = 𝑡@𝜑 if 𝜑′ = 𝑗 ∈ 𝕀, and (𝑡(𝑗 𝜑))@𝜑′ otherwise

(⟨𝑖⟩𝑡)(𝑗 𝜑) = ⟨𝑖⟩(𝑡(𝑗 𝜑))
⦇𝑡, 𝑢⦈(𝑗 𝜑) = ⦇𝑡(𝑗 𝜑), 𝑢(𝑗 𝜑)⦈

(𝑃 ∋ 𝑎)(𝑗 𝜑) = (𝑃(𝑗 𝜑)) ∋ (𝑎(𝑗 𝜑))
(𝑎!)(𝑗 𝜑) = (𝑎(𝑗 𝜑))!

(Ψ𝐴𝑃)(𝑗 𝜑) = Ψ𝐴(𝑗 𝜑)(𝑃(𝑗 𝜑))
(Φ𝑡𝑢)(𝑗 𝜑) = Φ𝑡(𝑗 𝜑)(𝑢(𝑗 𝜑))

Remark 6. We deduce by definition that

⦇𝑎 ,𝑖 𝑝⦈(𝑖 𝑗) = ⦇𝑎 ,𝑗 𝑝⦈ (𝐴⨝𝑖 𝑃)(𝑖 𝑗) = 𝐴⨝𝑗 𝑃 ⦉𝑢 ,𝑖 𝑡⦊(𝑖 𝑗) = ⦉𝑢 ,𝑗 𝑡⦊

Furthermore using Pair-Orig, we get

⦇𝑎 ,𝑖 𝑝⦈(𝑖 𝟎) ≡ 𝑎 (𝐴⨝𝑖 𝑃)(𝑖 𝟎) ≡ 𝐴 ⦉𝑢 ,𝑖 𝑡⦊(𝑖 𝟎) ≡ 𝑢

3 Meta-properties of the type theory

Lemma 1 (Substitution). If 𝑡, 𝑢, 𝑢′ ∈ Expr and 𝑧 ≠ 𝑧′ are two variables such
that 𝑧 is not free in 𝑢′, then 𝑡[𝑧 ↦ 𝑢][𝑧′ ↦ 𝑢′] = 𝑡[𝑧′ ↦ 𝑢′][𝑧 ↦ 𝑢[𝑧′ ↦ 𝑢′]].

94

Proof. By structural induction on the raw syntax of 𝑡. Substitution is de-
fined (Definition 4) by uniformly applying it recursively on each sub-
term, except for the variable case. We are therefore only treating the case
where 𝑡 is a variable here; other cases stem from straightforward uses of
the induction hypothesis.

• If 𝑥 = 𝑧 we get
𝑧[𝑧 ↦ 𝑢][𝑧′ ↦ 𝑢′] = 𝑢[𝑧′ ↦ 𝑢′] = 𝑧[𝑧′ ↦ 𝑢′][𝑧 ↦ 𝑢[𝑧′ ↦ 𝑢′]]

• If 𝑥 = 𝑧′ we get
𝑧′[𝑧 ↦ 𝑢][𝑧′ ↦ 𝑢′] = 𝑢′ = 𝑢′[𝑧 ↦ 𝑢[𝑧′ ↦ 𝑢′]]

= 𝑧′[𝑧′ ↦ 𝑢′][𝑧 ↦ 𝑢[𝑧′ ↦ 𝑢′]]

• Otherwise we have
𝑥[𝑧 ↦ 𝑢][𝑧′ ↦ 𝑢′] = 𝑥 = 𝑥[𝑧′ ↦ 𝑢′][𝑧 ↦ 𝑢[𝑧′ ↦ 𝑢′]]

Theorem 1 (Substitution preserves typing).
If Γ, 𝑥 ∶ 𝐵 ⊢ 𝑡 ∶ 𝐴 and Γ ⊢ 𝑢 ∶ 𝐵, then Γ ⊢ 𝑡[𝑥 ↦ 𝑢] ∶ 𝐴[𝑥 ↦ 𝑢].

Proof. By structural induction on the typing judgment.

Theorem 2 (Color erasure and substitution preserve typing).
If Γ, 𝑖 ⊢ 𝑡 ∶ 𝐴 then

• Γ ⊢ 𝑡(𝑖 𝟎) ∶ 𝐴(𝑖 𝟎); and
• Γ, 𝑗 ⊢ 𝑡(𝑖 𝑗) ∶ 𝐴(𝑖 𝑗).

Proof. By structural induction on the typing judgment.

4 Parametricity

In this section we prove that our system properly internalizes unary para-
metricity, using the special symbol 𝟎 for erasure of the argument of para-
metricity predicates. (Our system can be naturally extended to the 𝑛-ary
case by using further special symbols 1, …,n − 1 for erasure of the other
arguments.)
With Example 1 we have already seen an example of application of the
Param rule to internally prove the parametricity theorem of a concrete
type. We further illustrate the system by giving a few other simple proofs
relying on parametricity, including iterated parametricity.

With the system of Bernardy and Moulin [2012], one could use para-
metricity generically as follows

𝑝 ∶ (𝑋 ∶ 𝒰) → (𝑥 ∶ 𝑋) → ⟦𝑋⟧ ∋ 𝑥
𝑝 = 𝜆(𝑋 ∶ 𝒰). 𝜆(𝑥 ∶ 𝑋). ⌈⌈𝑥⌉⌉

95

Here, each application of parametricity needs to be annotated with a
color. We thus bind a new name using ⟨𝑖⟩ (resp. ∀𝑖.), then use ·! (resp.
· ∋ 𝑥) as our generic parametricity operation:

𝑝 ∶ (𝑋 ∶ 𝒰) → (𝑥 ∶ 𝑋) → (∀𝑖.𝑋) ∋ 𝑥
𝑝 = 𝜆(𝑋 ∶ 𝒰). 𝜆(𝑥 ∶ 𝑋). (⟨𝑖⟩𝑥)!

We have already seen that (∀𝑖.𝐴) ∋ corresponds to a parametricity pred-
icate for the type 𝐴. As we hinted at in the introduction, the color bind-
ing 𝑖 allows us to distinguish each application of parametricity. (As a
side remark, since the Param rule introduces a color, limiting the depth
of nested applications of parametricity can trivially be enforced in our
system by limiting the number of free colors in the context.)
However, unlike with [Bernardy et al., 2010] or [Bernardy and Moulin,
2012], there is no meta-operator expanding to any free theorem instance
in our new calculus. Indeed, while we can deduce ⊢ (⟨𝑖⟩𝑎)! ∶ (∀𝑖.𝐴) ∋ 𝑎
from ⊢ 𝑎 ∶ 𝐴, unlike ⟦𝐴⟧ ∋ 𝑎 the parametricity type (∀𝑖.𝐴) ∋ 𝑎 does
not reduce to the free theorem associated with 𝑎 ∶ 𝐴. (We will expand
on that in section 4.2.) As shown in the following examples, we can also
prove unary parametricity for polymorphic functions (using for instance
the mechanical operator of Bernardy et al. [2010] to derive the associ-
ated free theorem) by introducing a new color with ⟨𝑖⟩ and instancing
the polymorphic function at type ·⨝𝑖 ·.

4.1 Examples

Example 1 gives an internal proof of the free theorem associated with the
polymorphic identity using our syntactic construction for parametricity
predicates (Ψ) and the Pair-Pred equality rule. As shown in Example 2,
the constructor Φ (or the macro ⦉·, ·⦊) is required to give internal proofs
of free theorems associated with higher-order types, since there is no
other way to form a ray of functions from a function of rays.

Example 2. Consider the type of predicative Church numerals N ≝ (𝑋 ∶
𝒰) → 𝑋 → (𝑋 → 𝑋) → 𝑋. Proving (unary) parametricity for N means that,
assuming a context Γ with

• 𝑓 ∶ N;
• 𝐴 ∶ 𝒰 ;
• 𝑃 ∶ 𝐴 → 𝒰 ;
• 𝑧 ∶ 𝐴;
• ̇𝑧 ∶ 𝑃 𝑧;
• 𝑠 ∶ 𝐴 → 𝐴; and
• ̇𝑠 ∶ (𝑥 ∶ 𝐴) → 𝑃 𝑥 → 𝑃 (𝑠 𝑥),

we can prove 𝑃 (𝑓 𝐴 𝑧 𝑠).

96

As for Example 1, we deduce from In-Abs-Pred and ColApp that Γ, 𝑖 ⊢ 𝐴⨝𝑖 𝑃 ∶
𝒰 , and In-Abs𝑖 gives Γ, 𝑖 ⊢ ⦇𝑧 ,𝑖 ̇𝑧⦈ ∶ 𝐴⨝𝑖 𝑃. Furthermore Γ, 𝑥 ∶ (∀𝑖.𝐴⨝𝑖 𝑃) ⊢
𝑥@𝟎 ∶ 𝐴 by ColApp-Orig and Γ, 𝑥 ∶ (∀𝑖.𝐴⨝𝑖 𝑃) ⊢ 𝑥! ∶ 𝑃 (𝑥@𝟎) by Param,
Pair-Pred and Conv, hence defining ̇𝑠′ ≝ 𝜆(𝑥 ∶ ∀𝑖.𝐴⨝𝑖 𝑃). ̇𝑠 (𝑥@𝟎) (𝑥!)
we obtain Γ ⊢ ̇𝑠′ ∶ (𝑥 ∶ ∀𝑖.𝐴⨝𝑖 𝑃) → 𝑃 (𝑠 (𝑥@𝟎)) by App and Abs, and
Γ ⊢ ̇𝑠′ ∶ (𝑥 ∶ ∀𝑖.𝐴⨝𝑖 𝑃) → (∀𝑖.𝐴⨝𝑖 𝑃) ∋ (𝑠 (𝑥@𝟎)) by Pair-Pred and Conv.
Thus Γ, 𝑖 ⊢ ⦉𝑠 ,𝑖 ̇𝑠′⦊ ∶ 𝐴⨝𝑖 𝑃 → 𝐴⨝𝑖 𝑃 by In-Abs-Fun𝑖, and

Γ ⊢ ⟨𝑖⟩(𝑓 (𝐴⨝𝑖 𝑃) ⦇𝑧 ,𝑖 ̇𝑧⦈ ⦉𝑠 ,𝑖 ̇𝑠′⦊) ∶ ∀𝑖.𝐴⨝𝑖 𝑃

follows by App and ColAbs. Now applying Param gives

Γ ⊢ (⟨𝑖⟩(𝑓 (𝐴⨝𝑖 𝑃) ⦇𝑧 ,𝑖 ̇𝑧⦈ ⦉𝑠 ,𝑖 ̇𝑠′⦊))! ∶ (∀𝑖.𝐴⨝𝑖 𝑃) ∋ (𝑓 𝐴 𝑧 𝑠)

and we conclude by Conv since (∀𝑖.𝐴⨝𝑖 𝑃) ∋ 𝑓 𝐴 𝑧 ≡ 𝑃 (𝑓 𝐴 𝑧 𝑠) by Pair-
Pred.

At this point one may wonder, since a new syntactic construction was
introduced for function types, whether yet another construction is re-
quired for higher order functions. It turns out that ⦉𝑡, 𝑢⦊ can be com-
bined with ⦇𝑎, 𝑝⦈ to pair higher order functions with the parametricity
proof of their type. The following example illustrates this technique.

Example 3. Let 𝐹 = (𝑋 ∶ 𝒰) → ((𝑋 → 𝑋) → 𝑋) → 𝑋. Proving (unary)
parametricity for 𝐹 means that, assuming a context Γ with

• 𝑓 ∶ 𝐹;
• 𝐴 ∶ 𝒰 ;
• 𝑃 ∶ 𝐴 → 𝒰 ;
• 𝑔 ∶ (𝐴 → 𝐴) → 𝐴; and
• ̇𝑔 ∶ (ℎ ∶ 𝐴 → 𝐴) → ((𝑥 ∶ 𝐴) → 𝑃 𝑥 → 𝑃 (ℎ 𝑥)) → 𝑃 (𝑔 ℎ),

we can prove 𝑃 (𝑓 𝐴 𝑔).
As before we get such a proof by using Γ ⊢ (⟨𝑖⟩(𝑓 (𝐴⨝𝑖 𝑃) ⦉𝑔, ̇𝑔′⦊))! ∶ 𝑃 (𝑓 𝐴 𝑔),
where we need to find a function ̇𝑔′ such that

Γ ⊢ ̇𝑔′ ∶ (ℎ ∶ ∀𝑖.(𝐴⨝𝑖 𝑃 → 𝐴⨝𝑖 𝑃)) → 𝑃 (𝑔 (ℎ@𝟎))

Let 𝑇 ≝ 𝐴⨝𝑖 𝑃 → 𝐴⨝𝑖 𝑃. We have Γ, ℎ ∶ ∀𝑖.𝑇 ⊢ ℎ@𝟎 ∶ 𝐴 → 𝐴 by ColApp-
Orig. Furthermore

Γ, ℎ ∶ ∀𝑖.𝑇, 𝑥 ∶ 𝐴, ̇𝑥 ∶ 𝑃 𝑥, 𝑖 ⊢ ℎ@𝑖 ∶ 𝐴⨝𝑖 𝑃 → 𝐴⨝𝑖 𝑃 by ColApp, and
Γ, ℎ ∶ ∀𝑖.𝑇, 𝑥 ∶ 𝐴, ̇𝑥 ∶ 𝑃 𝑥, 𝑖 ⊢ ⦇𝑥 ,𝑖 ̇𝑥⦈ ∶ 𝐴⨝𝑖 𝑃 by In-Abs𝑖, hence
Γ, ℎ ∶ ∀𝑖.𝑇, 𝑥 ∶ 𝐴, ̇𝑥 ∶ 𝑃 𝑥, 𝑖 ⊢ (ℎ@𝑖) ⦇𝑥 ,𝑖 ̇𝑥⦈ ∶ 𝐴⨝𝑖 𝑃 by App, and finally
Γ, ℎ ∶ ∀𝑖.𝑇, 𝑥 ∶ 𝐴, ̇𝑥 ∶ 𝑃 𝑥 ⊢ (⟨𝑖⟩((ℎ@𝑖) ⦇𝑥 ,𝑖 ̇𝑥⦈))! ∶ (∀𝑖.𝐴⨝𝑖 𝑃) ∋ ((ℎ@𝟎) 𝑥)

by ColAbs and Param.
Since Pair-Pred gives (∀𝑖.𝐴⨝𝑖 𝑃) ∋ ((ℎ@𝟎) 𝑥) ≡ 𝑃 ((ℎ@𝟎) 𝑥), we obtain

Γ, ℎ ∶ ∀𝑖.𝑇 ⊢ ̇𝑔 (ℎ@𝟎) (𝜆𝑥 ∶ 𝐴. 𝜆 ̇𝑥 ∶ 𝑃 𝑥. (⟨𝑖⟩((ℎ@𝑖) ⦇𝑥 ,𝑖 ̇𝑥⦈))!) ∶ 𝑃 (𝑔 (ℎ@𝟎)),

97

We can therefore conclude by Abs and define

̇𝑔′ ≝ 𝜆ℎ ∶ (∀𝑖.(𝐴⨝𝑖 𝑃 → 𝐴⨝𝑖 𝑃)).
̇𝑔 (ℎ@𝟎) (𝜆𝑥 ∶ 𝐴. 𝜆 ̇𝑥 ∶ 𝑃 𝑥. (⟨𝑖⟩((ℎ@𝑖) ⦇𝑥 ,𝑖 ̇𝑥⦈))!)

Example 4. Although our calculus does not have any base type, we could extend
it and include base types. For instance we could add three constants 𝔹 ∶ 𝒰 and
tt,ff ∶ 𝔹 for booleans. We would then obtain

• ⟦𝔹⟧ ≝ 𝜆(𝑥 ∶ 𝔹). (∀𝑖.𝔹) ∋ 𝑥 ∶ 𝔹 → 𝒰 ;
• ⟦tt⟧ ≝ (⟨𝑖⟩tt)! ∶ (∀𝑖.𝔹) ∋ tt; and
• ⟦ff⟧ ≝ (⟨𝑖⟩ff)! ∶ (∀𝑖.𝔹) ∋ ff.

4.2 General results

Unlike previous type theories with internalized parametricity [Bernardy
and Moulin, 2012, 2013], the system presented in section 2.4 lacks equal-
ities which allow us to compute parametricity types. Expressed in our
new syntax, those equalities would become the following conversion
rules:

(∀𝑖.𝒰) ∋ 𝐴 ≡ 𝐴 → 𝒰 ; and
(∀𝑖.(𝑥 ∶ 𝐴) → 𝐵) ∋ 𝑓 ≡ (𝑥 ∶ ∀𝑖.𝐴) → (∀𝑖.𝐵[𝑥 ↦ 𝑥@𝑖]) ∋ (𝑓 (𝑥@𝟎)).

The absence of the above equalities did not prevent us from giving proofs
of free theorems in the examples in the previous section. This also allows
for a simpler system, but how can we ensure that all parametricity the-
orems hold? The answer is that while the types (∀𝑖.𝒰) ∋ 𝐴 and 𝐴 → 𝒰
are not convertible, they are isomorphic in the following sense.

Definition 6 (Isomorphism). We say that two types 𝐴 and 𝐵 are isomorphic
when the following 4 conditions hold:

1. there exists 𝜋 ∶ 𝐴 → 𝐵;
2. there exists 𝜎 ∶ 𝐵 → 𝐴;
3. 𝜋 (𝜎 𝑥) ≡ 𝑥 for any 𝑥; and
4. 𝜎 (𝜋 𝑥) ≡ 𝑥 for any 𝑥.

Where ≡ is the untyped conversion relation (Definition 3).

Theorem 3. The types (∀𝑖.𝒰) ∋ 𝐴 and 𝐴 → 𝒰 are isomorphic.

Proof.
1. We take 𝜋 ≝ 𝜆(𝑄 ∶ (∀𝑖.𝒰) ∋ 𝐴). 𝜆(𝑥 ∶ 𝐴). (∀𝑖.⦇𝐴 ,𝑖 𝑄⦈) ∋ 𝑥.

Indeed 𝜋 ∶ (∀𝑖.𝒰) ∋ 𝐴 → 𝐴 → 𝒰 by Out-𝒰 and In-Abs.
2. We take 𝜎 ≝ 𝜆(𝑃 ∶ 𝐴 → 𝒰). Ψ𝐴𝑃. Indeed 𝜎 ∶ (𝐴 → 𝒰) → (∀𝑖.𝒰) ∋

𝐴 by In-Pred.

98

3. We obtain 𝜋 (𝜎 𝑃) ≡ 𝜆𝑥 ∶ 𝐴. (∀𝑖.𝐴⨝𝑖 𝑃) ∋ 𝑥 by 𝛽-reduction. Hence
𝜋 (𝜎 𝑃) ≡ 𝜆𝑥 ∶ 𝐴. 𝑃 𝑥 by Pair-Pred, and we conclude that 𝜋 (𝜎 𝑃) ≡
𝑃 by 𝜂-contraction.

4. We obtain 𝜎 (𝜋 𝑄) ≡ Ψ𝐴(𝜆(𝑥 ∶ 𝐴). (∀𝑖.⦇𝐴 ,𝑖 𝑄⦈) ∋ 𝑥) by 𝛽-reduction.
Hence 𝜎 (𝜋 𝑄) ≡ ⦇𝐴, 𝑄⦈! by Pair-Orig and Surj-Type, and we con-
clude that 𝜎 (𝜋 𝑄) ≡ 𝑄 by Pair-Param.

Theorem 4. The types (∀𝑖.(𝑥 ∶ 𝐴) → 𝐵) ∋ 𝑓 and

(𝑥 ∶ ∀𝑖.𝐴) → (∀𝑖.𝐵[𝑥 ↦ 𝑥@𝑖]) ∋ (𝑓 (𝑥@𝟎))

are isomorphic.

Proof.
1. We take

𝜋 ≝ 𝜆(𝑞 ∶ (∀𝑖.(𝑥 ∶ 𝐴) → 𝐵[𝑥]) ∋ 𝑓). 𝜆(𝑥 ∶ ∀𝑖.𝐴). (⟨𝑖⟩⦇𝑓 ,𝑖 𝑞⦈ (𝑥@𝑖))! .

Indeed ⦇𝑓 ,𝑖 𝑞⦈ ∶ (𝑥 ∶ 𝐴) → 𝐵[𝑥] by In-Abs and ColApp. Thus
⟨𝑖⟩⦇𝑓 ,𝑖 𝑞⦈ (𝑥@𝑖) ∶ ∀𝑖.𝐵[𝑥@𝑖] by App and ColAbs and we conclude
by Param and Abs that

𝜋 ∶ (𝑞 ∶ (∀𝑖.(𝑥 ∶ 𝐴) → 𝐵[𝑥]) ∋ 𝑓) → (𝑥 ∶ ∀𝑖.𝐴) →
∀𝑖.𝐵[𝑥@𝑖] ∋ 𝑓 (𝑥@𝟎).

2. We take 𝜎 ≝ 𝜆(𝑝 ∶ (𝑥 ∶ ∀𝑖.𝐴) → (∀𝑖.𝐵[𝑥@𝑖]) ∋ 𝑓 (𝑥@𝟎)). Φ𝑓 𝑝.
Indeed 𝜎 ∶ ((𝑥 ∶ ∀𝑖.𝐴) → (∀𝑖.𝐵[𝑥@𝑖]) ∋ 𝑓 (𝑥@𝟎)) → (∀𝑖.(𝑥 ∶ 𝐴) →
𝐵[𝑥]) ∋ 𝑓 by In-Fun.

3. We obtain 𝜋 (𝜎 𝑝) ≡ 𝜆(𝑥 ∶ ∀𝑖.𝐴). (⟨𝑖⟩⦉𝑓 ,𝑖 𝑝⦊ (𝑥@𝑖))! by 𝛽-reduction.
Hence by Pair-App and Col-𝜂 we have

𝜋 (𝜎 𝑃) ≡ 𝜆(𝑥 ∶ ∀𝑖.𝐴). (⟨𝑖⟩⦇𝑓 (𝑥@𝟎) ,𝑖 𝑝𝑥⦈)!
≡ 𝜆(𝑥 ∶ ∀𝑖.𝐴). ⦇𝑓 (𝑥@𝟎), 𝑝 𝑥⦈! ,

and we conclude that 𝜋 (𝜎 𝑃) ≡ 𝜆(𝑥 ∶ ∀𝑖.𝐴). 𝑝 𝑥 ≡ 𝑝 by Param and
𝜂-contraction.

4. We obtain that 𝜎 (𝜋 𝑞) ≡ Φ𝑓 (𝜆(𝑥 ∶ ∀𝑖.𝐴). (⟨𝑖⟩⦇𝑓 ,𝑖 𝑞⦈ (𝑥@𝑖)))! by 𝛽-
reduction. 𝜎 (𝜋 𝑞) ≡ ⦇𝑓 , 𝑞⦈! follows by Pair-Orig and Surj-Fun, and
we conclude that 𝜎 (𝜋 𝑞) ≡ 𝑞 by Pair-Param.

4.3 Iterating parametricity

The complex technicalities of [Bernardy and Moulin, 2012], in particu-
lar the hypercube structures and the swapping operator, is due to the
interpretation of nested parametricity. For instance consider 𝑝 ≝ 𝜆(𝑋 ∶

99

𝒰). 𝜆(𝑥 ∶ 𝑋). ⌈⌈𝑥⌉⌉ (of type (𝑋 ∶ 𝒰) → (𝑥 ∶ 𝑋) → ⟦𝑋⟧ ∋ 𝑥). Recall that using
the “naive” parametric interpretation (where each binding 𝑥 is expanded
into two bindings, 𝑥 and its parametricity witness ̇𝑥, without hypercube
structure), applying the Param rule yields:

⟦𝑝⟧ ∶ ⟦(𝑋 ∶ 𝒰) → (𝑥 ∶ 𝑋) → ⟦𝑋⟧ ∋ 𝑥⟧ ∋ 𝑝
= (𝑋 ∶ 𝒰) → (�̇� ∶ ⟦𝒰⟧ ∋ 𝑋) → (𝑥 ∶ 𝑋) →

(̇𝑥 ∶ ⟦𝑋⟧ ∋ 𝑥) → ⟦⟦𝑋⟧ ∋ 𝑥⟧ ∋ (𝑝 𝑋 𝑥)
= (𝑋 ∶ 𝒰) → (�̇� ∶ 𝑋 → 𝒰) → (𝑥 ∶ 𝑋) → (̇𝑥 ∶ ⟦𝑋⟧ ∋ 𝑥) → ⟦⟦𝑋⟧⟧ 𝑥 ̇𝑥 ⌈⌈𝑥⌉⌉

On the other hand, ⟦𝑝⟧ intuitively 𝛽-reduces to

𝜆(𝑋 ∶ 𝒰). 𝜆(�̇� ∶ 𝑋 → 𝒰). 𝜆(𝑥 ∶ 𝑋). 𝜆(̇𝑥 ∶ ⟦𝑋⟧ ∋ 𝑥). ⟦ ̇𝑥⟧

which is of type

(𝑋 ∶ 𝒰) → (�̇� ∶ 𝑋 → 𝒰) → (𝑥 ∶ 𝑋) → (̇𝑥 ∶ ⟦𝑋⟧ ∋ 𝑥) → ⟦⟦𝑋⟧⟧ 𝑥 ⌈⌈𝑥⌉⌉ ̇𝑥

Hence, as already mentioned in the introduction, ⟦𝑝⟧ has two non-conver-
tible types ⟦⟦𝑋⟧⟧ 𝑥 ̇𝑥 ⌈⌈𝑥⌉⌉ and ⟦⟦𝑋⟧⟧ 𝑥 ⌈⌈𝑥⌉⌉ ̇𝑥. As a way to deal with this
problem, Bernardy and Moulin [2012] introduced hypercubes in order to
“glue together” the arguments of the relation ⟦⟦𝑋⟧⟧, to obtain the equal-
ity ⟦⟦𝑋⟧⟧ (𝑥, ̇𝑥, ⌈⌈𝑥⌉⌉) = ⟦⟦𝑋⟧⟧ (𝑥, ⌈⌈𝑥⌉⌉, ̇𝑥).

This issue is not present in our system because the parametricity opera-
tor ·! does not reduce under 𝜆. However we can iterate the operator 𝐴 ∋
to construct relations between parametricity witnesses. That is, given a
context with

𝑥 ∶ 𝐴, 𝑦 ∶ (∀𝑖.𝐴) ∋ 𝑥, 𝑧 ∶ (∀𝑖.𝐴) ∋ 𝑥,
the type (∀𝑖.(∀𝑗.𝐴) ∋ ⦇𝑥 ,𝑖 𝑦⦈) ∋ 𝑧 is well formed, and can be understood
as a binary relation between the parametricity proofs 𝑦 and 𝑧. The follow-
ing results about this relation illustrate the expressivity of our system.

Theorem 5. If the type 𝐴 does not depend on either colors 𝑖 or 𝑗, then the relation

𝜆(𝑦 ∶ (∀𝑖.𝐴) ∋ 𝑥). 𝜆(𝑧 ∶ (∀𝑖.𝐴) ∋ 𝑥). (∀𝑖.(∀𝑗.𝐴) ∋ ⦇𝑥 ,𝑖 𝑦⦈) ∋ 𝑧

is symmetric for each 𝑥 ∶ 𝐴.

Proof. We define

𝜎1 ≝ 𝜆(𝑦 ∶ (∀𝑖.𝐴) ∋ 𝑥). 𝜆(𝑧 ∶ (∀𝑖.𝐴) ∋ 𝑥).
𝜆(𝑤 ∶ (∀𝑖.(∀𝑗.𝐴) ∋ ⦇𝑥 ,𝑖 𝑦⦈) ∋ 𝑧). (⟨𝑖⟩(⟨𝑗⟩⦇⦇𝑥 ,𝑗 𝑦⦈ ,𝑖⦇𝑧 ,𝑗 𝑤⦈⦈)!)!

Let 𝑦 ∶ (∀𝑖.𝐴) ∋ 𝑥, 𝑧 ∶ (∀𝑖.𝐴) ∋ 𝑥, and 𝑤 ∶ (∀𝑖.(∀𝑗.𝐴) ∋ ⦇𝑥 ,𝑖 𝑦⦈) ∋ 𝑧.
Since 𝐴 does not depend or 𝑖 nor 𝑗 we have 𝑗 ⊢ ⦇𝑥 ,𝑗 𝑦⦈ ∶ 𝐴 by In-Abs and

100

ColApp. Furthermore 𝑤 ∶ (∀𝑗.(∀𝑖.𝐴) ∋ ⦇𝑥 ,𝑗 𝑦⦈) ∋ 𝑧. by 𝛼-equivalence
on colors and since 𝑧 ∶ (∀𝑖.𝐴) ∋ ⦇𝑥, 𝑦⦈@𝟎 by Pair-Orig and Conv, we get
𝑗 ⊢ ⦇𝑧 ,𝑗 𝑤⦈ ∶ (∀𝑖.𝐴) ∋ ⦇𝑥, 𝑦⦈ by In-Abs and ColApp. Following the same
line of reasoning we obtain 𝑖, 𝑗 ⊢ ⦇⦇𝑥 ,𝑗 𝑦⦈ ,𝑖⦇𝑧 ,𝑗 𝑤⦈⦈ ∶ 𝐴.
Thus by ColAbs, Param and Pair-Orig

𝑖 ⊢ (⟨𝑗⟩⦇⦇𝑥 ,𝑗 𝑦⦈ ,𝑖⦇𝑧 ,𝑗 𝑤⦈⦈)! ∶ (∀𝑗.𝐴) ∋ ⦇𝑥 ,𝑖 𝑧⦈,

then

⊢ (⟨𝑖⟩(⟨𝑗⟩⦇⦇𝑥 ,𝑗 𝑦⦈ ,𝑖⦇𝑧 ,𝑗 𝑤⦈⦈)!)! ∶ (∀𝑖.(∀𝑗.𝐴) ∋ ⦇𝑥 ,𝑖 𝑧⦈) ∋ 𝑥.

We therefore conclude that

𝜎1 ∶ (𝑦 ∶ (∀𝑖.𝐴) ∋ 𝑥) → (𝑧 ∶ (∀𝑖.𝐴) ∋ 𝑥) →
(∀𝑖.(∀𝑗.𝐴) ∋ ⦇𝑥 ,𝑖 𝑦⦈) ∋ 𝑧 → (∀𝑖.(∀𝑗.𝐴) ∋ ⦇𝑥 ,𝑖 𝑧⦈) ∋ 𝑦

Theorem 6. If the type 𝐴 does not depend on either colors 𝑖 or 𝑗, then the types
(∀𝑖.(∀𝑗.𝐴) ∋ ⦇𝑥 ,𝑖 𝑦⦈) ∋ 𝑧 and (∀𝑖.(∀𝑗.𝐴) ∋ ⦇𝑥 ,𝑖 𝑧⦈) ∋ 𝑦 are isomorphic for
each 𝑥 ∶ 𝐴.

Proof. Let 𝑦 ∶ (∀𝑖.𝐴) ∋ 𝑥, 𝑧 ∶ (∀𝑖.𝐴) ∋ 𝑥, and 𝑤 ∶ (∀𝑖.(∀𝑗.𝐴) ∋ ⦇𝑥 ,𝑖 𝑦⦈) ∋
𝑧. We show that the function 𝜎1 (defined in the proof of Theorem 5) is
involutive in its last argument, i.e., that 𝜎1 𝑦 𝑧(𝜎1 𝑧𝑦 𝑤) ≡ 𝑤.
Let 𝑡 ≝ ⟨𝑖⟩(⟨𝑗⟩⦇⦇𝑥 ,𝑗 𝑧⦈ ,𝑖⦇𝑦 ,𝑗 𝑤⦈⦈)! and 𝑤′ ≝ 𝑡! = 𝜎1 𝑧𝑦 𝑤. We have 𝑡@𝟎 ≡
(⟨𝑗⟩⦇𝑥 ,𝑗 𝑧⦈)! ≡ ⦇𝑥, 𝑧⦈! = 𝑧 by Col-𝛽, Pair-Orig, Col-𝜂 and Pair-Param.
Hence ⦇𝑧 ,𝑗 𝑤′⦈ ≡ 𝑡@𝑗 ≡ (⟨𝑖⟩⦇⦇𝑥 ,𝑖 𝑧⦈ ,𝑗⦇𝑦 ,𝑖 𝑤⦈⦈)! by Surj-Param and Col-
𝛽.
Let 𝑡′ ≝ ⟨𝑖⟩⦇⦇𝑥 ,𝑖 𝑧⦈ ,𝑗⦇𝑦 ,𝑖 𝑤⦈⦈. We have 𝑡′@𝟎 ≡ ⦇𝑥 ,𝑗 𝑦⦈ by Col-𝛽 and
Pair-Orig. Hence ⦇⦇𝑥 ,𝑗 𝑦⦈ ,𝑖⦇𝑧 ,𝑗 𝑤′⦈⦈ ≡ 𝑡′@𝑖 ≡ ⦇⦇𝑥 ,𝑖 𝑧⦈ ,𝑗⦇𝑦 ,𝑖 𝑤⦈⦈ by Surj-
Param and Col-𝛽.
Therefore 𝜎1 𝑦 𝑧(𝜎1 𝑧𝑦 𝑤) ≡ (⟨𝑖⟩(⟨𝑗⟩⦇⦇𝑥 ,𝑖 𝑧⦈ ,𝑗⦇𝑦 ,𝑖 𝑤⦈⦈)!)! and we conclude
by using twice Col-𝜂 and Pair-Param, that 𝜎1 𝑦 𝑧(𝜎1 𝑧𝑦 𝑤) ≡ 𝑤.

Remark 7. One may wonder if our system could have been set up to have the
types (∀𝑖.(∀𝑗.𝐴) ∋ ⦇𝑥 ,𝑖 𝑦⦈) ∋ 𝑧 and (∀𝑖.(∀𝑗.𝐴) ∋ ⦇𝑥 ,𝑖 𝑧⦈) ∋ 𝑦 convertible
rather than isomorphic. In fact, the equality

(∀𝑖.(∀𝑗.𝐴) ∋ ⦇𝑥 ,𝑖 𝑦⦈) ∋ 𝑧 ≡ (∀𝑖.(∀𝑗.𝐴) ∋ ⦇𝑥 ,𝑖 𝑧⦈) ∋ 𝑦

is inconsistent. In particular for the universe one gets

(∀𝑖.(∀𝑗.𝒰) ∋ ⦇𝑋 ,𝑖 𝑃⦈) ∋ 𝑄 ≡ (∀𝑖.(∀𝑗.𝒰) ∋ ⦇𝑋 ,𝑖 𝑄⦈) ∋ 𝑃

101

for arbitrary 𝑃 and 𝑄 of type (∀𝑖.𝑈) ∋ 𝑋. By Theorem 3 this equality in turn
implies

(𝑥 ∶ 𝑋) → 𝑃 𝑥 → 𝑄 𝑥 → 𝒰 ≡ (𝑥 ∶ 𝑋) → 𝑄 𝑥 → 𝑃 𝑥 → 𝒰

for arbitrary predicates 𝑃 and 𝑄 over 𝑋, which is obviously inconsistent.

Theorem 7. If the type 𝐴 and the term 𝑎 ∶ 𝐴 does not depend on either colors 𝑖
or 𝑗, and ̇𝑎 ∶ (∀𝑖.𝐴) ∋ 𝑎 (not depending on 𝑖 or 𝑗 either), then ̇𝑎 is related to the
canonical proof (⟨𝑖⟩𝑎)!, in the sense that the type

(∀𝑖.(∀𝑗.𝐴) ∋ ⦇𝑎 ,𝑖 ̇𝑎⦈) ∋ (⟨𝑖⟩𝑎)!

is inhabited.

Proof. Since (⟨𝑖⟩𝑎)@𝟎 ≡ 𝑎 we get ⦇𝑎 ,𝑖(⟨𝑖⟩𝑎)!⦈) ≡ 𝑎 by Surj-Param. Hence
̇𝑎 ∶ (∀𝑗.𝐴) ∋ ⦇𝑎 ,𝑖(⟨𝑖⟩𝑎)!⦈) by Conv, and finally ColAbs and Param give

(⟨𝑖⟩ ̇𝑎)! ∶ (∀𝑖.(∀𝑗.𝐴) ∋ ⦇𝑎 ,𝑖 ̇𝑎⦈) ∋ (⟨𝑖⟩𝑎)!.

Remark 8. By iterating parametricity 𝑛 times, one creates 𝑛-ary relations be-
tween proofs of relations of arity 𝑛−1. Furthermore, the above results carry over
to the 𝑛-ary case. That is, for each 𝑖 < 𝑛 one can construct a function 𝜎𝑖, which
exchanges the arguments 𝑖 and 𝑖 + 1 of a relation. Furthermore, these functions
satisfy the laws of the generators of the symmetric group on 𝑛 symbols 𝔖𝑛:

• any permutation of {0, …, 𝑛 − 1} can be written as a 𝜎𝛼1
𝑖1 …𝜎𝛼𝑘

𝑖𝑘 where
𝛼𝑗 = ±1 and 1 ≤ 𝑖𝑗 < 𝑛 for each 1 ≤ 𝑗 ≤ 𝑘;

• 𝜎2
𝑖 = 1 for each 1 ≤ 𝑖 < 𝑛;

• 𝜎𝑖𝜎𝑗 = 𝜎𝑗𝜎𝑖 for each 1 ≤ 𝑖, 𝑗 < 𝑛 such that |𝑗 − 𝑖| ≠ 1; and
• (𝜎𝑖𝜎𝑖+1)3 = 1 for each 1 ≤ 𝑖 < 𝑛 − 1.

5 Presheaf model

In this chapter we show how to equip our type theory with presheaf se-
mantics. We start with general background. In particular, we recall how
to interpret terms and types of the Logical Framework presented in sec-
tion 2.1, following Hofmann [1997] and Bezem et al. [2013]. We will then
modify Hofmann’s presheaf model in order to capture the invariants of
our type theory, and show how to adapt the interpretation functions ac-
cordingly in section 5.3.

5.1 Background

If 𝒞 is a category, we write 𝑋 ∈ 𝒞 if 𝑋 is an object of 𝒞 , and for two
objects 𝑋, 𝑌 ∈ 𝒞 , we write 𝑋 ⟶ 𝑌 for the Hom-set Hom𝒞 (𝑋, 𝑌). Fur-

102

thermore 1 ∶ 𝑋 ⟶ 𝑋 denotes the identity morphism, and we write mor-
phism composition in diagrammatical order: if 𝑋, 𝑌, 𝑍 ∈ 𝒞 , then the
composition of 𝑓 ∶ 𝑋 ⟶ 𝑌 and 𝑔 ∶ 𝑌 ⟶ 𝑍 is written 𝑓 𝑔 ∶ 𝑋 ⟶ 𝑍.

