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PAPER

Effect of bremsstrahlung radiation emission on fast electrons in
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Abstract
Bremsstrahlung radiation emission is an important energy lossmechanism for energetic electrons in
plasmas. In this paper we investigate the effect of spontaneous bremsstrahlung emission on the
momentum−space structure of the electron distribution, fully accounting for the emission offinite
−energy photons bymodeling the bremsstrahlung interactions with a Boltzmann collision operator.
Wefind that electrons accelerated by electricfields can reach significantly higher energies than
predicted by the commonly used radiative stopping−powermodel. Furthermore, we show that the
emission of soft photons can contribute significantly to the dynamics of electronswith an anisotropic
distribution by causing pitch−angle scattering at a rate that increases with energy.

Energetic electrons are ubiquitous in plasmas, and bremsstrahlung radiation is one of theirmost important
energy lossmechanisms [1, 2]. At sufficiently high electron energy, around a few hundredmegaelectronvolts in
hydrogen plasmas, the energy loss associatedwith the emission of bremsstrahlung radiation dominates the
energy loss by collisions. Bremsstrahlung emission can also strongly affect electrons at lower energies,
particularly in plasmas containing highly charged ion species.

An important electron acceleration process, producing energetic electrons in both space and laboratory
plasmas, is the runawaymechanism [3]. In the presence of an electricfieldwhich exceeds theminimum to
overcome collisional friction [4], a fraction of the charged particles can detach from the bulk population and be
accelerated to high energies, where radiative losses become important. Previous studies of laboratory plasmas
[5, 6] and lightning discharges [7] have shown that the energy carried away by bremsstrahlung radiation is
important in limiting the energy of runaway electrons. The effect of bremsstrahlung radiation loss on energetic-
electron transport has also been considered in astrophysical plasmas, for example in the context of solarflares
[8]. However, only the average bremsstrahlung friction force on test particles has been considered in these
studies. In this paper, we present thefirst quantitative kinetic study of howbremsstrahlung emission affects the
runaway-electron distribution function.

Starting from the Boltzmann electron transport equation, we derive a collision operator representing
bremsstrahlung radiation reaction, fully accounting for thefinite energies and emission angles of the emitted
photons.We implement the operator in a continuumkinetic-equation solver [9], and use it to study the effect of
bremsstrahlung on the distribution of electrons in 2Dmomentum space.We find significant differences in the
distribution functionwhen bremsstrahlung losses aremodeledwith a Boltzmann equation (referred to as the
‘Boltzmann’ or ‘full’ bremsstrahlungmodel), compared to themodel where only the average friction force is
accounted for (the ‘mean-force’model). In the formermodel, themaximumenergy reached by the energetic
electrons is significantly higher than is predicted by the latter. In previous treatments which considered average
energy loss [5–7] or isotropic plasmas [2], the emission of soft (low-energy) photons did not influence the
electronmotion.We show that in the general case, emission of soft photons contributes significantly to angular
deflection of the electron trajectories.
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Kinetic description of bremsstrahlung losses

Wewill treat bremsstrahlung as a binary interaction (‘collision’) between two charged particles, resulting in the
emission of a photon [1].We shall describe the effect of such collisions on the rate of change of the distribution
function ( )f t x p, ,a of some particle species a at time t, position x andmomentum p, defined such that

ò=( ) ( )n t f tx p x p, d , ,a a is the number density of species a at x. Inwhat followswe suppress the time- and
space dependence of all functions, as the collisions will be assumed local in space-time, andwe shall consider
only spatially homogeneous plasmas.

The collision operator { }C f f,ab a b
B describing the rate of change of the distribution function due to

bremsstrahlung interactions between species a and b is given by ò= ¶ ¶ =( ) ( )C f t n t pd d dab a c ab a c ab
B

, , . The
integration is to be carried out over target-particlemomenta and scattering angles, and the differential change
( )nd a c ab, in the phase-space density due to collisions in a time interval td is given by [10, 11]

s s= - ¢ ¢( ) ( ) ( ) ¯ ¯ ( ) ( ) ( )n f f g t f f g tp p p p p p p pd d d d d d d d d . 1a c ab a b ab a b ab, 1 2 ø 1 2 ø

