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Abstract

Bremsstrahlung radiation emission is an important energy loss mechanism for energetic electrons in
plasmas. In this paper we investigate the effect of spontaneous bremsstrahlung emission on the
momentum—space structure of the electron distribution, fully accounting for the emission of finite
—energy photons by modeling the bremsstrahlung interactions with a Boltzmann collision operator.
We find that electrons accelerated by electric fields can reach significantly higher energies than
predicted by the commonly used radiative stopping—power model. Furthermore, we show that the
emission of soft photons can contribute significantly to the dynamics of electrons with an anisotropic
distribution by causing pitch—angle scattering at a rate that increases with energy.

Energetic electrons are ubiquitous in plasmas, and bremsstrahlung radiation is one of their most important
energy loss mechanisms [1, 2]. At sufficiently high electron energy, around a few hundred megaelectronvolts in
hydrogen plasmas, the energy loss associated with the emission of bremsstrahlung radiation dominates the
energy loss by collisions. Bremsstrahlung emission can also strongly affect electrons at lower energies,
particularly in plasmas containing highly charged ion species.

An important electron acceleration process, producing energetic electrons in both space and laboratory
plasmas, is the runaway mechanism [3]. In the presence of an electric field which exceeds the minimum to
overcome collisional friction [4], a fraction of the charged particles can detach from the bulk population and be
accelerated to high energies, where radiative losses become important. Previous studies of laboratory plasmas
[5, 6] and lightning discharges [7] have shown that the energy carried away by bremsstrahlung radiation is
important in limiting the energy of runaway electrons. The effect of bremsstrahlung radiation loss on energetic-
electron transport has also been considered in astrophysical plasmas, for example in the context of solar flares
[8]. However, only the average bremsstrahlung friction force on test particles has been considered in these
studies. In this paper, we present the first quantitative kinetic study of how bremsstrahlung emission affects the
runaway-electron distribution function.

Starting from the Boltzmann electron transport equation, we derive a collision operator representing
bremsstrahlung radiation reaction, fully accounting for the finite energies and emission angles of the emitted
photons. We implement the operator in a continuum kinetic-equation solver [9], and use it to study the effect of
bremsstrahlung on the distribution of electrons in 2D momentum space. We find significant differences in the
distribution function when bremsstrahlung losses are modeled with a Boltzmann equation (referred to as the
‘Boltzmann’ or ‘full’ bremsstrahlung model), compared to the model where only the average friction force is
accounted for (the ‘mean-force’ model). In the former model, the maximum energy reached by the energetic
electrons is significantly higher than is predicted by the latter. In previous treatments which considered average
energy loss [5—7] or isotropic plasmas [2], the emission of soft (low-energy) photons did not influence the
electron motion. We show that in the general case, emission of soft photons contributes significantly to angular
deflection of the electron trajectories.

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Kinetic description of bremsstrahlung losses

We will treat bremsstrahlung as a binary interaction (‘collision’) between two charged particles, resulting in the
emission of a photon [1]. We shall describe the effect of such collisions on the rate of change of the distribution
function f, (¢, x, p) of some particle species a at time t, position X and momentum p, defined such that

n,(t, X) = f dp £, (t, x, p) is the number density of species a at x. In what follows we suppress the time- and
space dependence of all functions, as the collisions will be assumed local in space-time, and we shall consider
only spatially homogeneous plasmas.

The collision operator Cy;, { f,, f,} describing the rate of change of the distribution function due to
bremsstrahlung interactions between species a and b is given by C = Of,/0t)cyap = f (dn,)c ap/dtdp. The
integration is to be carried out over target-particle momenta and scattering angles, and the differential change
(dng,),,qp in the phase-space density due to collisions in a time interval dt is given by [10, 11]

(dnu )c,ab = fa (P])fb (pz)g_z, da—ub dpldpzdt - fa (P)fb (P/)g,z, daub deP/dt (1)

Here, do, = doy (py, P> ks p, p') is the differential cross-section for a particle a of momentum p and a particle
b of momentum p’ to be taken to momentum p, and p,, respectively, while emitting a photon of momentum
k/c. We have also introduced the Moller relative speed [10] g, = \/ (v — v)2 — (v x v/)?/c?. Thebarred
quantities do and g, are defined likewise, but with (p, p’) and (p,, p,) exchanged. Equation (1) accounts only
for the effect on the distribution of the spontaneous emission of photons; interactions with existing photons by
absorption and stimulated bremsstrahlung emission will be neglected here. The correction to the collision
operator by these processes is described in [12]; the effect is negligible when ¢ (¢, x, p) < 2/h> where his
Planck’s constant and ¢ is the distribution function of photons. An estimate of the photon distribution function
shows that the corrections are important for sufficiently dense, or large, plasmas; however, for the special case of
electron runaway during tokamak disruptions, which is of particular concern, the corrections may be safely
neglected. In other scenarios it is primarily bremsstrahlung processes involving low-energy photons that may be
affected.