Definition 7 (Presheaf). Let 𝒞 be a small category. A presheaf over 𝒞 is a
functor 𝐹 ∶ 𝒞 op ⟶ Set, where Set is the category of small sets and func-
tions. (Where the set of small sets is a Grothendieck universe 𝒰type containing
another Grothendieck universe 𝒰 , used in the interpretation of the type-theoretic
universe 𝒰 .)
In other words, a presheaf 𝐹 over 𝒞 is given by a family of sets 𝐹(𝑋) indexed
by the objects of 𝒞 , together with restrictions maps 𝐹(𝑓) ∶ 𝐹(𝑋) ⟶ 𝐹(𝑌),
𝑢 ⟼ 𝑢𝑓 for 𝑓 ∶ 𝑌 ⟶ 𝑋 satisfying 𝑢1 = 𝑢 and (𝑢𝑓)𝑔 = 𝑢(𝑔𝑓) for 𝑔 ∶ 𝑍 ⟶ 𝑌.

𝑍 𝑔⟶ 𝑌 𝑓⟶ 𝑋
𝐹(𝑋) ⟶ 𝐹(𝑌) ⟶ 𝐹(𝑍)

𝑢 ⟼ 𝑢𝑓 ⟼ (𝑢𝑓)𝑔 = 𝑢(𝑔𝑓)

Hofmann [1997, sec. 4] shows how to equip the Logical Framework with
presheaf semantics. There are three interpretation functions, each par-
tially defined by induction on the raw syntax:

• one to interpret contexts;
• one to interpret types, relative to a context; and
• one to interpret terms, relative to a context and a type.

(The first is defined on the set of raw contexts, while the last two are
both defined on the set of raw expressions.) They are not necessarily
defined on an arbitrary raw context, raw type or raw term, but Hofmann
shows later that they are defined on all correct contexts, correct types
with a context, and correct terms with a context and a type, and that the
following properties hold:

• A well-formed context Γ ⊢ is interpreted by a presheaf Γ, i.e., by a
family of sets Γ(𝑋) indexed by 𝑋 ∈ 𝒞 , together with restrictions
maps Γ(𝑓) ∶ Γ(𝑋) ⟶ Γ(𝑌), 𝜌 ⟼ 𝜌𝑓 for 𝑓 ∶ 𝑌 ⟶ 𝑋, satisfying
𝜌1 = 𝜌 and (𝜌𝑓)𝑔 = 𝜌(𝑔𝑓) for 𝑔 ∶ 𝑍 ⟶ 𝑌.

• A type Γ ⊢ 𝐴 is interpreted by a family of sets 𝐴𝜌 indexed by 𝜌 ∈
Γ(𝑋) for each 𝑋 ∈ 𝒞 , together with restriction maps 𝐴𝜌 ⟶ 𝐴(𝜌𝑓),
𝑢 ⟼ 𝑢𝑓 for 𝑓 ∶ 𝑌 ⟶ 𝑋, satisfying 𝑢1 = 𝑢 and (𝑢𝑓)𝑔 = 𝑢(𝑔𝑓) for
𝑔 ∶ 𝑍 ⟶ 𝑌.

• A term Γ ⊢ 𝑎 ∶ 𝐴 is interpreted by an element 𝑎𝜌 ∈ 𝐴𝜌 for each
object 𝑋 and 𝜌 ∈ Γ(𝑋), such that (𝑎𝜌)𝑓 = 𝑎(𝜌𝑓) for any 𝑓 ∶ 𝑌 ⟶ 𝑋.

• If Γ ⊢ 𝐴 ≡ 𝐴′ then 𝐴𝜌 = 𝐴′𝜌 for any 𝜌 ∈ Γ(𝑋).

103

• If Γ ⊢ 𝑎 ≡ 𝑎′ ∶ 𝐴 then 𝑎𝜌 = 𝑎′𝜌 for any 𝜌 ∈ Γ(𝑋).

We now show some interesting cases of the definition of Hofmann’s in-
terpretation functions. The presheaf laws (the first three items in the
above list of properties) hold by definition, while the remaining two prop-
erties (namely that the interpretation functions are total on valid judg-
ments, and that convertible terms and types yield equal semantic val-
ues) are proven by induction on the derivation of judgments. (Unlike
Hofmann we considered an untyped conversion rather than equality
judgments in our system; as a consequence our validity results from sec-
tion 5.4 are not expressed in the same way.)

Empty Context. The presheaf ♢ is defined as follows.

Object part. ♢(𝑋) is a singleton: ♢(𝑋) = {⋆} for each 𝑋 ∈ 𝒞 .
Arrow part. For 𝑓 ∶ 𝑌 ⟶ 𝑋, we take ♢(𝑓) ∶ ♢(𝑋) ⟶ ♢(𝑌) the trivial
(constant) map, mapping the element ⋆ ∈ ♢(𝑋) to ⋆ ∈ ♢(𝑌).
Preservation of identities. Direct.
Preservation of composition. Direct.

Context extension. The presheaf (Γ, 𝑥 ∶ 𝐴) is defined as follows.

Object part. We let (Γ, 𝑥 ∶ 𝐴)(𝑋) = (𝜌 ∈ Γ(𝑋)) × 𝐴𝜌 be the dependent
product of the interpretations of Γ and 𝐴. We also write ⟨𝜌, 𝑥 = 𝑢⟩ ∈
(Γ, 𝑥 ∶ 𝐴)(𝑋) to mean 𝜌 ∈ Γ(𝑋) and 𝑢 ∈ 𝐴𝜌. (The notation is tagged
with the variable 𝑥 to allow named-based lookup.)
Arrow part. For 𝑓 ∶ 𝑌 ⟶ 𝑋, we take (Γ, 𝑥 ∶ 𝐴)(𝑓) ∶ (Γ, 𝑥 ∶ 𝐴)(𝑋) ⟶ (Γ, 𝑥 ∶
𝐴)(𝑌), ⟨𝜌, 𝑥 = 𝑢⟩ ⟼ ⟨𝜌𝑓 , 𝑥 = 𝑢𝑓 ⟩.
Preservation of identities. For ⟨𝜌, 𝑥 = 𝑢⟩ ∈ (Γ, 𝑥 ∶ 𝐴)(𝑋) we have 𝜌 ∈ Γ(𝑋)
and 𝑢 ∈ 𝐴𝜌, hence by induction hypothesis 𝜌1 = 𝜌 and 𝑢1 = 𝑢. Therefore
⟨𝜌, 𝑥 = 𝑢⟩1 = ⟨𝜌1, 𝑥 = 𝑢1⟩ = ⟨𝜌, 𝑥 = 𝑢⟩.
Preservation of composition. For ⟨𝜌, 𝑥 = 𝑢⟩ ∈ (Γ, 𝑥 ∶ 𝐴)(𝑋), 𝑓 ∶ 𝑌 ⟶ 𝑋 and
𝑔 ∶ 𝑍 ⟶ 𝑌 we have 𝜌 ∈ Γ(𝑋) and 𝑢 ∈ 𝐴𝜌, hence by induction hypothesis
(𝜌𝑓)𝑔 = 𝜌(𝑔𝑓) and (𝑢𝑓)𝑔 = 𝑢(𝑔𝑓). Therefore (⟨𝜌, 𝑥 = 𝑢⟩𝑓)𝑔 = ⟨(𝜌𝑓)𝑔, 𝑥 =
(𝑢𝑓)𝑔⟩ = ⟨𝜌(𝑔𝑓), 𝑥 = 𝑢(𝑔𝑓)⟩ = ⟨𝜌, 𝑥 = 𝑢⟩(𝑔𝑓).

Variable. The element 𝑥𝜌 is defined only for 𝜌 of the form ⟨𝜌′, 𝑧 = 𝑢⟩. In
that case we take 𝑥⟨𝜌′, 𝑥 = 𝑢⟩ = 𝑢, and 𝑥⟨𝜌′, 𝑧 = 𝑢⟩ = 𝑥𝜌′ if 𝑥 ≠ 𝑧.
We now show that (𝑥𝜌)𝑓 = 𝑥(𝜌𝑓) for each 𝑓 ∶ 𝑌 ⟶ 𝑋. We have

• (𝑥⟨𝜌′, 𝑥 = 𝑢⟩)𝑓 = 𝑢𝑓 = 𝑥⟨𝜌′𝑓 , 𝑥 = 𝑢𝑓 ⟩ = 𝑥(⟨𝜌′, 𝑥 = 𝑢⟩𝑓); and
• (𝑥⟨𝜌′, 𝑧 = 𝑢⟩)𝑓 = (𝑥𝜌′)𝑓 = 𝑥(𝜌′𝑓) = 𝑥(⟨𝜌′, 𝑧 = 𝑢⟩𝑓) if 𝑥 ≠ 𝑧.

Dependent function space. The raw type ((𝑥 ∶ 𝐴) → 𝐵) is interpreted
(relative to Γ) as follows.

104

For 𝜌 ∈ Γ(𝑋), ((𝑥 ∶ 𝐴) → 𝐵)𝜌 is the set of families 𝜆 = (𝜆𝑓)𝑓 ∶𝑌⟶𝑋 where
each 𝜆𝑓 is a dependent function such that 𝜆𝑓 (𝑢) ∈ 𝐵⟨𝜌𝑓 , 𝑥 = 𝑢⟩ for each
𝑢 ∈ 𝐴𝜌𝑓 , and (𝜆𝑓 (𝑢))𝑔 = 𝜆𝑔𝑓 (𝑢𝑔) for each 𝑢 ∈ 𝐴𝜌𝑓 and 𝑔 ∶ 𝑍 ⟶ 𝑌.
Restriction maps. For 𝑓 ∶ 𝑌 ⟶ 𝑋, we take 𝜆𝑓𝑔 = 𝜆𝑔𝑓 for each 𝑔 ∶ 𝑍 ⟶ 𝑌.
In other words, we take ((𝑥 ∶ 𝐴) → 𝐵)𝜌 ⟶ ((𝑥 ∶ 𝐴) → 𝐵)𝜌𝑓 to be defined
as (𝜆ℎ)ℎ∶𝑍⟶𝑋 ⟼ (𝜆𝑔𝑓)𝑔∶𝑍⟶𝑌.
Preservation of identities. We have 𝜆1𝑔 = 𝜆𝑔1 = 𝜆𝑔 for each 𝑔 ∶ 𝑍 ⟶ 𝑋,
hence 𝜆1 = 𝜆.
Preservation of composition. For 𝑓 ∶ 𝑌 ⟶ 𝑋 and 𝑔 ∶ 𝑍 ⟶ 𝑌 we have
(𝜆𝑓)𝑔ℎ = 𝜆𝑓ℎ𝑔 = 𝜆(ℎ𝑔)𝑓 = 𝜆ℎ(𝑔𝑓) = 𝜆(𝑔𝑓)ℎ for each ℎ ∶ 𝑇 ⟶ 𝑍, hence
(𝜆𝑓)𝑔 = 𝜆(𝑔𝑓).

Universe. The type-theoretic universe 𝒰 is interpreted (relative to Γ) as
follows.

For 𝜌 ∈ Γ(𝑋), 𝒰𝜌 is the set of a families 𝒜 = (𝒜𝑓)𝑓 ∶𝑌⟶𝑋 where each 𝒜𝑓
is a 𝒰-small set, together with restriction maps 𝒜𝑓 ⟶ 𝒜𝑔𝑓 , 𝑢 ⟼ 𝑢𝑔 for
any 𝑓 ∶ 𝑌 ⟶ 𝑋 and 𝑔 ∶ 𝑍 ⟶ 𝑌, satisfying the equalities 𝑢1 = 𝑢 and
(𝑢𝑔)ℎ = 𝑢(ℎ𝑔) for each ℎ ∶ 𝑇 ⟶ 𝑍.
Restriction maps. For 𝑓 ∶ 𝑌 ⟶ 𝑋, we take 𝒰𝜌 ⟶ 𝒰𝜌𝑓 to be defined as
(𝒜ℎ)ℎ∶𝑍⟶𝑋 ⟼ (𝒜𝑔𝑓)𝑔∶𝑍⟶𝑌. In other words, we take 𝒜𝑓𝑔 = 𝒜𝑔𝑓 for each
𝑔 ∶ 𝑍 ⟶ 𝑌 together with restriction maps 𝒜𝑓𝑔 ⟶ 𝒜𝑓ℎ𝑔 defined as the
given maps 𝒜𝑔𝑓 ⟶ 𝒜ℎ𝑔𝑓 .
Preservation of identities. We have 𝒜1𝑔 = 𝒜𝑔1 = 𝒜𝑔 for each 𝑔 ∶ 𝑍 ⟶ 𝑋,
hence 𝒜1 = 𝒜 .
Preservation of composition. For 𝑓 ∶ 𝑌 ⟶ 𝑋 and 𝑔 ∶ 𝑍 ⟶ 𝑌 we have
(𝒜𝑓)𝑔ℎ = 𝒜𝑓ℎ𝑔 = 𝒜(ℎ𝑔)𝑓 = 𝒜ℎ(𝑔𝑓) = 𝒜(𝑔𝑓)ℎ for each ℎ ∶ 𝑇 ⟶ 𝑍, hence
(𝒜𝑓)𝑔 = 𝒜(𝑔𝑓).

Small dependent function space. The small type ((𝑥 ∶ 𝐴) → 𝐵) is inter-
preted (relative to Γ and 𝒰) as an element of the set which interprets 𝒰 ,
namely as a family of 𝒰-small sets indexed by 𝑓 ∶ 𝑌 ⟶ 𝑋, by taking
((𝑥 ∶ 𝐴) → 𝐵)𝜌𝑓 to be the 𝒰-small set of dependent functions 𝜆𝑓 map-
ping each 𝑢 ∈ (𝐴𝜌𝑓)1 to an element of (𝐵⟨𝜌𝑓 , 𝑥 = 𝑢⟩)1. (Interpreting the
small types 𝐴 and 𝐵 relative to the universe 𝒰 yields two families of 𝒰-
small sets; we take the elements at index 1 ∶ 𝑌 ⟶ 𝑌.) For 𝑓 ∶ 𝑌 ⟶ 𝑋
and 𝑔 ∶ 𝑍 ⟶ 𝑌, the restriction map ((𝑥 ∶ 𝐴) → 𝐵)𝜌𝑓 ⟶ ((𝑥 ∶ 𝐴) → 𝐵)𝜌𝑔𝑓
is defined to be 𝜆𝑓 ⟼ 𝜆𝑓 𝑔 = 𝜆𝑔𝑓 .
Let 𝑓 ∶ 𝑌 ⟶ 𝑋. We now show that (((𝑥 ∶ 𝐴) → 𝐵)𝜌)𝑓 = ((𝑥 ∶ 𝐴) →
𝐵)(𝜌𝑓). For each 𝑔 ∶ 𝑍 ⟶ 𝑌, we have (𝐴(𝜌𝑓)𝑔)1 = (𝐴𝜌(𝑔𝑓))1 and
(𝐵⟨(𝜌𝑓)𝑔, 𝑥 = 𝑢⟩)1 = (𝐵⟨𝜌(𝑔𝑓), 𝑥 = 𝑢⟩)1 by induction hypothesis, hence
by definition the two sets ((𝑥 ∶ 𝐴) → 𝐵)𝜌𝑓𝑔 = ((𝑥 ∶ 𝐴) → 𝐵)𝜌𝑔𝑓 and
((𝑥 ∶ 𝐴) → 𝐵)(𝜌𝑓)𝑔 coincide.

105

5.2 The category pI and the notion of 𝐼-sets

We will modify Hofmann’s model to deal with colors and parametricity
rules. We interpret a context Γ as a refined presheaf over pIop (Defini-
tion 15 below), where pI is the category of colors and partial injections
(Definition 9). A type Γ ⊢ 𝐴 is interpreted as a family of 𝐼-sets 𝐴𝜌 in-
dexed by 𝐼 ∈ pI and 𝜌 ∈ Γ(𝐼), where an 𝐼-set is a set of tuples indexed by
the subsets of 𝐼 (Definition 14). (The reason for considering 𝐼-sets instead
of usual sets is due to our conversion rules such as Pair-Pred and Surj-
Param, and is motivated in section 5.2.3.) A term Γ ⊢ 𝑎 ∶ 𝐴 is interpreted
as an 𝐼-element 𝑎𝜌 ∈ 𝐴𝜌 for each 𝐼 ∈ pI and 𝜌 ∈ Γ(𝐼). Furthermore, we
prove in section 5.4 (Theorem 10) that two valid convertible types (resp.
terms) are interpreted as equal 𝐼-sets (resp. 𝐼-elements). Note that un-
like Hofmann we considered an untyped conversion rather than equal-
ity judgments; thus our validity result (section 5.4) consists of 4 mutually
proven theorems (Theorems 8 to 11).

5.2.1 The category pI of colors and partial injections

Recall that 𝕀 is a fixed infinite set of colors, and that 𝟎 ∉ 𝕀 is a special
symbol. We further assume a fixed function fresh(·) such that fresh(𝐼) ∈
𝕀\𝐼 for any finite 𝐼 ⊂ 𝕀.

Definition 8 (Color map). If 𝐼 and 𝐽 are two finite subsets of 𝕀, we say that a
color map, or a partial injection, is any set-theoretic function 𝑓 ∶ 𝐼 → 𝐽 ∪ {𝟎}
such that 𝑖1 = 𝑖2 for any 𝑖1, 𝑖2 ∈ 𝐼 with 𝑓 (𝑖1) = 𝑓 (𝑖2) ∈ 𝐽.

Definition 9 (Category pI). We consider the category pI of finite color sets
and partial injections. We use the Kleisli composition: if 𝑓 ∶ 𝐼 ⟶ 𝐽 and 𝑔 ∶ 𝐽 ⟶
𝐾, then 𝑓 𝑔 ∶ 𝐼 ⟶ 𝐾 is defined as 𝑓 𝑔(𝑖) = 𝟎 if 𝑓 (𝑖) = 𝟎 and 𝑓 𝑔(𝑖) = 𝑔(𝑓 (𝑖)) if
𝑓 (𝑖) ∈ 𝐽.

Remark 9. Pitts [2013, ex. 9.7 p. 176] gives another description of the category
pI. Furthermore, the category of presheaves onpIop is equivalent to the category
Res of nominal restriction sets [Pitts, 2013, rem. 9.9 p. 161].

We also observe that any morphism has a unique decomposition into a
projection map (Definition 10) and a total map (Definition 11).

Definition 10 (Projection map). We say that a color map 𝛼 ∶ 𝐼 ⊎ 𝐽 ⟶ 𝐼 is a
projection if 𝛼(𝑖) = 𝑖 for each 𝑖 ∈ 𝐼, and 𝛼(𝑗) = 𝟎 for each 𝑗 ∈ 𝐽.

Definition 11 (Total map). We say that a color map ℎ ∶ 𝐼 ⟶ 𝐽 is total, and
note ℎ ∶ 𝐼 ⤚→ 𝐽, if it is injective, i.e., if ℎ(𝑖) ≠ 𝟎 for each 𝑖 ∈ 𝐼.

106

Remark 10 (Morphism decomposition). Any morphism
𝑓 ∶ 𝐼 ⟶ 𝐽 has a unique decomposition into a projection map
𝛼 ∶ 𝐼 ⟶ 𝐾 and a total map ℎ ∶ 𝐾 ⤚→ 𝐽.

𝐼

𝐾 𝐽

𝛼
𝑓

ℎ

5.2.2 Interpretation of the color context extension

After introducing a new notation for color map restriction, we show how
to define the presheaf (Γ, 𝑖) for color context extension.

Definition 12 (Color map restriction). If 𝑓 ∶ 𝐼, 𝑖 ⟶ 𝐽 (resp. 𝑓 ∶ 𝐼, 𝑖 ⟶ 𝐽, 𝑗)
is a color map such that 𝑓 (𝑖) = 𝟎 (resp. 𝑓 (𝑖) = 𝑗), we let 𝑓 − 𝑖 ∶ 𝐼 ⟶ 𝐽 be the
color map defined by (𝑓 − 𝑖)(𝑘) = 𝑓 (𝑘) for every 𝑘 ∈ 𝐼.
If 𝐼 = 𝐽, we write (𝑖 𝟎) as a shorthand for 1 − 𝑖 (where we recall that 1 ∶ 𝐼 ⟶ 𝐼
is the identity morphism).

We now define the presheaf (Γ, 𝑖) as follows (we also note that this defi-
nition reflects the linear behavior or ColApp mentioned in Remark 1):

Object part. We take (Γ, 𝑖)(𝐼) = Γ(𝐼) ⊎ ∪𝑗∈𝐼Γ(𝐼\{𝑗})} that is, the separated
product [Pitts, 2013, sec. 3.4 p. 54] of the interpretation of Γ and 𝕀 ∪ {𝟎}.
We also write [𝜌, 𝑖 = 𝜑] ∈ (Γ, 𝑖)(𝐼) to mean either

• 𝜑 = 𝟎 and 𝜌 ∈ Γ(𝐼); or
• 𝜑 = 𝑗 ∈ 𝐼 and 𝜌 ∈ Γ(𝐼\{𝑗}).

Arrow part. For 𝑓 ∶ 𝐼 ⟶ 𝐽, we take (Γ, 𝑖)(𝑓) ∶ (Γ, 𝑖)(𝐼) ⟶ (Γ, 𝑖)(𝐽) to be
defined as

[𝜌, 𝑖 = 𝜑] ⟼
⎧{
⎨{⎩

[𝜌𝑓 , 𝑖 = 𝟎] if 𝜑 = 𝟎
[𝜌(𝑓 − 𝑗), 𝑖 = 𝑓 (𝑗)] if 𝜑 = 𝑗 ∈ 𝐼

�

Preservation of identities. Let [𝜌, 𝑖 = 𝜑] ∈ (Γ, 𝑖)(𝐼). By induction hypothe-
sis 𝜌1 = 𝜌, and:

• for 𝜑 = 𝟎 we get [𝜌, 𝑖 = 𝟎]1 = [𝜌1, 𝑖 = 𝟎] = [𝜌, 𝑖 = 𝟎]; and
• for 𝜑 = 𝑗 ∈ 𝐼 we get [𝜌, 𝑖 = 𝑗]1 = [𝜌(1 − 𝑗), 𝑖 = 1(𝑗)] = [𝜌1, 𝑖 = 𝑗] =

[𝜌, 𝑖 = 𝑗].

Preservation of composition. Let [𝜌, 𝑖 = 𝜑] ∈ (Γ, 𝑖)(𝐼), 𝑓 ∶ 𝐼 ⟶ 𝐽 and 𝑔 ∶
𝐽 ⟶ 𝐾. By induction hypothesis (𝜌𝑓)𝑔 = 𝜌(𝑓 𝑔), and:

• for 𝜑 = 𝟎 or 𝜑 = 𝑗 ∈ 𝐼 such that 𝑓 (𝑗) = 𝟎 we get ([𝜌, 𝑖 = 𝜑]𝑓)𝑔 =
[(𝜌𝑓)𝑔, 𝑖 = 𝟎] = [𝜌(𝑓 𝑔), 𝑖 = 𝟎] = [𝜌, 𝑖 = 𝜑](𝑓 𝑔); and

• for 𝜑 = 𝑗 ∈ 𝐼 such that 𝑓 (𝑗) ≠ 𝟎 we get ([𝜌, 𝑖 = 𝑗]𝑓)𝑔 = [(𝜌𝑓)𝑔, 𝑖 =
𝑔(𝑓 (𝑗))] = [𝜌(𝑓 𝑔), 𝑖 = 𝑓 𝑔(𝑗)] = [𝜌, 𝑖 = 𝑗](𝑓 𝑔).

107

5.2.3 𝐼-sets and 𝐼-elements

Definition 13 (Color map extension). Let 𝑓 ∶ 𝐼 ⟶ 𝐽 be a color map. If 𝑖 ∉ 𝐼
and 𝑗 ∉ 𝐽, we let (𝑓 , 𝑖 = 𝑗) ∶ 𝐼, 𝑖 ⟶ 𝐽, 𝑗 (resp. (𝑓 , 𝑖 = 𝟎) ∶ 𝐼, 𝑖 ⟶ 𝐽) be the color
map (where 𝐼, 𝑖 is a shorthand for 𝐼 ∪ {𝑖}) defined by

• (𝑓 , 𝑖 = 𝜑)(𝑖) = 𝜑; and
• (𝑓 , 𝑖 = 𝜑)(𝑘) = 𝑓 (𝑘) for every 𝑘 ∈ 𝐼.

If 𝐼 = 𝐽, we write (𝑖 𝑗) as a shorthand for (1, 𝑖 = 𝑗).

We now attempt to define the interpretation of the color product ∀𝑖.𝐴
(relative to a context Γ) by defining the set (∀𝑖.𝐴)𝜌 for 𝜌 ∈ Γ. Since the
color 𝑖 is free in 𝐴 a first attempt would be to define (∀𝑖.𝐴)𝜌 = 𝐴[𝜌, 𝑖 = 𝑗]
for 𝑗 = fresh(𝐼). However since the color 𝑖 is also bound in the ray, we
need to consider all fresh colors and quotient by color 𝛼-equivalence. We
thus define

(∀𝑖.𝐴)𝜌 = { ̄𝑢𝑗 ∣ 𝑗 = fresh(𝐼), 𝑢 ∈ 𝐴[𝜌, 𝑖 = 𝑗]},

where
̄𝑢𝑗 = {𝑣 ∣ 𝑘 ∈ 𝕀\𝐼, 𝑣 ∈ 𝐴[𝜌, 𝑖 = 𝑘], 𝑣(𝑘 𝑗) = 𝑢}

is the equivalence class of the 𝑣 ∈ 𝐴[𝜌, 𝑖 = 𝑘] (quotiented by color 𝛼-
equivalence) for fresh 𝑘s.

However with such a definition it is not clear how to validate our new
conversion rules, in particular Pair-Pred ((∀𝑖.(𝐴⨝𝑖 𝑃)) ∋ 𝑎 ≡ 𝑃 𝑎) and
Surj-Param (⦇𝑎@𝟎, 𝑎!⦈ ≡ 𝑎). This seems to be due to some lack of struc-
ture in the target of the presheaf interpretation (the category of small
sets). However by replacing usual sets by something more structured (𝐼-
sets, Definition 14), and by refining the notion of presheaf (Definition 15),
we are able to capture in the model the invariants of our type theory and
validate all our equalities in the model (Theorem 10).

Definition 14 (𝐼-set). Let an 𝐼-element be any tuple indexed by the subsets of 𝐼:
(𝑢𝐽)𝐽⊆𝐼 . Alternatively, such an 𝐼-element can be seen as a tuple (𝑢𝛼) indexed
by the projections 𝛼 ∶ 𝐼 ⟶ 𝐽. An 𝐼-set is a set of 𝐼-elements. For instance, the
elements of an {𝑖, 𝑗}-set are of the form 𝑢 = (𝑢∅, 𝑢𝑖, 𝑢𝑗, 𝑢𝑖,𝑗).

Definition 15 (Refined presheaf onpIop). We refine Definition 7 of presheaves
on pIop by requiring two extra conditions:

1. for any object 𝐼, 𝐹(𝐼) is an 𝐼-set; and
2. for any projection map 𝛼 ∶ 𝐼 ⟶ 𝐽, the restriction map 𝐹(𝛼) ∶ 𝐹(𝐼) ⟶

𝐹(𝐽), 𝑢 ⟼ 𝑢𝛼 is the projection operation, i.e., 𝑢𝛼𝐾 = 𝑢𝐾 for any 𝐾 ⊆
𝐽 (alternatively, seeing 𝐽-elements as tuples indexed by projection maps,
(𝑢𝛼)𝛽 = 𝑢𝛼𝛽).

We therefore use a “dependent” notion of presheaves (𝐼 ∈ pIop) ⟶ 𝐼-Set.

108

We then refine the interpretation of raw types and terms accordingly:

• A well-formed context Γ ⊢ is interpreted by a refined presheaf Γ,
i.e., by a family of 𝐼-sets Γ(𝐼) indexed by 𝐼 ∈ pI, together with re-
strictions maps Γ(𝑓) ∶ Γ(𝐼) ⟶ Γ(𝐽), 𝜌 ⟼ 𝜌𝑓 for 𝑓 ∶ 𝐼 ⟶ 𝐽, sat-
isfying 𝜌1 = 𝜌 and (𝜌𝑓)𝑔 = 𝜌(𝑓 𝑔) for 𝑔 ∶ 𝐽 ⟶ 𝐾, and such that
the map Γ(𝐼) ⟶ Γ(𝐽), 𝜌 ⟼ 𝜌𝛼 is the projection operation for each
projection map 𝛼 ∶ 𝐼 ⟶ 𝐽.

• A type Γ ⊢ 𝐴 is interpreted by an 𝐼-set 𝐴𝜌 for each object 𝐼 and
𝜌 ∈ Γ(𝐼), together with restriction maps 𝐴𝜌 ⟶ 𝐴(𝜌𝑓), 𝑢 ⟼ 𝑢𝑓 for
𝑓 ∶ 𝐼 ⟶ 𝐽, satisfying 𝑢1 = 𝑢 and (𝑢𝑓)𝑔 = 𝑢(𝑓 𝑔) for 𝑔 ∶ 𝐽 ⟶ 𝐾,
and such that the map 𝐴𝜌 ⟶ 𝐴(𝜌𝛼), 𝑢 ⟼ 𝑢𝛼 is the projection
operation for each projection map 𝛼 ∶ 𝐼 ⟶ 𝐽.

• A term Γ ⊢ 𝑎 ∶ 𝐴 is interpreted by an 𝐼-element 𝑎𝜌 ∈ 𝐴𝜌 for each
object 𝐼 and 𝜌 ∈ Γ(𝐼), such that (𝑎𝜌)𝑓 = 𝑎(𝜌𝑓) for any 𝑓 ∶ 𝐼 ⟶ 𝐽.

The following definition will be used in the interpretation of rays:

Definition 16. If 𝑢 is an (𝐼, 𝑖)-element, we let ̄𝑢𝑖 be the 𝐼-element defined by
(̄𝑢𝑖)𝐽 = (𝑢𝐽 , 𝑢𝐽,𝑖) for each 𝐽 ⊆ 𝐼. We also let

• ̄𝑢𝑖@𝟎 be the 𝐼-element defined by (̄𝑢𝑖@𝟎)𝐽 = 𝑢𝐽 for each 𝐽 ⊆ 𝐼;
• ̄𝑢𝑖@𝑗 be the (𝐼, 𝑗)-element defined by (̄𝑢𝑖@𝑗)𝐽 = 𝑢𝐽 and (̄𝑢𝑖@𝑗)𝐽,𝑗 = 𝑢𝐽,𝑖

for each 𝐽 ⊆ 𝐼; and
• ̄𝑢𝑖! be the 𝐼-element defined by (̄𝑢𝑖!)𝐽 = 𝑢𝐽,𝑖 for each 𝐽 ⊆ 𝐼.

5.3 Presheaf model of the parametric type theory

We now equip our parametric type theory with a modified presheaf model
over pIop. Moreover we refine the interpretation functions by requiring
that 𝐹(𝐼) is an 𝐼-set for each 𝐼 ∈ pI, where 𝐼-sets are sets of tuples indexed
by the subsets of 𝐼 (Definition 14 above).
As before, there are three interpretation functions, each partially defined
by induction on the raw syntax:

• one to interpret contexts;
• one to interpret types, relative to a context; and
• one to interpret terms, relative to a context and a type.

They are not defined on an arbitrary raw contexts, raw types or raw
terms, but as we will show in section 5.4, convertible terms and types
yield equal semantic values (Theorem 10), and the interpretation func-
tions are total on valid judgments (Theorem 11). Like for section 5.1, we
prove the presheaf laws in the definition of the interpretation functions.

109

5.3.1 Underlying type theory

Due to the restriction described in section 5.2.3, we cannot directly take
the interpretation from Hofmann [1997, sec. 4] since for a type 𝐴 and
𝜌 ∈ Γ(𝐼), 𝐴𝜌 is not required to be an 𝐼-set hence violates our presheaf
refinement (Definition 15). We show how to adapt the interpretation of
the underlying type theory (section 2.1) to satisfy the refinement.

Interpretation of Contexts

Empty Context.

Object part. We cannot directly take the interpretation from section 5.1,
since the object part is not required to be an 𝐼-set. Instead, we define it
as the 𝐼-singleton {(♢𝐽)𝐽⊆𝐼} such that 𝜌∅ is a singleton {⋆} and 𝜌𝐽 = ∅ for
any non-empty 𝐽 ⊆ 𝐼.
Arrow part. For 𝑓 ∶ 𝐼 ⟶ 𝐽, we take ♢(𝑓) ∶ ♢(𝐼) ⟶ ♢(𝐽) the trivial (con-
stant) map.
Preservation laws. Direct.

Context extension. In section 5.1 we defined

(Γ, 𝑥 ∶ 𝐴)(𝐼) = {⟨𝜌, 𝑥 = 𝑢⟩ ∣ 𝜌 ∈ Γ(𝐼), 𝑢 ∈ 𝐴𝜌}.

For 𝜌 ∈ Γ(𝐼) and an 𝐼-element 𝑢 ∈ 𝐴𝜌, we now redefine ⟨𝜌, 𝑥 = 𝑢⟩ as an
𝐼-element by taking ⟨𝜌, 𝑥 = 𝑢⟩𝐽 = (𝜌𝐽 , 𝑢𝐽) for each 𝐽 ⊆ 𝐼.
We already proved preservation of identities and composition (indepen-
dently of the definition of ⟨𝜌, 𝑥 = 𝑢⟩) in section 5.1. As for preservation of
projections, if 𝛼 ∶ 𝐼 ⟶ 𝐽 is a projection and 𝐾 ⊆ 𝐽, we have 𝜌𝛼𝐾 = 𝜌𝐾 and
𝑢𝛼𝐾 = 𝑢𝐾 by induction hypothesis and therefore ⟨𝜌, 𝑥 = 𝑢⟩𝛼𝐾 = ⟨𝜌𝛼, 𝑥 =
𝑢𝛼⟩𝐾 = (𝜌𝛼𝐾 , 𝑢𝛼𝐾) = (𝜌𝐾 , 𝑢𝐾) = ⟨𝜌, 𝑥 = 𝑢⟩𝐾 .

Interpretation of Types

Universe. The type-theoretic universe 𝒰 is interpreted (relative to Γ) as
follows.

We cannot directly take the interpretation of 𝒰 from section 5.1, since the
object part is not required to be an 𝐼-set. However, using Remark 10, we
can define an isomorphic 𝐼-set by reindexing each element as follows.
For 𝜌 ∈ Γ(𝐼), 𝒰𝜌 is the 𝐼-set of families (𝒜𝛼)𝛼∶𝐼⟶𝐽 indexed by projection
maps 𝛼 ∶ 𝐼 ⟶ 𝐽 with 𝐽 ⊆ 𝐼, where each 𝒜𝛼 is a tuple (𝒜𝛼ℎ)ℎ∶𝐽⤚→𝐾 in-
dexed by total maps ℎ ∶ 𝐽 ⤚→ 𝐾, such that each 𝒜𝛼ℎ is a 𝒰-small 𝐾-set,
together with restriction maps 𝒜𝛼ℎ ⟶ 𝒜𝛼ℎ𝑔, 𝑢 ⟼ 𝑢𝑔 for any 𝑔 ∶ 𝐾 ⟶ 𝐿,
satisfying the equalities 𝑢1 = 𝑢 and (𝑢𝑔)ℎ = 𝑢(𝑔ℎ) for each ℎ ∶ 𝐿 ⟶ 𝑀.

110

Restriction maps. Since by Remark 10 any map 𝑓 ∶ 𝐼 ⟶ 𝐽 has a unique
decomposition 𝑓 = 𝛼ℎ as a projection map 𝛼 ∶ 𝐼 ⟶ 𝐾 and a total map ℎ ∶
𝐾 ⤚→ 𝐽, we can consider the set 𝒜𝑓 and the restriction maps 𝒜𝑓 ⟶ 𝒜𝑓 𝑔
for two arbitrary maps 𝑓 ∶ 𝐼 ⟶ 𝐾 and 𝑔 ∶ 𝐾 ⟶ 𝐿.
For an arbitrary map 𝑓 ∶ 𝐼 ⟶ 𝐽, we then take 𝒰𝜌 ⟶ 𝒰𝜌𝑓 to be defined
as (𝒜𝑔)𝑔∶𝐼⟶𝐾 ⟼ (𝒜𝑓 𝑔′)𝑔′∶𝐽⟶𝐾 . In other words, we take 𝒜𝑓𝛼ℎ = 𝒜𝑓 𝛼ℎ,
together with restriction maps 𝒜𝑓𝛼ℎ ⟶ 𝒜𝑓𝛼ℎ𝑔 defined as the given maps
𝒜𝑓 𝛼ℎ ⟶ 𝒜𝑓 𝛼ℎ𝑔.

Preservation of identities. We have 𝒜1𝛼ℎ = 𝒜1𝛼ℎ = 𝒜𝛼ℎ for each projection
map 𝛼 ∶ 𝐼 ⟶ 𝐾 and total map ℎ ∶ 𝐾 ⤚→ 𝐽, hence 𝒜1 = 𝒜 .
Preservation of composition. Let 𝑓 ∶ 𝐼 ⟶ 𝐽 and 𝑔 ∶ 𝐽 ⟶ 𝐾. Since (𝒜𝑓)𝑔𝛼ℎ =
𝒜𝑓𝑔𝛼ℎ = 𝒜𝑓 (𝑔𝛼ℎ) = 𝒜(𝑓 𝑔)(𝛼ℎ) = 𝒜(𝑓 𝑔)𝛼ℎ for each projection map 𝛼 ∶ 𝐾 ⟶
𝐾′ and total map ℎ ∶ 𝐾′ ⤚→ 𝐿, we have (𝒜𝑓)𝑔 = 𝒜(𝑓 𝑔).
Preservation of projections. Let 𝛼 ∶ 𝐼 ⟶ 𝐽 be a projection map. For each
projection 𝛽 ∶ 𝐽 ⟶ 𝐾 and total map ℎ ∶ 𝐾 ⤚→ 𝐿, we have 𝒜𝛼𝛽ℎ =
𝒜𝛼(𝛽ℎ) = 𝒜(𝛼𝛽)ℎ. Therefore by definition the two families of 𝒰-small
𝐿-sets indexed by total maps ℎ ∶ 𝐾 ⤚→ 𝐿 coincide: 𝒜𝛼𝛽 = 𝒜𝛼𝛽.

Dependent function space. The raw type ((𝑥 ∶ 𝐴) → 𝐵) is interpreted
(relative to Γ) as follows.