Here, s s= ¢( )p p k p pd d , , ; ,ab ab 1 2 is the differential cross-section for a particle a ofmomentum p and a particle
b ofmomentum ¢p to be taken tomomentum p1 and p2, respectively, while emitting a photon ofmomentum

ck .We have also introduced theMøller relative speed[10] = - ¢ - ´ ¢( ) ( )g cv v v vø
2 2 2 . The barred

quantities s̄d and ḡø are defined likewise, butwith ¢( )p p, and ( )p p,1 2 exchanged. Equation (1) accounts only
for the effect on the distribution of the spontaneous emission of photons; interactions with existing photons by
absorption and stimulated bremsstrahlung emissionwill be neglected here. The correction to the collision
operator by these processes is described in [12]; the effect is negligible when f ( )t hx p, , 2 3 , where h is
Planckʼs constant andf is the distribution function of photons. An estimate of the photon distribution function
shows that the corrections are important for sufficiently dense, or large, plasmas; however, for the special case of
electron runaway during tokamak disruptions, which is of particular concern, the correctionsmay be safely
neglected. In other scenarios it is primarily bremsstrahlung processes involving low-energy photons thatmay be
affected.

The collision operator then takes the form

ò ò ò
s

s=
¶
¶

- ¢ ¢( ) ( ) ¯ ( ) ¯ ( ) ( ) ( )C f g f f g fp p p p p
p

p p pd d d , 2ab a b
ab

a b ab
B

1 1 2 ø 2 ø

where òs s= ¶ ¶( )p pdab ab1 1 is the total bremsstrahlung cross-section. A significant simplification to (2) occurs
if (i) target particles can be assumed stationary, d=( ) ( )f np p ;b b and (ii) the plasma is cylindrically symmetric
(and spin unpolarized), q=( ) ( )f f pp , cosa a , where q = p pcos  and p is the Cartesian component of p along
the symmetry axis. Then the differential cross-section s¶ ¶¯ pab , for an electron to scatter frommomentum p
into p1with the emission of a photon, depends only on p p, 1 and q = · p pp pcos s 1 1 . The resulting operator can

be conveniently expressed in terms of an expansion in Legendre polynomials PL.Wewrite

q= å( ) ( ) ( )f f p Pp cosa L L L and q=å( ) ( ) ( )C C p Pp cosab L L L
B B , and obtain

ò òp q q
s

s=
¶
¶

-
-

( ) ( ) ( ) ¯ ( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥C p n p p v f p P n vf p p

p
d 2 dcos cos . 3L b L s L s

ab
b L ab

B
1 1

2
1 1

1

1

The integration limits in p1 are determined by the conservation of energy, giving g + -( )m c k m c 1e e
2 2 <p1

<¥. In this workwe use the differential cross-section s¶ ¶¯ p for scattering in a static Coulomb field in the Born
approximation, integrated over photon emission angles. This expressionwasfirst derived byRacah [13], with a
misprint later corrected in [14]. For the Boltzmannmodel this full cross-section is employed, while for the
mean-forcemodel we use the high-energy limit as in [5–7].

A useful approximation to the collision operator (3) is obtained by noting that the radiation emitted by
runaway electronswill be strongly focused in the forward direction by relativistic beaming (‘the headlight
effect’), and the dominant contribution to the integral then originates from scattering angles q g 1s . For
small angles, the Legendre polynomials take the asymptotic form q q~ - +( ) ( )P L Lcos 1 1 4L s s

2 .
Consequently, when gL 2 1 the angular integral in (3) can be replacedwith

/ / / /ò òq q s q s p s¶ ¶ » ¶ ¶ º ¶ ¶( ) ¯ ¯ ( ) ¯P p pp pdcos cos dcos 1 2 .s L s ab s ab
2

This approximation leads to a bremsstrahlung collision operator of the form

ò q
s

q s»
¶
¶

-( ) ( ) ¯ ( ) ( ) ( ) ( )C n p v f p
p

p p n vf p pp d , cos ; , cos . 4ab b a b a
B

1 1 1 1

This is a one-dimensional integral operator acting only on the energy variable, and involves the integrated cross-
sectionwhich is well known (it is related to the cross-section in photon energy by s g s¶ ¶ = ¶ ¶¯ ( ) ¯p p k) and
is given analytically for example in equation (14) of [1].