The collision operator then takes the form

Coy(P) = f dp, f,(p) f dp, &,1,(p,)

G f.® f dp’ g, f, (") out @
op

where g, = f dp, (Oa,/0p,) is the total bremsstrahlung cross-section. A significant simplification to (2) occurs

if (i) target particles can be assumed stationary, f, (p) = 1,0 (p); and (ii) the plasma is cylindrically symmetric

(and spin unpolarized), f, (p) = f, (p, cost)), where cos ¢ = p, /p and pis the Cartesian component of p along

the symmetry axis. Then the differential cross-section 05,/ dp, for an electron to scatter from momentum p

into p, with the emission of a photon, depends only on p, p, and cos 6, = p, - p/p, p- The resulting operator can

be conveniently expressed in terms of an expansion in Legendre polynomials P;. We write
f,® = X.fi(p)P(cosf)and Gy (p) = ¥ Cf (p) Py (cos #), and obtain

65}, b
op

1
Cf(p) =n fdp1 [p12V1fL (p1)271'f_1 dcost, Py (cos 6;) ] — mpvf, (p) Oap (D). 3)

The integration limits in p; are determined by the conservation of energy, giving 1, c\/ (v + k/mec?)? — 1<p,
< 00. In this work we use the differential cross-section 0 /Jp for scattering in a static Coulomb field in the Born
approximation, integrated over photon emission angles. This expression was first derived by Racah [13], with a
misprint later corrected in [14]. For the Boltzmann model this full cross-section is employed, while for the
mean-force model we use the high-energy limit as in [5-7].

A useful approximation to the collision operator (3) is obtained by noting that the radiation emitted by
runaway electrons will be strongly focused in the forward direction by relativistic beaming (‘the headlight
effect’), and the dominant contribution to the integral then originates from scattering angles 6, << 1/~. For
small angles, the Legendre polynomials take the asymptotic form Py (cos 6,) ~ 1 — L(L + 1)62/4.
Consequently, when L < 2+, the angular integral in (3) can be replaced with

f dcosb; Py (cos ;) 0o,/ 0p ~ f dcosb 93,/ 0p = 1/(27p*) 05/ Op.

This approximation leads to a bremsstrahlung collision operator of the form
P
Cfb p) =~ ny f dp, vif, (p)> cos 9)8—; (p; p) — mpvf,(p, cos0)o (p). 4)

This is a one-dimensional integral operator acting only on the energy variable, and involves the integrated cross-
section which is well known (it is related to the cross-section in photon energy by 05 /0p = (p/~) 05 /9k) and
is given analytically for example in equation (14) of [1].
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Low-energy photon contribution—The bremsstrahlung cross-section has an infrared divergence; for low
photon energies k, it diverges logarithmically as do o< 1/k. The total energy loss rate is however finite, indicating
that a large number of photons carrying negligible net energy are emitted. A consequence of this behavior is that
the two terms in the Boltzmann operator (2) are individually infinitely large, necessitating the introduction of a
photon cut-off energy ko, below which the bremsstrahlung interactions are ignored in (3) and (4). We can
however proceed analytically to evaluate the effect of the low-energy photons. While they carry little energy, they
may contribute to angular deflection, analogously to the small-angle collisions associated with elastic scattering.
Taylor expanding (3) in small photon energy k = ~, — -y yields to leading order