Like for the case of the universe above we cannot directly take the in-
terpretation from section 5.1 since it not an 𝐼-set. Instead, we define
((𝑥 ∶ 𝐴) → 𝐵)𝜌 to be an isomorphic 𝐼-set by reindexing each element
as follows.
For 𝜌 ∈ Γ(𝐼), ((𝑥 ∶ 𝐴) → 𝐵)𝜌 is the 𝐼-set of families 𝜆 = (𝜆𝛼)𝛼∶𝐼⟶𝐽
indexed by projection maps 𝛼 ∶ 𝐼 ⟶ 𝐽 with 𝐽 ⊆ 𝐼, where each 𝜆𝛼 is
a tuple (𝜆𝛼ℎ)ℎ∶𝐽⤚→𝐾 indexed by total maps ℎ ∶ 𝐽 ⤚→ 𝐾, such that each
𝜆𝛼ℎ is a dependent function satisfying 𝜆𝛼ℎ(𝑢) ∈ 𝐵⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩ for each
𝑢 ∈ 𝐴𝜌𝛼ℎ, and (𝜆𝛼ℎ(𝑢))𝑓 = 𝜆𝛼ℎ𝑓 (𝑢𝑓) for each 𝑢 ∈ 𝐴𝜌𝛼ℎ and 𝑓 ∶ 𝐾 ⟶ 𝐿.
Restriction maps. As before (thanks to Remark 10), we can consider the
dependent function 𝜆𝑓 for an arbitrary map 𝑓 ∶ 𝐼 ⟶ 𝐽.
For an arbitrary map 𝑓 ∶ 𝐼 ⟶ 𝐽, we then take ((𝑥 ∶ 𝐴) → 𝐵)𝜌 ⟶ ((𝑥 ∶
𝐴) → 𝐵)𝜌𝑓 to be defined as (𝜆𝑔)𝑔∶𝐼⟶𝐾 ⟼ (𝜆𝑓 𝑔′)𝑔′∶𝐽⟶𝐾 . In other words,
we take 𝜆𝑓𝛼ℎ = 𝜆𝑓 𝛼ℎ.
Preservation of identities. We have 𝜆1𝛼ℎ = 𝜆1𝛼ℎ = 𝜆𝛼ℎ for each projection
map 𝛼 ∶ 𝐼 ⟶ 𝐾 and total map ℎ ∶ 𝐾 ⤚→ 𝐽, hence 𝜆1 = 𝜆.
Preservation of composition. Let 𝑓 ∶ 𝐼 ⟶ 𝐽 and 𝑔 ∶ 𝐽 ⟶ 𝐾. Since (𝜆𝑓)𝑔𝛼ℎ =
𝜆𝑓𝑔𝛼ℎ = 𝐴𝑓 (𝑔𝛼ℎ) = 𝜆(𝑓 𝑔)(𝛼ℎ) = 𝜆(𝑓 𝑔)𝛼ℎ for each projection map 𝛼 ∶ 𝐾 ⟶
𝐾′ and total map ℎ ∶ 𝐾′ ⤚→ 𝐿, we have (𝜆𝑓)𝑔 = 𝜆(𝑓 𝑔).
Preservation of projections. Let 𝛼 ∶ 𝐼 ⟶ 𝐽 be a projection map. For each
projection 𝛽 ∶ 𝐽 ⟶ 𝐾 and total map ℎ ∶ 𝐾 ⤚→ 𝐿, we have 𝜆𝛼𝛽ℎ = 𝜆𝛼(𝛽ℎ) =

111

𝜆(𝛼𝛽)ℎ. Therefore by definition the two families of dependent functions
indexed by total maps ℎ ∶ 𝐾 ⤚→ 𝐿 coincide: 𝜆𝛼𝛽 = 𝜆𝛼𝛽.

Interpretation of Terms
Note that since we have a universe à la Russel, small types need to be
interpreted as terms as well (relative to a context and 𝒰).

Dependent function space. We interpret the (small) dependent function
space (𝑥 ∶ 𝐴) → 𝐵 (relative to Γ and 𝒰) as an 𝐼-element of the 𝐼-set which
interprets 𝒰 , namely as a nested family of 𝒰-small 𝐾-sets indexed by
𝛼 ∶ 𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾, by taking ((𝑥 ∶ 𝐴) → 𝐵)𝜌𝛼ℎ to be the
𝒰-small 𝐾-set of families 𝜆 = (𝜆𝛼′)𝛼′∶𝐾⟶𝐿 indexed by projection maps
𝛼′ ∶ 𝐾 ⟶ 𝐿 with 𝐿 ⊆ 𝐾, where each 𝜆𝛼′ is a tuple (𝜆𝛼′ℎ′)ℎ′∶𝐿⤚→𝑀 indexed
by total maps ℎ′ ∶ 𝐿 ⤚→ 𝑀, such that each 𝜆𝛼′ℎ′ is a dependent function
satisfying 𝜆𝛼′ℎ′(𝑢) ∈ (𝐵⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩)𝛼′ℎ′ for each 𝑢 ∈ (𝐴𝜌𝛼ℎ)𝛼′ℎ′ , and
(𝜆𝛼′ℎ′(𝑢))𝑓 = 𝜆𝛼′ℎ′𝑔(𝑢𝑓) for each 𝑢 ∈ (𝐴𝜌𝛼ℎ)𝛼′ℎ′ and 𝑓 ∶ 𝑀 ⟶ 𝑁.
Let 𝑓 ∶ 𝐼 ⟶ 𝐽. We now show that (((𝑥 ∶ 𝐴) → 𝐵)𝜌)𝑓 = ((𝑥 ∶ 𝐴) → 𝐵)(𝜌𝑓).
Let 𝛼 ∶ 𝐽 ⟶ 𝐾 and ℎ ∶ 𝐾 ⤚→ 𝐿. We have 𝐴(𝜌𝑓)𝛼ℎ = 𝐴𝜌(𝑓 𝛼ℎ) and
𝐵⟨(𝜌𝑓)𝛼ℎ, 𝑥 = 𝑢⟩ = 𝐵⟨𝜌(𝑓 𝛼ℎ), 𝑥 = 𝑢⟩ by induction hypotheses, hence by
definition the two 𝐿-sets ((𝑥 ∶ 𝐴) → 𝐵)𝜌𝑓𝛼ℎ = ((𝑥 ∶ 𝐴) → 𝐵)𝜌𝑓 𝛼ℎ and
((𝑥 ∶ 𝐴) → 𝐵)(𝜌𝑓)𝛼ℎ coincide.

Application. For 𝜌 ∈ Γ(𝐼), we interpret 𝑎 𝑏 as follows. Seeing the inter-
pretation of 𝑎 relative to a function type as a family of dependent func-
tions indexed by arbitrary maps, the element at index 1 ∶ 𝐼 ⟶ 𝐼 is a de-
pendent function (𝑎𝜌)1. We then define the 𝐼-element (𝑎 𝑏)𝜌 as (𝑎𝜌)1(𝑏𝜌).
Let 𝑓 ∶ 𝐼 ⟶ 𝐽. We now show that ((𝑎 𝑏)𝜌)𝑓 = (𝑎 𝑏)(𝜌𝑓). By induction
hypothesis and properties of the family of dependent functions 𝑎𝜌 we
have (𝑎𝜌)1𝑓 = (𝑎𝜌)𝑓 = (𝑎(𝜌𝑓))1 and (𝑏𝜌)𝑓 = 𝑏(𝜌𝑓). Therefore ((𝑎 𝑏)𝜌)𝑓 =
((𝑎𝜌)1𝑓) ((𝑏𝜌)𝑓) = (𝑎(𝜌𝑓))1 (𝑏(𝜌𝑓)) = (𝑎𝑏)(𝜌𝑓).

Abstraction. We interpret 𝜆(𝑥 ∶ 𝐴).𝑡 (relative to Γ and a function type
(𝑥 ∶ 𝐴) → 𝐵) as follows. Let 𝜌 ∈ Γ(𝐼). The 𝐼-element (𝜆(𝑥 ∶ 𝐴).𝑡)𝜌,
belonging to the 𝐼-set ((𝑥 ∶ 𝐴) → 𝐵)𝜌, is defined as the nested family 𝜆
indexed by 𝛼 ∶ 𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾, where each 𝜆𝛼ℎ is the dependent
function mapping any 𝑢 ∈ 𝐴𝜌𝛼ℎ to 𝑡⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩.
Let 𝑓 ∶ 𝐼 ⟶ 𝐽. We now show that ((𝜆(𝑥 ∶ 𝐴).𝑡)𝜌)𝑓 = (𝜆(𝑥 ∶ 𝐴).𝑡)(𝜌𝑓). Let
𝛼 ∶ 𝐽 ⟶ 𝐾 and ℎ ∶ 𝐾 ⤚→ 𝐿. By induction hypothesis 𝐴𝜌(𝑓 𝛼ℎ) = 𝐴(𝜌𝑓)𝛼ℎ
and 𝑡⟨𝜌(𝑓 𝛼ℎ), 𝑥 = 𝑢⟩ = 𝑡⟨(𝜌𝑓)𝛼ℎ, 𝑥 = 𝑢⟩. Furthermore by property of the
family of dependent functions (𝜆(𝑥 ∶ 𝐴).𝑡)𝜌 we have ((𝜆(𝑥 ∶ 𝐴).𝑡)𝜌)𝑓𝛼ℎ =
(𝜆(𝑥 ∶ 𝐴).𝑡)𝜌𝑓 𝛼ℎ. Therefore by definition the two families of dependent
functions indexed by projections 𝛼 ∶ 𝐽 ⟶ 𝐾 and total maps ℎ ∶ 𝐾 ⤚→ 𝐿
coincide: ((𝜆(𝑥 ∶ 𝐴).𝑡)𝜌)𝑓 = (𝜆(𝑥 ∶ 𝐴).𝑡)(𝜌𝑓).

112

Variable. We can reuse the definition from section 5.1 since an 𝐼-set is a
set.

Remark 11. Our calculus does not have any base types, but they could be in-
terpreted by modifying their usual interpretation as a constant presheaf into an
isomorphic 𝐼-set. For instance, the base type of natural numbers would be in-
terpreted by the 𝐼-set of tuples (𝑛𝐽)𝐽⊆𝐼 where 𝑛∅ ∈ ℕ and 𝑛𝐽 = ∅ for any
non-empty 𝐽 ⊆ 𝐼.

5.3.2 Nominal extension

We now show how to interpret the nominal extension (section 2.2) of our
calculus.

Interpretation of Contexts

Color context extension. In section 5.2.2 we defined

(Γ, 𝑖)(𝐼) = {[𝜌, 𝑖 = 𝟎] ∣ 𝜌 ∈ Γ(𝐼)} ⊎ {[𝜌, 𝑖 = 𝑗] ∣ 𝑗 ∈ 𝐼, 𝜌 ∈ Γ(𝐼\{𝑗})}.

For 𝜌 ∈ Γ(𝐼) (resp. 𝑗 ∈ 𝐼, 𝜌 ∈ Γ(𝐼\{𝑗})), we now redefine [𝜌, 𝑖 = 𝟎] (resp.
[𝜌, 𝑖 = 𝑗]) as an 𝐼-element by taking

• [𝜌, 𝑖 = 𝟎]𝐾 = (𝜌𝐾 , 𝟎) for each 𝐾 ⊆ 𝐼; and
• [𝜌, 𝑖 = 𝑗]𝐾 = (𝜌𝐾 , 𝟎) and [𝜌, 𝑖 = 𝑗]𝐾,𝑗 = (𝜌𝐾 , 𝑗) for each 𝐾 ⊆ 𝐼\{𝑗}.

We already proved preservation of identities and composition (indepen-
dently of the definition of [𝜌, 𝑖 = 𝜑]) in section 5.2.2. As for preservation
of projections, if 𝛼 ∶ 𝐼 ⟶ 𝐽 is a projection, we have by induction hypoth-
esis 𝜌𝛼𝐾 = 𝜌𝐾 for each 𝐾 ⊆ 𝐽 (if 𝜑 = 𝟎); and 𝜌(𝛼 − 𝑗)𝐾 = 𝜌𝐾 for each
𝐾 ⊆ 𝐽\{𝑗} (if 𝜑 = 𝑗 ∈ 𝐼). Now, by case analysis on 𝜑:

• [𝜌, 𝑖 = 𝟎]𝛼𝐾 = [𝜌𝛼, 𝑖 = 𝟎]𝐾 = (𝜌𝐾 , 𝟎) = [𝜌, 𝑖 = 𝟎]𝐾 for 𝜌 ∈ Γ(𝐼) and
𝐾 ⊆ 𝐽 ⊆ 𝐼;

• [𝜌, 𝑖 = 𝑗]𝛼𝐾 = [𝜌(𝛼 − 𝑗), 𝑖 = 𝟎]𝐾 = (𝜌𝐾 , 𝟎) = [𝜌, 𝑖 = 𝑗]𝐾 for 𝜌 ∈
Γ(𝐼\{𝑗}) and 𝐾 ⊆ 𝐽 ⊆ 𝐼\{𝑗} (then 𝛼(𝑗) = 𝟎); and

• [𝜌, 𝑖 = 𝑗]𝛼𝐾 = [𝜌(𝛼 − 𝑗), 𝑖 = 𝑗]𝐾 = (𝜌𝐾 , 𝟎) = [𝜌, 𝑖 = 𝑗]𝐾 and [𝜌, 𝑖 =
𝑗]𝛼𝐾,𝑗 = [𝜌(𝛼 − 𝑗), 𝑖 = 𝑗]𝐾,𝑗 = (𝜌𝐾 , 𝑗) = [𝜌, 𝑖 = 𝑗]𝐾,𝑗 for 𝜌 ∈ Γ(𝐼\{𝑗})
and 𝐾 ⊆ 𝐽 ⊆ 𝐼 such that 𝑗 ∉ 𝐾 (then 𝛼(𝑗) = 𝑗).

Interpretation of Types

Color product. The raw type ∀𝑖.𝐴 is interpreted (relative to Γ) as follows.

For 𝜌 ∈ Γ(𝐼), we take (∀𝑖.𝐴)𝜌 = { ̄𝑢𝑗 ∣ 𝑢 ∈ 𝐴[𝜌, 𝑖 = 𝑗]}, where 𝑗 = fresh(𝐼)
and ̄𝑢𝑗 turns the (𝐼, 𝑗)-element 𝑢 ∈ 𝐴[𝜌, 𝑖 = 𝑗] into an 𝐼-element (defined
in Definition 16 by ̄𝑢𝑗

𝐽 = (𝑢𝐽 , 𝑢𝐽,𝑖) for each 𝐽 ⊆ 𝐼).

113

Restriction maps. For 𝑓 ∶ 𝐼 ⟶ 𝐽, we take (∀𝑖.𝐴)𝜌 ⟶ (∀𝑖.𝐴)𝜌𝑓 to be de-
fined as ̄𝑢𝑗 ⟼ ̄𝑣𝑘, where 𝑣 = 𝑢(𝑓 , 𝑗 = 𝑘) ∈ 𝐴[𝜌, 𝑖 = 𝑗](𝑓 , 𝑗 = 𝑘) for
𝑢 ∈ 𝐴[𝜌, 𝑖 = 𝑗] with 𝑗 = fresh(𝐼) and 𝑘 = fresh(𝐽).
Preservation of identities. Direct, since 𝑣 = 𝑢(1, 𝑗 = 𝑗) = 𝑢1 = 𝑢.
Preservation of composition. Let 𝑓 ∶ 𝐼 ⟶ 𝐽 and 𝑔 ∶ 𝐽 ⟶ 𝐾. By definition
we have ̄𝑢𝑗𝑓 = ̄𝑣𝑘 where 𝑘 = fresh(𝐽) and 𝑣 = 𝑢(𝑓 , 𝑗 = 𝑘), and ̄𝑣𝑘𝑔 = �̄�𝑙

where 𝑙 = fresh(𝐾) and 𝑤 = 𝑣(𝑔, 𝑘 = 𝑙). Now since 𝑤 = 𝑢(𝑓 , 𝑗 = 𝑘)(𝑔, 𝑘 =
𝑙) = 𝑢(𝑓 𝑔, 𝑗 = 𝑙), we deduce that (̄𝑢𝑗𝑓)𝑔 = �̄�𝑙 = ̄𝑢𝑗(𝑓 𝑔).
Preservation of projections. Let 𝛼 ∶ 𝐼 ⟶ 𝐽 a projection and ̄𝑢𝑗 ∈ (∀𝑖.𝐴)𝜌,
where 𝑗 = fresh(𝐼). By definition we have ̄𝑢𝑗𝛼 = ̄𝑣𝑘, where 𝑘 = fresh(𝐽)
and 𝑣 = 𝑢(𝛼, 𝑗 = 𝑘). Let 𝐾 ⊆ 𝐽. We get by induction hypothesis that
𝑣𝐾 = (𝑢𝛼(𝑗 𝑘))𝐾 = 𝑢𝛼𝐾 = 𝑢𝐾 and 𝑣𝐾,𝑘 = (𝑢𝛼(𝑗 𝑘))𝐾,𝑘 = 𝑢𝛼𝐾,𝑗 = 𝑢𝐾,𝑗.
Therefore (̄𝑢𝑗𝛼)𝐾 = ̄𝑣𝑘

𝐾 = (𝑣𝐾 , 𝑣𝐾,𝑘) = (𝑢𝐾 , 𝑢𝐾,𝑗) = ̄𝑢𝑗
𝐾 .

Interpretation of Terms

Color product. We interpret the (small) color product ∀𝑖.𝐴 (relative to
Γ and 𝒰) as an 𝐼-element of the 𝐼-set which interprets 𝒰 , namely as a
nested family of 𝒰-small sets indexed by 𝛼 ∶ 𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾,
by taking (∀𝑖.𝐴)𝜌𝛼ℎ to be the 𝒰-small 𝐾-set of 𝐾-elements ̄𝑢𝑘 such that
𝑢 ∈ 𝐴[𝜌𝛼ℎ, 𝑖 = 𝑘]1, where 𝑘 = fresh(𝐾). (Seeing the interpretation of
the small type 𝐴 relative to the universe 𝒰 as a family of 𝒰-small sets
indexed by arbitrary maps, we take the element at index 1 ∶ 𝐾, 𝑘 ⟶
𝐾, 𝑘.) For 𝛼 ∶ 𝐼 ⟶ 𝐽, ℎ ∶ 𝐽 ⤚→ 𝐾 and 𝑔 ∶ 𝐾 ⟶ 𝐿, the restriction map
(∀𝑖.𝐴)𝜌𝛼ℎ ⟶ (∀𝑖.𝐴)𝜌𝛼ℎ𝑔 is defined to be ̄𝑢𝑘 ⟼ ̄𝑢𝑘𝑔 = ̄𝑣𝑙 where 𝑙 =
fresh(𝐿) and 𝑣 = 𝑢(𝑔, 𝑘 = 𝑙).
Let 𝑓 ∶ 𝐼 ⟶ 𝐽. We now show that ((∀𝑖.𝐴)𝜌)𝑓 = ((∀𝑖.𝐴)(𝜌𝑓). Let 𝛼 ∶
𝐽 ⟶ 𝐾 and ℎ ∶ 𝐾 ⤚→ 𝐿. We have [𝐴𝜌𝑓 𝛼ℎ, 𝑖 = 𝑙]1 = [𝐴(𝜌𝑓)𝛼ℎ, 𝑖 = 𝑙]1
by induction hypothesis, hence by definition the two 𝐿-sets (∀𝑖.𝐴)𝜌𝑓𝛼ℎ =
(∀𝑖.𝐴)𝜌𝑓 𝛼ℎ and (∀𝑖.𝐴)(𝜌𝑓)𝛼ℎ coincide.

Color application. We interpret 𝑎@𝜑 by case analysis on 𝜑. For 𝜌 ∈ Γ(𝐼),
• we take (𝑎@𝟎)𝜌 = (𝑎𝜌)@𝟎; and
• (𝑎@𝑖)𝜌 is only defined for 𝜌 of the form [𝜌′, 𝑖 = 𝜑′], and we take

(𝑎@𝑖)[𝜌′, 𝑖 = 𝜑′] = 𝑎𝜌′@𝜑′

(𝑎𝜌)@𝟎 (resp. 𝑎𝜌′@𝟎) is an 𝐼-element since interpreting 𝑎 relative to a color
product type yields an 𝐼-element 𝑎𝜌 (resp. 𝑎𝜌′) of the form ̄𝑢𝑗 (where 𝑗 =
fresh(𝐼)). Similarly (𝑎𝜌′)@𝑖′ is an 𝐼-element since interpreting 𝑎 relative to
a color product type yields an (𝐼\{𝑖′})-element 𝑎𝜌′ of the form ̄𝑢𝑗 (where
𝑗 = fresh(𝐼\{𝑖′})).
Let 𝑓 ∶ 𝐼 ⟶ 𝐽. We now show that ((𝑎@𝜑)𝜌)𝑓 = (𝑎@𝜑)(𝜌𝑓). By induction
hypothesis 𝑎𝜌𝑓 = 𝑎(𝜌𝑓) (resp. 𝑎𝜌′𝑓 = 𝑎(𝜌′𝑓)), and we distinguish three
cases.

114

• for 𝜑 = 𝟎, we have ((𝑎@𝟎)𝜌)𝑓 = (𝑎𝜌@𝟎)𝑓 = (𝑎𝜌)𝑓 @𝟎 = 𝑎(𝜌𝑓)@𝟎 =
(𝑎@𝟎)(𝜌𝑓);

• for 𝜑 = 𝑖 and 𝜑′ = 𝟎, we have ((𝑎@𝑖)[𝜌′, 𝑖 = 𝟎])𝑓 = (𝑎𝜌′@𝟎)𝑓 =
(𝑎𝜌′)𝑓 @𝟎 = 𝑎(𝜌′𝑓)@𝟎 = (𝑎@𝑖)[𝜌𝑓 , 𝑖 = 𝟎]; and

• for 𝜑 = 𝑖 and 𝜑′ = 𝑗 ∈ 𝐼, we have ((𝑎@𝑖)[𝜌′, 𝑖 = 𝑗])𝑓 = (𝑎𝜌′@𝑗)𝑓 =
(𝑎𝜌′)(𝑓 − 𝑗)@𝑓 (𝑗) = 𝑎(𝜌′(𝑓 − 𝑗))@𝑓 (𝑗) = (𝑎@𝑖)([𝜌′, 𝑖 = 𝑗]𝑓).

Color abstraction. We interpret ⟨𝑖⟩𝑎 (relative to Γ and a color product
type ∀𝑖.𝐴) as follows. Let 𝜌 ∈ Γ(𝐼). The 𝐼-element (⟨𝑖⟩𝑎)𝜌, belonging to
the 𝐼-set (∀𝑖.𝐴)𝜌, is defined as ̄𝑢𝑗, where 𝑗 = fresh(𝐼) and 𝑢 = 𝑎[𝜌, 𝑖 = 𝑗].
(Indeed ̄𝑢𝑗 is an 𝐼-element since 𝑢 is (𝐼, 𝑗)-element.) In other words (see
Definition 16), (⟨𝑖⟩𝑎)𝜌𝐽 = (𝑎[𝜌, 𝑖 = 𝑗]𝐽 , 𝑎[𝜌, 𝑖 = 𝑗]𝐽,𝑗) for each 𝐽 ⊆ 𝐼.
Let 𝑓 ∶ 𝐼 ⟶ 𝐽. We now show that ((⟨𝑖⟩𝑎)𝜌)𝑓 = (⟨𝑖⟩𝑎)(𝜌𝑓). Let 𝑢 = 𝑎[𝜌, 𝑖 =
𝑗] with 𝑗 = fresh(𝐼), and 𝑣 = 𝑢(𝑓 , 𝑗 = 𝑘) = 𝑎[𝜌𝑓 , 𝑖 = 𝑘] with 𝑘 = fresh(𝐽). By
induction hypothesis we have 𝑎[𝜌, 𝑖 = 𝑗](𝑓 , 𝑗 = 𝑘) = 𝑎([𝜌, 𝑖 = 𝑗](𝑓 , 𝑗 = 𝑘)),
hence ((⟨𝑖⟩𝑎)𝜌)𝑓 = ̄𝑢𝑗𝑓 = ̄𝑣𝑘 = (⟨𝑖⟩𝑎)(𝜌𝑓).

5.3.3 Parametric extension

We now show how to interpret the parametric extension (section 2.3) of
our calculus.

Interpretation of Types

Parametricity type. The raw type 𝑃 ∋ 𝑎 is interpreted (relative to Γ) as
follows.

For 𝜌 ∈ Γ(𝐼), (𝑃 ∋ 𝑎)𝜌 is the 𝐼-set of 𝐼-elements 𝑢! (see Definition 16) for
𝑢 ∈ 𝑃𝜌 such that 𝑢@𝟎 = 𝑎𝜌.
In particular, if 𝑃 is a color product ∀𝑖.𝐴 we have (∀𝑖.𝐴)𝜌 = { ̄𝑢𝑗 ∣ 𝑢 ∈
𝐴[𝜌, 𝑖 = 𝑗]}, where 𝑗 = fresh(𝐼), hence by Definition 16 ((∀.𝐴) ∋ 𝑎)𝜌 is
the 𝐼-sets of 𝐼-elements (𝑢𝐽,𝑗)𝐽⊆𝐼 such that 𝑢 ∈ 𝐴[𝜌, 𝑖 = 𝑗] and 𝑢(𝑗 𝟎) = 𝑎𝜌.
Restriction maps. For 𝑓 ∶ 𝐼 ⟶ 𝐽, we take (𝑃 ∋ 𝑎)𝜌 ⟶ (𝑃 ∋ 𝑎)𝜌𝑓 to be
defined as 𝑢! ⟼ 𝑢𝑓 !. (Indeed for each 𝑢 ∈ 𝑃𝜌 such that 𝑢@𝟎 = 𝑎𝜌 we
have 𝑢𝑓 ∈ 𝑃𝜌𝑓 and (𝑢@𝟎)𝑓 = 𝑢𝑓 @𝟎 = 𝑎𝜌𝑓 .)
Preservation of identities. Direct, since 𝑢! 1 = 𝑢1! = 𝑢!.
Preservation of composition. Direct, since for each maps 𝑓 ∶ 𝐼 ⟶ 𝐽 and
𝑔 ∶ 𝐽 ⟶ 𝐾 we have (𝑢! 𝑓)𝑔 = (𝑢𝑓)! 𝑔 = 𝑢(𝑓 𝑔)! = 𝑢! (𝑓 𝑔).
Preservation of projections. Let 𝛼 ∶ 𝐼 ⟶ 𝐽 a projection and 𝑢! ∈ (𝑃 ∋ 𝑎)𝜌.
Let 𝑗 = fresh(𝐽) and 𝐾 ⊆ 𝐽. By Definition 16 we have (𝑢𝛼!)𝐾 = 𝑢𝛼𝐾,𝑗 and
𝑢!𝐾 = 𝑢𝐾,𝑗. Now by induction hypothesis 𝑢𝛼𝐾,𝑗 = 𝑢𝐾,𝑗, hence (𝑢! 𝛼)𝐾 =
(𝑢𝛼!)𝐾 = 𝑢𝛼𝐾,𝑗 = 𝑢𝐾,𝑗 = 𝑢!𝐾 .

115

Interpretation of Terms

Colored pair. If 𝜌 ∈ Γ(𝐼), the 𝐼-element ⦇𝑎, 𝑝⦈𝜌 = (𝑢𝐽)𝐽⊆𝐼 is defined by
𝑢𝐽 = ((𝑎𝜌)𝐽 , (𝑝𝜌)𝐽) for each 𝐽 ⊆ 𝐼.
Let 𝑓 ∶ 𝐼 ⟶ 𝐽. Since by induction hypothesis 𝑎𝜌𝑓 = (𝑎𝜌)𝑓 and 𝑝𝜌𝑓 =
(𝑝𝜌)𝑓 , for each 𝐾 ⊆ 𝐽 we get that (⦇𝑎, 𝑝⦈𝜌𝑓)𝐾 = ((𝑎(𝜌𝑓))𝐾 , (𝑝(𝜌𝑓))𝐾) =
((𝑎𝜌)𝑓)𝐾 , ((𝑝𝜌)𝑓)𝐾) = ((⦇𝑎, 𝑝⦈𝜌)𝑓)𝐾 . Hence ⦇𝑎, 𝑝⦈𝜌𝑓 = (⦇𝑎, 𝑝⦈𝜌)𝑓 .

Parametricity type. We interpret the (small) parametricity type 𝑃 ∋ 𝑎
(relative to Γ and 𝒰) as an 𝐼-element of the 𝐼-set which interprets 𝒰 ,
namely as a nested family of 𝒰-small 𝐾-sets indexed by 𝛼 ∶ 𝐼 ⟶ 𝐽 and
ℎ ∶ 𝐽 ⤚→ 𝐾, by taking (𝑃 ∋ 𝑎)𝜌𝛼ℎ to be the 𝒰-small 𝐾-set of 𝐾-elements
𝑢! for 𝑢 ∈ 𝑃𝜌𝛼ℎ such that 𝑢@𝟎 = 𝑎𝜌𝛼ℎ. (Taking the interpretation of the
small type 𝑃 relative to the universe 𝒰 yields a nested family of 𝒰-small
sets indexed by projection maps and total maps, and we take the element
at indices 𝛼 and ℎ to obtain a 𝐾-set 𝑃𝜌𝛼ℎ.) For 𝛼 ∶ 𝐼 ⟶ 𝐽, ℎ ∶ 𝐽 ⤚→ 𝐾 and
𝑔 ∶ 𝐾 ⟶ 𝐿, the restriction map (𝑃 ∋ 𝑎)𝜌𝛼ℎ ⟶ (𝑃 ∋ 𝑎)𝜌𝛼ℎ𝑔 is defined to
be 𝑢! ⟼ 𝑢𝑔!.
Let 𝑓 ∶ 𝐼 ⟶ 𝐽. For 𝛼 ∶ 𝐽 ⟶ 𝐾 and ℎ ∶ 𝐾 ⤚→ 𝐿 the two 𝐿-sets (𝑃 ∋ 𝑎)𝜌𝑓𝛼ℎ =
(𝑃 ∋ 𝑎)𝜌𝑓 𝛼ℎ and (𝑃 ∋ 𝑎)(𝜌𝑓)𝛼ℎ coincide, since by induction hypothesis
𝑃𝜌𝑓 = 𝑃(𝜌𝑓) and 𝑎𝜌𝑓 𝛼ℎ = 𝑎(𝜌𝑓)𝛼ℎ.

Parametricity proof. If 𝜌 ∈ Γ(𝐼), we take (𝑎!)𝜌 = (𝑎𝜌)!. (Indeed if 𝑎𝜌 is
an 𝐼-element then so is (𝑎𝜌)!.)
Let 𝑓 ∶ 𝐼 ⟶ 𝐽. Since by induction hypothesis 𝑎𝜌𝑓 = (𝑎𝜌)𝑓 , we directly
obtain ((𝑎!)𝜌)𝑓 = 𝑎𝜌! 𝑓 = (𝑎𝜌)𝑓 ! = 𝑎(𝜌𝑓)! = (𝑎!)(𝜌𝑓).

Parametricity predicate. We interpret the parametricity predicate Ψ𝐴𝑃
(relative to Γ and (∀𝑖.𝒰) ∋ 𝐴) as an 𝐼-element of the 𝐼-set

((∀𝑖.𝒰) ∋ 𝐴)𝜌 = {(𝑢𝐽,𝑗)𝐽⊆𝐼 ∣ 𝑢 ∈ 𝒰[𝜌, 𝑖 = 𝑗], 𝑢(𝑗 𝟎) = 𝐴𝜌},
where 𝑗 = fresh(𝐼). For 𝛼 ∶ 𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾, we define (Ψ𝐴𝑃)𝜌𝛼ℎ as
the 𝒰-small 𝐾-set of 𝐾-elements 𝑣! ∈ ((𝑃𝜌)𝛼ℎ(𝑢))1 for 𝑢 ∈ 𝐴𝜌𝛼ℎ such that
𝑢 = 𝑣@𝟎. (Taking the interpretation of 𝑃 relative to the simple function
type 𝐴 → 𝒰 yields a nested family of functions indexed by projection
maps and total maps, and we take the element at indices 𝛼 and ℎ to obtain
a set-theoretic function (𝑃𝜌)𝛼ℎ ∶ 𝐴𝜌𝛼ℎ → 𝒰𝜌𝛼ℎ. Hence (𝑃𝜌)𝛼ℎ(𝑢) is a
nested family of 𝒰-small sets, which we turn into a 𝐾-set by taking the
element at index 1 ∶ 𝐾 ⟶ 𝐾.)
Let 𝑓 ∶ 𝐼 ⟶ 𝐽. For 𝛼 ∶ 𝐽 ⟶ 𝐾 and ℎ ∶ 𝐾 ⤚→ 𝐿 the two 𝐿-sets (Ψ𝐴𝑃)𝜌𝑓𝛼ℎ =
(Ψ𝐴𝑃)𝜌𝑓 𝛼ℎ and (𝑃 ∋ 𝑎)(𝜌𝑓)𝛼ℎ coincide, since by induction hypothesis
(𝑃𝜌𝑓)𝛼ℎ = (𝑃𝜌)𝑓 𝛼ℎ = ((𝑃𝜌)𝑓)𝛼ℎ and 𝐴𝜌𝑓 = 𝐴(𝜌𝑓).

Parametricity function. If 𝜌 ∈ Γ(𝐼), we take (Φ𝑡𝑢)𝜌 = �̄�𝑗!, where 𝑗 =
fresh(𝐼), 𝜆 = ((𝜆𝛼ℎ)ℎ∶𝐽⤚→𝐾)𝛼∶𝐼,𝑗⟶𝐽 and for 𝛼 ∶ 𝐼, 𝑗 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾, the
dependent function 𝜆𝛼ℎ is defined as follows by case analysis on 𝛼(𝑗):

116

• if 𝛼(𝑗) = 𝟎, we take 𝜆𝛼ℎ = (𝑡𝜌)𝛼ℎ−𝑗; and
• if ℎ(𝛼(𝑗)) = 𝑘 ∈ 𝐾, we take for 𝜆𝛼ℎ the dependent function map-

ping each 𝑣 ∈ 𝐴[𝜌(𝛼ℎ − 𝑗), 𝑖 = 𝑘] to 𝑤(𝑙 𝑘), where 𝑙 = fresh(𝐾\{𝑘}),
(𝑡𝜌)𝛼ℎ−𝑗(̄𝑣𝑘@𝟎) = �̄�𝑙@𝟎 and (𝑢𝜌)𝛼ℎ−𝑗(̄𝑣𝑘) = �̄�𝑙!.

5.4 Validity results

Our interpretation functions are defined by induction on raw contexts,
types and term. Totality on valid judgments (Theorem 11) is proven by
mutual induction with equality on convertible terms (Theorem 10) and
substitutions laws (Theorems 8 and 9).

Theorem 8 (Substitution law).
• If Γ, 𝑧 ∶ 𝐴 ⊢ 𝐵 and Γ ⊢ 𝑎 ∶ 𝐴 then for any 𝜌 ∈ Γ(𝐼) we have 𝐵[𝑧 ↦

𝑎]𝜌 = 𝐵⟨𝜌, 𝑧 = 𝑎𝜌⟩; and
• If Γ, 𝑧 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵 and Γ ⊢ 𝑎 ∶ 𝐴 then for any 𝜌 ∈ Γ(𝐼) we have

𝑏[𝑧 ↦ 𝑎]𝜌 = 𝑏⟨𝜌, 𝑧 = 𝑎𝜌⟩.

Proof. By simultaneous induction on the typing judgments Γ, 𝑧 ∶ 𝐴 ⊢ 𝐵
and Γ, 𝑧 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵 (Definition 2).

Universe. We directly have 𝒰𝜌 = 𝒰⟨𝜌, 𝑧 = 𝑎𝜌⟩ since the interpretation of
the universe does not depend on the environment.

Prod. We need to prove that ((𝑥 ∶ 𝐴[𝑧 ↦ 𝑎]) → 𝐵[𝑧 ↦ 𝑎])𝜌 = ((𝑥 ∶ 𝐴) →
𝐵)⟨𝜌, 𝑧 = 𝑎𝜌⟩. By definition ((𝑥 ∶ 𝐴[𝑧 ↦ 𝑎]) → 𝐵[𝑧 ↦ 𝑎])𝜌 is the 𝐼-set of
nested families 𝜆 indexed by 𝛼 ∶ 𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾, such that each 𝜆𝛼ℎ
is a dependent function satisfying 𝜆𝛼ℎ(𝑢) ∈ 𝐵[𝑧 ↦ 𝑎]⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩ for each
𝑢 ∈ 𝐴[𝑧 ↦ 𝑎]𝜌𝛼ℎ, and (𝜆𝛼ℎ(𝑢))𝑔 = 𝜆𝛼ℎ𝑔(𝑢𝑔) for each 𝑢 ∈ 𝐴[𝑧 ↦ 𝑎]𝜌𝛼ℎ
and 𝑔 ∶ 𝐾 ⟶ 𝐿.
Now by induction hypothesis 𝐴[𝑧 ↦ 𝑎]𝜌𝛼ℎ = 𝐴⟨𝜌, 𝑧 = 𝑎𝜌⟩𝛼ℎ and 𝐵[𝑧 ↦
𝑎]⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩ = 𝐵⟨⟨𝜌𝛼ℎ, 𝑧 = 𝑎𝜌𝛼ℎ⟩, 𝑥 = 𝑢⟩ for each 𝑢 ∈ 𝐴[𝑧 ↦ 𝑎]𝜌𝛼ℎ =
𝐴⟨𝜌, 𝑧 = 𝑎𝜌⟩𝛼ℎ. Therefore the two 𝐼-sets ((𝑥 ∶ 𝐴[𝑧 ↦ 𝑎]) → 𝐵[𝑧 ↦ 𝑎])𝜌
and ((𝑥 ∶ 𝐴) → 𝐵)⟨𝜌, 𝑧 = 𝑎𝜌⟩ coincide.

Small. Direct use of the induction hypothesis.

ColPi. We need to prove that (∀𝑖.𝐴[𝑧 ↦ 𝑎])𝜌 = (∀𝑖.𝐴)⟨𝜌, 𝑧 = 𝑎𝜌⟩. Let 𝑗 =
fresh(𝐼). By induction hypothesis we get 𝐴[𝑧 ↦ 𝑎][𝜌, 𝑖 = 𝑗] = 𝐴⟨[𝜌, 𝑖 =
𝑗], 𝑧 = 𝑎[𝜌, 𝑖 = 𝑗]⟩ = 𝐴[⟨𝜌, 𝑧 = 𝑎𝜌⟩, 𝑖 = 𝑗]. We therefore obtain

(∀𝑖.𝐴[𝑧 ↦ 𝑎])𝜌 = { ̄𝑢𝑗 ∣ 𝑢 ∈ 𝐴[𝑧 ↦ 𝑎][𝜌, 𝑖 = 𝑗]}
= { ̄𝑢𝑗 ∣ 𝑢 ∈ 𝐴[⟨𝜌, 𝑧 = 𝑎𝜌⟩, 𝑖 = 𝑗]}
= (∀𝑖.𝐴)⟨𝜌, 𝑧 = 𝑎𝜌⟩

117

Out. We need to show that ((∀𝑖.𝐴[𝑧 ↦ 𝑎]) ∋ 𝑡[𝑧 ↦ 𝑎])𝜌 = (∀𝑖.𝐴 ∋
𝑡)⟨𝜌, 𝑧 = 𝑎𝜌⟩.
By definition ((∀𝑖.𝐴[𝑧 ↦ 𝑎]) ∋ 𝑡[𝑧 ↦ 𝑎])𝜌 is the 𝐼-set of 𝐼-elements 𝑢!
such that 𝑢 ∈ (∀𝑖.𝐴[𝑧 ↦ 𝑎])𝜌 and 𝑢@𝟎 = 𝑎[𝑧 ↦ 𝑎]𝜌. Similarly (∀𝑖.𝐴 ∋
𝑡)⟨𝜌, 𝑧 = 𝑎𝜌⟩ is the 𝐼-set of 𝐼-elements 𝑣! such that 𝑣 ∈ (∀𝑖.𝐴)⟨𝜌, 𝑧 = 𝑎𝜌⟩
and 𝑣@𝟎 = 𝑎⟨𝜌, 𝑧 = 𝑎𝜌⟩.
We conclude that the two 𝐼-sets coincide since the induction hypothesis
gives that (∀𝑖.𝐴[𝑧 ↦ 𝑎])𝜌 = (∀𝑖.𝐴)⟨𝜌, 𝑧 = 𝑎𝜌⟩ and 𝑎[𝑧 ↦ 𝑎]𝜌 = 𝑎⟨𝜌, 𝑧 =
𝑎𝜌⟩.