2
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Low-energy photon contribution—The bremsstrahlung cross-section has an infrared divergence; for low
photon energies k, it diverges logarithmically as s µ kd 1 . The total energy loss rate is howeverfinite, indicating
that a large number of photons carrying negligible net energy are emitted. A consequence of this behavior is that
the two terms in the Boltzmann operator (2) are individually infinitely large, necessitating the introduction of a
photon cut-off energy k0, belowwhich the bremsstrahlung interactions are ignored in(3) and (4).We can
however proceed analytically to evaluate the effect of the low-energy photons.While they carry little energy, they
may contribute to angular deflection, analogously to the small-angle collisions associatedwith elastic scattering.
Taylor expanding (3) in small photon energy g g= -k 1 yields to leading order

ò ò q q
s

q
= - -

¶
¶ ¶

-

-
( ) [ ( )] ¯ ( )C n vf p k P

k
d dcos 1 cos

cos
. 5L b L

k

k

s L s
s

small k

1

1

c

0

Since q º( )P cos 1s0 , the angle-averaged electron distribution (represented by the L= 0 term) is not directly
affected by the low-energy photons, reflecting the fact that the photons carry negligible energy, consistent with
the description by Blumenthal andGould [2] for the isotropic case. Due to the logarithmic divergence of the
cross-section, however, a significant contribution to angular deflection (represented by the ¹L 0 terms) is
possible. Inspection of the integrand in (5) further reveals that significant contributions originate from large-
angle scatterings, indicating that a Fokker–Planck approximation is inappropriate. Indeed the bremsstrahlung

cross-section òs q s q¶ ¶ = ¶ ¶ ¶- ¯k kcos d cosk
s k

k
s

low

c

0
, integrated over small photon energies, behaves for

small angles (q gks
2

0
2 4 ) as q1 s

2, which can be compared to the elastic Coulomb cross-section proportional
to q1 s

4. This weaker singularity of the bremsstrahlung cross-sectionmeans that the contribution from small-
angle collisions will be negligible compared to those from the large-angle deflections, and therefore a Boltzmann
modelmust be used to account for these events.While itmay seem counter-intuitive that low-energy photon
emissions contribute to large-angle collisions, note that due to the largemass ratio between electron and ion,
largemomentum transfers to the nucleus are allowed evenwithout any energy transfer. For very energetic
electrons, however, when the kinetic energy exceeds the ion rest energy, ion recoil effects would need to be
accounted for in deriving (5).

We can quantify the importance of the low-energy photons by calculating the L=1 termof (5)–giving the
loss rate of parallelmomentum—and comparing it to the corresponding termof the elastic-scattering collision
operator given in [9]. Carrying out the integration, one obtains the ratio

a
p

=
L
L

- +
-

( )
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

C

C

p

m c

2 ln

ln
ln

2
1 1 , 6

e

1
small k

1
elastic

B
2

with a relative error ofmagnitude +( ) ( )O m c p O k pce
2 2 2

0 , andwhere a pe= e c4 1 1372
0  is thefine-

structure constant.Here, we have introduced a bremsstrahlung logarithm L = ( )k kln ln cB 0 , which arises in a
way similar to theCoulomb logarithm Lln for elastic collisions, and is due to cutting off the logarithmically
diverging integral at some lowest photon energy kc.

Variousmechanismsmay suppress the bremsstrahlung interactions at low photon energy, such asmultiple
scattering, photon interactions with themedium, pair production andmore [15].Most important in dilute
ionized gases, in the energy rangewe are interested in, is the photon interactionwith themedium; the effectmay
be viewed as coherent forwardCompton scattering on the target, causing destructive interference in the emitted
radiation due to the induced phase shift in the emission. The analysis, originally due to Ter-Mikaelian [16],
shows that the suppression can be accounted for bymultiplying the cross-sectionwith a suppression factor S,
given by the ratio of in-medium to vacuum formation lengths = - -( )  l p p k cB 1 0   , with ò the
dielectric constant of themedium. The formation length is approximately the distance over which the
interaction amplitudes add coherently, and P here denotes the direction of the incident electron. Evaluating the
ratio yields the suppression factor = +( )S k k kp

2 2 2 where w~ kp p is the photon energy corresponding to
radiation at the plasma frequency, suggesting an effective lower cut-off kc=kp of our collision operator.

This gives a bremsstrahlung logarithm L » + ( ( ))k m c nln 21 ln eB 0
2

20 , where n20 is the electron density
in units of1020 m−3. Assuming a plasmawith L =ln 15, =n 120 and choosing =k p0.010 , the ratio(6) is of
order 10% at 30 MeV, 50% at 2 GeV and 100%at 30 GeV, demonstrating that angular deflection caused by the
emission of low-energy photons can contribute significantly to themotion of highly energetic electrons.