0o
Ok cos b,

Since Py (cos 6) = 1, the angle-averaged electron distribution (represented by the L = 0 term) is not directly
affected by the low-energy photons, reflecting the fact that the photons carry negligible energy, consistent with
the description by Blumenthal and Gould [2] for the isotropic case. Due to the logarithmic divergence of the
cross-section, however, a significant contribution to angular deflection (represented by the L == 0 terms) is
possible. Inspection of the integrand in (5) further reveals that significant contributions originate from large-
angle scatterings, indicating that a Fokker—Planck approximation is inappropriate. Indeed the bremsstrahlung

ko 1
CLsmaH*k — —nbva(p)j;c dk f_l dcost,[1 — Py (cosby)] (5)

cross-section g°V—*/9 cos 0, = j]; o dkda / OkO cos b, integrated over small photon energies, behaves for

small angles (92 < kg /v*)as 1/0%, which can be compared to the elastic Coulomb cross-section proportional
to 1/6%. This weaker singularity of the bremsstrahlung cross-section means that the contribution from small-
angle collisions will be negligible compared to those from the large-angle deflections, and therefore a Boltzmann
model must be used to account for these events. While it may seem counter-intuitive that low-energy photon
emissions contribute to large-angle collisions, note that due to the large mass ratio between electron and ion,
large momentum transfers to the nucleus are allowed even without any energy transfer. For very energetic
electrons, however, when the kinetic energy exceeds the ion rest energy, ion recoil effects would need to be
accounted for in deriving (5).

We can quantify the importance of the low-energy photons by calculating the L = 1 term of (5)-giving the
loss rate of parallel momentum—and comparing it to the corresponding term of the elastic-scattering collision
operator given in [9]. Carrying out the integration, one obtains the ratio

small —k 2
C1 _ Ozzln AB l(lnz—p — ) + 1], (6)

Clelastlc T 11’1 A Mec

with a relative error of magnitude O (m?2c2/p?) + O (ko/pc),and where o« = e2/4me,/ic ~ 1/137 is the fine-
structure constant. Here, we have introduced a bremsstrahlung logarithm In Ay = In(k/k.), which arisesin a
way similar to the Coulomb logarithm In A for elastic collisions, and is due to cutting off the logarithmically
diverging integral at some lowest photon energy k..

Various mechanisms may suppress the bremsstrahlung interactions at low photon energy, such as multiple
scattering, photon interactions with the medium, pair production and more [15]. Most important in dilute
ionized gases, in the energy range we are interested in, is the photon interaction with the medium; the effect may
be viewed as coherent forward Compton scattering on the target, causing destructive interference in the emitted
radiation due to the induced phase shift in the emission. The analysis, originally due to Ter-Mikaelian [16],
shows that the suppression can be accounted for by multiplying the cross-section with a suppression factor S,
given by the ratio of in-medium to vacuum formation lengths Iy = 7 /( py— by — € / €oky/c), with e the
dielectric constant of the medium. The formation length is approximately the distance over which the
interaction amplitudes add coherently, and || here denotes the direction of the incident electron. Evaluating the
ratio yields the suppression factor § = k? / (k? + k;) where k, ~ /v, is the photon energy corresponding to
radiation at the plasma frequency, suggesting an effective lower cut-off k. = k, of our collision operator.

This gives abremsstrahlung logarithm In Ag ~ 21 + In (ko/(m,c?\ /1)), where 1y is the electron density
in units of 102 m . Assuminga plasmawith In A = 15, 1,y = 1and choosing k, = 0.01p, the ratio (6) is of
order 10% at 30 MeV, 50% at 2 GeV and 100% at 30 GeV, demonstrating that angular deflection caused by the
emission of low-energy photons can contribute significantly to the motion of highly energetic electrons.

The bremsstrahlung collision operator has been implemented in the initial-value continuum kinetic-
equation solver CODE (COllisional Distribution of Electrons) [9]. For this study we use CODE to solve the
equation

I,

of, .
I

ot

— eE) = CFP{fe} + CB{fe}, (7)

which in a magnetized plasma represents the gyro-averaged kinetic equation, with the parallel direction given by
the magnetic field B. The equation is also valid for an unmagnetized plasma which is cylindrically symmetric

3



10P Publishing

NewJ. Phys. 18 (2016) 093023 O Embréus et al

around the electric field E. Elastic collisions are accounted for by the linearized relativistic Fokker—Planck
operator for Coulomb collisions C*?, and C® is the bremsstrahlung operator C; summed over all particle
species bin the plasma. Both thermal and fast electrons are resolved simultaneously, allowing runaway
generation as well as the slowing-down of the fast population to be accurately modeled.