Conv. Direct use of the induction hypothesis and Theorem 10.

Var. Trivial.

Abs. We need to show that (𝜆(𝑥 ∶ 𝐴[𝑧 ↦ 𝑎]).𝑡[𝑧 ↦ 𝑎])𝜌 = (𝜆(𝑥 ∶
𝐴).𝑡)⟨𝜌, 𝑧 = 𝑎𝜌⟩.
By definition (𝜆(𝑥 ∶ 𝐴[𝑧 ↦ 𝑎]).𝑡[𝑧 ↦ 𝑎])𝜌 is a nested family 𝜆 indexed
by 𝛼 ∶ 𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾, where 𝜆𝛼ℎ is the dependent function
mapping any 𝑢 ∈ 𝐴[𝑧 ↦ 𝑎]𝜌𝛼ℎ to 𝑡[𝑧 ↦ 𝑎]⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩ Similarly (𝜆(𝑥 ∶
𝐴).𝑡)⟨𝜌, 𝑧 = 𝑎𝜌⟩ is a nested family 𝜆′ indexed by 𝛼 ∶ 𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾,
where 𝜆′

𝛼ℎ is the dependent function mapping any 𝑢 ∈ 𝐴⟨𝜌, 𝑧 = 𝑎𝜌⟩𝛼ℎ to
𝑡⟨⟨𝜌, 𝑧 = 𝑎𝜌⟩𝛼ℎ, 𝑥 = 𝑢⟩. Now by induction hypothesis we have

𝐴[𝑧 ↦ 𝑎]𝜌𝛼ℎ = 𝐴⟨𝜌𝛼ℎ, 𝑧 = 𝑎𝜌𝛼ℎ⟩ = 𝐴⟨𝜌, 𝑧 = 𝑎𝜌⟩𝛼ℎ; and
𝑡[𝑧 ↦ 𝑎]⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩ = 𝑡⟨⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩, 𝑧 = 𝑎⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩⟩

= 𝑡⟨⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩, 𝑧 = 𝑎𝜌𝛼ℎ⟩
= 𝑡⟨⟨𝜌𝛼ℎ, 𝑧 = 𝑎𝜌𝛼ℎ⟩, 𝑥 = 𝑢⟩
= 𝑡⟨⟨𝜌, 𝑧 = 𝑎𝜌⟩𝛼ℎ, 𝑥 = 𝑢⟩,

hence we deduce 𝜆𝛼ℎ = 𝜆′
𝛼ℎ.

App. We need to prove that (𝑡[𝑧 ↦ 𝑎] 𝑢[𝑧 ↦ 𝑎])𝜌 = (𝑡 𝑢)⟨𝜌, 𝑧 = 𝑎𝜌⟩.
By induction hypothesis we get that 𝑡[𝑧 ↦ 𝑎]𝜌 = 𝑡⟨𝜌, 𝑧 = 𝑎𝜌⟩ and 𝑢[𝑧 ↦
𝑎]𝜌 = 𝑢⟨𝜌, 𝑧 = 𝑎𝜌⟩, hence by definition

(𝑡[𝑧 ↦ 𝑎] 𝑢[𝑧 ↦ 𝑎])𝜌 = (𝑡[𝑧 ↦ 𝑎]𝜌)1(𝑢[𝑧 ↦ 𝑎]𝜌)
= (𝑡⟨𝜌, 𝑧 = 𝑎𝜌⟩)1(𝑢⟨𝜌, 𝑧 = 𝑎𝜌⟩)
= (𝑡 𝑢)⟨𝜌, 𝑧 = 𝑎𝜌⟩.

Prod-𝒰 . Like for Prod.

Out-𝒰 . Like for Out.

118

ColAbs. We need to prove that (⟨𝑖⟩𝑡[𝑧 ↦ 𝑎])𝜌 = (⟨𝑖⟩𝑡)⟨𝜌, 𝑧 = 𝑎𝜌⟩. Let 𝑗 =
fresh(𝐼). By definition (⟨𝑖⟩𝑡[𝑧 ↦ 𝑎])𝜌 = ̄𝑢𝑗, where 𝑢 = (𝑡[𝑧 ↦ 𝑎])[𝜌, 𝑖 = 𝑗].
Similarly (⟨𝑖⟩𝑡)⟨𝜌, 𝑧 = 𝑎𝜌⟩ = ̄𝑣𝑗, where 𝑣 = 𝑡[⟨𝜌, 𝑧 = 𝑎𝜌⟩, 𝑖 = 𝑗].
Now since by induction hypothesis we have

(𝑡[𝑧 ↦ 𝑎])[𝜌, 𝑖 = 𝑗] = 𝑡⟨[𝜌, 𝑖 = 𝑗], 𝑧 = 𝑎[𝜌, 𝑖 = 𝑗]⟩
= 𝑡⟨[𝜌, 𝑖 = 𝑗], 𝑧 = 𝑎𝜌⟩
= 𝑡[⟨𝜌, 𝑧 = 𝑎𝜌⟩, 𝑖 = 𝑗],

we deduce 𝑢 = 𝑣 and therefore ̄𝑢𝑗 = ̄𝑣𝑗.

In-Abs. We need to prove that ⦇𝑡[𝑧 ↦ 𝑎], 𝑢[𝑧 ↦ 𝑎]⦈𝜌 = ⦇𝑡, 𝑢⦈⟨𝜌, 𝑧 = 𝑎𝜌⟩.
By induction hypothesis we get 𝑡[𝑧 ↦ 𝑎]𝜌 = 𝑡⟨𝜌, 𝑧 = 𝑎𝜌⟩ and 𝑢[𝑧 ↦ 𝑎]𝜌 =
𝑢⟨𝜌, 𝑧 = 𝑎𝜌⟩. Since for each 𝐽 ⊆ 𝐼 we have

⦇𝑡[𝑧 ↦ 𝑎], 𝑢[𝑧 ↦ 𝑎]⦈𝜌𝐽 = (𝑡[𝑧 ↦ 𝑎]𝜌𝐽 , 𝑢[𝑧 ↦ 𝑎]𝜌𝐽)
= (𝑡⟨𝜌, 𝑧 = 𝑎𝜌⟩𝐽 , 𝑢⟨𝜌, 𝑧 = 𝑎𝜌⟩𝐽)
= ⦇𝑡, 𝑢⦈⟨𝜌, 𝑧 = 𝑎𝜌⟩𝐽 ,

we deduce that the 𝐼-elements ⦇𝑡[𝑧 ↦ 𝑎], 𝑢[𝑧 ↦ 𝑎]⦈𝜌 and ⦇𝑡, 𝑢⦈⟨𝜌, 𝑧 = 𝑎𝜌⟩
are equal.

ColPi-𝒰 . Like for ColPi.

In-Pred. We need to show that (Ψ𝐴[𝑧↦𝑎]𝑃[𝑧 ↦ 𝑎])𝜌 = (Ψ𝐴𝑃)⟨𝜌, 𝑧 = 𝑎𝜌⟩.
By definition (Ψ𝐴[𝑧↦𝑎]𝑃[𝑧 ↦ 𝑎])𝜌 is a nested family 𝒫 indexed by 𝛼 ∶
𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾, where 𝒫𝛼ℎ is the 𝒰-small 𝐾-set of 𝐾-elements 𝑣! ∈
((𝑃[𝑧 ↦ 𝑎]𝜌)𝛼ℎ(𝑢))1 for 𝑢 ∈ 𝐴[𝑧 ↦ 𝑎]𝜌𝛼ℎ such that 𝑢 = 𝑣@𝟎. Similarly,
(Ψ𝐴𝑃)⟨𝜌, 𝑧 = 𝑎𝜌⟩ is a nested family 𝒫 ′ indexed by 𝛼 ∶ 𝐼 ⟶ 𝐽 and ℎ ∶
𝐽 ⤚→ 𝐾, where 𝒫 ′

𝛼ℎ is the 𝒰-small 𝐾-set of 𝐾-elements 𝑣′! ∈ ((𝑃⟨𝜌, 𝑧 =
𝑎𝜌⟩)𝛼ℎ(𝑢′))1 for 𝑢′ ∈ 𝐴⟨𝜌, 𝑧 = 𝑎𝜌⟩𝛼ℎ such that 𝑢′ = 𝑣′@𝟎.
Since by induction hypothesis we have 𝑃[𝑧 ↦ 𝑎]𝜌 = 𝑃⟨𝜌, 𝑧 = 𝑎𝜌⟩ and
𝐴[𝑧 ↦ 𝑎]𝜌 = 𝐴⟨𝜌, 𝑧 = 𝑎𝜌⟩, we deduce that 𝒫𝛼ℎ = 𝒫 ′

𝛼ℎ for each 𝛼 ∶ 𝐼 ⟶ 𝐽
and ℎ ∶ 𝐽 ⤚→ 𝐾, and therefore that 𝒫 = 𝒫 ′.

In-Fun. We need to prove that (Φ𝑡[𝑧↦𝑎]𝑢[𝑧 ↦ 𝑎])𝜌 = (Φ𝑡𝑢)⟨𝜌, 𝑧 = 𝑎𝜌⟩.
Let 𝑗 = fresh(𝐼). By definition (Φ𝑡[𝑧↦𝑎]𝑢[𝑧 ↦ 𝑎])𝜌 = �̄�𝑗!, where 𝜆 is
a nested family indexed by 𝛼 ∶ 𝐼, 𝑗 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾. Similarly
(Φ𝑡𝑢)⟨𝜌, 𝑧 = 𝑎𝜌⟩ = ̄𝜆′𝑗!, where 𝜆′ is a nested family indexed by 𝛼 ∶ 𝐼, 𝑗 ⟶ 𝐽
and ℎ ∶ 𝐽 ⤚→ 𝐾.
We now show by case analysis on 𝛼(𝑗) that 𝜆𝛼ℎ = 𝜆′

𝛼ℎ for each 𝛼 ∶ 𝐼, 𝑗 ⟶ 𝐽
and ℎ ∶ 𝐽 ⤚→ 𝐾.

• If 𝛼(𝑗) = 𝟎 we have 𝜆𝛼ℎ = (𝑡[𝑧 ↦ 𝑎]𝜌)𝛼ℎ−𝑗 = (𝑡⟨𝜌, 𝑧 = 𝑎𝜌⟩)𝛼ℎ−𝑗 = 𝜆′
𝛼ℎ

since by induction hypothesis 𝑡[𝑧 ↦ 𝑎]𝜌 = 𝑡⟨𝜌, 𝑧 = 𝑎𝜌⟩.

119

• If ℎ(𝛼(𝑗)) = 𝑘 ∈ 𝐾, by definition 𝜆𝛼ℎ is the dependent function
mapping each 𝑣 ∈ 𝐴[𝑧 ↦ 𝑎][𝜌(𝛼ℎ − 𝑗), 𝑖 = 𝑘] to 𝑤(𝑙 𝑘) where
(𝑡[𝑧 ↦ 𝑎]𝜌)𝛼ℎ−𝑗(̄𝑣𝑘@𝟎) = �̄�𝑙@𝟎, (𝑢[𝑧 ↦ 𝑎]𝜌)𝛼ℎ−𝑗(̄𝑣𝑘) = �̄�𝑙! and
𝑙 = fresh(𝐾\{𝑘}); similarly 𝜆′

𝛼ℎ is the dependent function mapping
each 𝑣′ ∈ 𝐴[⟨𝜌, 𝑧 = 𝑎𝜌⟩(𝛼ℎ − 𝑗), 𝑖 = 𝑘] to 𝑤′(𝑙 𝑘) where (𝑡⟨𝜌, 𝑧 =
𝑎𝜌⟩)𝛼ℎ−𝑗(̄𝑣′𝑘@𝟎) = ̄𝑤′𝑙@𝟎 and (𝑢⟨𝜌, 𝑧 = 𝑎𝜌⟩)𝛼ℎ−𝑗(̄𝑣′𝑘) = ̄𝑤′𝑙!. Now
since by induction hypothesis

𝑡[𝑧 ↦ 𝑎]𝜌 = 𝑡⟨𝜌, 𝑧 = 𝑎𝜌⟩;
𝑢[𝑧 ↦ 𝑎]𝜌 = 𝑢⟨𝜌, 𝑧 = 𝑎𝜌⟩; and

𝐴[𝑧 ↦ 𝑎][𝜌(𝛼ℎ − 𝑗), 𝑖 = 𝑘] = 𝐴⟨[𝜌(𝛼ℎ − 𝑗), 𝑖 = 𝑘], 𝑧 = 𝑎𝜌(𝛼ℎ − 𝑗)⟩
= 𝐴[⟨𝜌(𝛼ℎ − 𝑗), 𝑧 = 𝑎𝜌(𝛼ℎ − 𝑗)⟩, 𝑖 = 𝑘]
= 𝐴[⟨𝜌, 𝑧 = 𝑎𝜌⟩(𝛼ℎ − 𝑗), 𝑖 = 𝑘],

we deduce that 𝜆𝛼ℎ = 𝜆′
𝛼ℎ.

ColApp. Absurd since the context Γ, 𝑖, ⃗𝚥 cannot end with a variable 𝑧 ∶ 𝐴.

ColApp-Orig. We need to show that (𝑡[𝑧 ↦ 𝑎]@𝟎)𝜌 = (𝑡@𝟎)⟨𝜌, 𝑧 = 𝑎𝜌⟩.
By induction hypothesis 𝑡[𝑧 ↦ 𝑎]𝜌 = 𝑡⟨𝜌, 𝑧 = 𝑎𝜌⟩, and therefore (𝑡[𝑧 ↦
𝑎]@𝟎)𝜌 = 𝑡[𝑧 ↦ 𝑎]𝜌@𝟎 = 𝑡⟨𝜌, 𝑧 = 𝑎𝜌⟩@𝟎 = (𝑡@𝟎)⟨𝜌, 𝑧 = 𝑎𝜌⟩.

Param. We need to show that (𝑡[𝑧 ↦ 𝑎]!)𝜌 = (𝑡!)⟨𝜌, 𝑧 = 𝑎𝜌⟩. By induc-
tion hypothesis 𝑡[𝑧 ↦ 𝑎]𝜌 = 𝑡⟨𝜌, 𝑧 = 𝑎𝜌⟩, and therefore (𝑡[𝑧 ↦ 𝑎]!)𝜌 =
𝑡[𝑧 ↦ 𝑎]𝜌! = 𝑡⟨𝜌, 𝑧 = 𝑎𝜌⟩! = (𝑡!)⟨𝜌, 𝑧 = 𝑎𝜌⟩.

It also satisfies the substitution law on colors:

Theorem 9 (Substitution law on colors).
• If Γ, 𝑖 ⊢ 𝐴 then for any 𝜌 ∈ Γ(𝐼) and 𝑗 ∉ 𝐼 we have 𝐴(𝑖 𝟎)𝜌 = 𝐴[𝜌, 𝑖 =

𝟎] = 𝐴[𝜌, 𝑖 = 𝑗](𝑗 𝟎). (Since [𝜌, 𝑖 = 𝟎] ∈ (Γ ∗ 𝕀)(𝐼) and [𝜌, 𝑖 = 𝑗] ∈
(Γ ∗ 𝕀)(𝐼, 𝑗), 𝐴(𝑖 𝟎)𝜌 and 𝐴[𝜌, 𝑖 = 𝟎] are both 𝐼-sets while 𝐴[𝜌, 𝑖 = 𝑗] is
a (𝐼, 𝑗)-set.)

• Similarly if Γ, 𝑖 ⊢ 𝑎 ∶ 𝐴 then for any 𝜌 ∈ Γ(𝐼) and 𝑗 ∉ 𝐼 we have
𝑎(𝑖 𝟎)𝜌 = 𝑎[𝜌, 𝑖 = 𝟎] = 𝑎[𝜌, 𝑖 = 𝑗](𝑗 𝟎).

Proof. By simultaneous induction on the typing judgments Γ, 𝑖 ⊢ 𝐴 and
Γ, 𝑖 ⊢ 𝑎 ∶ 𝐴 (Definition 2).

Universe. We directly have 𝒰(𝑖 𝟎)𝜌 = 𝒰[𝜌, 𝑖 = 𝟎] since the interpretation
of the universe does not depend on the environment.

Prod. We need to prove that ((𝑥 ∶ 𝐴(𝑖 𝟎)) → 𝐵(𝑖 𝟎))𝜌 = ((𝑥 ∶ 𝐴) →
𝐵)[𝜌, 𝑖 = 𝟎]. By definition ((𝑥 ∶ 𝐴(𝑖 𝟎)) → 𝐵(𝑖 𝟎))𝜌 is the 𝐼-set of nested
families 𝜆 indexed by 𝛼 ∶ 𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾, such that each 𝜆𝛼ℎ
is a dependent function satisfying 𝜆𝛼ℎ(𝑢) ∈ 𝐵(𝑖 𝟎)⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩ for each

120

𝑢 ∈ 𝐴(𝑖 𝟎)𝜌𝛼ℎ, and (𝜆𝛼ℎ(𝑢))𝑔 = 𝜆𝛼ℎ𝑔(𝑢𝑔) for each 𝑢 ∈ 𝐴(𝑖 𝟎)𝜌𝛼ℎ and
𝑔 ∶ 𝐾 ⟶ 𝐿.

Now by induction hypothesis 𝐴(𝑖 𝟎)𝜌𝛼ℎ = 𝐴[𝜌, 𝑖 = 𝟎]𝛼ℎ and for each
𝑢 ∈ 𝐴(𝑖 𝟎)𝜌𝛼ℎ = 𝐴[𝜌, 𝑖 = 𝟎]𝛼ℎ, one has 𝐵(𝑖 𝟎)⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩ = 𝐵[⟨𝜌𝛼ℎ, 𝑥 =
𝑢⟩, 𝑖 = 𝟎] = 𝐵⟨[𝜌𝛼ℎ, 𝑖 = 𝟎], 𝑥 = 𝑢⟩. Therefore the two 𝐼-sets ((𝑥 ∶
𝐴(𝑖 𝟎)) → 𝐵(𝑖 𝟎))𝜌 and ((𝑥 ∶ 𝐴) → 𝐵)[𝜌, 𝑖 = 𝟎] coincide.

Small. Direct use of the induction hypothesis.

ColPi. We need to prove that (∀𝑗.𝐴(𝑖 𝟎))𝜌 = (∀𝑗.𝐴)[𝜌, 𝑖 = 𝟎]. Let 𝑘 =
fresh(𝐼). By induction hypothesis we get 𝐴(𝑖 𝟎)[𝜌, 𝑗 = 𝑘] = 𝐴[[𝜌, 𝑗 =
𝑘], 𝑖 = 𝟎]⟩ = 𝐴[[𝜌, 𝑖 = 𝟎], 𝑗 = 𝑘]. We therefore obtain

(∀𝑗.𝐴(𝑖 𝟎))𝜌 = { ̄𝑢𝑘 ∣ 𝑢 ∈ 𝐴(𝑖 𝟎)[𝜌, 𝑗 = 𝑘]}
= { ̄𝑢𝑘 ∣ 𝑢 ∈ 𝐴[[𝜌, 𝑖 = 𝟎], 𝑗 = 𝑘]}
= (∀𝑗.𝐴)[𝜌, 𝑖 = 𝟎]

Out. We need to show that ((∀𝑗.𝐴(𝑖 𝟎)) ∋ 𝑡(𝑖 𝟎))𝜌 = (∀𝑗.𝐴 ∋ 𝑡)[𝜌, 𝑖 = 𝟎].
By definition ((∀𝑗.𝐴(𝑖 𝟎)) ∋ 𝑡(𝑖 𝟎))𝜌 is the 𝐼-set of 𝐼-elements 𝑢! such that
𝑢 ∈ (∀𝑗.𝐴(𝑖 𝟎))𝜌 and 𝑢@𝟎 = 𝑎(𝑖 𝟎)𝜌. Similarly (∀𝑗.𝐴 ∋ 𝑡)[𝜌, 𝑖 = 𝟎] is the
𝐼-set of 𝐼-elements 𝑣! such that 𝑣 ∈ (∀𝑗.𝐴)[𝜌, 𝑖 = 𝟎] and 𝑣@𝟎 = 𝑎[𝜌, 𝑖 = 𝟎].
We conclude that the two 𝐼-sets coincide since the induction hypothesis
gives that (∀𝑗.𝐴(𝑖 𝟎))𝜌 = (∀𝑗.𝐴)[𝜌, 𝑖 = 𝟎] and 𝑎(𝑖 𝟎)𝜌 = 𝑎[𝜌, 𝑖 = 𝟎].

Conv. Direct use of the induction hypothesis and Theorem 10.

Var. Trivial.

Abs. We need to show that (𝜆(𝑥 ∶ 𝐴(𝑖 𝟎)).𝑡(𝑖 𝟎))𝜌 = (𝜆(𝑥 ∶ 𝐴).𝑡)[𝜌, 𝑖 = 𝟎].
By definition (𝜆(𝑥 ∶ 𝐴(𝑖 𝟎)).𝑡(𝑖 𝟎))𝜌 is a nested family 𝜆 indexed by 𝛼 ∶
𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾, where 𝜆𝛼ℎ is the dependent function mapping
any 𝑢 ∈ 𝐴(𝑖 𝟎)𝜌𝛼ℎ to 𝑡(𝑖 𝟎)⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩ Similarly (𝜆(𝑥 ∶ 𝐴).𝑡)[𝜌, 𝑖 = 𝟎] is a
nested family 𝜆′ indexed by 𝛼 ∶ 𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾, where 𝜆′

𝛼ℎ is the
dependent function mapping any 𝑢 ∈ 𝐴[𝜌, 𝑖 = 𝟎]𝛼ℎ to 𝑡⟨[𝜌, 𝑖 = 𝟎]𝛼ℎ, 𝑥 =
𝑢⟩. Now by induction hypothesis we have

𝐴(𝑖 𝟎)𝜌𝛼ℎ = 𝐴[𝜌𝛼ℎ, 𝑖 = 𝟎] = 𝐴[𝜌, 𝑖 = 𝟎]𝛼ℎ; and
𝑡(𝑖 𝟎)⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩ = 𝑡[⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩, 𝑖 = 𝟎]

= 𝑡⟨[𝜌𝛼ℎ, 𝑖 = 𝟎], 𝑥 = 𝑢⟩
= 𝑡⟨[𝜌, 𝑖 = 𝟎]𝛼ℎ, 𝑥 = 𝑢⟩,

hence we deduce 𝜆𝛼ℎ = 𝜆′
𝛼ℎ.

121

App. We need to prove that (𝑡(𝑖 𝟎) 𝑢(𝑖 𝟎))𝜌 = (𝑡 𝑢)[𝜌, 𝑖 = 𝟎].
By induction hypothesis we get that 𝑡(𝑖 𝟎)𝜌 = 𝑡[𝜌, 𝑖 = 𝟎] and 𝑢(𝑖 𝟎)𝜌 =
𝑢[𝜌, 𝑖 = 𝟎], hence by definition

(𝑡(𝑖 𝟎) 𝑢(𝑖 𝟎))𝜌 = (𝑡(𝑖 𝟎)𝜌)1(𝑢(𝑖 𝟎)𝜌)
= (𝑡[𝜌, 𝑖 = 𝟎])1(𝑢[𝜌, 𝑖 = 𝟎])
= (𝑡 𝑢)[𝜌, 𝑖 = 𝟎].

Prod-𝒰 . Like for Prod.

Out-𝒰 . Like for Out.

ColAbs. We need to prove that (⟨𝑗⟩𝑡(𝑖 𝟎))𝜌 = (⟨𝑗⟩𝑡)[𝜌, 𝑖 = 𝟎]. Let 𝑘 =
fresh(𝐼). By definition (⟨𝑗⟩𝑡(𝑖 𝟎))𝜌 = ̄𝑢𝑘, where 𝑢 = (𝑡(𝑖 𝟎))[𝜌, 𝑗 = 𝑘].
Similarly (⟨𝑗⟩𝑡)[𝜌, 𝑖 = 𝟎] = ̄𝑣𝑘, where 𝑣 = 𝑡[[𝜌, 𝑖 = 𝟎], 𝑗 = 𝑘].
Now since by induction hypothesis we have (𝑡(𝑖 𝟎))[𝜌, 𝑗 = 𝑘] = 𝑡[[𝜌, 𝑗 =
𝑘], 𝑖 = 𝟎]] = 𝑡[[𝜌, 𝑖 = 𝟎], 𝑗 = 𝑘], we deduce 𝑢 = 𝑣 and therefore ̄𝑢𝑘 = ̄𝑣𝑘.

In-Abs. We need to prove that ⦇𝑡(𝑖 𝟎), 𝑢(𝑖 𝟎)⦈𝜌 = ⦇𝑡, 𝑢⦈[𝜌, 𝑖 = 𝟎]. By in-
duction hypothesis we get 𝑡(𝑖 𝟎)𝜌 = 𝑡[𝜌, 𝑖 = 𝟎] and 𝑢(𝑖 𝟎)𝜌 = 𝑢[𝜌, 𝑖 = 𝟎].
Since for each 𝐽 ⊆ 𝐼 we have

⦇𝑡(𝑖 𝟎), 𝑢(𝑖 𝟎)⦈𝜌𝐽 = (𝑡(𝑖 𝟎)𝜌𝐽 , 𝑢(𝑖 𝟎)𝜌𝐽)
= (𝑡[𝜌, 𝑖 = 𝟎]𝐽 , 𝑢[𝜌, 𝑖 = 𝟎]𝐽)
= ⦇𝑡, 𝑢⦈[𝜌, 𝑖 = 𝟎]𝐽 ,

we deduce that the 𝐼-elements ⦇𝑡(𝑖 𝟎), 𝑢(𝑖 𝟎)⦈𝜌 and ⦇𝑡, 𝑢⦈[𝜌, 𝑖 = 𝟎] are
equal.

ColPi-𝒰 . Like for ColPi.

In-Pred. We need to show that (Ψ𝐴(𝑖 𝟎)𝑃(𝑖 𝟎))𝜌 = (Ψ𝐴𝑃)[𝜌, 𝑖 = 𝟎].
By definition (Ψ𝐴(𝑖 𝟎)𝑃(𝑖 𝟎))𝜌 is a nested family 𝒫 indexed by 𝛼 ∶ 𝐼 ⟶
𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾, where 𝒫𝛼ℎ is the 𝒰-small 𝐾-set of 𝐾-elements 𝑣! ∈
((𝑃(𝑖 𝟎)𝜌)𝛼ℎ(𝑢))1 for 𝑢 ∈ 𝐴(𝑖 𝟎)𝜌𝛼ℎ such that 𝑢 = 𝑣@𝟎; and (Ψ𝐴𝑃)[𝜌, 𝑖 =
𝟎] is a nested family 𝒫 ′ indexed by 𝛼 ∶ 𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾, where
𝒫 ′

𝛼ℎ is the 𝒰-small 𝐾-set of 𝐾-elements 𝑣′! ∈ ((𝑃[𝜌, 𝑖 = 𝟎])𝛼ℎ(𝑢′))1 for
𝑢′ ∈ 𝐴[𝜌, 𝑖 = 𝟎]𝛼ℎ such that 𝑢′ = 𝑣′@𝟎.
Since by induction hypothesis we have 𝑃(𝑖 𝟎)𝜌 = 𝑃[𝜌, 𝑖 = 𝟎] and 𝐴(𝑖 𝟎)𝜌 =
𝐴[𝜌, 𝑖 = 𝟎], we deduce that 𝒫𝛼ℎ = 𝒫 ′

𝛼ℎ for each 𝛼 ∶ 𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾,
and therefore that 𝒫 = 𝒫 ′.

In-Fun. We need to prove that (Φ𝑡(𝑖 𝟎)𝑢(𝑖 𝟎))𝜌 = (Φ𝑡𝑢)[𝜌, 𝑖 = 𝟎].

122

Let 𝑗 = fresh(𝐼). By definition (Φ𝑡(𝑖 𝟎)𝑢(𝑖 𝟎))𝜌 = �̄�𝑗!, where 𝜆 is a nested
family indexed by 𝛼 ∶ 𝐼, 𝑗 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾. Similarly (Φ𝑡𝑢)[𝜌, 𝑖 = 𝟎] =

̄𝜆′𝑗!, where 𝜆′ is a nested family indexed by 𝛼 ∶ 𝐼, 𝑗 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾.

We now show by case analysis on 𝛼(𝑗) that 𝜆𝛼ℎ = 𝜆′
𝛼ℎ for each 𝛼 ∶ 𝐼, 𝑗 ⟶ 𝐽

and ℎ ∶ 𝐽 ⤚→ 𝐾.

• If 𝛼(𝑗) = 𝟎 we have 𝜆𝛼ℎ = (𝑡(𝑖 𝟎)𝜌)𝛼ℎ−𝑗 = (𝑡[𝜌, 𝑖 = 𝟎])𝛼ℎ−𝑗 = 𝜆′
𝛼ℎ

since by induction hypothesis 𝑡(𝑖 𝟎)𝜌 = 𝑡[𝜌, 𝑖 = 𝟎].
• If ℎ(𝛼(𝑗)) = 𝑘 ∈ 𝐾, by definition 𝜆𝛼ℎ is the dependent function

mapping each 𝑣 ∈ 𝐴(𝑖 𝟎)[𝜌(𝛼ℎ − 𝑗), 𝑖′ = 𝑘] to 𝑤(𝑙 𝑘) where 𝑙 =
fresh(𝐾\{𝑘}), (𝑡(𝑖 𝟎)𝜌)𝛼ℎ−𝑗(̄𝑣𝑘@𝟎) = �̄�𝑙@𝟎 and (𝑢(𝑖 𝟎)𝜌)𝛼ℎ−𝑗(̄𝑣𝑘) =
�̄�𝑙!; similarly 𝜆′

𝛼ℎ is the dependent function mapping each 𝑣′ ∈
𝐴[[𝜌, 𝑖 = 𝟎](𝛼ℎ−𝑗), 𝑖′ = 𝑘] to 𝑤′(𝑙 𝑘) where (𝑡[𝜌, 𝑖 = 𝟎])𝛼ℎ−𝑗(̄𝑣′𝑘@𝟎) =

̄𝑤′𝑙@𝟎 and (𝑢[𝜌, 𝑖 = 𝟎])𝛼ℎ−𝑗(̄𝑣′𝑘) = ̄𝑤′𝑙!. Now since by induction hy-
pothesis

𝑡(𝑖 𝟎)𝜌 = 𝑡[𝜌, 𝑖 = 𝟎];
𝑢(𝑖 𝟎)𝜌 = 𝑢[𝜌, 𝑖 = 𝟎]; and

𝐴(𝑖 𝟎)[𝜌(𝛼ℎ − 𝑗), 𝑖′ = 𝑘] = 𝐴[[𝜌(𝛼ℎ − 𝑗), 𝑖′ = 𝑘], 𝑖 = 𝟎]
= 𝐴[[𝜌(𝛼ℎ − 𝑗), 𝑖 = 𝟎], 𝑖′ = 𝑘]
= 𝐴[[𝜌, 𝑖 = 𝟎](𝛼ℎ − 𝑗), 𝑖′ = 𝑘],

we deduce that 𝜆𝛼ℎ = 𝜆′
𝛼ℎ.

ColApp. For simplicity we only consider the case where ⃗𝚥 is empty. We
need to show that (𝑡(𝑖 𝟎)@𝑗)[𝜌, 𝑗 = 𝜑] = (𝑡@𝑗)[[𝜌, 𝑗 = 𝜑], 𝑖 = 𝟎]. By
induction hypothesis 𝑡(𝑖 𝟎)𝜌 = 𝑡[𝜌, 𝑖 = 𝟎], and therefore (𝑡(𝑖 𝟎)@𝑗)[𝜌, 𝑗 =
𝜑] = 𝑡(𝑖 𝟎)𝜌@𝜑 = 𝑡[𝜌, 𝑖 = 𝟎]@𝜑 = (𝑡@𝑗)[[𝜌, 𝑖 = 𝟎], 𝑗 = 𝜑].

ColApp-Orig. We need to show that (𝑡(𝑖 𝟎)@𝟎)𝜌 = (𝑡@𝟎)[𝜌, 𝑖 = 𝟎]. By
induction hypothesis 𝑡(𝑖 𝟎)𝜌 = 𝑡[𝜌, 𝑖 = 𝟎], and therefore (𝑡(𝑖 𝟎)@𝟎)𝜌 =
𝑡(𝑖 𝟎)𝜌@𝟎 = 𝑡[𝜌, 𝑖 = 𝟎]@𝟎 = (𝑡@𝟎)[𝜌, 𝑖 = 𝟎].

Param. We need to show that (𝑡(𝑖 𝟎)!)𝜌 = (𝑡!)[𝜌, 𝑖 = 𝟎]. By induction hy-
pothesis 𝑡(𝑖 𝟎)𝜌 = 𝑡[𝜌, 𝑖 = 𝟎], and therefore (𝑡(𝑖 𝟎)!)𝜌 = 𝑡(𝑖 𝟎)𝜌! = 𝑡[𝜌, 𝑖 =
𝟎]! = (𝑡!)[𝜌, 𝑖 = 𝟎].

Theorem 10 (Convertible terms are semantically equal).
• If Γ ⊢ 𝐴 and Γ ⊢ 𝐴′ with 𝐴 ≡ 𝐴′, then 𝐴𝜌 = 𝐴′𝜌 for any 𝜌 ∈ Γ(𝐼).
• If Γ ⊢ 𝑎 ∶ 𝐴 and Γ ⊢ 𝑎′ ∶ 𝐴 with 𝑎 ≡ 𝑎′, then 𝑎𝜌 = 𝑎′𝜌 for any 𝜌 ∈ Γ(𝐼).

Proof. By simultaneous induction on the conversion rules 𝐴 ≡ 𝐴′ and
𝑎 ≡ 𝑎′ (Definition 3).

123

𝛽. We need to show that ((𝜆(𝑥 ∶ 𝐴).𝑡) 𝑢)𝜌 = 𝑡[𝑥 ↦ 𝑢]𝜌. Seeing the inter-
pretation of 𝜆(𝑥 ∶ 𝐴).𝑡 relative to a function type as a family of dependent
functions indexed by arbitrary maps, the element at index 1 ∶ 𝐼 ⟶ 𝐼
gives a dependent function ((𝜆(𝑥 ∶ 𝐴).𝑡)𝜌)1 mapping any 𝑤 ∈ 𝐴𝜌 to
𝑡⟨𝜌, 𝑥 = 𝑤⟩. In particular, since 𝑢𝜌 ∈ 𝐴𝜌 by Theorem 11, we deduce
((𝜆(𝑥 ∶ 𝐴).𝑡) 𝑢)𝜌 = ((𝜆(𝑥 ∶ 𝐴).𝑡)𝜌)1(𝑢𝜌) = 𝑡⟨𝜌, 𝑥 = 𝑢𝜌⟩. We conclude that
((𝜆(𝑥 ∶ 𝐴).𝑡) 𝑢)𝜌 = 𝑡[𝑥 ↦ 𝑢]𝜌 since we have 𝑡⟨𝜌, 𝑥 = 𝑢𝜌⟩ = 𝑡[𝑥 ↦ 𝑢]𝜌 by
Theorem 8.

𝜂. We need to show that 𝑡𝜌 = (𝜆(𝑥 ∶ 𝐴).(𝑡 𝑥))𝜌. Interpreting the term 𝑡
relative to a function type yields a nested family indexed by 𝛼 ∶ 𝐼 ⟶ 𝐽
and ℎ ∶ 𝐽 ⤚→ 𝐾.
We show that (𝜆(𝑥 ∶ 𝐴).(𝑡 𝑥))𝜌𝛼ℎ = 𝑡𝜌𝛼ℎ for each 𝛼 ∶ 𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾.
By definition (𝜆(𝑥 ∶ 𝐴).(𝑡 𝑥))𝜌𝛼ℎ is the dependent function 𝜆𝛼ℎ mapping
any 𝑢 ∈ 𝐴𝜌𝛼ℎ to (𝑡 𝑥)⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩ = (𝑡⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩)1(𝑥⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩) =
(𝑡𝜌)𝛼ℎ(𝑢).

Col-𝛽. There are two cases, depending on whether the color that is being
applied is 𝟎 or not. We need to show that ((⟨𝑖⟩𝑡)@𝟎)𝜌 = 𝑡(𝑖 𝟎)𝜌, and that
((⟨𝑖⟩𝑡)@𝑗)[𝜌, 𝑗 = 𝜑] = 𝑡(𝑖 𝑗)[𝜌, 𝑗 = 𝜑].

• By definition ((⟨𝑖⟩𝑡)@𝟎)𝜌 = (⟨𝑖⟩𝑡)𝜌@𝟎 = ̄𝑢𝑘@𝟎, where 𝑘 = fresh(𝐼)
and 𝑢 = 𝑡[𝜌, 𝑖 = 𝑘]. Furthermore ̄𝑢𝑘@𝟎 = 𝑡[𝜌, 𝑖 = 𝑘](𝑘 𝟎) = 𝑡[𝜌, 𝑖 =
𝟎] and Theorem 9 gives 𝑡[𝜌, 𝑖 = 𝟎] = 𝑡(𝑖 𝟎)𝜌. We therefore deduce
((⟨𝑖⟩𝑡)@𝟎)𝜌 = 𝑡(𝑖 𝟎)𝜌.

• By definition ((⟨𝑖⟩𝑡)@𝑗)[𝜌, 𝑗 = 𝜑] = (⟨𝑖⟩𝑡)𝜌@𝜑 = ̄𝑢𝑘@𝜑, where 𝑘 =
fresh(𝐼) and 𝑢 = 𝑡[𝜌, 𝑖 = 𝑘]. Furthermore ̄𝑢𝑘@𝜑 = 𝑡[𝜌, 𝑖 = 𝑘](𝑘 𝜑) =
𝑡[𝜌, 𝑖 = 𝜑] and Theorem 9 gives 𝑡[𝜌, 𝑖 = 𝜑] = 𝑡(𝑖 𝑗)[𝜌, 𝑗 = 𝜑]. We
therefore deduce ((⟨𝑖⟩𝑡)@𝑗)[𝜌, 𝑗 = 𝜑] = 𝑡(𝑖 𝑗)[𝜌, 𝑗 = 𝜑].

Col-𝜂. We need to show that 𝑡𝜌 = (⟨𝑖⟩(𝑡@𝑖))𝜌. By definition (⟨𝑖⟩(𝑡@𝑖))𝜌
is the 𝐼-element ̄𝑢𝑗 where 𝑗 = fresh(𝐼) and 𝑢 = (𝑡@𝑖)[𝜌, 𝑖 = 𝑗] = 𝑡𝜌@𝑗,
hence (⟨𝑖⟩(𝑡@𝑖))𝜌 = ̄𝑢𝑗 = 𝑡𝜌.