The bremsstrahlung collision operator has been implemented in the initial-value continuumkinetic-
equation solver CODE (COllisional Distribution of Electrons) [9]. For this studywe useCODE to solve the
equation

¶

¶
-

¶

¶
= +{ } { } ( )

f

t
eE

f

p
C f C f , 7e e

e e
FP B




which in amagnetized plasma represents the gyro-averaged kinetic equation, with the parallel direction given by
themagneticfield B. The equation is also valid for an unmagnetized plasmawhich is cylindrically symmetric

3

New J. Phys. 18 (2016) 093023 OEmbréus et al



around the electricfield E. Elastic collisions are accounted for by the linearized relativistic Fokker–Planck
operator for Coulomb collisions CFP, and CB is the bremsstrahlung operator Ceb

B summed over all particle
species b in the plasma. Both thermal and fast electrons are resolved simultaneously, allowing runaway
generation aswell as the slowing-down of the fast population to be accuratelymodeled.

Wewill compare the effect of bremsstrahlung radiation losses on themomentum-space distribution of fast
electrons using severalmodels. The contribution from the emission of large-energy photons (with >k k0) are
accounted for by either the Boltzmann operator in(3) or its approximationwithout angular deflection (4), while
the low-energy photon contribution ( <k k0) is described by(5). For the numerical solutionswe choose an
energy-dependent cut-off g= -( )k m c 1 1000e0

2 .We have found that this is sufficiently small that the results
are not sensitive to the choice of this cut-off parameter. The cut-off, which determines when the emitted
photonswill be counted as ‘low energy’, andwhen the interaction is treated as elastic using the operator in(5),
generally produces a relative error in the solution of order g -[ ( )]k m c 1e0

2 .
TheBoltzmannmodelswill be compared to themean-forcemodelwhere the bremsstrahlung losses are

accounted for by an isotropic force term in the kinetic equation, defined as ò s= - å ¶ ¶
g-ˆ ( )

n k k kF p db b
m c

ebB 0

1e
2

,

which is chosen toproduce the correct average energy-loss rate [1].

Numerical results

To characterize the effect of bremsstrahlung on the electron distribution, we investigate quasi-steady-state
numerical solutions of the kinetic equation (7). These are obtained by evolving the distribution function in time
until an equilibrium is reached, typically after a few seconds at density =n 120 if an initial seed of fast electrons is
provided (this equilibration time is directly proportional to ne). Thismeans that if, in reality, the duration of
near-constant acceleration is shorter than this equilibration time scale, the amplitude of the runaway tail will be
smaller than reported here. The qualitative features of the runaway distribution are however set up on a shorter
time scale of a fewhundredmilliseconds at =n 120 , and can be representative of awider range of realistic
scenarios.

We investigate a range of electric-field values near theminimumelectric field p= LE n r m c e4 lnc e e0
2 2 to

overcome collisional friction [4], using plasma parameters characteristic of tokamak-disruption experiments
withmassive gas injection.We assume accumulated impurity densities to be of order ~n 10Z

20 m−3 and that,
for the ultrarelativistic electrons in the far tail of the distribution, the binding energy of the bound electrons is
negligible. The electron density ne then denotes the full electron density ~ +n n ne free bound.

Figure 1 shows the electron distribution function inmomentum space, calculated usingCODE,with full
Boltzmann bremsstrahlung effects included (black, solid); neglecting angular deflections in the large-k
contribution (yellow, dash-dotted); also neglecting the small-k contribution (blue, dashed); andfinally using the
mean-forcemodel (red, solid). Non-monotonic features form in themean-force aswell as the Boltzmann
models, but their characteristics are significantly different.With the Boltzmannmodels, an extended tail forms
in the electron distribution. In contrast, themean-forcemodel produces a sharp feature, locatedwhere the
energy gain due to the electric-field acceleration balances friction and bremsstrahlung losses. The addition of
low-k scatterings (5), which lead to large-angle deflections, causes a subpopulation of fast electronswith
significant perpendicularmomentum to form. Furthermore, (3) and (4) appear to generally produce the same
qualitative features, indicating that scatterings involving large-energy photons are well approximated by
neglecting the angular deflection of the electron.