We will compare the effect of bremsstrahlung radiation losses on the momentum-space distribution of fast
electrons using several models. The contribution from the emission of large-energy photons (with k > ko) are
accounted for by either the Boltzmann operator in (3) or its approximation without angular deflection (4), while
the low-energy photon contribution (k < k) is described by (5). For the numerical solutions we choose an
energy-dependent cut-off kg = m,.c?(y — 1)/1000. We have found that this is sufficiently small that the results
are not sensitive to the choice of this cut-off parameter. The cut-off, which determines when the emitted
photons will be counted as low energy’, and when the interaction is treated as elastic using the operator in (5),
generally produces a relative error in the solution of order ko/[m,c*(y — 1)].

The Boltzmann models will be compared to the mean-force model where the bremsstrahlung losses are

. ety-1
accounted for by an isotropic force term in the kinetic equation, defined as Fg = —p3_, 1, J; O dk kOo,,/ Ok,
which is chosen to produce the correct average energy-loss rate [1].

Numerical results

To characterize the effect of bremsstrahlung on the electron distribution, we investigate quasi-steady-state
numerical solutions of the kinetic equation (7). These are obtained by evolving the distribution function in time
until an equilibrium is reached, typically after a few seconds at density 1,y = 1ifan initial seed of fast electrons is
provided (this equilibration time is directly proportional to 7,). This means that if, in reality, the duration of
near-constant acceleration is shorter than this equilibration time scale, the amplitude of the runaway tail will be
smaller than reported here. The qualitative features of the runaway distribution are however set up on a shorter
time scale of a few hundred milliseconds at 1,0 = 1, and can be representative of a wider range of realistic
scenarios.

We investigate a range of electric-field values near the minimum electric field E, = 47 In An,rZm,c?/e to
overcome collisional friction [4], using plasma parameters characteristic of tokamak-disruption experiments
with massive gas injection. We assume accumulated impurity densities to be of order r, ~ 102 m™> and that,
for the ultrarelativistic electrons in the far tail of the distribution, the binding energy of the bound electrons is
negligible. The electron density #, then denotes the full electron density n, ~ #gee + Mpound-

Figure 1 shows the electron distribution function in momentum space, calculated using CODE, with full
Boltzmann bremsstrahlung effects included (black, solid); neglecting angular deflections in the large-k
contribution (yellow, dash-dotted); also neglecting the small-k contribution (blue, dashed); and finally using the
mean-force model (red, solid). Non-monotonic features form in the mean-force as well as the Boltzmann
models, but their characteristics are significantly different. With the Boltzmann models, an extended tail forms
in the electron distribution. In contrast, the mean-force model produces a sharp feature, located where the
energy gain due to the electric-field acceleration balances friction and bremsstrahlung losses. The addition of
low-k scatterings (5), which lead to large-angle deflections, causes a subpopulation of fast electrons with
significant perpendicular momentum to form. Furthermore, (3) and (4) appear to generally produce the same
qualitative features, indicating that scatterings involving large-energy photons are well approximated by
neglecting the angular deflection of the electron.

Inclusion of synchrotron radiation losses associated with the gyromotion of electrons in a straight magnetic
field has been shown to be an important energy-loss mechanism [17-21]. Figure 1(b) shows that, in conjunction
with bremsstrahlung losses, synchrotron losses (modeled as in [ 17]) shift the distribution towards lower energies
but does not change its qualitative features. The difference between the Boltzmann and mean-force models is
reduced in such cases, as the extent of the distribution when full bremsstrahlung effects are included is reduced
by the synchrotron effect. When bremsstrahlung losses are ignored, and synchrotron emission alone is
responsible for the energy loss by radiation, a non-monotonic runaway tail can also form (solutions to this
problem have been characterized in [17, 20]). However, for the present values of density, magnetic and electric
fields this occurs at the significantly higher momentum [6, 20]

» 3n.In Amlc E(E
260B*(Z + 1) E,

— = 1) =~ 300m,c,
E.