Pair-Orig. We need to show that (⦇𝑎, 𝑝⦈@𝟎)𝜌 = 𝑎𝜌. By definition the
𝐼-element 𝑢 ≝ ⦇𝑎, 𝑝⦈𝜌 is defined by 𝑢𝐽 = ((𝑎𝜌)𝐽 , (𝑝𝜌)𝐽) for each 𝐽 ⊆ 𝐼,
and the 𝐼-element 𝑣 ≝ (⦇𝑎, 𝑝⦈@𝟎)𝜌 = ⦇𝑎, 𝑝⦈𝜌@𝟎 = 𝑢@𝟎 is defined by
𝑣𝐽 = (𝑎𝜌)𝐽 for each 𝐽 ⊆ 𝐼. Therefore (⦇𝑎, 𝑝⦈@𝟎)𝜌 = 𝑎𝜌.

Pair-Param. We need to show that (⦇𝑎, 𝑝⦈!)𝜌 = 𝑝𝜌. By definition the 𝐼-
element 𝑢 ≝ ⦇𝑎, 𝑝⦈𝜌 is defined by 𝑢𝐽 = ((𝑎𝜌)𝐽 , (𝑝𝜌)𝐽) for each 𝐽 ⊆ 𝐼, and
the 𝐼-element 𝑣 ≝ (⦇𝑎, 𝑝⦈!)𝜌 = ⦇𝑎, 𝑝⦈𝜌! = 𝑢! is defined by 𝑣𝐽 = (𝑝𝜌)𝐽 for
each 𝐽 ⊆ 𝐼. Therefore (⦇𝑎, 𝑝⦈!)𝜌 = 𝑝𝜌.

Surj-Param. We need to show that ⦇𝑎@𝟎, 𝑎!⦈𝜌 = 𝑎𝜌. The 𝐼-element 𝑢 ≝
⦇𝑎@𝟎, 𝑎!⦈𝜌 is defined by 𝑢𝐽 = (((𝑎@𝟎)𝜌)𝐽 , ((𝑎!)𝜌)𝐽) for each 𝐽 ⊆ 𝐼. More-
over, interpreting the term 𝑎 relative to a color product ∀𝑖.𝐴 yields the
𝐼-element 𝑎𝜌 = ̄𝑣𝑗, where 𝑗 = fresh(𝐼) and 𝑣 = 𝑎[𝜌, 𝑖 = 𝑗].

124

The 𝐼-elements (𝑎@𝟎)𝜌 and (𝑎!)𝜌 are respectively defined by ((𝑎@𝟎)𝜌)𝐽 =
((𝑎𝜌@𝟎))𝐽 = 𝑣𝐽 and (𝑎!)𝜌𝐽 = (𝑎𝜌!)𝐽 = 𝑣𝐽,𝑗. Since 𝑢𝐽 = (𝑣𝐽 , 𝑣𝐽,𝑗) for each
𝐽 ⊆ 𝐼 we deduce that ⦇𝑎@𝟎, 𝑎!⦈𝜌 = 𝑢 = ̄𝑣𝑗 = 𝑎𝜌.

Surj-Type. We show ((Ψ𝑇@𝟎(𝜆(𝑥 ∶ 𝑇@𝟎). (∀𝑖.𝑇@𝑖) ∋ 𝑥))𝜌)𝛼ℎ = (𝑇! 𝜌)𝛼ℎ.
for each 𝛼 ∶ 𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾. Let 𝐴 ≝ 𝑇@𝟎 and 𝑃 ≝ 𝜆(𝑥 ∶
𝐴). (∀𝑖.𝑇@𝑖) ∋ 𝑥.
For each 𝑢 ∈ 𝐴𝜌𝛼ℎ, (((∀𝑖.𝑇@𝑖) ∋ 𝑥)⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩)1 is by definition the
𝐾-set of 𝐾-elements 𝑣! for 𝑣 ∈ ((∀𝑖.𝑇@𝑖)⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩)1 such that 𝑣@𝟎 =
𝑥⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩ = 𝑢; i.e., the 𝐾-set of 𝐾-elements �̄�𝑘! for 𝑤 ∈ (𝑇@𝑖)[𝜌𝛼ℎ, 𝑖 =
𝑘]1 = (𝑇𝜌𝛼ℎ@𝑘)1 such that 𝑤(𝑘 𝟎) = 𝑢, where 𝑘 = fresh(𝐾).
Moreover ((Ψ𝐴𝑃)𝜌)𝛼ℎ is the 𝐾-set of 𝐾-elements 𝑣! ∈ ((𝑃𝜌)𝛼ℎ(𝑢))1 for
𝑢 ∈ 𝐴𝜌𝛼ℎ = (𝑇𝜌@𝟎)𝛼ℎ such that 𝑢 = 𝑣@𝟎; i.e., the 𝐾-set of 𝐾-elements �̄�𝑘!
for 𝑤 ∈ (𝑇𝜌𝛼ℎ@𝑘)1 such that 𝑤(𝑘 𝟎) ∈ (𝑇𝜌𝛼ℎ@𝟎)1. Now since 𝑤(𝑘 𝟎) ∈
(𝑇𝜌𝛼ℎ@𝟎)1 for each 𝑤 ∈ (𝑇𝜌𝛼ℎ@𝑘)1, we deduce that (Ψ𝐴𝑃)𝜌 is merely
the 𝐾-set of 𝐾-elements �̄�𝑘! for 𝑤 ∈ (𝑇𝜌𝛼ℎ@𝑘)1 = 𝑇[𝜌𝛼ℎ, 𝑖 = 𝑘]1.
Finally, interpreting the term 𝑇 relative to the color product ∀𝑖.𝒰 yields
the 𝐼-element 𝑇𝜌 = �̄� 𝑗, where 𝑗 = fresh(𝐼) and 𝒜 = 𝑇[𝜌, 𝑖 = 𝑗] ∈ 𝒰[𝜌, 𝑖 =
𝑗] is a nested family of 𝒰-small sets indexed by projections 𝛼′ ∶ 𝐼, 𝑗 ⟶ 𝐽
and total maps ℎ′ ∶ 𝐽 ⤚→ 𝐾. It follows that (𝑇! 𝜌)𝛼ℎ = (𝑇𝜌!)𝛼ℎ is the
𝒰-small set of 𝐾-elements �̄�𝑘! for 𝑤 ∈ 𝒜(𝛼ℎ,𝑗=𝑘) = 𝑇[𝜌𝛼ℎ, 𝑖 = 𝑘]1. We
therefore deduce that (Ψ𝐴𝑃)𝜌𝛼ℎ = (𝑇!)𝜌𝛼ℎ.

Surj-Fun. We need to show (Φ𝑡@𝟎(𝜆(𝑥 ∶ ∀𝑖.𝐴). (⟨𝑖⟩(𝑡@𝑖)(𝑥@𝑖))!))𝜌 =
𝑡! 𝜌. Let 𝑡′ ≝ 𝑡@𝟎 and 𝑢′ ≝ 𝜆(𝑥 ∶ ∀𝑖.𝐴). (⟨𝑖⟩(𝑡@𝑖)(𝑥@𝑖))!. Let 𝑗 = fresh(𝐼).
By definition (Φ𝑡′𝑢′)𝜌 = �̄�𝑗!, where 𝜆 is a nested family of dependent
functions indexed by 𝛼 ∶ 𝐼, 𝑗 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾. Moreover interpreting
the term 𝑡 relative to a type of the form ∀𝑖.((𝑥 ∶ 𝐴) → 𝐵) yields an 𝐼-
element ̄𝜆′𝑗, where 𝜆′ is a nested family of dependent functions indexed
by 𝛼 ∶ 𝐼, 𝑗 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾. We now show by case analysis on 𝛼(𝑗)
that 𝜆𝛼ℎ = 𝜆′

𝛼ℎ for each 𝛼 ∶ 𝐼, 𝑗 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾.
• If 𝛼(𝑗) = 𝟎, we have 𝜆𝛼ℎ = (𝑡′𝜌)𝛼ℎ−𝑗 = 𝑡𝜌𝛼ℎ−𝑗@𝟎 = 𝜆′

𝛼ℎ.
• If ℎ(𝛼(𝑗)) = 𝑘 ∈ 𝐾, by definition 𝜆𝛼ℎ is the dependent function map-

ping each 𝑣 ∈ 𝐴[𝜌(𝛼ℎ − 𝑗), 𝑖 = 𝑘] to 𝑤(𝑙 𝑘), where 𝑙 = fresh(𝐾\{𝑘}),
(𝑡′𝜌)𝛼ℎ−𝑗(̄𝑣𝑘@𝟎) = �̄�𝑙@𝟎 and (𝑢′𝜌)𝛼ℎ−𝑗(̄𝑣𝑘) = �̄�𝑙!. Moreover

(𝑡′𝜌)𝛼ℎ−𝑗(̄𝑣𝑘@𝟎) = ((𝑡𝜌)𝛼ℎ−𝑗@𝟎)(̄𝑣𝑘@𝟎)
= ((𝑡𝜌𝛼ℎ−𝑗@𝑙)(̄𝑣𝑘@𝑙))@𝟎; and

(𝑢′𝜌)𝛼ℎ−𝑗(̄𝑣𝑘) = (⟨𝑖⟩(𝑡@𝑖) (𝑥@𝑖))! ⟨𝜌(𝛼ℎ − 𝑗), 𝑥 = ̄𝑣𝑘⟩
= ((𝑡@𝑖) (𝑥@𝑖))[⟨𝜌(𝛼ℎ − 𝑗), 𝑥 = ̄𝑣𝑘⟩, 𝑖 = 𝑙]!
= ((𝑡𝜌𝛼ℎ−𝑗@𝑙)(̄𝑣𝑘@𝑙))! .

Therefore �̄�𝑘 = (𝑡𝜌𝛼ℎ−𝑗@𝑘)(𝑣) and we deduce that 𝜆𝛼ℎ(𝑣) = 𝜆′
𝛼ℎ(𝑣).

125

Pair-Pred. We need to prove that ((∀𝑖.𝐴⨝𝑖 𝑃) ∋ 𝑎)𝜌 = (𝑃 𝑎)𝜌. We show
that ((∀𝑖.𝐴⨝𝑖 𝑃) ∋ 𝑎)𝜌𝛼ℎ = (𝑃𝑎)𝜌𝛼ℎ for each 𝛼 ∶ 𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾.
Let 𝑘 = fresh(𝐾). By definition (∀𝑖.𝐴⨝𝑖 𝑃)𝜌𝛼ℎ = (∀𝑖.⦇𝐴, Ψ𝐴𝑃⦈@𝑖)𝜌𝛼ℎ is
the 𝒰-small set of 𝐾-elements ̄𝑢𝑘 for 𝑢 ∈ (⦇𝐴, Ψ𝐴𝑃⦈@𝑖)[𝜌𝛼ℎ, 𝑖 = 𝑘] =
⦇𝐴, Ψ𝐴𝑃⦈𝜌𝛼ℎ@𝑘, i.e., such that (𝑢𝐿)𝐿⊆𝐾 = ̄𝑢𝑘@𝟎 ∈ 𝐴𝜌𝛼ℎ and (𝑢𝐿,𝑘)𝐿⊆𝐾 =

̄𝑢𝑘! ∈ (Ψ𝐴𝑃)𝜌𝛼ℎ.
Furthermore ((∀𝑖.𝐴⨝𝑖 𝑃) ∋ 𝑎)𝜌𝛼ℎ is the 𝒰-small set of 𝐾-elements 𝑣!
for 𝑣 ∈ (∀𝑖.𝐴⨝𝑖 𝑃)𝜌𝛼ℎ such that 𝑣@𝟎 = 𝑎𝜌𝛼ℎ; i.e., the 𝒰-small set of 𝐾-
elements ̄𝑢𝑘! ∈ (Ψ𝐴𝑃)𝜌𝛼ℎ such that ̄𝑢𝑘@𝟎 = 𝑎𝜌𝛼ℎ ∈ 𝐴𝜌𝛼ℎ; i.e., the 𝒰-small
𝐾-set (𝑃𝜌)𝛼ℎ(𝑎𝜌𝛼ℎ) = (𝑃𝑎)𝜌𝛼ℎ.

Pair-App. We show (⦉𝑡 ,𝑖 𝑢⦊ (𝑎@𝑖))[𝜌, 𝑖 = 𝜑] = ⦇𝑡 (𝑎@𝟎) ,𝑖 𝑢𝑎⦈[𝜌, 𝑖 = 𝜑].
By definition we get (⦉𝑡 ,𝑖 𝑢⦊ (𝑎@𝑖))[𝜌, 𝑖 = 𝜑] = (⦉𝑡, 𝑢⦊𝜌@𝜑)1(𝑎𝜌@𝜑) and
⦇𝑡 (𝑎@𝟎) ,𝑖 𝑢𝑎⦈[𝜌, 𝑖 = 𝜑] = ⦇𝑡 (𝑎@𝟎), 𝑢 𝑎⦈𝜌@𝜑. We now proceed by case
analysis on 𝜑.

• For 𝜑 = 𝟎, we have on the one hand

(⦉𝑡 ,𝑖 𝑢⦊ (𝑎@𝑖))[𝜌, 𝑖 = 𝟎] = (⦉𝑡, 𝑢⦊𝜌@𝟎)1(𝑎𝜌@𝟎) = (𝑡𝜌)1(𝑎𝜌@𝟎),

and on the other hand

⦇𝑡 (𝑎@𝟎) ,𝑖 𝑢𝑎⦈[𝜌, 𝑖 = 𝟎] = (𝑡 (𝑎@𝟎))𝜌 = (𝑡𝜌)1(𝑎𝜌@𝟎).

• For 𝜑 = 𝑗 ∈ 𝕀, the (𝐼, 𝑗)-element (⦉𝑡, 𝑢⦊𝜌@𝑗)1 is the dependent func-
tion mapping 𝑣 ∈ 𝐴[𝜌, 𝑖 = 𝑗] to 𝑤(𝑘 𝑗), where 𝑘 = fresh(𝐼\{𝑗}),
(𝑡𝜌)1(̄𝑣𝑗@𝟎) = �̄�𝑘@𝟎 and (𝑢𝜌)1(̄𝑣𝑗) = �̄�𝑘!. In particular, for 𝑣 =
𝑎𝜌@𝑗 ∈ 𝐴[𝜌, 𝑖 = 𝑗] we get ̄𝑣𝑗 = 𝑎𝜌, �̄�𝑘@𝟎 = (𝑡𝜌)1(𝑎𝜌@𝟎) = (𝑡 (𝑎@𝟎))𝜌
and �̄�𝑘! = (𝑢𝜌)1(𝑎𝜌) = (𝑢𝑎)𝜌. Therefore �̄�𝑘 = ⦇𝑡 (𝑎@𝟎), 𝑢 𝑎⦈𝜌 and
(⦉𝑡, 𝑢⦊𝜌@𝑗)1(𝑎𝜌@𝑗) = ⦇𝑡 (𝑎@𝟎), 𝑢 𝑎⦈𝜌@𝑗.

We proved the presheaf laws in the definition of the interpretation func-
tions. We now prove the remaining property, namely totality on valid
judgments.

Theorem 11 (Validity).
• If Γ ⊢ then Γ is a refined presheaf (Definition 15);
• if Γ ⊢ 𝐴 then 𝐴𝜌 is an 𝐼-set for each 𝜌 ∈ Γ(𝐼);
• if Γ ⊢ 𝑎 ∶ 𝐴 then 𝑎𝜌 ∈ 𝐴𝜌 for each 𝜌 ∈ Γ(𝐼).

Proof. By simultaneous induction on the typing judgments Γ ⊢, Γ ⊢ 𝐴
and Γ ⊢ 𝑎 ∶ 𝐴 (Definition 2). For most introduction rules, the conclusion
directly follows from the definition of the relevant interpretation func-
tion.

Empty. Direct by definition.

126

Ext. By induction hypotheses Γ is a refined presheaf, and 𝐴𝜌 is an 𝐼-set
for each 𝜌 ∈ Γ. Hence by definition (Γ, 𝑥 ∶ 𝐴) is a refined presheaf.

ColExt. By induction hypothesis Γ is a refined presheaf, hence so is (Γ, 𝑖)
by definition.

Universe. Direct by definition.

Prod. Let 𝛼 ∶ 𝐼 ⟶ 𝐽, ℎ ∶ 𝐽 ⤚→ 𝐾. Since Γ ⊢ 𝐴, we deduce by induction
hypothesis that 𝐴𝜌 is an 𝐼-set. Therefore (Γ, 𝑥 ∶ 𝐴) is a refined presheaf
and ⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩ ∈ (Γ, 𝑥 ∶ 𝐴)(𝐼) for each 𝐾-element 𝑢 ∈ 𝐴𝜌𝛼ℎ. Now since
Γ, 𝑥 ∶ 𝐴 ⊢ 𝐵, we deduce by induction hypothesis that 𝐵⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩ is a
𝐾-set for each 𝐾-element 𝑢 ∈ 𝐴𝜌𝛼ℎ. Hence 𝜆𝛼ℎ from the definition is a
well-typed function mapping each 𝐾-element 𝑢 ∈ 𝐴𝜌𝛼ℎ to a 𝐾-element
of 𝐵⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩. Moreover the family 𝜆 is trivially an 𝐼-set.

Small. Since Γ ⊢ 𝐴 ∶ 𝒰 , by induction hypothesis 𝒰𝜌 is an 𝐼-set and 𝐴𝜌 ∈
𝒰𝜌; hence by definition 𝐴𝜌 is a nested family 𝒜 indexed by 𝛼 ∶ 𝐼 ⟶ 𝐽
and ℎ ∶ 𝐽 ⤚→ 𝐾, such that each 𝒜𝛼ℎ is an 𝒰-small 𝐾-set. Hence taking the
interpretation of the small type 𝐴 turned into a proper type yields the
𝐼-set 𝐴𝜌11.

ColPi. Since Γ, 𝑖 ⊢ 𝐴 we get by induction hypothesis that Γ is a refined
presheaf. Therefore [𝜌, 𝑖 = 𝑗] ∈ Γ(𝐼, 𝑗) and 𝐴[𝜌, 𝑖 = 𝑗] is an (𝐼, 𝑗)-set,
where 𝑗 = fresh(𝐼). Hence (∀𝑖.𝐴)𝜌 = { ̄𝑢𝑗 ∣ 𝑢 ∈ 𝐴[𝜌, 𝑖 = 𝑗]} is an 𝐼-set.

Out. By induction hypothesis we get that (∀𝑖.𝐴)𝜌 = { ̄𝑢𝑗 ∣ 𝑢 ∈ 𝐴[𝜌, 𝑖 =
𝑗]} is an 𝐼-set, where 𝑗 = fresh(𝐼). Furthermore Theorem 9 gives that
𝐴(𝑖 𝟎)𝜌 = 𝐴[𝜌, 𝑖 = 𝟎] is an 𝐼-set, and we deduce that 𝑎𝜌 ∈ 𝐴[𝜌, 𝑖 = 𝟎] is
an 𝐼-element. Hence ((∀𝑖.𝐴) ∋ 𝑎)𝜌 = { ̄𝑢𝑗! ∣ 𝑢 ∈ 𝐴[𝜌, 𝑖 = 𝑗], 𝑢(𝑗 𝟎) = 𝑎𝜌} is
a well-formed 𝐼-set.

Conv. Direct consequence of the induction hypothesis and Theorem 10.

Var. Direct by definition.

Abs. We need to show that (𝜆(𝑥 ∶ 𝐴).𝑡)𝜌 ∈ ((𝑥 ∶ 𝐴) → 𝐵)𝜌. By definition
(𝜆(𝑥 ∶ 𝐴).𝑡)𝜌 is the nested family 𝜆 indexed by 𝛼 ∶ 𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾,
where each 𝜆𝛼ℎ is the dependent function mapping any 𝑢 ∈ 𝐴𝜌𝛼ℎ to
𝑡⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩. Moreover since Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵, we deduce by induction
hypothesis that Γ, 𝑥 ∶ 𝐴 is a refined presheaf, ⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩ ∈ (Γ, 𝑥 ∶ 𝐴)(𝐼),
and 𝜆𝛼ℎ(𝑢) = 𝑡⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩ ∈ 𝐵⟨𝜌𝛼ℎ, 𝑥 = 𝑢⟩. Therefore (𝜆(𝑥 ∶ 𝐴).𝑡)𝜌 ∈
((𝑥 ∶ 𝐴) → 𝐵)𝜌.

App. We need to show that (𝑡 𝑢)𝜌 ∈ 𝐵[𝑥 ↦ 𝑢]𝜌. By definition (𝑡 𝑢)𝜌 =
(𝑡𝜌)1(𝑢𝜌), and by Theorem 8 𝐵[𝑥 ↦ 𝑢]𝜌 = 𝐵⟨𝜌, 𝑥 = 𝑢𝜌⟩. Moreover
since Γ ⊢ 𝑢 ∶ 𝐴, we deduce by induction hypothesis that 𝑢𝜌 ∈ 𝐴𝜌.

127

Furthermore since Γ ⊢ 𝑡 ∶ (𝑥 ∶ 𝐴) → 𝐵, we deduce by induction hy-
pothesis that (𝑡𝜌)1 is the dependent function 𝜆1 mapping any 𝑣 ∈ 𝐴𝜌
to an 𝐼-element in 𝐵⟨𝜌, 𝑥 = 𝑣⟩; in particular, for 𝑣 = 𝑢𝜌 we obtain that
(𝑡𝜌)1(𝑢𝜌) ∈ 𝐵⟨𝜌, 𝑥 = 𝑢𝜌⟩.

Prod-𝒰 . Direct by definition of the interpretation of the small dependent
function space.

Out-𝒰 . We need to show that ((∀𝑖.𝐴) ∋ 𝑎)𝜌 ∈ 𝒰𝜌. Since Γ ⊢ ∀𝑖.𝐴 ∶ 𝒰 ,
we deduce by induction hypothesis that (∀𝑖.𝐴)𝜌 is an 𝐼-element of the 𝐼-
set 𝒰𝜌. Let 𝛼 ∶ 𝐼 ⟶ 𝐽 and ℎ ∶ 𝐽 ⤚→ 𝐾. By definition (∀𝑖.𝐴)𝜌𝛼ℎ is the 𝐾-set
of 𝐾-elements ̄𝑢𝑘 such that 𝑢 ∈ 𝐴[𝜌𝛼ℎ, 𝑖 = 𝑘]1, where 𝑘 = fresh(𝐾). Now
since Γ ⊢ 𝑎 ∶ 𝐴(𝑖 𝟎), we deduce by induction hypothesis and Theorem 9
that 𝑎𝜌 ∈ 𝐴(𝑖 𝟎)𝜌𝛼ℎ = 𝐴[𝜌𝛼ℎ, 𝑖 = 𝟎]1.
By definition ((∀𝑖.𝐴) ∋ 𝑎)𝜌𝛼ℎ is the 𝒰-small 𝐾-set of 𝐾-elements 𝑢! for
𝑢 ∈ (∀𝑖.𝐴)𝜌𝛼ℎ such that 𝑢@𝟎 = 𝑎𝜌𝛼ℎ; i.e., the 𝒰-small 𝐾-set of 𝐾-elements
̄𝑣𝑘! for 𝑣 ∈ 𝐴[𝜌𝛼ℎ, 𝑖 = 𝑘]1 such that 𝑣(𝑘 𝟎) = 𝑎𝜌𝛼ℎ.

ColAbs. Since Γ, 𝑖 ⊢ 𝑡 ∶ 𝐴 we get by induction hypothesis that Γ is a
refined presheaf; therefore [𝜌, 𝑖 = 𝑗] ∈ Γ(𝐼, 𝑗) and we obtain an (𝐼, 𝑗)-
element 𝑢 ≝ 𝑡[𝜌, 𝑖 = 𝑗] ∈ 𝐴[𝜌, 𝑖 = 𝑗], where 𝑗 = fresh(𝐼). Hence ̄𝑢𝑗 ∈
(∀𝑖.𝐴)𝜌 = { ̄𝑣𝑗 ∣ 𝑣 ∈ 𝐴[𝜌, 𝑖 = 𝑗]}.

In-Abs. Since Γ ⊢ 𝑎 ∶ 𝐴(𝑖 𝟎), we deduce by induction hypothesis and
Theorem 9 that 𝑎𝜌 ∈ 𝐴(𝑖 𝟎)𝜌 = 𝐴[𝜌, 𝑖 = 𝟎]. Furthermore since Γ ⊢
𝑝 ∶ (∀𝑖.𝐴) ∋ 𝑎, we deduce that there exists 𝑢 ∈ 𝐴[𝜌, 𝑖 = 𝑗] (where 𝑗 =
fresh(𝐼)) such that 𝑝𝜌 = ̄𝑢𝑗! and 𝑢(𝑗 𝟎) = 𝑎𝜌.
Now, by definition the tuple ⦇𝑎, 𝑝⦈𝜌 is defined by ⦇𝑎, 𝑝⦈𝜌𝐽 = (𝑎𝜌𝐽 , 𝑝𝜌𝐽) =
(𝑢𝐽 , 𝑢𝐽,𝑗) for each 𝐽 ⊆ 𝐼. Thus ⦇𝑎, 𝑝⦈𝜌 = ̄𝑢𝑗 ∈ (∀𝑖.𝐴)𝜌 = { ̄𝑣𝑗 ∣ 𝑣 ∈ 𝐴[𝜌, 𝑖 =
𝑗]}.

ColPi-𝒰 . Like for ColPi, direct by definition of the interpretation of the
small color product.

In-Pred. We need to show that (Ψ𝐴𝑃)𝜌 ∈ ((∀𝑖.𝒰) ∋ 𝐴)𝜌 Let 𝛼 ∶ 𝐼 ⟶ 𝐽
and ℎ ∶ 𝐽 ⤚→ 𝐾. Since Γ ⊢ 𝐴 ∶ 𝒰 we deduce by induction hypothesis that
𝐴𝜌 ∈ 𝒰𝜌; hence 𝐴𝜌𝛼ℎ is a 𝐾-set. Furthermore since Γ ⊢ 𝑃 ∶ 𝐴 → 𝒰 we
deduce by induction hypothesis that 𝑃𝜌 ∈ (𝐴 → 𝒰)𝜌; hence we obtain a
set-theoretic function 𝑃𝜌𝛼ℎ ∶ 𝐴𝜌𝛼ℎ → 𝒰𝜌𝛼ℎ.
Hence for each 𝐾-element 𝑢 ∈ 𝐴𝜌𝛼ℎ, we obtain a 𝐾-set ((𝑃𝜌)𝛼ℎ(𝑢))1 and
we can define the 𝒰-small 𝐾-set of 𝐾-elements 𝑣! ∈ ((𝑃𝜌)𝛼ℎ(𝑢))1 for 𝑢 ∈
𝐴𝜌𝛼ℎ such that 𝑢 = 𝑣@𝟎.

In-Fun. We need to show that (Φ𝑡𝑢)𝜌 ∈ ((∀𝑖.(𝐴 → 𝐵)) ∋ 𝑡)𝜌. Let 𝑗 =
fresh(𝐼). We have (Φ𝑡𝑢)𝜌 = �̄�𝑗!, so we have to show that 𝜆 ∈ (∀𝑖.((𝑥 ∶
𝐴) → 𝐵))𝜌 = ((𝑥 ∶ 𝐴) → 𝐵)[𝜌, 𝑖 = 𝑗], and that �̄�𝑗@𝟎 = 𝑡𝜌.

128

Let 𝛼 ∶ 𝐼, 𝑗 ⟶ 𝐽, ℎ ∶ 𝐽 ⤚→ 𝐾. We need to show that 𝜆𝛼ℎ(𝑣) ∈ 𝐵⟨[𝜌, 𝑖 =
𝑗]𝛼ℎ, 𝑥 = 𝑣⟩ for each 𝑣 ∈ 𝐴[𝜌, 𝑖 = 𝑗]𝛼ℎ. We proceed by case analysis on
𝛼(𝑗):

• For 𝛼(𝑗) = 𝟎, we have 𝜆𝛼ℎ = (𝑡𝜌)𝛼ℎ−𝑗. Since we get by Theorem 9
that 𝐴[𝜌(𝛼ℎ − 𝑗), 𝑖 = 𝟎] = 𝐴(𝑖 𝟎)𝜌(𝛼ℎ − 𝑗), we obtain by induction
hypothesis that

𝜆𝛼ℎ(𝑣) = (𝑡𝜌)𝛼ℎ−𝑗(𝑣) ∈ 𝐵(𝑖 𝟎)⟨𝜌(𝛼ℎ − 𝑗), 𝑥 = 𝑣⟩ =
𝐵⟨[𝜌(𝛼ℎ − 𝑗), 𝑖 = 𝟎], 𝑥 = 𝑣⟩

for each 𝑣 ∈ 𝐴[𝜌(𝛼ℎ − 𝑗), 𝑖 = 𝟎].
• For ℎ(𝛼(𝑗)) = 𝑘 ∈ 𝐾, 𝜆𝛼ℎ is the dependent function mapping each

𝑣 ∈ 𝐴[𝜌(𝛼ℎ − 𝑗), 𝑖 = 𝑘] to 𝑤(𝑙 𝑘), where (𝑡𝜌)𝛼ℎ−𝑗(̄𝑣𝑘@𝟎) = �̄�𝑙@𝟎,
(𝑢𝜌)𝛼ℎ−𝑗(̄𝑣𝑘) = �̄�𝑙!, and 𝑙 = fresh(𝐾\{𝑘}).
Let 𝑣 ∈ 𝐴[𝜌(𝛼ℎ−𝑗), 𝑖 = 𝑘]. As before by Theorem 9 we have ̄𝑣𝑘@𝟎 ∈
𝐴[𝜌(𝛼ℎ − 𝑗), 𝑖 = 𝟎], and (𝑡𝜌)𝛼ℎ−𝑗(̄𝑣𝑘@𝟎) ∈ 𝐵(𝑖 𝟎)⟨𝜌(𝛼ℎ − 𝑗), 𝑥 = 𝑣⟩ =
𝐵⟨[𝜌(𝛼ℎ−𝑗), 𝑖 = 𝟎], 𝑥 = 𝑣⟩. Furthermore ̄𝑣𝑘 ∈ (∀𝑖.𝐴)𝜌(𝛼ℎ−𝑗), hence
by induction hypothesis

(𝑢𝜌)𝛼ℎ−𝑗(̄𝑣𝑘) ∈ ((∀𝑖.𝐵[𝑥 ↦ 𝑥@𝑖]) ∋ 𝑡 (𝑥@𝟎))⟨𝜌(𝛼ℎ − 𝑗), 𝑥 = ̄𝑣𝑘⟩

Thus by definition there exists a (𝐾\{𝑘}, 𝑙)-element 𝑤 ∈ 𝐵[𝑥 ↦
𝑥@𝑖][⟨𝜌(𝛼ℎ − 𝑗), 𝑥 = ̄𝑣𝑘⟩, 𝑖 = 𝑙] such that (𝑢𝜌)𝛼ℎ−𝑗(̄𝑣𝑘) = �̄�𝑙! and
�̄�𝑙@𝟎 = (𝑡 (𝑥@𝟎))⟨𝜌(𝛼ℎ − 𝑗), 𝑥 = ̄𝑣𝑘⟩ = (𝑡𝜌)𝛼ℎ−𝑗(̄𝑣𝑘@𝟎)
Furthermore by Theorem 8 𝐵[𝑥 ↦ 𝑥@𝑖][⟨𝜌(𝛼ℎ − 𝑗), 𝑥 = ̄𝑣𝑘⟩, 𝑖 = 𝑙] =
𝐵⟨[𝜌(𝛼ℎ − 𝑗), 𝑖 = 𝑙], 𝑥 = ̄𝑣𝑘@𝑙⟩, hence we conclude that 𝜆𝛼ℎ(𝑣) =
𝑤(𝑙𝑘) ∈ 𝐵⟨[𝜌(𝛼ℎ − 𝑗), 𝑖 = 𝑘], 𝑥 = ̄𝑣𝑘@𝑘⟩ = 𝐵⟨[𝜌, 𝑖 = 𝑗]𝛼ℎ, 𝑥 = 𝑣⟩.

ColApp. For simplicity we only consider the case where ⃗𝚥 is empty. (The
reasoning easily generalizes to non-empty ⃗𝚥 since the presheaves Γ, 𝑖, ⃗𝚥
and Γ, ⃗𝚥, 𝑖 are equal.)
We need to prove that (𝑡@𝑖)[𝜌, 𝑖 = 𝜑] = 𝑡𝜌@𝜑 ∈ 𝐴[𝜌, 𝑖 = 𝜑]. Since
Γ ⊢ 𝑡 ∶ ∀𝑖.𝐴, we deduce by induction hypothesis that 𝑡𝜌 ∈ (∀𝑖.𝐴)𝜌 =
{ ̄𝑢𝑗 ∣ 𝑢 ∈ 𝐴[𝜌, 𝑖 = 𝑗]}, where 𝑗 = fresh(𝐼). Hence there exists an (𝐼, 𝑗)-
element 𝑢 ∈ 𝐴[𝜌, 𝑖 = 𝑗] such that 𝑡𝜌 = ̄𝑢𝑗. Therefore 𝑡𝜌@𝜑 ∈ 𝐴[𝜌, 𝑖 =
𝑗](𝑗 𝜑) = 𝐴[𝜌, 𝑖 = 𝜑] by Theorem 9.

ColApp-Orig. We need to prove that (𝑡@𝟎)𝜌 = 𝑡𝜌@𝟎 ∈ 𝐴𝜌. Since Γ ⊢
𝑡 ∶ ∀𝑖.𝐴, we deduce by induction hypothesis that 𝑡𝜌 ∈ (∀𝑖.𝐴)𝜌 = { ̄𝑢𝑗 ∣
𝑢 ∈ 𝐴[𝜌, 𝑖 = 𝑗]}, where 𝑗 = fresh(𝐼). Hence there exists an (𝐼, 𝑗)-element
𝑢 ∈ 𝐴[𝜌, 𝑖 = 𝑗] such that 𝑡𝜌 = ̄𝑢𝑗. Therefore 𝑡𝜌@𝟎 ∈ 𝐴[𝜌, 𝑖 = 𝑗](𝑗 𝟎) =
𝐴[𝜌, 𝑖 = 𝟎] by Theorem 9.

Param. We need to prove that 𝑡! 𝜌 = 𝑡𝜌! ∈ ((∀𝑖.𝐴) ∋ 𝑡@𝟎)𝜌. Since Γ ⊢
𝑡 ∶ ∀𝑖.𝐴, we deduce by induction hypothesis that 𝑡𝜌 ∈ (∀𝑖.𝐴)𝜌 = { ̄𝑢𝑗 ∣

129

𝑢 ∈ 𝐴[𝜌, 𝑖 = 𝑗]}, where 𝑗 = fresh(𝐼). Hence there exists an (𝐼, 𝑗)-element
𝑢 ∈ 𝐴[𝜌, 𝑖 = 𝑗] such that 𝑡𝜌 = ̄𝑢𝑗. We conclude that 𝑡𝜌! ∈ ((∀𝑖.𝐴) ∋ 𝑡@𝟎)𝜌
since ̄𝑢𝑗@𝟎 = (𝑡@𝟎)𝜌.

6 Related Work

Our own line of work. This work continues a line of work aiming at
a smooth integration of parametricity with dependent types [Bernardy
et al., 2010, Bernardy and Lasson, 2011, Bernardy et al., 2012, Bernardy
and Moulin, 2012, 2013]. (The last two papers are respectively expanded
as chapters 1 and 2 of this thesis.) The present work offers two improve-
ments over previous publications: 1. denotational semantics; and 2. a
much simplified syntax, suitable as the basis of a proof assistant.
The simplification of syntax is made possible by not requiring the preser-
vation of functions by parametricity, where by “preservation of functions
by parametricity” we mean the property that if 𝑓 is a function, then the
canonical proof that 𝑓 is parametric (denoted (⟨𝑖⟩𝑓)! here) is also a func-
tion. To our knowledge, all parametric models of parametricity (both syn-
tactical and semantical ones) have this property. However, having this
property in the syntax implies that certain function arguments must be
swapped when performing the substitution of 𝛽-reduction, as observed
by Bernardy and Moulin [2012]. In the present system, the paramet-
ric interpretation of functions is instead merely isomorphic to a function,
thanks to the In-Fun rule (Theorem 4). This isomorphism (rather than
equality) means on the one hand that the swapping of arguments is han-
dled by the usual rules of logic, instead of special-purpose ones. On
the other hand, obtaining the usual parametric interpretation of types
requires some purely mechanical work by the user of the logic.

Parametric Models of Type Theory vs. Parametric Type Theories. Two
pieces of work propose alternative parametric models of dependent type
theory [Krishnaswami and Dreyer, 2013, Atkey et al., 2014], but do not
integrate parametricity in the syntax of the calculus. This means that,
while certain consequences of parametricity can be made available in the
logic (e.g., via constants validated by the model), parametricity itself is
not available. In this paper, we not only propose a parametric model, but
also show how it can be used to interpret parametricity in the syntax of
the type theory.

Various kinds of models. Another characteristic feature of proposals
for parametricity is the kind of model underlying the semantics. Kr-
ishnaswami and Dreyer [2013] propose a model based on quasi-PERs.

130

Atkey et al. [2014] propose a model based on reflexive graphs. The model
that we use is based on cubes (functions from finite subsets of colors). In
Bernardy and Moulin [2012] the cubes were reified as syntax in an under-
lying calculus, while in the present work they refine a presheaf structure.

Presheaf models. The presheaf construction used in this paper follows
a known template, used for example by Bezem et al. [2013], Pitts [2014],
and Cohen et al. [2015] to model univalence in type theory. Not only
do these models use a presheaf, but they also use a category closely re-
lated to the underlying category pI. This means that all these models
have an additional cubical structure. We think that it is remarkable that
cubical structures are useful for modeling both parametricity and uni-
valence. Altenkirch and Kaposi [2014] give a syntax for Bezem et al.’s
cubical set model, effectively modelling univalence by internalization of
their model. The present work further refines the model by interpret-
ing terms as 𝐼-elements, which we believe is essential to interpret our
special-purpose pairing constructions.

7 Future work and conclusion

We have defined a new type theory, closely related to the cubical type
theory of Cohen et al. [2015], with internalized parametricity. This work
attempts to better integrate parametricity by simplifying the syntax of
our previous type theories with internalized parametricity [Bernardy
and Moulin, 2012, 2013].
Unlike our previous work, the system presented here does not compute
parametricity types, hence does not not have preservation of functions
by parametricity. As shown in section 4, this does not appear to be an
issue in practice.
Furthermore, thanks to our model construction, we have proved the con-
sistency of the system. Future work would involve proving decidability
of conversion and type-checking. The type-checker could then be used
as a minimal proof assistant for a type theory with parametricity.

131

132

Bibliography

M. Abadi, L. Cardelli, and P.-L. Curien. Formal parametric polymor-
phism. In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’93, pages 157–170. ACM,
1993. ISBN 0-89791-560-7.

M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of
dependency. In Proceedings of the 26th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’99, pages 147–160.
ACM, 1999. ISBN 1-58113-095-3.

A. Abel and G. Scherer. On irrelevance and algorithmic equality in pred-
icative type theory. Logical Methods in Computer Science, 8(1):1–36, 2012.
TYPES’10 special issue.

T. Altenkirch and A. Kaposi. A syntax for cubical type theory. aug 2014.
Draft.

R. Atkey, S. Lindley, and J. Yallop. Unembedding domain-specific lan-
guages. In Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell,
pages 37–48. ACM, 2009.

R. Atkey, N. Ghani, and P. Johann. A relationally parametric model
of dependent type theory. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14,
pages 503–515. ACM, 2014. ISBN 978-1-4503-2544-8.

H. P. Barendregt. Handbook of logic in computer science. volume 2,
chapter Lambda Calculi with Types, pages 117–309. Oxford University
Press, Inc., 1992. ISBN 0-19-853761-1.

J.-P. Bernardy and M. Lasson. Realizability and parametricity in pure
type systems. In M. Hofmann, editor, FoSSaCS, volume 6604 of LNCS,
pages 108–122. Springer, 2011.

J.-P. Bernardy and G. Moulin. Towards a computational interpretation
of parametricity. Submitted to PoPL, 2011.

133

J.-P. Bernardy and G. Moulin. A computational interpretation of para-
metricity. In Proceedings of the 27th Annual IEEE Symposium on Logic in
Computer Science, pages 135–144, 2012.

J.-P. Bernardy and G. Moulin. Type theory in color. In Proceedings of the
18th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’13, pages 61–72. ACM, 2013.

J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent
types. In Proceedings of the 15th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’10, pages 345–356. ACM, 2010. ISBN
978-1-60558-794-3.

J.-P. Bernardy, P. Jansson, and R. Paterson. Proofs for free — parametric-
ity for dependent types. Journal of Functional Programming, 22(02):107–
152, 2012.

J.-P. Bernardy, T. Coquand, and G. Moulin. A presheaf model of para-
metric type theory. volume 319, pages 67–82, 2015. The 31st Con-
ference on the Mathematical Foundations of Programming Semantics
(MFPS XXXI).

M. Bezem, T. Coquand, and S. Huber. A model of type theory in cubical
sets. In 19th International Conference on Types for Proofs and Programs,
TYPES, pages 107–128, 2013.

A. Chlipala. Parametric higher-order abstract syntax for mechanized se-
mantics. In Proceedings of the 13th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP ’08, pages 143–156. ACM, 2008.

C. Cohen, T. Coquand, S. Huber, and A. Mörtberg. Cubical Type Theory:
a constructive interpretation of the univalence axiom, 2015. Preprint.

T. Coquand and G. Huet. The calculus of constructions. Information and
Computation – Semantics of Data Types, 76(2-3):95–120, 1988. ISSN 0890-
5401.

A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to defor-
estation. In Proceedings of the Conference on Functional Programming
Languages and Computer Architecture, FPCA ’93, pages 223–232. ACM,
1993. ISBN 0-89791-595-X.

M. Hofmann. Syntax and semantics of dependent types. In Semantics
and Logics of Computation, pages 79–130. Cambridge University Press,
1997.

P. Johann. A generalization of short-cut fusion and its correctness proof.
Higher-Order and Symbolic Computation, 15(4):273–300, 2002.

134

C. Keller and M. Lasson. Parametricity in an impredicative sort. In
P. Cégielski and A. Durand, editors, Computer Science Logic (CSL’12)
- 26th International Workshop/21st Annual Conference of the EACSL, vol-
ume 16 of Leibniz International Proceedings in Informatics (LIPIcs), pages
381–395. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012.
ISBN 978-3-939897-42-2.

H.-S. Ko and J. Gibbons. Modularising inductive families. In Proceedings
of the Seventh ACM SIGPLAN Workshop on Generic Programming, WGP
’11, pages 13–24. ACM, 2011. ISBN 978-1-4503-0861-8.

N. R. Krishnaswami and D. Dreyer. Internalizing relational parametric-
ity in the extensional calculus of constructions. In S. R. D. Rocca, ed-
itor, Computer Science Logic 2013 (CSL 2013), volume 23 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 432–451. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2013. ISBN 978-3-939897-
60-6.

D. R. Licata and R. Harper. Canonicity for 2-dimensional type theory. In
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’12, pages 337–348. ACM,
2012. ISBN 978-1-4503-1083-3.

H. G. Mairson. Outline of a proof theory of parametricity. In
J. Hughes, editor, Functional Programming Languages and Computer Ar-
chitecture, volume 523 of Lecture Notes in Computer Science, pages 313–
327. Springer Berlin Heidelberg, 1991. ISBN 978-3-540-54396-1.

P. Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.

N. Mishra-Linger and T. Sheard. Erasure and polymorphism in pure
type systems. In Proceedings of the Theory and Practice of Software, 11th
International Conference on Foundations of Software Science and Compu-
tational Structures, FOSSACS’08/ETAPS’08, pages 350–364. Springer-
Verlag, 2008. ISBN 3-540-78497-7, 978-3-540-78497-5.

G. Moulin. Pure Type Systems with an Internalized Parametricity Theo-
rem. Licentiate thesis, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, SE-412 96 Göteborg, Sweden,
2013.

B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf’s
type theory, volume 200. Oxford University Press, 1990.

U. Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, SE-412 96 Göteborg, Sweden,
2007.

135

C. Paulin-Mohring. Extracting 𝐹𝜔’s programs from proofs in the calcu-
lus of constructions. In Proceedings of the 16th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’89, pages 89–
104. ACM, 1989. ISBN 0-89791-294-2.

F. Pfenning. Intensionality, extensionality, and proof irrelevance in
modal type theory. In Proceedings of the 16th Annual IEEE Symposium
on Logic in Computer Science, LICS ’01, pages 221–230. IEEE Computer
Society, 2001.

F. Pfenning and C. Paulin-Mohring. Inductively defined types in the cal-
culus of constructions. In MFPS, volume 442 of LNCS, pages 209–228.
Springer, 1990.

A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cam-
bridge University Press, 2013. ISBN 1107017785, 9781107017788.

A. M. Pitts. An equivalent presentation of the Bezem-Coquand-Huber
category of cubical sets. CoRR, abs/1401.7807, 2014.

G. Plotkin and M. Abadi. A logic for parametric polymorphism. In
M. Bezem and J. Groote, editors, Typed Lambda Calculi and Applica-
tions, volume 664 of Lecture Notes in Computer Science, pages 361–375.
Springer Berlin Heidelberg, 1993. ISBN 978-3-540-56517-8.

N. Pouillard. Nameless, painless. In Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’11, pages 320–
332. ACM, 2011.

J. C. Reynolds. Types, abstraction and parametric polymorphism. pages
513–523, 1983.

V. Siles. Investigation on the typing of equality in type systems. PhD thesis,
École Polytechnique, 2010.

J. Svenningsson. Scalable Program Analysis. PhD thesis, Department of
Computer Science and Engineering, Chalmers University of Technol-
ogy, SE-412 96 Göteborg, Sweden, 2007.

The Coq development team. The Coq proof assistant, 2016.

P. Wadler. Theorems for free! In Proceedings of the fourth international con-
ference on Functional Programming languages and Computer Architecture,
pages 347–359, 1989.

P. Wadler. Call-by-value is dual to call-by-name. In Proceedings of the
Eighth ACM SIGPLAN International Conference on Functional Program-
ming, ICFP ’03, pages 189–201. ACM, 2003. ISBN 1-58113-756-7.

136

P. Wadler. The Girard–Reynolds isomorphism (second edition). Theoret-
ical Computer Science, 375(1–3):201–226, 2007. ISSN 0304-3975.

P. Wadler. Propositions as sessions. In Proceedings of the 17th ACM
SIGPLAN International Conference on Functional Programming, ICFP ’12,
pages 273–286. ACM, 2012. ISBN 978-1-4503-1054-3.

P. Évariste Dagand and C. McBride. Transporting functions across orna-
ments. In Proceedings of the 17th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’12, pages 103–114. ACM, 2012. ISBN
978-1-4503-1054-3.

137

138

Appendix A

Additional proofs for
chapter 1

Lemma 1. For each term 𝐴 and each variable 𝑧 not free in 𝐴, we have:

i) ⟦𝐴⟧𝜉,𝑧↦(𝑧0,𝑧1) = ⟦𝐴⟧𝜉 ; and

ii) {𝑎}𝜉,𝑧↦(𝑧0,𝑧1) ∈ ⟦𝐴⟧𝜉,𝑧↦(𝑧0,𝑧1) = {𝑎}𝜉 ∈ ⟦𝐴⟧𝜉 for all terms 𝑎.

Proof. By simultaneous induction on the structure of the raw term 𝐴.
Following the definition of our relational interpretation, we prove only
i) for the case of variable, lambda, relation introduction and application;
we prove ii) in the other cases, namely product, sort, and relation elimi-
nation.

Variable ⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋

⟦⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋⟧𝜉,𝑧 = ⟦⌈⌈𝑥𝑖⌉⌉𝑛⟧𝜉,𝑧 ‡𝜋+1

= ⌈⌈𝑥𝑖⌉⌉1+𝑛 ‡𝜋+1

= ⟦⌈⌈𝑥𝑖⌉⌉𝑛⟧𝜉 ‡𝜋+1

= ⟦⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋⟧𝜉

Lambda 𝜆 ̄𝑥 ∶ �̄�. 𝐵

⟦𝜆 ̄𝑥 ∶ �̄�. 𝐵⟧𝜉,𝑧 = 𝜆 ̄𝑥 ∶ ⟦�̄�⟧𝜉,𝑧. ⟦𝐵⟧𝜉,𝑧,𝑥

= 𝜆 ̄𝑥 ∶ ⟦�̄�⟧𝜉 . ⟦𝐵⟧𝜉,𝑥 by IH

= ⟦𝜆 ̄𝑥 ∶ �̄�. 𝐵⟧𝜉

139

Lambda• 𝜆• ̌𝑥 ∶ �̌�. 𝐵

⟦𝜆• ̌𝑥 ∶ �̌�. 𝐵⟧𝜉,𝑧 = 𝜆• ̌𝑥 ∶ ⟦�̌�⟧𝜉,𝑧. ⟦𝐵⟧𝜉,𝑧,𝑥

= 𝜆• ̌𝑥 ∶ ⟦�̌�⟧𝜉 . ⟦𝐵⟧𝜉,𝑥 by IH

= ⟦𝜆• ̌𝑥 ∶ �̌�. 𝐵⟧𝜉

Application 𝐹 ̄𝑎

⟦𝐹 ̄𝑎⟧𝜉,𝑧 = ⟦𝐹⟧𝜉,𝑧 ⟦ ̄𝑎⟧𝜉,𝑧

= ⟦𝐹⟧𝜉 ⟦ ̄𝑎⟧𝜉 by IH

= ⟦𝐹 ̄𝑎⟧𝜉

Sort 𝑠𝑛

{𝑎}𝜉,𝑧 ∈ ⟦𝑠𝑛⟧𝜉,𝑧 = ({𝑎}𝜉,𝑧
⋅) •→ 𝑠1+𝑛

= {𝑎}𝜉 ∈ ⟦𝑠𝑛⟧𝜉

Product ∀ ̄𝑥 ∶ �̄�. 𝐵

{𝑎}𝜉,𝑧 ∈ ⟦∀ ̄𝑥 ∶ �̄�. 𝐵⟧𝜉,𝑧 = ∀ ̄𝑥 ∶ ⟦�̄�⟧𝜉,𝑧. ({𝑎}𝜉,𝑧 (̄𝑥/01…1)) ∈ ⟦𝐵⟧𝜉,𝑧,𝑥

= ∀ ̄𝑥 ∶ ⟦�̄�⟧𝜉 . ({𝑎}𝜉 (̄𝑥/01…1)) ∈ ⟦𝐵⟧𝜉,𝑥 by IH

= {𝑎}𝜉 ∈ ⟦∀ ̄𝑥 ∶ �̄�. 𝐵⟧𝜉

Arrow• �̌� •→ 𝑠𝑛

{𝑎}𝜉,𝑧 ∈ ⟦�̌� •→ 𝑠𝑛⟧𝜉,𝑧 = (⟦�̌�⟧𝜉,𝑧 ⊕ {𝑎}𝜉,𝑧) •→ 𝑠1+𝑛

= (⟦�̌�⟧𝜉 ⊕ {𝑎}𝜉) •→ 𝑠1+𝑛 by IH

= {𝑎}𝜉 ∈ ⟦�̌� •→ 𝑠𝑛⟧𝜉

Application• 𝐹•�̌�

{𝑎}𝜉,𝑧 ∈ ⟦𝐹•�̌�⟧𝜉,𝑧 = ⟦𝐹⟧𝜉,𝑧•(⟦�̌�⟧𝜉 ⊕ {𝑎}𝜉,𝑧)
= ⟦𝐹⟧𝜉 •(⟦�̌�⟧𝜉 ⊕ {𝑎}𝜉) by IH

= {𝑎}𝜉 ∈ ⟦𝐹•�̌�⟧𝜉

Lemma 2. For each term 𝐴 ∶ 𝑠𝑚 and each 𝜌 of dimension at most 𝑚, we have:

⟦𝐴 ‡𝜌
𝜁 ⟧

𝜉
= ⟦𝐴⟧𝜉 ‡1+𝜌

𝜁

Proof. By induction on the structure of raw term 𝐴.

140

Variable (1) ⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋 , 𝑥 ∈ 𝜉 ∩ 𝜁

⟦⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋 ‡𝜌
𝜁 ⟧

𝜉
= ⟦⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋⟧𝜉

= ⟦⌈⌈𝑥𝑖⌉⌉𝑛⟧𝜉 ‡𝜋+1

= ⌈⌈𝑥1𝑖⌉⌉𝑛 †normal𝑛((0…𝑛)∘𝜋+1)

= ⌈⌈𝑥1𝑖⌉⌉𝑛 †normal𝑛((0…𝑛)∘𝜋+1) ‡𝜌+1
𝜁

= ⟦⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋⟧𝜉 ‡𝜌+1
𝜁

Variable (2) ⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋 , 𝑥 ∉ 𝜉 , 𝑥 ∈ 𝜁

⟦⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋 ‡𝜌
𝜁 ⟧

𝜉
= ⟦⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋⟧𝜉

= ⟦⌈⌈𝑥𝑖⌉⌉𝑛⟧𝜉 ‡𝜋+1

= ⌈⌈𝑥0𝑖⌉⌉𝑛 †normal𝑛((0…𝑛)∘𝜋+1)

= ⌈⌈𝑥0𝑖⌉⌉𝑛 †normal𝑛((0…𝑛)∘𝜋+1) ‡𝜌+1
𝜁

= ⟦⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋⟧𝜉 ‡𝜌+1
𝜁

Variable (3) ⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋 , 𝑥 ∈ 𝜉 , 𝑥 ∉ 𝜁

⟦⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋 ‡𝜌
𝜁 ⟧

𝜉
= ⟦⌈⌈𝑥𝑖⌉⌉𝑛 †normal𝑛(𝜌∘𝜋)⟧𝜉

= ⌈⌈𝑥1𝑖⌉⌉𝑛 †(0…𝑛) †1+normal𝑛(𝜌∘𝜋)

= ⌈⌈𝑥1𝑖⌉⌉𝑛 †(0…𝑛) †1+𝜋 ‡1+𝜌
𝜁

= ⟦⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋⟧𝜉 ‡1+𝜌
𝜁

Variable (4) ⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋 , 𝑥 ∉ 𝜉 , 𝑥 ∉ 𝜁

⟦⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋 ‡𝜌
𝜁 ⟧

𝜉
= ⟦⌈⌈𝑥𝑖⌉⌉𝑛 †normal𝑛(𝜌∘𝜋)⟧𝜉

= ⌈⌈𝑥0𝑖⌉⌉𝑛 †(0…𝑛) †1+normal𝑛(𝜌∘𝜋)

= ⌈⌈𝑥0𝑖⌉⌉𝑛 †(0…𝑛) †1+𝜋 ‡1+𝜌
𝜁

= ⟦⌈⌈𝑥𝑖⌉⌉𝑛 †𝜋⟧𝜉 ‡1+𝜌
𝜁

Lambda 𝜆 ̄𝑥 ∶ �̄�. 𝐵

⟦(𝜆 ̄𝑥 ∶ �̄�. 𝐵) ‡𝜌
𝜁 ⟧

𝜉
= ⟦𝜆 ̄𝑥 ∶ �̄� ‡𝜌

𝜁 .𝐵[̄𝑥 †𝜌 / ̄𝑥] ‡𝜌
𝜁,𝑥⟧

𝜉

= 𝜆 ̄𝑥 ∶ ⟦�̄� ‡𝜌
𝜁 ⟧

𝜉
. ⟦𝐵[̄𝑥 †𝜌 / ̄𝑥] ‡𝜌

𝜁,𝑥⟧
𝜉,𝑥

= 𝜆 ̄𝑥 ∶ ⟦�̄�⟧𝜉 ‡1+𝜌
𝜁 . ⟦𝐵[̄𝑥 †𝜌 / ̄𝑥]⟧𝜉,𝑥 ‡1+𝜌

𝜁,𝑥 by IH

= 𝜆 ̄𝑥 ∶ ⟦�̄�⟧𝜉 ‡1+𝜌
𝜁 . ⟦𝐵⟧𝜉,𝑥[̄𝑥 †1+𝜌 / ̄𝑥] ‡1+𝜌

𝜁,𝑥

= (𝜆 ̄𝑥 ∶ ⟦�̄�⟧𝜉 . ⟦𝐵⟧𝜉,𝑥) ‡1+𝜌
𝜁

= ⟦𝜆 ̄𝑥 ∶ �̄�. 𝐵⟧𝜉 ‡1+𝜌
𝜁

141

Lambda• 𝜆• ̌𝑥 ∶ �̌�. 𝐵

⟦(𝜆• ̌𝑥 ∶ �̌�. 𝐵) ‡𝜌
𝜁 ⟧

𝜉
= ⟦𝜆• ̌𝑥 ∶ �̌� ‡𝜌

𝜁 .𝐵[̌𝑥 †𝜌 / ̌𝑥] ‡𝜌
𝜁,𝑥⟧

𝜉

= 𝜆• ̌𝑥 ∶ (⟦�̌� ‡𝜌
𝜁 ⟧

𝜉
⊕ {𝜆• ̌𝑥 ∶ �̌� ‡𝜌

𝜁 .𝐵[̌𝑥 †𝜌 / ̌𝑥] ‡𝜌
𝜁,𝑥}

𝜉
).

𝑥01…1 ∈ ⟦𝐵[̌𝑥 †𝜌 / ̌𝑥] ‡𝜌
𝜁,𝑥⟧

𝜉,𝑥

= 𝜆• ̌𝑥 ∶ (⟦�̌�⟧𝜉 ⊕ {𝜆• ̌𝑥 ∶ �̌�. 𝐵}𝜉) ‡1+𝜌
𝜁 .

(𝑥01…1 ∈ ⟦𝐵⟧𝜉,𝑥)[̌𝑥 †1+𝜌 / ̌𝑥] ‡1+𝜌
𝜁,𝑥

by IH

= (𝜆• ̌𝑥 ∶ (⟦�̌�⟧𝜉 ⊕ {𝜆• ̌𝑥 ∶ �̌�. 𝐵}𝜉). 𝑥01…1 ∈ ⟦𝐵⟧𝜉,𝑥) ‡1+𝜌
𝜁

= ⟦𝜆• ̌𝑥 ∶ �̌�. 𝐵⟧𝜉 ‡1+𝜌
𝜁

Application 𝐹 ̄𝑎

⟦(𝐹 ̄𝑎) ‡𝜌
𝜁 ⟧

𝜉
= ⟦𝐹 ‡𝜌

𝜁 ̄𝑎 ‡𝜌
𝜁 ⟧

𝜉

= ⟦𝐹 ‡𝜌
𝜁 ⟧

𝜉
⟦ ̄𝑎 ‡𝜌

𝜁 ⟧
𝜉

= ⟦𝐹⟧𝜉 ‡1+𝜌
𝜁 ⟦ ̄𝑎⟧𝜉 ‡1+𝜌

𝜁 by IH

= ⟦𝐹 ̄𝑎⟧𝜉 ‡1+𝜌
𝜁

Sort 𝑠𝑛

{𝑎}𝜉 ‡1+𝜌
𝜁 ∈ ⟦𝑠𝑛 ‡𝜌

𝜁 ⟧
𝜉

= {𝑎}𝜉 ‡1+𝜌
𝜁 ∈ ⟦𝑠𝑛⟧𝜉

= ({𝑎}𝜉 ‡1+𝜌
𝜁

⋅) •→ 𝑠1+𝑛

= ({𝑎}𝜉 ∈ ⟦𝑠𝑛⟧𝜉) ‡1+𝜌
𝜁

Product ∀ ̄𝑥 ∶ �̄�. 𝐵

{𝑎}𝜉 ‡1+𝜌
𝜁 ∈ ⟦(∀ ̄𝑥 ∶ �̄�. 𝐵) ‡𝜌

𝜁 ⟧
𝜉

= {𝑎}𝜉 ‡1+𝜌
𝜁 ∈ ⟦∀ ̄𝑥 ∶ �̄� ‡𝜌 . 𝐵[̄𝑥 †𝜌 / ̄𝑥] ‡𝜌

𝜁,𝑥⟧
𝜉

= ∀ ̄𝑥 ∶ ⟦�̄� ‡𝜌⟧𝜉 . ({𝑎}𝜉 ‡1+𝜌
𝜁 (̄𝑥/01…1)) ∈ ⟦𝐵[̄𝑥 †𝜌 / ̄𝑥] ‡𝜌

𝜁,𝑥⟧
𝜉,𝑥

= ∀ ̄𝑥 ∶ ⟦�̄�⟧𝜉 ‡1+𝜌 . ({𝑎}𝜉 (̄𝑥/01…1)) ∈ ⟦𝐵⟧𝜉,𝑥)[̄𝑥 †1+𝜌 / ̄𝑥] ‡1+𝜌
𝜁 by IH

= ⟦∀ ̄𝑥 ∶ �̄�. 𝐵⟧𝜉 ‡1+𝜌
𝜁

Arrow• �̌� •→ 𝑠𝑛

{𝑎}𝜉 ‡1+𝜌
𝜁 ∈ ⟦(�̌� •→ 𝑠𝑛) ‡𝜌

𝜁 ⟧
𝜉

= {𝑎}𝜉 ‡1+𝜌
𝜁 ∈ ⟦�̌� ‡𝜌

𝜁
•→ 𝑠𝑛⟧

𝜉

= (⟦�̌� ‡𝜌
𝜁 ⟧

𝜉
⊕ {𝑎}𝜉 ‡1+𝜌

𝜁) •→ 𝑠1+𝑛

= (⟦�̌�⟧𝜉 ⊕ {𝑎}𝜉) ‡1+𝜌 •→ 𝑠1+𝑛 by IH

= ({𝑎}𝜉 ∈ ⟦�̌� •→ 𝑠𝑛⟧𝜉) ‡1+𝜌
𝜁

142

Application• 𝐹•�̌�

{𝑎}𝜉 ‡1+𝜌
𝜁 ∈ ⟦(𝐹•�̌�) ‡𝜌

𝜁 ⟧
𝜉

= {𝑎}𝜉 ‡1+𝜌
𝜁 ∈ ⟦𝐹 ‡𝜌

𝜁
•�̌� ‡𝜌⟧

𝜉

= ⟦𝐹 ‡𝜌
𝜁 ⟧

𝜉
•(⟦�̌� ‡𝜌

𝜁 ⟧
𝜉

⊕ {𝑎}𝜉 ‡1+𝜌
𝜁)

= ⟦𝐹⟧𝜉 ‡1+𝜌
𝜁

•(⟦�̌�⟧𝜉 ⊕ {𝑎}𝜉) ‡1+𝜌
𝜁 by IH

= ({𝑎}𝜉 ∈ ⟦𝐹•�̌�⟧𝜉) ‡1+𝜌
𝜁

Lemma 3. For each term 𝐴, we have:

⟦⟦𝐴⟧𝜉 ⟧
𝜁

= ⟦⟦𝐴⟧𝜁 ⟧
𝜉
[̄𝑥 †(01) / ̄𝑥 ∣ 𝑥 ∈ 𝜉 ∩ 𝜁] ‡(01)

𝜉∩𝜁

Proof. By structural induction on 𝐴.

Variable (1) ⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋 , 𝑧 ∈ 𝜉 , 𝑧 ∈ 𝜁

⟦⟦⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋⟧𝜉 ⟧
𝜁

= ⟦⟦⟦𝑧𝑖⟧𝜉 ⟧𝑛 ‡(0…𝑛) ‡1+𝜋⟧
𝜁

= ⟦⌈⌈𝑧1𝑖⌉⌉𝑛 †(0…𝑛) ‡1+𝜋⟧𝜁

= ⟦⌈⌈𝑧1𝑖⌉⌉𝑛⟧𝜁 ‡(1…1+𝑛) ‡2+𝜋 by Lemma 2

= ⟦⟦𝑧1𝑖⟧𝜁 ⟧𝑛 ‡(0…𝑛) ‡(1…1+𝑛) ‡2+𝜋

= ⌈⌈𝑧11𝑖⌉⌉𝑛 †(0…𝑛) ‡(1…1+𝑛) ‡2+𝜋

= ⌈⌈𝑧11𝑖⌉⌉𝑛 †… ‡2+𝜋

= ⌈⌈𝑧11𝑖⌉⌉𝑛 †… ‡(01)
𝜉∩𝜁 ‡2+𝜋

= ⌈⌈𝑧11𝑖⌉⌉𝑛 †… ‡2+𝜋 ‡(01)
𝜉∩𝜁

since 2 + 𝜋 and (01) are disjoints

= ⟦⟦𝑧1𝑖⟧𝜉 ⟧𝑛 ‡(0…𝑛) ‡(1…1+𝑛) ‡2+𝜋 ‡(01)
𝜉∩𝜁

= ⟦⌈⌈𝑧1𝑖⌉⌉𝑛⟧𝜉 ‡(1…1+𝑛) ‡2+𝜋 ‡(01)
𝜉∩𝜁

= ⟦⌈⌈𝑧1𝑖⌉⌉𝑛 †(0…𝑛) ‡1+𝜋⟧𝜉 ‡(01)
𝜉∩𝜁 by Lemma 2

= ⟦⟦⟦𝑧𝑖⟧𝜁 ⟧𝑛 ‡(0…𝑛) ‡1+𝜋⟧
𝜉

‡(01)
𝜉∩𝜁

= ⟦⟦⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋⟧𝜁 ⟧
𝜉

‡(01)
𝜉∩𝜁

= ⟦⟦⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋⟧𝜁 ⟧
𝜉
[̄𝑥 †(01) / ̄𝑥 ∣ 𝑥 ∈ 𝜉 ∩ 𝜁] ‡(01)

𝜉∩𝜁

143

Variable (2) ⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋 , 𝑧 ∉ 𝜉 , 𝑧 ∈ 𝜁

⟦⟦⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋⟧𝜉 ⟧
𝜁

= ⟦⌈⌈𝑧𝑖⌉⌉1+𝑛 †1+𝜋⟧𝜁

= ⟦⟦𝑧𝑖⟧𝜁 ⟧1+𝑛 ‡(0…1+𝑛) ‡2+𝜋

= ⌈⌈𝑧1𝑖⌉⌉1+𝑛 †(0…1+𝑛) ‡2+𝜋

= ⌈⌈𝑧1𝑖⌉⌉1+𝑛 †(1…1+𝑛) ‡(01)
𝑧 ‡2+𝜋

since 2 + 𝜋 and (01) are disjoints

= ⌈⌈𝑧1𝑖⌉⌉1+𝑛 †(1…1+𝑛) ‡2+𝜋 ‡(01)
𝜉∩𝜁

= ⟦⌈⌈𝑧1𝑖⌉⌉𝑛 †(0…𝑛) ‡1+𝜋⟧𝜉 ‡(01)
𝜉∩𝜁

= ⟦⟦⟦𝑧𝑖⟧𝜁 ⟧𝑛 ‡(0…𝑛) ‡1+𝜋⟧
𝜉

‡(01)
𝜉∩𝜁

= ⟦⟦⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋⟧𝜁 ⟧
𝜉

‡(01)
𝜉∩𝜁

= ⟦⟦⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋⟧𝜁 ⟧
𝜉
[̄𝑥 †(01) / ̄𝑥 ∣ 𝑥 ∈ 𝜉 ∩ 𝜁] ‡(01)

𝜉∩𝜁

Variable (3) ⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋 , 𝑧 ∈ 𝜉 , 𝑧 ∉ 𝜁

⟦⟦⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋⟧𝜉 ⟧
𝜁

= ⟦⌈⌈𝑧1𝑖⌉⌉𝑛 †(0…𝑛) ‡1+𝜋⟧𝜁

= ⌈⌈𝑧1𝑖⌉⌉1+𝑛 †(1…1+𝑛) ‡2+𝜋

= ⌈⌈𝑧1𝑖⌉⌉1+𝑛 †(0…1+𝑛) ‡(01)
𝑧 ‡2+𝜋

since 2 + 𝜋 and (01) are disjoints

= ⌈⌈𝑧1𝑖⌉⌉1+𝑛 †(0…1+𝑛) ‡2+𝜋 ‡(01)
𝜉∩𝜁

= ⟦⌈⌈𝑧𝑖⌉⌉1+𝑛 †1+𝜋⟧𝜉 ‡(01)
𝜉∩𝜁

= ⟦⟦⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋⟧𝜁 ⟧
𝜉

‡(01)
𝜉∩𝜁

= ⟦⟦⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋⟧𝜁 ⟧
𝜉
[̄𝑥 †(01) / ̄𝑥 ∣ 𝑥 ∈ 𝜉 ∩ 𝜁] ‡(01)

𝜉∩𝜁

Variable (4) ⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋 , 𝑧 ∉ 𝜉 , 𝑧 ∉ 𝜁

⟦⟦⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋⟧𝜉 ⟧
𝜁

= ⌈⌈𝑧𝑖⌉⌉2+𝑛 †2+𝜋

since dim (01) < 2
= ⌈⌈𝑧𝑖⌉⌉2+𝑛 ‡(01)

𝜉∩𝜁 ‡2+𝜋

since 2 + 𝜋 and (01) are disjoints

= ⌈⌈𝑧𝑖⌉⌉2+𝑛 †2+𝜋 ‡(01)
𝜉∩𝜁

= ⟦⟦⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋⟧𝜁 ⟧
𝜉

‡(01)
𝜉∩𝜁

= ⟦⟦⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋⟧𝜁 ⟧
𝜉
[̄𝑥 †(01) / ̄𝑥 ∣ 𝑥 ∈ 𝜉 ∩ 𝜁] ‡(01)

𝜉∩𝜁

144

Lambda 𝜆 ̄𝑥 ∶ �̄�. 𝐵

⟦⟦𝜆 ̄𝑥 ∶ �̄�. 𝐵⟧𝜉 ⟧
𝜁

= 𝜆 ̄𝑥 ∶ ⟦⟦�̄�⟧𝜉 ⟧
𝜁
. ⟦⟦𝐵⟧𝜉,𝑥⟧

𝜁,𝑥

= 𝜆 ̄𝑥 ∶ ⟦⟦�̄�⟧𝜁 ⟧
𝜉
[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁] ‡(01)

𝜉∩𝜁 .
⟦⟦𝐵⟧𝜁,𝑥⟧

𝜉,𝑥
[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ (𝜉 ∩ 𝜁) ∪ {𝑥}] ‡(01)

(𝜉∩𝜁)∪{𝑥}

by IH

= 𝜆 ̄𝑥 ∶ ⟦⟦�̄�⟧𝜁 ⟧
𝜉
[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁] ‡(01)

𝜉∩𝜁 .
⟦⟦𝐵⟧𝜁,𝑥⟧

𝜉,𝑥
[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁] ‡(01)

𝜉∩𝜁

= (𝜆 ̄𝑥 ∶ ⟦⟦�̄�⟧𝜁 ⟧
𝜉
. ⟦⟦𝐵⟧𝜁,𝑥⟧

𝜉,𝑥
)[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁] ‡(01)

𝜉∩𝜁

= ⟦⟦𝜆 ̄𝑥 ∶ �̄�. 𝐵⟧𝜁 ⟧
𝜉
[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁] ‡(01)

𝜉∩𝜁

Lambda• 𝜆• ̌𝑥 ∶ �̌�. 𝐵

⟦⟦𝜆• ̌𝑥 ∶ �̌�. 𝐵⟧𝜉 ⟧
𝜁

= 𝜆• ̌𝑥 ∶ ̌𝐶. ⟦⟦𝐵⟧𝜁,𝑥⟧
𝜉,𝑥

• (𝑥001…1 𝑥011…1
𝑥101…1 ⋅)

= 𝜆• ̌𝑥 ∶ ̌𝐶. ⟦⟦𝐵⟧𝜁,𝑥⟧
𝜉,𝑥

[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ (𝜉 ∩ 𝜁) ∪ {𝑥}] ‡(01)
(𝜉∩𝜁)∪{𝑥}

•

(𝑥001…1 𝑥011…1
𝑥101…1 ⋅)

by IH

= 𝜆• ̌𝑥 ∶ ̌𝐶′[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁] ‡(01)
𝜉∩𝜁 .

(⟦⟦𝐵⟧𝜁,𝑥⟧
𝜉,𝑥

• (𝑥001…1 𝑥011…1
𝑥101…1 ⋅)) [̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁] ‡(01)

𝜉∩𝜁

= (𝜆• ̌𝑥 ∶ ̌𝐶′. ⟦⟦𝐵⟧𝜁,𝑥⟧
𝜉,𝑥

• (𝑥001…1 𝑥011…1
𝑥101…1 ⋅))

[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁] ‡(01)
𝜉∩𝜁

= ⟦⟦𝜆• ̌𝑥 ∶ �̌�. 𝐵⟧𝜁 ⟧
𝜉
[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁] ‡(01)

𝜉∩𝜁

Where

̌𝐶 =

⎡
⎢⎢⎢⎢⎢
⎣

00𝑖 ↦ {{𝐴𝑖}𝜉 }
𝜁

10𝑖 ↦ ⟦{𝐴𝑖}𝜉 ⟧
𝜁

01𝑖 ↦ {⟦𝐴𝑖⟧𝜉 }
𝜁

11𝑖 ↦ ⟦⟦𝐴𝑖⟧𝜉 ⟧
𝜁

001…1 ↦ {{𝜆• ̌𝑥 ∶ �̌�. 𝐵}𝜉 }
𝜁

101…1 ↦ ⟦{𝜆• ̌𝑥 ∶ �̌�. 𝐵}𝜉 ⟧
𝜁

011…1 ↦ {𝜆• ̌𝑥 ∶ (⟦�̌�⟧𝜉 ⊕ {𝜆• ̌𝑥 ∶ �̌�. 𝐵}𝜉). 𝑥01…1 ∈ ⟦𝐵⟧𝜉,𝑥}
𝜁

⎥⎥⎥⎥⎥⎥⎥
⎦

= ̌𝐶′[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁] ‡(01)
𝜉∩𝜁 by IH

and

̌𝐶′ =

⎡
⎢⎢⎢⎢⎢
⎣

00𝑖 ↦ {{𝐴𝑖}𝜁 }
𝜉

10𝑖 ↦ ⟦{𝐴𝑖}𝜁 ⟧
𝜉

01𝑖 ↦ {⟦𝐴𝑖⟧𝜁 }
𝜉

11𝑖 ↦ ⟦⟦𝐴𝑖⟧𝜁 ⟧
𝜉

001…1 ↦ {{𝜆• ̌𝑥 ∶ �̌�. 𝐵}𝜁 }
𝜉

101…1 ↦ ⟦{𝜆• ̌𝑥 ∶ �̌�. 𝐵}𝜁 ⟧
𝜉

011…1 ↦ {𝜆• ̌𝑥 ∶ (⟦�̌�⟧𝜁 ⊕ {𝜆• ̌𝑥 ∶ �̌�. 𝐵}𝜁). 𝑥01…1 ∈ ⟦𝐵⟧𝜁,𝑥}
𝜉

⎥⎥⎥⎥⎥⎥⎥
⎦

145

Application 𝐹 ̄𝑎

⟦⟦𝐹 ̄𝑎⟧𝜉 ⟧
𝜁

= ⟦⟦𝐹⟧𝜉 ⟧
𝜁

⟦⟦ ̄𝑎⟧𝜉 ⟧
𝜁

= ⟦⟦𝐹⟧𝜁 ⟧
𝜉
[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁] ‡(01)

𝜉∩𝜁

⟦⟦ ̄𝑎⟧𝜁 ⟧
𝜉
[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁] ‡(01)

𝜉∩𝜁

by IH

= ⟦⟦𝐹 ̄𝑎⟧𝜁 ⟧
𝜉
[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁] ‡(01)

𝜉∩𝜁

Sort 𝑠𝑛

{{𝑎}𝜉 }
𝜁

∈ ⟦⟦𝑠𝑛⟧𝜉 ⟧
𝜁

= ⎛⎜⎜
⎝

{{𝑎}𝜉 }
𝜁

{⟦𝑎⟧𝜉 }
𝜁

⟦{𝑎}𝜉 ⟧
𝜁

⋅
⎞⎟⎟
⎠

•→ 𝑠𝑛+2

= ⎛⎜⎜
⎝

⎛⎜⎜
⎝

{{𝑎}𝜁 }
𝜉

{⟦𝑎⟧𝜁 }
𝜉

⟦{𝑎}𝜁 ⟧
𝜉

⋅
⎞⎟⎟
⎠

•→ 𝑠𝑛+2⎞⎟⎟
⎠

[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁] ‡(01)
𝜉∩𝜁

= ({{𝑎}𝜁 }
𝜉

∈ ⟦⟦𝑠𝑛⟧𝜁 ⟧
𝜉
[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁]) ‡(01)

𝜉∩𝜁

Product ∀ ̄𝑥 ∶ �̄�. 𝐵

{{𝑎}𝜉 }
𝜁

∈ ⟦⟦∀ ̄𝑥 ∶ �̄�. 𝐵⟧𝜉 ⟧
𝜁

= ∀ ̄𝑥 ∶ ⟦⟦�̄�⟧𝜉 ⟧
𝜁
. ⟦⟦�̄�⟧𝜉,𝑥⟧

𝜁,𝑥
• ⎛⎜⎜
⎝

{{𝑎}𝜉 }
𝜁

(̄𝑥/001…1) {⟦𝑎⟧𝜉 }
𝜁

(̄𝑥/011…1)
⟦{𝑎}𝜉 ⟧

𝜁
(̄𝑥/101…1) ⋅

⎞⎟⎟
⎠

= ∀ ̄𝑥 ∶ ⟦⟦�̄�⟧𝜉 ⟧
𝜁
[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁] ‡(01)

𝜉∩𝜁 .