corresponding approximately to an energy of 150 MeV.
Angle-averages of the electron distribution functions in figure 1 are shown in figure 2 as a function of

electron kinetic energy W = m,c?(y — 1). The bulk population (W < 1 MeV) has been excluded from the
figure in order to highlight the differences in the shape of the tail of the runaway distribution, which is where the
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Figure 1. Steady-state electron 2D distribution functions; (a) with no magnetic field, (b) with B = 2 T. Electric field E = 2E,, plasma
parameters Zegg = 10, 19 = 30 and T, = 10 keV. Contours show log,, F, where F = (27rmeT8)3/2fE/ne.
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Figure 2. Angle-averaged tail of the electron distributions in figure 1, with B = 0 (thick lines) and B = 2 T (thin lines).

greatest variation between the different radiation-loss models can be seen. When there are no synchrotron losses
present, the difference between the two Boltzmann models for bremsstrahlunglosses is seen to be insignificant
when considering the angle-averaged distribution. In the presence of effects which are sensitive to the angular
distribution of electrons, such as synchrotron radiation losses (which are proportional to pj), the difference is
somewhat enhanced as angular deflection amplifies the dissipation.

To quantify the width in energy of the fast-electron tail, figure 3 shows the fraction of total plasma kinetic
energy carried by electrons with energy greater than W, for a range of plasma compositions and electric fields,
neglecting synchrotron losses. Again, the steady-state solutions are considered, and the energy ratio is calculated
as f‘;c dW W (dn./dW)/W,e. When normalized to the energy W, which solves the energy-balance equation
eE| — eE; + Fp = 0 (accounting for collisional and bremsstrahlung energy loss), the behavior is seen to be
insensitive to electric field and effective charge. The Boltzmann model consistently predicts that a fraction of the
electron population reaches significantly higher energies than in the mean-force model, where all electrons have
energy near W For instance, in the Boltzmann model 5% of the plasma energy is carried by electrons with
energy more than 2W,,

Summary

We have developed a kinetic description of the effect of spontaneous bremsstrahlung emission on energetic
electrons in plasmas. By treating bremsstrahlung emission as a discrete process, we have shown that electrons
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Figure 3. Fraction of plasma kinetic energy carried by electrons of energy greater than W. The values are calculated from numerical
solutions of the kinetic equation, and are shown as a function of normalized electron kinetic energy. Filled regions indicate the values
spanned when Zg and the normalized electric field (E/E, — 1)/(Zg + 1) are varied between 1 and 35, and 0.05 and 0.25,
respectively.

may be accelerated to significantly higher energies than would be predicted by energy balance alone, with a
significant fraction of particles reaching at least twice the expected energy. This effect has important
implications for the interpretation of experimental observation of fast electron beams in plasmas where
bremsstrahlung losses are important, such as those in magnetic-confinement fusion. Since we have
furthermore demonstrated that the features of the bremsstrahlung-loss dominated distribution function are
insensitive to plasma composition and electric field, our findings may also be important in the study of other
scenarios where runaway occurs, such as in lightning discharges and solar flares. The explanation for the
increased maximum energy can be intuitively understood in the single-particle picture, where the new model
allows some electrons to suddenly lose a large fraction of their energy in one emission, whereas other electrons
may be accelerated for along time before a bremsstrahlung reaction occurs, thereby allowing higher
maximum energies to be reached.

Furthermore, new effects are revealed in our treatment, as the emission of soft photons is found to
contribute to angular deflection of the electron trajectory at a rate that increases with electron energy. This effect
shifts part of the momentum-space distribution function towards higher perpendicular momenta, which in turn
has implications for e.g. the destabilization of kinetic instabilities or the level of synchrotron radiation loss in
magnetized plasmas.

In order to resolve the logarithmically divergent contribution from low-energy photons, the bremsstrahlung
collision operator is split into two contributions by introducing a cut-off photon energy kg < m,c?(y — 1).In
the contribution from photons with energy k < k, the energy carried by the photons may be neglected, and the
corresponding term in the kinetic equation is given by the elastic collision operator given in (5). However, both
contributions must be treated with a Boltzmann collision operator in order to accurately capture the dynamics
of the fast electrons. For the k < kg contribution, it is required as those interactions are dominated by large-
angle deflections of the electron orbit, while the k > k, part requires it as the emitted photon causes a large
change of the electron energy in each emission.

A computationally efficient representation of the bremsstrahlung collision operator has been obtained using
an expansion in Legendre polynomials, with which the operator is reduced to a set of one-dimensional energy
integrals. This allows for rapid evaluation of the self-consistent electron distribution function in the presence of
bremsstrahlunglosses derived from the full Boltzmann operator.
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