⎛⎜⎜
⎝

⟦⟦�̄�⟧𝜉,𝑥⟧
𝜁,𝑥

• ⎛⎜⎜
⎝

{{𝑎}𝜉 }
𝜁

(̄𝑥/001…1) {⟦𝑎⟧𝜉 }
𝜁

(̄𝑥/011…1)
⟦{𝑎}𝜉 ⟧

𝜁
(̄𝑥/101…1) ⋅

⎞⎟⎟
⎠

⎞⎟⎟
⎠

[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁 ∪ {𝑥}] ‡(01)
𝜉∩𝜁∪{𝑥}

by IH

= ({{𝑎}𝜁 }
𝜉

∈ ⟦⟦∀ ̄𝑥 ∶ �̄�. 𝐵⟧𝜁 ⟧
𝜉
[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁]) ‡(01)

𝜉∩𝜁

Arrow• �̌� •→ 𝑠𝑛

{{𝑎}𝜉 }
𝜁

∈ ⟦⟦�̌� •→ 𝑠𝑛⟧𝜉 ⟧
𝜁

= ̌𝐶 •→ 𝑠2+𝑛

= (̌𝐶′ •→ 𝑠2+𝑛)[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁]) ‡(01)
𝜉∩𝜁

= ({{𝑎}𝜁 }
𝜉

∈ ⟦⟦�̌� •→ 𝑠𝑛⟧𝜁 ⟧
𝜉
[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁]) ‡(01)

𝜉∩𝜁

Where

̌𝐶 =

⎡
⎢⎢⎢⎢⎢
⎣

00𝑖 ↦ {{𝐴𝑖}𝜉 }
𝜁

10𝑖 ↦ ⟦{𝐴𝑖}𝜉 ⟧
𝜁

01𝑖 ↦ {⟦𝐴𝑖⟧𝜉 }
𝜁

11𝑖 ↦ ⟦⟦𝐴𝑖⟧𝜉 ⟧
𝜁

001…1 ↦ {{𝑎}𝜉 }
𝜁

101…1 ↦ ⟦{𝑎}𝜉 ⟧
𝜁

011…1 ↦ {⟦𝑎⟧𝜉 }
𝜁

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ̌𝐶′[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁] ‡(01)
𝜉∩𝜁 by IH

146

and

̌𝐶′ =

⎡
⎢⎢⎢⎢⎢
⎣

00𝑖 ↦ {{𝐴𝑖}𝜁 }
𝜉

10𝑖 ↦ ⟦{𝐴𝑖}𝜁 ⟧
𝜉

01𝑖 ↦ {⟦𝐴𝑖⟧𝜁 }
𝜉

11𝑖 ↦ ⟦⟦𝐴𝑖⟧𝜁 ⟧
𝜉

001…1 ↦ {{𝑎}𝜁 }
𝜉

101…1 ↦ ⟦{𝑎}𝜁 ⟧
𝜉

011…1 ↦ {⟦𝑎⟧𝜁 }
𝜉

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Application• 𝐹•�̌�

{{𝑎}𝜉 }
𝜁

∈ ⟦⟦𝐹•�̌�⟧𝜉 ⟧
𝜁

= ⟦⟦𝐹⟧𝜉 ⟧
𝜁

• ̌𝐶

= ({{𝑎}𝜁 }
𝜉

∈ ⟦𝐹•�̌�⟧𝜉 [̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁]) ‡(01)
𝜉∩𝜁

Where

̌𝐶 =

⎡
⎢⎢⎢⎢⎢
⎣

00𝑖 ↦ {{𝐴𝑖}𝜉 }
𝜁

10𝑖 ↦ ⟦{𝐴𝑖}𝜉 ⟧
𝜁

01𝑖 ↦ {⟦𝐴𝑖⟧𝜉 }
𝜁

11𝑖 ↦ ⟦⟦𝐴𝑖⟧𝜉 ⟧
𝜁

001…1 ↦ {{𝑎}𝜉 }
𝜁

101…1 ↦ ⟦{𝑎}𝜉 ⟧
𝜁

011…1 ↦ {⟦𝑎⟧𝜉 }
𝜁

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ̌𝐶′[̄𝑧 †(01) / ̄𝑧 ∣ 𝑧 ∈ 𝜉 ∩ 𝜁] ‡(01)
𝜉∩𝜁 by IH

and

̌𝐶′ =

⎡
⎢⎢⎢⎢⎢
⎣

00𝑖 ↦ {{𝐴𝑖}𝜁 }
𝜉

10𝑖 ↦ ⟦{𝐴𝑖}𝜁 ⟧
𝜉

01𝑖 ↦ {⟦𝐴𝑖⟧𝜁 }
𝜉

11𝑖 ↦ ⟦⟦𝐴𝑖⟧𝜁 ⟧
𝜉

001…1 ↦ {{𝑎}𝜁 }
𝜉

101…1 ↦ ⟦{𝑎}𝜁 ⟧
𝜉

011…1 ↦ {⟦𝑎⟧𝜁 }
𝜉

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Lemma 4 (⟦⋅⟧ and substitution, part 1). For each term 𝐴, and each variable
𝑧 not in 𝜉 , we have:

i) ⟦𝐴[𝑢/𝑧𝑖]⟧𝜉 = ⟦𝐴⟧𝜉,𝑧[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]; and

ii) {𝑎[𝑢/𝑧𝑖]}𝜉 ∈ ⟦𝐴[𝑢/𝑧𝑖]⟧𝜉 = ({𝑎}𝜉,𝑧 ∈ ⟦𝐴⟧𝜉,𝑧)[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖].

Proof. By simultaneous induction on the structure of 𝐴.

Variable (1) ⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋

⟦⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋[𝑢/𝑧𝑖]⟧𝜉 = ⟦⟦𝑢⟧𝑛 ‡𝜋⟧𝜉

= ⟦⌈⌈𝑢⌉⌉𝑛⟧𝜉 ‡𝜋+1 by Lemma 2

= ⟦⟦𝑢⟧𝜉 ⟧𝑛 ‡(0…𝑛) ‡𝜋+1 by Corollary 1

= ⌈⌈𝑧1𝑖⌉⌉𝑛 ‡(0…𝑛) ‡𝜋+1[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]
= ⟦⟦𝑧𝑖⟧𝜉,𝑧⟧𝑛 ‡(0…𝑛) ‡𝜋+1[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]

= ⟦⌈⌈𝑧𝑖⌉⌉𝑛⟧𝜉,𝑧 ‡𝜋+1[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]
= ⟦⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋⟧𝜉,𝑧↦(𝑧0,𝑧1)[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖] by Lemma 2

147

Variable (2) ⌈⌈𝑥𝑗⌉⌉𝑛 †𝜋 , with 𝑥 ≠ 𝑧

⟦⌈⌈𝑥𝑗⌉⌉𝑛 †𝜋[𝑢/𝑧𝑖]⟧𝜉
= ⟦⌈⌈𝑥𝑗⌉⌉𝑛 †𝜋⟧

𝜉

= ⟦⌈⌈𝑥𝑗⌉⌉𝑛 †𝜋⟧
𝜉
[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]

= ⟦⌈⌈𝑥𝑗⌉⌉𝑛 †𝜋⟧
𝜉,𝑧↦(𝑧0,𝑧1)

[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖] by Lemma 1

Lambda 𝜆 ̄𝑥 ∶ �̄�. 𝐵

⟦(𝜆 ̄𝑥 ∶ �̄�. 𝐵)[𝑢/𝑧𝑖]⟧𝜉 = ⟦𝜆 ̄𝑥 ∶ �̄�[𝑢/𝑧𝑖].𝐵[𝑢/𝑧𝑖]⟧𝜉

= 𝜆 ̄𝑥 ∶ ⟦�̄�[𝑢/𝑧𝑖]⟧𝜉 . ⟦𝐵[𝑢/𝑧𝑖]⟧𝜉,𝑥

= 𝜆 ̄𝑥 ∶ ⟦�̄�⟧𝜉,𝑧[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖].
⟦𝐵⟧𝜉,𝑥,𝑧[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]

by IH

= ⟦𝜆 ̄𝑥 ∶ �̄�. 𝐵⟧𝜉,𝑧↦(𝑧0,𝑧1)[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]

Lambda• 𝜆• ̌𝑥 ∶ �̌�. 𝐵

⟦(𝜆• ̌𝑥 ∶ �̌�. 𝐵)[𝑢/𝑧𝑖]⟧𝜉

= ⟦𝜆• ̌𝑥 ∶ �̌�[𝑢/𝑧𝑖].𝐵[𝑢/𝑧𝑖]⟧𝜉

= 𝜆• ̌𝑥 ∶ (⟦�̌�[𝑢/𝑧𝑖]⟧𝜉 ⊕ {𝜆• ̌𝑥 ∶ �̌�[𝑢/𝑧𝑖].𝐵[𝑢/𝑧𝑖]}𝜉). 𝑥01…1 ∈ ⟦𝐵[𝑢/𝑧𝑖]⟧𝜉,𝑥

= 𝜆• ̌𝑥 ∶ (⟦�̌�⟧𝜉 ⊕ {𝜆• ̌𝑥 ∶ �̌�[𝑢/𝑧𝑖].𝐵[𝑢/𝑧𝑖]}𝜉).
𝑥01…1 ∈ ⟦𝐵[𝑢/𝑧𝑖]⟧𝜉,𝑥

= 𝜆• ̌𝑥 ∶ (⟦�̌�⟧𝜉,𝑧 ⊕ 𝜆• ̌𝑥 ∶ �̌�. 𝐵)[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖].
(𝑥01…1 ∈ ⟦𝐵⟧𝜉,𝑥,𝑧)[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]

by IH

= (𝜆• ̌𝑥 ∶ (⟦�̌�⟧𝜉,𝑧 ⊕ {𝜆• ̌𝑥 ∶ �̌�. 𝐵}𝜉,𝑧). 𝑥01…1 ∈ ⟦𝐵⟧𝜉,𝑥,𝑧)
[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]

= ⟦𝜆• ̌𝑥 ∶ �̌�. 𝐵⟧𝜉,𝑧[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]

Application 𝐹 ̄𝑎

⟦(𝐹 ̄𝑎)[𝑢/𝑧𝑖]⟧𝜉 = ⟦𝐹[𝑢/𝑧𝑖] ̄𝑎[𝑢/𝑧𝑖]⟧𝜉

= ⟦𝐹[𝑢/𝑧𝑖]⟧𝜉 ⟦ ̄𝑎[𝑢/𝑧𝑖]⟧𝜉

= ⟦𝐹⟧𝜉,𝑧[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]⟦ ̄𝑎⟧𝜉,𝑧[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖] by IH

= (⟦𝐹⟧𝜉,𝑧 ⟦ ̄𝑎⟧𝜉,𝑧)[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]
= ⟦𝐹 ̄𝑎⟧𝜉,𝑧[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]

Sort 𝑠𝑛

{𝑎[𝑢/𝑧𝑖]}𝜉 ∈ ⟦𝑠𝑛[𝑢/𝑧𝑖]⟧𝜉 = ({𝑎}𝜉,𝑧[{𝑢}𝜉 /𝑧0𝑖]
⋅) •→ 𝑠1+𝑛

= ({𝑎}𝜉,𝑧 ∈ ⟦𝑠𝑛⟧𝜉,𝑧)[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]

148

Product ∀ ̄𝑥 ∶ �̄�. 𝐵

{𝑎[𝑢/𝑧𝑖]}𝜉 ∈ ⟦(∀ ̄𝑥 ∶ �̄�. 𝐵)[𝑢/𝑧𝑖]⟧𝜉

= ∀ ̄𝑥 ∶ ⟦�̄�[𝑢/𝑧𝑖]⟧𝜉 . ({𝑎[𝑢/𝑧𝑖]}𝜉 (̄𝑥/01…1)) ∈ ⟦𝐵[𝑢/𝑧𝑖]⟧𝜉,𝑥,𝑧

= (∀ ̄𝑥 ∶ ⟦�̄�⟧𝜉,𝑧. ({𝑎}𝜉,𝑧 (̄𝑥/01…1)) ∈ ⟦𝐵⟧𝜉,𝑥,𝑧)[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖] by IH

= ({𝑎}𝜉,𝑧 ∈ ⟦∀ ̄𝑥 ∶ �̄�. 𝐵⟧𝜉,𝑧)[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]

Arrow• �̌� •→ 𝑠𝑛

{𝑎[𝑢/𝑧𝑖]}𝜉 ∈ ⟦(�̌� •→ 𝑠𝑛)[𝑢/𝑧𝑖]⟧𝜉

= (⟦�̌�[𝑢/𝑧𝑖]⟧𝜉 ⊕ {𝑎[𝑢/𝑧𝑖]}𝜉) •→ 𝑠1+𝑛

= ((⟦�̌�⟧𝜉,𝑧 ⊕ {𝑎}𝜉,𝑧) •→ 𝑠1+𝑛)[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖] by IH

= ({𝑎}𝜉,𝑧 ∈ ⟦�̌� •→ 𝑠𝑛⟧𝜉,𝑧)[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]

Application• 𝐹•�̌�

{𝑎[𝑢/𝑧𝑖]}𝜉 ∈ ⟦(𝐹•�̌�)[𝑢/𝑧𝑖]⟧𝜉

= ⟦𝐹[𝑢/𝑧𝑖]⟧𝜉 •(⟦�̌�[𝑢/𝑧𝑖]⟧𝜉 ⊕ {𝑎[𝑢/𝑧𝑖]}𝜉)

= ⟦𝐹⟧𝜉,𝑧[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]•(⟦�̌�⟧𝜉,𝑧 ⊕ {𝑎}𝜉,𝑧)[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖] by IH

= ({𝑎}𝜉,𝑧 ∈ ⟦𝐹•�̌�⟧𝜉,𝑧)[{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]

Lemma 5 (⟦⋅⟧ and substitution, part 2). For each term 𝐴, for variable 𝑧 not
free in 𝐴 or contained in 𝜉 , we have:

i) ⟦𝐴[𝑢/𝑧𝑖]⟧𝜉 = ⟦𝐴⟧𝜉 [{𝑢}𝜉 /𝑧0𝑖]; and

ii) {𝑎[𝑢/𝑧𝑖]}𝜉 ∈ ⟦𝐴[𝑢/𝑧𝑖]⟧𝜉 = ({𝑎}𝜉 ∈ ⟦𝐴⟧𝜉)[{𝑢}𝜉 /𝑧0𝑖].

Proof. By simultaneous induction on the structure of 𝐴.

Variable (1) ⌈⌈𝑧𝑖⌉⌉𝑛 †𝜋 Impossible.
Variable (2) ⌈⌈𝑥𝑗⌉⌉𝑛 †𝜋 , with 𝑥 ≠ 𝑧

⟦⌈⌈𝑥𝑗⌉⌉𝑛 †𝜋[𝑢/𝑧𝑖]⟧𝜉
= ⟦⌈⌈𝑥𝑗⌉⌉𝑛 †𝜋⟧

𝜉

= ⟦⌈⌈𝑥𝑗⌉⌉𝑛 †𝜋⟧
𝜉
[{𝑢}𝜉 /𝑧0𝑖]

Lambda 𝜆 ̄𝑥 ∶ �̄�. 𝐵

⟦(𝜆 ̄𝑥 ∶ �̄�. 𝐵)[𝑢/𝑧𝑖]⟧𝜉 = ⟦𝜆 ̄𝑥 ∶ �̄�[𝑢/𝑧𝑖].𝐵[𝑢/𝑧𝑖]⟧𝜉

= 𝜆 ̄𝑥 ∶ ⟦�̄�[𝑢/𝑧𝑖]⟧𝜉 . ⟦𝐵[𝑢/𝑧𝑖]⟧𝜉,𝑥

= 𝜆 ̄𝑥 ∶ ⟦�̄�⟧𝜉 [{𝑢}𝜉 /𝑧0𝑖].⟦𝐵⟧𝜉,𝑥[{𝑢}𝜉 /𝑧0𝑖] by IH

= ⟦𝜆 ̄𝑥 ∶ �̄�. 𝐵⟧𝜉 [{𝑢}𝜉 /𝑧0𝑖]

149

Lambda• 𝜆• ̌𝑥 ∶ �̌�. 𝐵
⟦(𝜆• ̌𝑥 ∶ �̌�. 𝐵)[𝑢/𝑧𝑖]⟧𝜉

= ⟦𝜆• ̌𝑥 ∶ �̌�[𝑢/𝑧𝑖].𝐵[𝑢/𝑧𝑖]⟧𝜉

= 𝜆• ̌𝑥 ∶ (⟦�̌�[𝑢/𝑧𝑖]⟧𝜉 ⊕ {𝜆• ̌𝑥 ∶ �̌�[𝑢/𝑧𝑖].𝐵[𝑢/𝑧𝑖]}𝜉). 𝑥01…1 ∈ ⟦𝐵[𝑢/𝑧𝑖]⟧𝜉,𝑥

= 𝜆• ̌𝑥 ∶ (⟦�̌�⟧𝜉 ⊕ {𝜆• ̌𝑥 ∶ �̌�. 𝐵}𝜉)[{𝑢}𝜉 /𝑧0𝑖].
(𝑥01…1 ∈ ⟦𝐵⟧𝜉,𝑥)[{𝑢}𝜉 /𝑧0𝑖]

by IH

= ⟦𝜆• ̌𝑥 ∶ �̌�. 𝐵⟧𝜉 [{𝑢}𝜉 /𝑧0𝑖]

Application 𝐹 ̄𝑎
⟦(𝐹 ̄𝑎)[𝑢/𝑧𝑖]⟧𝜉 = ⟦𝐹[𝑢/𝑧𝑖] ̄𝑎[𝑢/𝑧𝑖]⟧𝜉

= ⟦𝐹[𝑢/𝑧𝑖]⟧𝜉 ⟦ ̄𝑎[𝑢/𝑧𝑖]⟧𝜉

= ⟦𝐹⟧𝜉 [{𝑢}𝜉 /𝑧0𝑖]⟦ ̄𝑎⟧𝜉 [{𝑢}𝜉 /𝑧0𝑖] by IH

= (⟦𝐹⟧𝜉 ⟦ ̄𝑎⟧𝜉)[{𝑢}𝜉 /𝑧0𝑖]
= ⟦𝐹 ̄𝑎⟧𝜉 [{𝑢}𝜉 /𝑧0𝑖]

Sort 𝑠𝑛

{𝑎[𝑢/𝑧𝑖]}𝜉 ∈ ⟦𝑠𝑛[𝑢/𝑧𝑖]⟧𝜉 = ({𝑎}𝜉 [{𝑢}𝜉 /𝑧0𝑖]
⋅) •→ 𝑠1+𝑛

= ({𝑎}𝜉 ∈ ⟦𝑠𝑛⟧𝜉)[{𝑢}𝜉 /𝑧0𝑖]

Product ∀ ̄𝑥 ∶ �̄�. 𝐵
{𝑎[𝑢/𝑧𝑖]}𝜉 ∈ ⟦(∀ ̄𝑥 ∶ �̄�. 𝐵)[𝑢/𝑧𝑖]⟧𝜉

= ∀ ̄𝑥 ∶ ⟦�̄�[𝑢/𝑧𝑖]⟧𝜉 . ({𝑎[𝑢/𝑧𝑖]}𝜉 (̄𝑥/01…1)) ∈ ⟦𝐵[𝑢/𝑧𝑖]⟧𝜉,𝑥

= (∀ ̄𝑥 ∶ ⟦�̄�⟧𝜉 . ({𝑎}𝜉 (̄𝑥/01…1)) ∈ ⟦𝐵⟧𝜉,𝑥)[{𝑢}𝜉 /𝑧0𝑖] by IH

= ({𝑎}𝜉 ∈ ⟦∀ ̄𝑥 ∶ �̄�. 𝐵⟧𝜉)[{𝑢}𝜉 /𝑧0𝑖]

Arrow• �̌� •→ 𝑠𝑛

{𝑎[𝑢/𝑧𝑖]}𝜉 ∈ ⟦(�̌� •→ 𝑠𝑛)[𝑢/𝑧𝑖]⟧𝜉

= (⟦�̌�[𝑢/𝑧𝑖]⟧𝜉 ⊕ {𝑎[𝑢/𝑧𝑖]}𝜉) •→ 𝑠1+𝑛

= ((⟦�̌�⟧𝜉 ⊕ {𝑎}𝜉) •→ 𝑠1+𝑛)[{𝑢}𝜉 /𝑧0𝑖] by IH

= ({𝑎}𝜉 ∈ ⟦�̌� •→ 𝑠𝑛⟧𝜉)[{𝑢}𝜉 /𝑧0𝑖]

Application• 𝐹•�̌�
{𝑎[𝑢/𝑧𝑖]}𝜉 ∈ ⟦(𝐹•�̌�)[𝑢/𝑧𝑖]⟧𝜉

= ⟦𝐹[𝑢/𝑧𝑖]⟧𝜉 •(⟦�̌�[𝑢/𝑧𝑖]⟧𝜉 ⊕ {𝑎[𝑢/𝑧𝑖]}𝜉)

= ⟦𝐹⟧𝜉 [{𝑢}𝜉 /𝑧0𝑖][⟦𝑢⟧𝜉 /𝑧1𝑖]•(⟦�̌�⟧𝜉 ⊕ {𝑎}𝜉)[{𝑢}𝜉 /𝑧0𝑖] by IH

= ({𝑎}𝜉 ∈ ⟦𝐹•�̌�⟧𝜉)[{𝑢}𝜉 /𝑧0𝑖]

150

Lemma 6 (Symmetry). For each term 𝐴, ⟦𝐴⟧𝑛 is symmetric in its 𝑛 first di-
mensions. More specifically,

i) ⟦𝐴⟧𝑛
𝜉 ‡𝜋

𝜉 = ⟦𝐴⟧𝑛
𝜉 ‡normal𝑛(𝜋)

𝜉 ; and

ii) (𝑎 ∈ ⟦𝐴⟧𝑛
𝜉) ‡𝜋

𝜉 = (𝑎 ∈ ⟦𝐴⟧𝑛
𝜉) ‡normal𝑛(𝜋)

𝜉 .

Proof. By simultaneous induction on the structure of 𝐴.
Variable (1) ⌈⌈𝑥𝑖⌉⌉𝑚 †𝜌, 𝑥 ∈ 𝜉

⟦⌈⌈𝑥𝑖⌉⌉𝑚 †𝜌⟧𝑛
𝜉 ‡𝜋

𝜉 = ⌈⌈𝑥1…1𝑖⌉⌉𝑚 †𝑛+(0…𝑚) ‡𝑛+𝜌 ‡𝜋
𝜉

= ⌈⌈𝑥1…1𝑖⌉⌉𝑚 †𝑛+(0…𝑚) ‡𝑛+𝜌

= ⟦⌈⌈𝑥𝑖⌉⌉𝑚 †𝜌⟧𝑛
𝜉 ‡normal𝑛(𝜋)

𝜉

Variable (2) ⌈⌈𝑥𝑖⌉⌉𝑚 †𝜌, 𝑥 ∉ 𝜉

⟦⌈⌈𝑥𝑖⌉⌉𝑚 †𝜌⟧𝑛
𝜉 ‡𝜋

𝜉 = ⌈⌈𝑥𝑖⌉⌉𝑛+𝑚 †𝑛+𝜌 ‡𝜋
𝜉

= ⌈⌈𝑥𝑖⌉⌉𝑛+𝑚 †normal𝑛+𝑚((𝑛+𝜌)∘𝜋)

since 𝑛 + 𝜌 and (0 … 𝑛 − 1) are disjoint

= ⌈⌈𝑥𝑖⌉⌉𝑛+𝑚 †normal𝑛+𝑚((𝑛+𝜌)∘normal𝑛(𝜋))

= ⟦⌈⌈𝑥𝑖⌉⌉𝑚 †𝜌⟧𝑛
𝜉 ‡normal𝑛(𝜋)

𝜉

Lambda (Lambda• is similar) 𝜆 ̄𝑥 ∶ �̄�. 𝐵

⟦𝜆 ̄𝑥 ∶ �̄�. 𝐵⟧𝑛
𝜉 ‡𝜋

𝜉 = 𝜆 ̄𝑥 ∶ ⟦�̄�⟧𝑛
𝜉 ‡𝜋

𝜉 . ⟦𝐵⟧𝑛
𝜉,𝑥[̄𝑥 †𝜋 / ̄𝑥] ‡𝜋

𝜉,𝑥

= 𝜆 ̄𝑥 ∶ ⟦�̄�⟧𝑛
𝜉 ‡normal𝑛(𝜋)

𝜉 . ⟦𝐵⟧𝑛
𝜉,𝑥[̄𝑥 †𝜋 / ̄𝑥] ‡normal𝑛(𝜋)

𝜉,𝑥 by IH

= 𝜆 ̄𝑥 ∶ ⟦�̄�⟧𝑛
𝜉 ‡normal𝑛(𝜋)

𝜉 . ⟦𝐵⟧𝑛
𝜉,𝑥[̄𝑥 †normal𝑛(𝜋) / ̄𝑥] ‡normal𝑛(𝜋)

𝜉,𝑥

= ⟦𝜆 ̄𝑥 ∶ �̄�. 𝐵⟧𝑛
𝜉 ‡normal𝑛(𝜋)

𝜉

Application (Application• is similar) 𝐹 ̄𝑎

⟦𝐹 ̄𝑎⟧𝑛
𝜉 ‡𝜋

𝜉 = 𝜆 ̄𝑥 ∶ ⟦�̄�⟧𝑛
𝜉 ‡𝜋

𝜉 . ⟦𝑎⟧𝑛
𝜉 ‡𝜋

𝜉

= 𝜆 ̄𝑥 ∶ ⟦�̄�⟧𝑛
𝜉 ‡normal𝑛(𝜋)

𝜉 . ⟦𝑎⟧𝑛
𝜉 ‡normal𝑛(𝜋)

𝜉,𝑥 by IH

= ⟦𝜆 ̄𝑥 ∶ �̄�. 𝐵⟧𝑛
𝜉 ‡normal𝑛(𝜋)

𝜉

Product (Arrow• is similar) ∀ ̄𝑥 ∶ �̄�. 𝐵

(𝐶 ∈ ⟦∀ ̄𝑥 ∶ �̄�. 𝐵⟧𝑛
𝜉) ‡𝜋

𝜉

= ∀ ̄𝑥 ∶ ⟦�̄�⟧𝑛
𝜉 ‡𝜋

𝜉 . (𝐶 ̄𝑥 ∈ ⟦𝐵⟧𝑛
𝜉,𝑥)[̄𝑥 †𝜋 / ̄𝑥] ‡𝜋

𝜉,𝑥

= ∀ ̄𝑥 ∶ ⟦�̄�⟧𝑛
𝜉 ‡normal𝑛(𝜋)

𝜉 . (𝐶 ̄𝑥 ∈ ⟦𝐵⟧𝑛
𝜉,𝑥)[̄𝑥 †𝜋 / ̄𝑥] ‡normal𝑛(𝜋)

𝜉,𝑥 by IH

= ∀ ̄𝑥 ∶ ⟦�̄�⟧𝑛
𝜉 ‡normal𝑛(𝜋)

𝜉 . (𝐶 ̄𝑥 ∈ ⟦𝐵⟧𝑛
𝜉,𝑥)[̄𝑥 †normal𝑛(𝜋) / ̄𝑥] ‡normal𝑛(𝜋)

𝜉,𝑥

= (𝐶 ∈ ⟦∀ ̄𝑥 ∶ �̄�. 𝐵⟧𝑛
𝜉) ‡normal𝑛(𝜋)

𝜉

151

Sort 𝑠
The result (𝐶 ∈ ⟦𝑠⟧𝑛

𝜉) ‡𝜋
𝜉 = (𝐶 ∈ ⟦𝑠⟧𝑛

𝜉) ‡normal𝑛(𝜋)
𝜉 stems from an easy induction

on 𝑛.

Lemma 12 (Generalized abstraction). Assuming that 𝜉 conforms to Γ,
i) Γ ⊢ 𝐴 ∶ 𝐵 ⇒ ⟦Γ⟧𝜉 ⊢ ⟦𝐴⟧𝜉 ∶ {𝐴}𝜉 ∈ ⟦𝐵⟧𝜉

ii) Γ ⊢ 𝐴 ∶ 𝐵 ⇒ ⟦Γ⟧𝜉 ⊢ {𝐴}𝜉 ∶ {𝐵}𝜉

iii) Γ ⊢ 𝐵 ∶ 𝑠𝑛 ⇒ ⟦Γ⟧𝜉 , 𝑥 ∶ 𝐵 ⊢ 𝑥 ∈ ⟦𝐵⟧𝜉 ∶ 𝑠𝑛+1

Proof. The lemmas are proved by transforming derivation trees. They
mutually depend on each other, (but only for structurally smaller state-
ments, hence the recursion is sound). For each lemma, each rule is treated.
The rule being handled is written before the corresponding part of the
resulting derivation.
In the proofs, the application of each sub-lemma to an arbitrary deriva-
tion Γ ⊢ 𝐴 ∶ 𝐵 are written as follows:

i) ⟦Γ ⊢ 𝐴 ∶ 𝐵⟧𝜉

ii) |Γ ⊢ 𝐴 ∶ 𝐵|𝜉
iii) {Γ ⊢ 𝐴 ∶ 𝐵}𝜉

We only give further details for the two first items in the following; iii)
stemming from simple application of induction hypotheses.

152

i)
Γ

⊢
𝐴

∶𝐵
⇒

⟦Γ
⟧ 𝜉

⊢
⟦𝐴

⟧ 𝜉
∶{

𝐴}
𝜉

∈
⟦𝐵

⟧ 𝜉

A
xi

om
;R

el
-E

lim
;R

el
-F

or
m

;P
ro

du
ct

In
th

is
ca

se
,t

he
de

fin
iti

on
of

⟦𝐴
⟧ 𝜉

fa
lls

th
ro

ug
h:

a
ne

w
re

la
tio

n
is

in
tr

od
uc

ed
.

Th
e

pr
oo

fr
el

ie
so

n
th

e
ne

xt
su

b-
le

m
m

a.

Γ
⊢
A

:
sn

|Γ
⊢
A

:
sn

| ξ
Γ
ξ
,z

0
:
A

⊢
z 0

∈
A

ξ
:
sn

+
1

{Γ
⊢
A

:
sn

} ξ
Γ
ξ
⊢
A

:
sn

Γ
ξ
⊢
λ•
ž
:
A
.z

0
∈
A

ξ
:
A

•
sn

+
1

R
e
l-
I

Γ
ξ
⊢
A

ξ
:
A

∈
sn

ξ

d
e
f

W
ea

ke
ni

ng

Γ
⊢
A

:
B

Γ
⊢
C

:
sn

Γ
,x

:
C

⊢
A

:
B

w
k

-𝑥
∉

𝜉

Γ
⊢
A

:
B

ξ

Γ
ξ
⊢
A

ξ
:
A

∈
B

ξ

{Γ
⊢
C

:
sn

} ξ
Γ
ξ
⊢
C

:
sn

Γ
ξ
,x

:
C

⊢
A

ξ
:
A

∈
B

ξ

w
k

Γ
,x

:
C

ξ
⊢
A

ξ
:
A

∈
B

ξ

d
e
f

153

-𝑥
∈

𝜉

Γ
⊢
A

:
B

ξ

Γ
ξ
⊢
A

ξ
:
A

∈
B

ξ

{Γ
⊢
C

:
sn

} ξ

Γ
ξ
⊢
C

:
sn

Γ
ξ
,x

0
:
C

⊢
A

ξ
:
A

∈
B

ξ

w
k

Γ
⊢
C

:
sn

ξ

Γ
ξ
⊢
C

ξ
:
C

∈
sn

ξ

{Γ
⊢
C

:
sn

} ξ

Γ
ξ
⊢
C

:
sn

Γ
ξ
,x

0
:
C

⊢
C

ξ
:
C

∈
sn

ξ

w
k

Γ
ξ
,x

0
:
C

⊢
C

ξ
:
C

•
sn

+
1

d
e
f

{Γ
⊢
C

:
sn

} ξ

Γ
ξ
⊢
C

:
sn

Γ
ξ
,x

0
:
C

⊢
x
0
:
C

st

Γ
ξ
,x

0
:
C

⊢
C

ξ
•
x
0
:
sn

+
1

a
p
p

Γ
ξ
,x̄

:

(C C
ξ

) ⊢
A

ξ
:
A

∈
B

ξ

w
k

Γ
,x

:
C

ξ
⊢
A

ξ
:
A

∈
B

ξ

d
e
f

154

R
el

-I
nt

ro
Γ
,ž

:
Ǎ

⊢
B

:
sn

Γ
⊢
Ǎ

:
sn

Γ
⊢
(λ

•
ž
:
Ǎ
.B

)
:
Ǎ

•
sn

R
e
l-
I

|Γ
,ž

:
Ǎ

⊢
B

:
sn

| ξ
Γ
ξ
,ž

:
Ǎ
,z

0
1
1
:
B

⊢
z 0

1
1
∈
B

ξ
:
sn

+
1

Γ
ξ
,ž

:
(Ǎ

ξ
⊕
(λ

•
ž
:
Ǎ
.B

))
⊢
z 0

1
1
∈
B

ξ
:
sn

+
1

w
k

Γ
ξ
⊢
(Ǎ

ξ
⊕

(λ
•
ž
:
Ǎ
.B

))
:
sn

+
1

Γ
ξ
⊢
(λ

•
ž
:
(Ǎ

ξ
⊕

(λ
•
ž
:
Ǎ
.B

))
.z

0
1
1
∈
B

ξ
)
:
((
Ǎ

ξ
⊕

(λ
•
ž
:
Ǎ
.B

))
•
sn

+
1
)

R
e
l-
I

Γ
ξ
⊢
λ•
ž
:
Ǎ
.B

ξ
:
(λ

•
ž
:
Ǎ
.B

∈
Ǎ

•
sn

ξ
)

d
e
f

A
pp

lic
at

io
n

Γ
⊢
F

:
(x̄

:
Ā
.B

)
Γ
⊢
ā
:
Ā

Γ
⊢
F
ā
:
B
[ā
/x

]
a
p
p

Γ
⊢
F

:
(x̄

:
Ā
.B

) ξ

Γ
ξ
⊢
F

ξ
:
F

∈
x̄
:
Ā
.B

ξ

Γ
ξ
⊢
F

ξ
:
(x̄

:
Ā

ξ
.(
F
x̄
)
∈
B

ξ
,x
)

d
e
f

Γ
⊢
ā
:
Ā

ξ

Γ
ξ
⊢
ā
ξ
:
Ā

ξ

Γ
ξ
⊢
F

ξ
ā
ξ
:
((
F
x̄
)
∈
B

ξ
,x
)[
ā
/x̄

]
a
p
p

Γ
ξ
⊢
F

ξ
ā
ξ
:
(F

ā
)
∈
B
[ā
/
x̄
] ξ

L
e
m
.
4

Γ
ξ
⊢
F
ā
ξ
:
(F

ā
)
∈
B
[ā
/
x̄
] ξ

d
e
f

A
bs

tr
ac

tio
n

Γ
,z

:
Ā

⊢
b
:
B

Γ
⊢
(x̄

:
Ā
.B

)
:
sn

Γ
⊢
(λ
z̄
:
Ā
.b
)
:
(x̄

:
Ā
.B

)
a
b
s

155

Γ
,z

:
Ā

⊢
b
:
B

ξ
,z

Γ
,z

:
Ā

ξ
,z
⊢
b ξ

,z
:
b
∈
B

ξ
,z

Γ
ξ
,z

:
Ā

ξ
⊢
b ξ

,z
:
b
∈
B

ξ
,z

d
e
f

Γ
ξ
⊢
(z̄

:
Ā

ξ
.b

∈
B

ξ
,z
)
:
sn

+
1

Γ
ξ
⊢
(λ
z̄
:
Ā

ξ
.b

ξ
,z
)
:
(z̄

:
Ā

ξ
.b

∈
B

ξ
,z
)

a
b
s

Γ
ξ
⊢
λ
z̄
:
Ā
.b

ξ
:
(λ
z̄
:
Ā
.b
)
∈
z̄
:
Ā
.B

ξ

d
e
f

C
on

ve
rs

io
n

Γ
⊢
A

:
B

′
Γ
⊢
B

:
sn

B
′
=

β
B

Γ
⊢
A

:
B

c
o
n
v

Γ
⊢
A

:
B

′ ξ

Γ
ξ
⊢
A

ξ
:
A

∈
B

′ ξ

|Γ
⊢
B

:
sn

| ξ
Γ
ξ
,x

:
B

⊢
x
∈
B

ξ
:
sn

+
1

{Γ
⊢
A

:
B

′ }
ξ

Γ
ξ
⊢
A

:
B

′
{Γ

⊢
B

:
sn

} ξ
Γ
ξ
⊢
B

:
sn

B
′
=

β
B

Γ
ξ
⊢
A

:
B

c
o
n
v

Γ
ξ
⊢
A

∈
B

ξ
:
sn

+
1

su
b
st

B
′
=

β
B

A
∈
B

′ ξ
=

β
A

∈
B

ξ

L
e
m
.
9

Γ
ξ
⊢
A

ξ
:
A

∈
B

ξ

c
o
n
v

St
ar

t
Γ
⊢
A

:
sn

Γ
,x

:
A

⊢
x
:
A

st

156

-𝑥
∉

𝜉
Si

nc
e

𝜉
co

nf
or

m
st

o
Γ,

no
va

ria
bl

e
of

𝜉
is

in
Γ. Γ
⊢
A

:
sn

Γ
,x

:
A

⊢
x
:
A

st

Γ
,x

:
A

⊢
⌈⌈x

⌉⌉d
:
x
∈
A

pa
r
a
m

Γ
ξ
,x

:
A

⊢
⌈⌈x

⌉⌉d
:
x
∈
A

ξ

(c
o
n
fo
rm

s)

Γ
,x

:
A

ξ
⊢
x
ξ
:
x
∈
A

ξ

d
e
f

-𝑥
∈

𝜉

|Γ
⊢
A

:
sn

| ξ
Γ
ξ
,x

0
:
A

⊢
x
0
∈
A

ξ
:
sn

+
1

Γ
ξ
,x

0
:
A
,x

1
:
x
0
∈
A

ξ
⊢
x
1
:
x
0
∈
A

ξ

st

Γ
,x

:
A

ξ
⊢
x
ξ
:
x
∈
A

ξ

d
e
f

Pa
ra

m

Γ
⊢
x
:
A

Γ
⊢
⌈⌈x

⌉⌉d
:
x
∈
A

pa
r
a
m

157

Γ
⊢
x
:
A

ξ

Γ
ξ
⊢
x
ξ
:
x
∈
A

ξ

Γ
ξ
⊢
⌈⌈x

ξ
⌉⌉d

+
1
:
x
ξ
∈
x
∈
A

ξ

pa
r
a
m

Γ
ξ
⊢
⌈⌈x

⌉⌉d
ξ
:
(x

ξ
∈
x
∈
A

ξ
)

d
e
f

Γ
ξ
⊢
⌈⌈x

⌉⌉d
∈
x
∈
A

ξ
:
sn

+
1

E
q
.
(7
)

A
ξ
=

β
A

ξ

A
ξ
•

(x
x

x
ξ

·) =
β
(A

ξ
•

(x
x

x
ξ

·))

-R
e
l
-E

l
im

(⌈⌈
x
⌉⌉d

∈
x
∈
A

ξ
)
=

β
(x

ξ
∈
x
∈
A

ξ
)

d
e
f

Γ
ξ
⊢
⌈⌈x

⌉⌉d
ξ
:
⌈⌈x

⌉⌉d
∈
x
∈
A

ξ

c
o
n
v

ii)
Γ

⊢
𝐵

∶𝑠
𝑛 �

⟦Γ
⟧ 𝜉

,𝑥
∶{

𝐵}
𝜉

⊢
𝑥

∈
⟦𝐵

⟧ 𝜉
∶𝑠

𝑛+
1

A
xi

om
⊢
s 1

n
:
s 2

n
a
x

158

⊢
s 1

n
:
s 2

n
a
x

x
:
s 1

n
⊢
x
:
s 1

n
st

x
:
s 1

n
⊢
x
:
s 1

n
+
1

d
e
f

x
:
s 1

n
⊢
x

•
s 1

n
+
1
:
s 2

n
+
1

R
e
l-
F

x
:
s 1

n
⊢
x
∈
s 1

n
ξ
:
s 2

n
+
1

d
e
f

St
ar

t

Γ
⊢
sn

:
s 2

n

Γ
,y

:
sn

⊢
y
:
sn

st

-𝑦
∉

𝜉

Γ
⊢
sn

:
s 2

n

Γ
,y

:
sn

⊢
y
:
sn

st

Γ
,y

:
sn

⊢
⌈⌈y

⌉⌉d
:
y
∈
sn

pa
r
a
m

Γ
⊢
sn

:
s 2

n

Γ
,y

:
sn

⊢
y
:
sn

st

Γ
,y

:
sn

,x
:
y
⊢
⌈⌈y

⌉⌉d
:
y
∈
sn

w
k

Γ
,y

:
sn

,x
:
y
⊢
⌈⌈y

⌉⌉d
:
y

•
sn

+
1

d
e
f

Γ
⊢
sn

:
s 2

n

Γ
,y

:
sn

⊢
y
:
sn

st

Γ
,y

:
sn

,x
:
y
⊢
x
:
y

st

Γ
,y

:
sn

,x
:
y
⊢
⌈⌈y

⌉⌉d
•
x
:
sn

+
1

R
e
l-
E

Γ
ξ
,y

:
sn

,x
:
y
⊢
⌈⌈y

⌉⌉d
•
x
:
sn

+
1

(c
o
n
fo
rm

s)

Γ
,y

:
sn

ξ
,x

:
y
⊢
x
∈
y
ξ
:
sn

+
1

d
e
f

159

-𝑦
∈

𝜉

Γ
,y

:
sn

,y
1
:
y

•
sn

+
1
,x

:
y
⊢
y 1

:
y

•
sn

+
1

Γ
,y

:
sn

,y
1
:
y

•
sn

+
1
⊢
y
:
sn

Γ
,y

:
sn

,y
1
:
y

•
sn

+
1
,x

:
y
⊢
x
:
y

st

Γ
ξ
,y

:
sn

,y
1
:
y

•
sn

+
1
,x

:
y
⊢
y 1

•
x
:
sn

+
1

R
e
l-
E

Γ
,y

:
sn

ξ
,x

:
y
⊢
x
∈
y
ξ
:
sn

+
1

d
e
f

W
ea

ke
ni

ng
Γ
⊢
B

:
sn

Γ
⊢
C

:
sm

Γ
,y

:
C

⊢
B

:
sn

w
k

-𝑦
∉

𝜉

|Γ
⊢
B

:
sn

| ξ
Γ
ξ
,x

:
B

⊢
x
∈
B

ξ
:
sn

+
1

{Γ
⊢
C

:
sm

} ξ
Γ
ξ
⊢
C

:
sm

Γ
ξ
,y

:
C
,x

:
B

⊢
x
∈
B

ξ
:
sn

+
1

t
h
in
n
in
g

Γ
,y

:
C

ξ
,x

:
B

⊢
x
∈
B

ξ
:
sn

+
1

d
e
f

-𝑦
∈

𝜉

|Γ
⊢
B

:
sn

| ξ
Γ
ξ
,x

:
B

⊢
A

ξ
:
A

∈
B

ξ

{Γ
⊢
C

:
sm

} ξ
Γ
ξ
⊢
C

:
sm

|Γ
⊢
C

:
sm

| ξ
Γ
ξ
,y

:
C

⊢
y
∈
C

ξ
:
sm

+
1

Γ
ξ
,y

:
C
,y

1
:
y
∈
C

ξ
,x

:
B

⊢
x
∈
B

ξ
:
sn

+
1

t
h
in
n
in
g

Γ
,y

:
C

ξ
,x

:
B

⊢
x
∈
B

ξ
:
sn

+
1

d
e
f

160

R
el

-E
lim

Γ
⊢
F

:
Ǎ

•
sn

Γ
⊢
ǎ
:
Ǎ

Γ
⊢
F

•
ǎ
:
sn

R
e
l-
E

Γ
⊢
F

:
Ǎ

•
sn

ξ

Γ
ξ
⊢
F

ξ
:
F

∈
Ǎ

•
sn

ξ

{Γ
⊢
F

•
ǎ
:
sn

} ξ
Γ
ξ
⊢
F

•
ǎ
:
sn

Γ
ξ
,z

0
:
F

•
ǎ
⊢
F

ξ
:
F

∈
Ǎ

•
sn

ξ

w
k

Γ
ξ
,z

0
:
F

•
ǎ
⊢
F

ξ
:
(Ǎ

ξ
⊕
F
)

•
sn

+
1

d
e
f

Γ
ξ
,z

0
:
F

•
ǎ
⊢
ǎ
:
Ǎ

ξ

{Γ
⊢
F

•
ǎ
:
sn

} ξ
Γ
ξ
,z

0
⊢
F

•
ǎ
:
sn

Γ
ξ
,z

0
:
F

•
ǎ
⊢
z 0

:
F

•
ǎ

st

Γ
ξ
,z

0
:
F

•
ǎ
⊢
z 0

:
F

•
(ǎ

ξ
//
01

..
.1
)

d
e
f

Γ
ξ
,z

0
:
F

•
ǎ
⊢
(ǎ

ξ
⊕
z 0
)
:
(Ǎ

ξ
⊕

F
)

d
e
f

Γ
ξ
,z

0
:
F

•
ǎ
⊢
F

ξ
•
(ǎ

ξ
⊕
z 0
)
:
sn

+
1

R
e
l-
E

Γ
ξ
,z

0
:
F

•
ǎ
⊢
z 0

∈
F

•
ǎ
ξ
:
sn

+
1

d
e
f

R
el

-I
nt

ro
A

bs
ur

d:
th

e
ty

pe
is

a
re

la
tio

n
(

̌
𝐴

• →
𝑠𝑛)

,w
hi

ch
ca

nn
ot

be
a

so
rt

.

R
el

-F
or

m
Γ
⊢
Ǎ

:
s 1

n

Γ
⊢
(Ǎ

•
s 1

n
)
:
s 2

n
R
e
l-
F

Γ
ξ
,z

0
:
(Ǎ

•
s 1

n
)
⊢
Ǎ

:
s 1

n
ξ

Γ
ξ
,z

0
:
(Ǎ

•
s 1

n
)
⊢
z 0

:
Ǎ

•
s 1

n

Γ
ξ
,z

0
:
(Ǎ

•
s 1

n
)
⊢
(Ǎ

ξ
⊕
z 0
)
:
s 1

n
+
1

d
e
f

Γ
ξ
,z

0
:
(Ǎ

•
s 1

n
)
⊢
(Ǎ

ξ
⊕

z 0
)

•
s 1

n
+
1
:
s 2

n
+
1

R
e
l-
F

Γ
ξ
,z

0
:
(Ǎ

•
s 1

n
)
⊢
z 0

∈
Ǎ

•
s 1

n
ξ
:
s 2

n
+
1

d
e
f

161

A
pp

lic
at

io
n

Γ
⊢
Ā

:
s 1

m

Γ
⊢
F

:
Ā
sn

g
e
n

Γ
⊢
ā
:
Ā

Γ
⊢
F
Ā

:
sn

a
p
p

⊢
F

:
Ā
sn

:
sn

+
1
ξ

Γ
ξ
⊢
F

ξ
:
F

∈
Ā
sn

ξ

Γ
ξ
⊢
F

ξ
:
ā
∈
Ā

ξ
F
ā
∈
sn

ξ

d
e
f

⊢
ā
:
Ā

:
sn

ξ

Γ
ξ
⊢
ā
ξ
:
ā
∈
Ā

ξ

Γ
ξ
⊢
F

ξ
ā
ξ
:
F
ā
∈
sn

ξ

a
p
p

Γ
ξ
⊢
F

ξ
ā
ξ
:
F
ā

•
sn

+
1

d
e
f

{
⊢
F
ā
:
sn

} ξ
Γ
ξ
⊢
F
ā
:
sn

Γ
ξ
,x

:
F
ā
⊢
x
:
F
ā

st

Γ
ξ
,x

:
F
ā
⊢
F

ξ
ā
ξ
x
:
sn

+
1

R
e
l-
E

Γ
ξ
,x

:
F
ā
⊢
x
∈
F
ā
ξ
:
sn

+
1

d
e
f

A
bs

tr
ac

tio
n

A
bs

ur
d.

Pr
od

uc
t

Γ
⊢
Ā

:
s 1

m
Γ
,x

:
Ā

⊢
B

:
s 2

n

Γ
⊢
(x̄

:
Ā
.B

)
:
s 3

m
n

(s
1
,s

2
,s

3
)

Γ
ξ
,f

:
(x̄

:
Ā
.B

)
⊢
Ā

ξ
:
s 1

1
+
m

Γ
ξ
,f

:
(x̄

:
Ā
.B

),
x
:
Ā

ξ
⊢
f
x
0
:
B

|Γ
,x

:
Ā

⊢
B

:
s 2

n
| ξ,

x

Γ
ξ
,x

:
Ā

ξ
,z

:
B

⊢
z
∈
B

ξ
,x

:
s 2

1
+
n

Γ
ξ
,f

:
(x̄

:
Ā
.B

),
x
:
Ā

ξ
,z

:
B

⊢
z
∈
B

ξ
,x

:
s 2

1
+
n

w
k

Γ
ξ
,f

:
(x̄

:
Ā
.B

),
x
:
Ā

ξ
⊢
(f

x
0
)
∈
B

ξ
,x

:
s 2

1
+
n

su
b
st

Γ
ξ
,f

:
(x̄

:
Ā
.B

)
⊢
(x̄

:
Ā

ξ
.(
f
x
0
)
∈
B

ξ
,x
)
:
s 3

1
+
m

n
(s

1
,s

2
,s

3
)

Γ
ξ
,f

:
(x̄

:
Ā
.B

)
⊢
f
∈
x̄
:
Ā
.B

ξ
:
s 3

1
+
m

n
d
e
f

162

Conversion
Γ ⊢ B : sn Γ ⊢ sn : sn+1 sn =β sn

Γ ⊢ B : sn
conv

Trivial.

Param Absurd: the type of the parametricity witness is 𝑧 ∈ ⟦𝐵⟧𝜉 , which
cannot be a sort 𝑠𝑛.

Theorem 7 (Soundness). If Γ ⊢𝒫 𝐴 ∶ 𝐵, then

⦉Γ⦊ ⊢𝒪 ⦉𝐴⦊ ∶ ⦉𝐵⦊.

Proof. We proceed by induction on the derivation; however the proof
requires a stronger induction hypothesis when the derivation Γ ⊢𝒫 𝐴 ∶ 𝐵
starts with the Application rule, hence we generalize the statement as
follows:

Let Γ ⊢𝒫 𝐴 ∶ 𝐵 ∶ 𝑠𝑛, 𝑘 such that 𝑘 ≤ 𝜖(𝑥) for each free vari-
able 𝑥, and 𝜋 ∈ 𝔖𝑛+𝑘. Then

⦉Γ⦊ ⊢𝒪 ⦉⟦𝐴⟧𝑘 ‡𝜋⦊ ∶ ⦉(𝐴 ∈ ⟦𝐵⟧𝑘) ‡𝜋⦊ (1)

However, for the sake of readability we only prove the specialized state-
ment

Γ ⊢ 𝐴 ∶ 𝐵 ⟹ ⦉Γ⦊ ⊢𝒪 ⦉𝐴⦊ ∶ ⦉𝐵⦊

(The proof for (1) stems from an additional decreasing induction on 𝑘 ≤
∩𝑥 free 𝜖(𝑥).)

163

A
xi

om
Tr

iv
ia

l.

W
ea

ke
ni

ng

Γ
⊢

𝐴
∶𝐵

in
du

ct
io

n
⦉Γ

⦊
⊢

⦉𝐴
⦊

∶⦉
𝐵⦊

Γ
⊢

𝐶
∶𝑠

𝑛

in
du

ct
io

n
⦉Γ

⦊
⊢

⦉𝐶
⦊

∶𝑠
Le

m
m

a
12

iii
⦉Γ

⦊,
⦉𝑥

𝑖
∶𝐶

⦊
le

ga
l

Th
in

ni
ng

⦉Γ
⦊,

⦉𝑥
𝑖

∶𝐶
⦊

⊢
⦉𝐴

⦊
∶⦉

𝐵⦊

A
pp

li
ca

ti
on

(R
el

-E
li

m
is

si
m

ila
r)

Γ
⊢

𝐹
∶(

∀
̄𝑥
∶𝐴

.𝐵
)

in
du

ct
io

n
⦉Γ

⦊
⊢

⦉𝐹
⦊

∶(
∀

⦉
̄𝑥
∶𝐴

⦊.
⦉𝐵

⦊)
by

de
f.

⦉Γ
⦊

⊢
⦉𝐹

⦊
∶(

∀
{𝑥

𝜋 𝑗𝑖
∶…

}.
⦉𝐵

⦊)

Γ
⊢

̄𝑎
∶𝐴

by
de

f.
Γ

⊢
𝑎 𝑖

∶𝐴
𝑖• (

̄𝑥//
𝑖)

in
du

ct
io

n
⦉Γ

⦊
⊢

⦉⟦
𝑎 𝑖

⟧||𝑗||
‡𝜋

⦊
∶⦉

(𝑎
𝑖

∈
⟦𝐴

𝑖• (
̄𝑥//
𝑖)

⟧||𝑗||
)‡

𝜋
⦊

(m
an

y-
)A

pp
.

⦉Γ
⦊

⊢
⦉𝐹

⦊{
⦉⟦

𝑎 𝑖
⟧||𝑗||

‡𝜋
⦊

∣…
}∶

⦉𝐵
⦊[

⦉⟦
𝑎 𝑖

⟧||𝑗||
‡𝜋

⦊/
𝑥𝜋 𝑗𝑖

,…
]

by
de

f.,
Le

m
.1

5
⦉Γ

⦊
⊢

⦉𝐹
̄𝑎⦊

∶⦉
𝐵[

̄𝑎/
̄𝑥]
⦊

A
bs

tr
ac

ti
on

(R
el

-In
tr

o
is

si
m

ila
r)

Γ,
̄𝑥
∶𝐴

⊢
𝑏

∶𝐵
in

du
ct

io
n

⦉Γ
⦊,

⦉
̄𝑥
∶𝐴

⦊
⊢

⦉𝑏
⦊

∶⦉
𝐵⦊

⋮
(m

an
y-

)A
bs

.
⦉Γ

⦊
⊢

(𝜆
⦉

̄𝑥
∶𝐴

⦊.
⦉𝑏

⦊
∶(

∀
⦉

̄𝑥
∶𝐴

⦊.
⦉𝐵

⦊
by

de
f.

⦉Γ
⦊

⊢
⦉𝜆

̄𝑥
∶𝐴

.𝑏
⦊

∶⦉
∀

̄𝑥
∶𝐴

.𝐵
⦊

164

Pr
od

uc
t

(R
el

-F
or

m
is

si
m

ila
r)

Γ
⊢

𝐴
∶𝑠

𝑚 1
by

de
f.

Γ,
…

⊢
𝐴

𝑖• (
̄𝑥//
𝑖)

∶𝑠
𝑚 1

in
du

ct
io

n
⦉Γ

⦊,
…

⊢
⦉(

𝑥 𝑖
∈

⟦𝐴
𝑖• (

̄𝑥//
𝑖)

⟧||𝑗||
)‡

𝜋
⦊

∶𝑠
1

Γ,
̄𝑥
∶𝐴

⊢
𝐵

∶𝑠
𝑛 2

in
du

ct
io

n
⦉Γ

⦊,
⦉

̄𝑥
∶𝐴

⦊
⊢

⦉𝐵
⦊

∶𝑠
2

(m
an

y-
)P

ro
d.

⦉Γ
⦊

⊢
(∀

{𝑥
𝜋 𝑗𝑖

∶⦉
(𝑥

𝑖
∈

⟦𝐴
𝑖• (

̄𝑥//
𝑖)

⟧||𝑗||
)‡

𝜋
⦊

∣…
}.

⦉𝐵
⦊)

∶𝑠
3

by
de

f.
⦉Γ

⦊
⊢

⦉∀
̄𝑥
∶𝐴

.𝐵
⦊

∶𝑠
3

Co
nv

er
sio

n
Γ

⊢
𝐴

∶𝐵
in

du
ct

io
n

⦉Γ
⦊

⊢
⦉𝐴

⦊
∶⦉

𝐵⦊

Γ
⊢

𝐵′
∶𝑠

𝑛

in
du

ct
io

n
⦉Γ

⦊
⊢

⦉𝐵
′ ⦊

∶𝑠

𝐵
=

𝛽
𝐵′

Th
eo

re
m

3,
Le

m
m

a
16

⦉𝐵
⦊

=
𝛽

⦉𝐵
′ ⦊

Co
nv

.
⦉Γ

⦊
⊢

⦉𝐴
⦊

∶⦉
𝐵′ ⦊

St
ar

t,
Pa

ra
m

,E
xc

ha
ng

e
Γ

⊢
𝐴

∶𝑠
𝑚

in
du

ct
io

n
⦉Γ

⦊,
⦉𝑥

𝑖
∶𝐴

⦊
le

ga
l

Th
in

ni
ng

,S
ta

rt
⦉Γ

⦊,
⦉𝑥

𝑖
∶𝐴

⦊
⊢

𝑥𝜋 𝑗𝑖
∶⦉

(𝑥
𝑖

∈
⟦𝐴

⟧𝑛
)‡

𝜋
⦊

by
de

f.
⦉Γ

⦊,
⦉𝑥

𝑖
∶𝐴

⦊
⊢

⦉⌈⌈
𝑥 𝑖

⌉⌉𝑛
†𝜋

⦊
∶⦉

(𝑥
𝑖

∈
⟦𝐴

⟧𝑛
)‡

𝜋
⦊

165

166

Appendix B

Definition of CCCC

Definition 1 (Syntax).

Variable ∋ 𝑥, 𝑦, 𝑧
Color ∋ 𝑖, 𝑗
Sort ∋ 𝑠 ≝ ⋆𝜃 | □𝜃
Taint ∋ 𝜃, 𝜄 ≝ ∅ empty

| 𝜃, 𝑖 tainted
Modality ∋ 𝜓, 𝜑 ≝ (𝜃, 𝜄)
Term ∋ 𝐴, …, 𝑍 ≝ 𝑥 variable

𝑎, 𝑏, 𝑐, 𝑡, 𝑢 | 𝑠 sort
| (𝑥 ∶𝜓 𝐴) → 𝐵 product
| 𝜆𝑥 ∶𝜓 𝐴.𝑏 abstraction
| 𝐹 •𝜓 𝑎 application

Context ∋ Γ, Δ ≝ ♢ empty
| Γ, 𝑥 ∶𝜓 𝐴 binding
| Γ, 𝑖 color

Definition 2 (Typing rules Γ ⊢ 𝐴 ∶𝜃 𝐵).
Γ ⊢ 𝐴 ∶𝜃 𝐵 is well-formed only if 𝑖 ∈ Γ for each 𝑖 ∈ 𝜃.

Conv
Γ ⊢ 𝑎 ∶𝜃 𝐴 𝐴 =𝛽 𝐴′

Γ ⊢ 𝑎 ∶𝜃 𝐴′

Axiom
⊢ Γ

Γ ⊢ ⋆𝜃 ∶𝜃 □𝜃

Var
⊢ Γ 𝑥 ∶𝜃 𝐴 ∈ Γ

Γ ⊢ 𝑥 ∶𝜃 𝐴

167

Prod
Γ, 𝑥 ∶𝜓 𝐴 ⊢ 𝐵 ∶𝜃 𝑠

Γ ⊢ (𝑥 ∶𝜓 𝐴) → 𝐵 ∶𝜃 𝑠

Abs
Γ, 𝑥 ∶𝜓 𝐴 ⊢ 𝑏 ∶𝜃 𝐵

Γ ⊢ (𝜆𝑥 ∶𝜓 𝐴.𝑏) ∶𝜃 (𝑥 ∶𝜓 𝐴) → 𝐵

App
Γ ⊢ 𝐹 ∶𝜃 (𝑥 ∶𝜓 𝐴) → 𝐵 Γ ⊢ 𝑢 ∶𝜓 𝐴

Γ ⊢ 𝐹 •𝜓 𝑢 ∶𝜃 𝐵[𝑢/𝑥]

Param
Γ ⊢ 𝐴 ∶𝜃 𝐵 𝑖 ∉ 𝜃
Γ ⊢ 𝐴 ∶𝜃,𝑖 𝐵 •𝜃, 𝑖 ⌊𝐴⌋𝑖

(To limit clutter we omit the well-sorted conditions of types 𝐴 and 𝐵 in the rule
Abs.) We also have

If 𝜓 = (𝜃, 𝜄) then Γ ⊢ 𝐴 ∶𝜓 𝐵 ≝ ⌊Γ⌋𝜄 ⊢ 𝐴 ∶𝜃 𝐵

Definition 3 (Accessible variable 𝑥 ∶𝜃 𝐴 ∈ Γ).

Start

𝑥 ∶𝜃 𝐴 ∈ Γ, 𝑥 ∶(𝜃,𝜄) 𝐴

Col. Wk
𝑥 ∶𝜃 𝐴 ∈ Γ 𝑖 ∉ 𝜃

𝑥 ∶𝜃 𝐴 ∈ Γ, 𝑖

Wk
𝑥 ∶𝜃 𝐴 ∈ Γ

𝑥 ∶𝜃 𝐴 ∈ Γ, 𝑦 ∶𝜓 𝐵

Definition 4 (Well-formed contexts ⊢ Γ).

Empty

⊢ ♢

Color
⊢ Γ

⊢ Γ, 𝑖

Bind
⊢ Γ Γ ⊢ 𝐴 ∶𝜓 𝑠

⊢ Γ, 𝑥 ∶𝜓 𝐴

Definition 5 (erasure ⌊𝑇⌋𝑖). The definition of erasure depends on the actual
modality used. We write all the cases on the same line; the condition is written
above each column.

𝑖 ∉ 𝜓 𝑖 ∈ 𝜓 𝜓 = 𝜑, 𝑖
⌊𝑥⌋𝑖 = 𝑥
⌊𝑠⌋𝑖 = 𝑠

⌊(𝑥 ∶𝜓 𝐴) → 𝐵⌋𝑖 = (𝑥 ∶𝜓 ⌊𝐴⌋𝑖) → ⌊𝐵⌋𝑖 ⌊𝐵⌋𝑖 (𝑥 ∶𝜑 𝐴) → ⌊𝐵⌋𝑖
⌊𝜆𝑥 ∶𝜓 𝐴.𝑏⌋𝑖 = 𝜆𝑥 ∶𝜓 ⌊𝐴⌋𝑖.⌊𝑏⌋𝑖 ⌊𝑏⌋𝑖 𝜆𝑥 ∶𝜑 𝐴.⌊𝑏⌋𝑖

⌊𝐹 •𝜓 𝑎⌋𝑖 = (⌊𝐹⌋𝑖) •𝜓 ⌊𝑎⌋𝑖 ⌊𝐹⌋𝑖 (⌊𝐹⌋𝑖) •𝜑 𝑎

⌊Γ, 𝑥 ∶𝜓 𝐴⌋𝑖 = ⌊Γ⌋𝑖, 𝑥 ∶𝜓 ⌊𝐴⌋𝑖 ⌊Γ⌋𝑖 ⌊Γ⌋𝑖, 𝑥 ∶𝜑 𝐴
⌊Γ, 𝑗⌋𝑖 = ⌊Γ⌋𝑖, 𝑗
⌊Γ, 𝑖⌋𝑖 = Γ

Erasure is extended to taints as follows:

Definition 6 (erasure ⌊𝑇⌋𝜄).

⌊𝑇⌋∅ = 𝑇
⌊𝑇⌋𝜄,𝑖 = ⌊⌊𝑇⌋𝑖⌋𝜄

168

Definition 7 (Reduction 𝑡 ⟶ 𝑢).

𝑠𝜃 •𝜑 𝑡 ⟶ (𝑧 ∶𝜑 𝑡) → 𝑠𝜃∪𝜄 (1)
where 𝜑 = (𝜃, 𝜄)

((𝑥 ∶𝜓 𝐴) → 𝐵) •𝜑 𝑡 ⟶ (𝑥 ∶𝜓 𝐴) → (𝐵 •𝜑 𝑡) (2)
if ∃𝑖 such that 𝑖 ∈ 𝜓 and 𝑖 ∈ 𝜑

((𝑥 ∶𝜓 𝐴) → 𝐵) •𝜑 𝑡 ⟶ (𝑥 ∶𝜓 𝐴) → (𝐵 •𝜑 (𝑡 •𝜓 𝑥)) (3)
otherwise

(𝜆𝑥 ∶𝜓 𝐴.𝑏)  •𝜓 𝑡 ⟶ 𝑏[𝑡/𝑥] (4)

and congruences.

Definition 8 (Substitution). The substitution of variables in 𝑖-oblivious con-
texts erases 𝑖 from the substitutees.

(𝐹 •𝜓 𝑎)[𝑢/𝑥] = 𝐹[𝑢/𝑥] •𝜓 𝑎[𝑢{𝜓}/𝑥]
((𝑦 ∶𝜓 𝐴) → 𝐵)[𝑢/𝑥] = (𝑦 ∶𝜓 𝐴[𝑢{𝜓}/𝑥]) → 𝐵[𝑢/𝑥]

(𝜆𝑦 ∶𝜓 𝐴.𝑏)[𝑢/𝑥] = 𝜆𝑦 ∶𝜓 𝐴[𝑢{𝜓}/𝑥].𝑏[𝑢/𝑥]

Where

𝑢{(𝜃, 𝜄)} = ⌊𝑢⌋𝜄

169

170

Appendix C

Proof details for chapter 2

Lemma 1 (Substitution). For any term 𝐴, 𝑢, and 𝑣 and variables 𝑥 ≠ 𝑦 such
that 𝑥 is not free in 𝑣,

𝐴[𝑢/𝑥][𝑣/𝑦] = 𝐴[𝑣/𝑦][𝑢[𝑣/𝑦]/𝑥]

Proof. By structural induction on the raw term 𝐴. CCCC does not sup-
port abstraction over colors, therefore we can ignore the case where 𝑥
or 𝑦 are color variables, and the proof below follows exactly the struc-
ture of the usual proof of substitution lemma for PTSs. We show only
the variable and abstraction cases; other cases are similar.

Variable 𝑧 As usual, we have the three following cases:

• 𝑧 = 𝑥:

𝑥[𝑢/𝑥][𝑣/𝑦] = 𝑢[𝑣/𝑦] = 𝑥[𝑢[𝑣/𝑦]/𝑥] = 𝑥[𝑣/𝑦][𝑢[𝑣/𝑦]/𝑥]

• 𝑧 = 𝑦: 𝑦[𝑢/𝑥][𝑣/𝑦] = 𝑣 = 𝑦[𝑣/𝑦][𝑢[𝑣/𝑦]/𝑥]
• otherwise: 𝑧[𝑢/𝑥][𝑣/𝑦] = 𝑧 = 𝑧[𝑣/𝑦][𝑢[𝑣/𝑦]/𝑥]

Abstraction 𝜆𝑧 ∶𝜓 𝐴.𝑏

(𝜆𝑧 ∶𝜓 𝐴.𝑏)[𝑢/𝑥][𝑣/𝑦]
= (𝜆𝑧 ∶𝜓 𝐴[𝑢{𝜓}/𝑥].𝑏[𝑢/𝑥])[𝑣/𝑦]
= 𝜆𝑧 ∶𝜓 𝐴[𝑢{𝜓}/𝑥][𝑣{𝜓}/𝑦].𝑏[𝑢/𝑥][𝑣/𝑦]
by IH
= 𝜆𝑧 ∶𝜓 𝐴[𝑣{𝜓}/𝑦][𝑢{𝜓}[𝑣{𝜓}/𝑦]/𝑥].

𝑏[𝑣/𝑦][𝑢[𝑣/𝑦]/𝑥]
= (𝜆𝑧 ∶𝜓 𝐴.𝑏)[𝑣/𝑦][𝑢[𝑣/𝑦]/𝑥]

171

We proceed to show the confluence of the reduction relation. To do this,
we use the Tait/Martin-Löf technique of parallel reduction.

Definition 1 (Parallel nested reduction).

Refl
𝐴 ▷ 𝐴

𝛽
𝑏 ▷ 𝑏′ 𝑎 ▷ 𝑎′

(𝜆𝑧 ∶𝜓 𝐴.𝑏) •𝜓 𝑎 ▷ 𝑏′[𝑎′/𝑧]

AppSort
𝑡 ▷ 𝑡′ 𝜑 = (𝜃, 𝜄)

𝑠𝜃 •𝜑 𝑡 ▷ (𝑧 ∶𝜑 𝑡′) → 𝑠𝜃∪𝜄

AppAll1
∃𝑖 such that 𝑖 ∈ 𝜓 and 𝑖 ∈ 𝜑 𝐴 ▷ 𝐴′ 𝐵 ▷ 𝐵′ 𝑡 ▷ 𝑡

((𝑧 ∶𝜓 𝐴) → 𝐵) •𝜑 𝑡 ▷ (𝑧 ∶𝜓 𝐴′) → (𝐵′ •𝜑 𝑡′)

AppAll2
∄𝑖 such that 𝑖 ∈ 𝜓 and 𝑖 ∈ 𝜑 𝐴 ▷ 𝐴′ 𝐵 ▷ 𝐵′ 𝑡 ▷ 𝑡′

((𝑧 ∶𝜓 𝐴) → 𝐵) •𝜑 𝑡 ▷ (𝑧 ∶𝜓 𝐴′) → (𝐵′ •𝜑 (𝑡′𝑧))

App-Cong
𝐹 ▷ 𝐹′ 𝑎 ▷ 𝑎′

𝐹 •𝜓 𝑎 ▷ 𝐹′ •𝜓 𝑎′ Abs-Cong
𝐴 ▷ 𝐴′ 𝑏 ▷ 𝑏′

𝜆𝑧 ∶𝜓 𝐴.𝑏 ▷ 𝜆𝑧 ∶𝜓 𝐴′.𝑏′

All-Cong
𝐴 ▷ 𝐴′ 𝐵 ▷ 𝐵′

(𝑧 ∶𝜓 𝐴) → 𝐵 ▷ (𝑧 ∶𝜓 𝐴′) → 𝐵′

Since one needs to erase the substitutee when substituting under an obliv-
ious binding (see Definition 8), we use the fact that erasure preserves
parallel reduction.

Lemma 2. For each 𝐴,𝐴′ such that 𝐴 ▷ 𝐴′, we have ⌊𝐴⌋𝑖 ▷ ⌊𝐴′⌋𝑖 for all 𝑖.

Proof. By induction on the derivation 𝐴 ▷ 𝐴′.

We can now prove that substitution preserves parallel reduction.

Lemma 3. For each 𝐴,𝐴′ and 𝑢,𝑢′ such that 𝐴 ▷ 𝐴′ and 𝑢 ▷ 𝑢′, we have
𝐴[𝑢/𝑥] ▷ 𝐴′[𝑢′/𝑥].

Proof. By induction on the derivation 𝐴 ▷ 𝐴′. The proof is almost com-
pletely standard, except for the use of Lemma 2. In addition of the 𝛽
case which uses it, we show the Refl case for reference. Other cases are
similar or standard.

Refl: 𝐴 ▷ 𝐴. We get 𝐴[𝑢/𝑥] ▷ 𝐴[𝑢′/𝑥] by structural induction on 𝐴.

172

𝛽: (𝜆𝑧 ∶𝜓 𝐴.𝑏) •𝜓 𝑎 ▷ 𝑏′[𝑎′/𝑧].

((𝜆𝑧 ∶𝜓 𝐴.𝑏) •𝜓 𝑎)[𝑢/𝑥]
= (𝜆𝑧 ∶𝜓 𝐴[𝑢{𝜓}/𝑥].𝑏[𝑢/𝑥]) •𝜓 𝑎[𝑢{𝜓}/𝑥]
by IH and Lemma 2
▷ 𝑏[𝑢′/𝑥][𝑎′[𝑢′{𝜓}/𝑥]/𝑧]
= 𝑏′[𝑢′/𝑥][𝑎′[𝑢′/𝑥]/𝑧]
by Lemma 1
= 𝑏′[𝑎′/𝑧][𝑢′/𝑥]

AppSort: 𝑠𝜃 •𝜑 𝑡 ▷ (𝑧 ∶𝜑 𝑡′) → 𝑠𝜃∪𝜄.

(𝑠𝜃 •𝜑 𝑡)[𝑢/𝑥]
= 𝑠𝜃 •𝜑 𝑡[𝑢{𝜑}/𝑥]
by IH and Lemma 2
▷ (𝑧 ∶𝜑 𝑡′[𝑢′{𝜑}/𝑥]) → 𝑠𝜃∪𝜄
= ((𝑧 ∶𝜑 𝑡′) → 𝑠𝜃∪𝜄)[𝑢′/𝑥]

AppAll1 : ((𝑧 ∶𝜓 𝐴) → 𝐵) •𝜑 𝑡 ▷ (𝑧 ∶𝜓 𝐴′) → (𝐵′ •𝜑 𝑡′).

(((𝑧 ∶𝜓 𝐴) → 𝐵) •𝜑 𝑡)[𝑢/𝑥]
= ((𝑧 ∶𝜓 𝐴[𝑢{𝜓}/𝑥]) → 𝐵[𝑢/𝑥]) •𝜑 𝑡[𝑢{𝜑}/𝑥]
by IH and Lemma 2
▷ (𝑧 ∶𝜓 𝐴′[𝑢′{𝜓}/𝑥]) → 𝐵′[𝑢′/𝑥] •𝜑 𝑡′[𝑢′{𝜑}/𝑥]
= (𝑧 ∶𝜓 𝐴′[𝑢′{𝜓}/𝑥]) → (𝐵′ •𝜑 𝑡′)[𝑢′{𝜑}/𝑥]
= ((𝑧 ∶𝜓 𝐴′) → (𝐵′ •𝜑 𝑡′))[𝑢′/𝑥]

AppAll2 is similar.

⋆-cong Trivial.
Theorem 1 (Diamond). The rewriting system (▷) has the diamond property.
That is, for each 𝐴, 𝐵, 𝐵′ such that 𝐵◁𝐴▷𝐵′, there exists 𝐶 such that 𝐵▷𝐶◁𝐵′

Proof. By induction on the derivations.

• If one of the derivations ends with Refl, one has either 𝐴 = 𝐵, or
𝐴 = 𝐵′. We pick 𝐶 = 𝐵′ in the former case and 𝐶 = 𝐵 in the latter.

• If one of the derivations ends with App-Cong, the other one has to
end with App-Cong, 𝛽, AppSort, AppAll1 , or with AppAll2 . The
first case is straightforward. In the other cases, the diverging re-
ductions meet as shown below:

173

(𝜆𝑧 ∶𝜓 𝐴.𝑏) •𝜓 𝑎

(𝜆𝑧 ∶𝜓 𝐴′.𝑏′) •𝜓 𝑎′ 𝑏″[𝑎″/𝑥]

𝑏‴[𝑎‴/𝑥]

Abs-
Con

g

𝑎′
◁

𝑎

𝑏′
◁

𝑏

𝛽𝑏 ▷
𝑏 ″

𝑎 ▷
𝑎 ″

𝛽

𝑏 ′▷𝑏 ‴
𝑎 ′▷𝑎 ‴

Lem
ma 3𝑏‴

◁

𝑏″
𝑎‴

◁𝑎″

𝑠𝜃 •𝜑 𝑡

𝑠𝜃 •𝜑 𝑡′ (𝑧 ∶𝜑 𝑡″) → 𝑠𝜃∪𝜄

(𝑧 ∶𝜑 𝑡‴) → 𝑠𝜃∪𝜄

𝑡 ◁
𝑡′

AppSort
𝑡 ▷

𝑡 ″

AppSort

𝑡 ′▷
𝑡 ‴

All-
Con

g
𝑡‴

◁
𝑡″

((𝑧 ∶𝜓 𝐴) → 𝐵) •𝜑 𝑡

((𝑧 ∶𝜓 𝐴′) → 𝐵′) •𝜑 𝑡′ (𝑧 ∶𝜓 𝐴″) → (𝐵″ •𝜑 𝑡″)

(𝑧 ∶𝜓 𝐴‴) → (𝐵‴ •𝜑 𝑡‴)

All-
Con

g

𝑡 ◁
𝑡′

…

AppAll1
𝑡 ▷

𝑡 ″…

AppSort

…𝑡 ′▷
𝑡 ‴

All-
Con

g…
𝑡‴

◁
𝑡″

(The case of AppAll2 is similar.)

• If both derivations end with the same rule 𝛽, AppSort, AppAll1 , or
with AppAll2 , the result is a straightforward use of the induction
hypothesis (using Lemma 3 in the case of 𝛽).

• If one of the derivations ends with Abs-Cong or All-Cong, the
other one has to end with the same rule, and the result is a straight-
forward use of the induction hypothesis.

174

	Introduction
	Pure type systems with an internalized parametricity theorem
	Proofs for free
	Pure type systems
	Logical relations, from PTS to PTS

	Towards internalizing parametricity
	Aim and example
	Internalization
	Parametricity of parametricity
	A syntax for hypercubes
	The interpretation of hypercubes
	Exchanging dimensions
	Dimension checks

	A calculus with an internal parametricity theorem
	Definitions
	Properties of the parametric interpretation
	Confluence
	Abstraction
	Subject reduction
	Reduction-preserving model into the underlying PTS

	Type theory in color
	Introduction
	Programming and reasoning with colors
	Colored lists
	Types as predicates
	Colored pairs
	Multiple colors
	Conclusion

	CCCC: A Core Calculus of Colored Constructions
	CC as a PTS
	Colors, taints and modalities
	Obliviousness and variable lookup
	Erasure
	Types as predicates
	Example
	Analysis
	Type-checking with colors

	Extensions
	Inductive definitions
	Colored pairs
	Abstraction over colors

	Discussion and related work
	Conclusion and future work

	A new type theory in color and its presheaf model
	Introduction
	Syntax and typing rules
	Underlying type theory
	Nominal extension
	Parametric extension
	Full system

	Meta-properties of the type theory
	Parametricity
	Examples
	General results
	Iterating parametricity

	Presheaf model
	Background
	The category pI and the notion of I-sets
	Presheaf model of the parametric type theory
	Validity results

	Related Work
	Future work and conclusion

	Bibliography
	Additional proofs for chapter chap:lic
	Definition of CCCC
	Proof details for chapter chap:ttc