Inclusion of synchrotron radiation losses associatedwith the gyromotion of electrons in a straightmagnetic
field has been shown to be an important energy-lossmechanism [17–21]. Figure 1(b) shows that, in conjunction
with bremsstrahlung losses, synchrotron losses (modeled as in [17]) shift the distribution towards lower energies
but does not change its qualitative features. The difference between the Boltzmann andmean-forcemodels is
reduced in such cases, as the extent of the distributionwhen full bremsstrahlung effects are included is reduced
by the synchrotron effect.When bremsstrahlung losses are ignored, and synchrotron emission alone is
responsible for the energy loss by radiation, a non-monotonic runaway tail can also form (solutions to this
problemhave been characterized in [17, 20]). However, for the present values of density,magnetic and electric
fields this occurs at the significantly highermomentum [6, 20]

~
L
+

- »
( )

⎛
⎝⎜

⎞
⎠⎟p

n m c

B Z

E

E

E

E
m c

3 ln

2 1
1 300 ,e e

c c
e

2

0
2

corresponding approximately to an energy of 150 MeV.
Angle-averages of the electron distribution functions infigure 1 are shown infigure 2 as a function of

electron kinetic energy g= -( )W m c 1e
2 . The bulk population ( <W 1MeV) has been excluded from the

figure in order to highlight the differences in the shape of the tail of the runaway distribution, which is where the
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greatest variation between the different radiation-lossmodels can be seen.When there are no synchrotron losses
present, the difference between the twoBoltzmannmodels for bremsstrahlung losses is seen to be insignificant
when considering the angle-averaged distribution. In the presence of effects which are sensitive to the angular
distribution of electrons, such as synchrotron radiation losses (which are proportional to p̂2), the difference is
somewhat enhanced as angular deflection amplifies the dissipation.

To quantify thewidth in energy of the fast-electron tail,figure 3 shows the fraction of total plasma kinetic
energy carried by electronswith energy greater thanW, for a range of plasma compositions and electric fields,
neglecting synchrotron losses. Again, the steady-state solutions are considered, and the energy ratio is calculated

as ò
¥

( )W W n W Wd d d
W e tot.When normalized to the energyW0 which solves the energy-balance equation

- + =eE eE F 0c B (accounting for collisional and bremsstrahlung energy loss), the behavior is seen to be
insensitive to electric field and effective charge. The Boltzmannmodel consistently predicts that a fraction of the
electron population reaches significantly higher energies than in themean-forcemodel, where all electrons have
energy nearW0. For instance, in the Boltzmannmodel 5%of the plasma energy is carried by electronswith
energymore than 2W0.

Summary

Wehave developed a kinetic description of the effect of spontaneous bremsstrahlung emission on energetic
electrons in plasmas. By treating bremsstrahlung emission as a discrete process, we have shown that electrons

Figure 1. Steady-state electron 2Ddistribution functions; ( )a with nomagneticfield, ( )b withB=2 T. Electric field =E E2 c , plasma
parameters =Z 10eff , =n 3020 and =T 10e keV. Contours show Flog10 , where p= ( )F m T f n2 e e e e

3 2 .

Figure 2.Angle-averaged tail of the electron distributions infigure 1, withB=0 (thick lines) and =B 2 T (thin lines).
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may be accelerated to significantly higher energies thanwould be predicted by energy balance alone, with a
significant fraction of particles reaching at least twice the expected energy. This effect has important
implications for the interpretation of experimental observation of fast electron beams in plasmas where
bremsstrahlung losses are important, such as those inmagnetic-confinement fusion. Since we have
furthermore demonstrated that the features of the bremsstrahlung-loss dominated distribution function are
insensitive to plasma composition and electric field, our findingsmay also be important in the study of other
scenarios where runaway occurs, such as in lightning discharges and solar flares. The explanation for the
increasedmaximum energy can be intuitively understood in the single-particle picture, where the newmodel
allows some electrons to suddenly lose a large fraction of their energy in one emission, whereas other electrons
may be accelerated for a long time before a bremsstrahlung reaction occurs, thereby allowing higher
maximum energies to be reached.

Furthermore, new effects are revealed in our treatment, as the emission of soft photons is found to
contribute to angular deflection of the electron trajectory at a rate that increases with electron energy. This effect
shifts part of themomentum-space distribution function towards higher perpendicularmomenta, which in turn
has implications for e.g.the destabilization of kinetic instabilities or the level of synchrotron radiation loss in
magnetized plasmas.

In order to resolve the logarithmically divergent contribution from low-energy photons, the bremsstrahlung
collision operator is split into two contributions by introducing a cut-off photon energy g -( )k m c 1e0

2 . In
the contribution fromphotonswith energy <k k0, the energy carried by the photonsmay be neglected, and the
corresponding term in the kinetic equation is given by the elastic collision operator given in (5). However, both
contributionsmust be treatedwith a Boltzmann collision operator in order to accurately capture the dynamics
of the fast electrons. For the <k k0 contribution, it is required as those interactions are dominated by large-
angle deflections of the electron orbit, while the >k k0 part requires it as the emitted photon causes a large
change of the electron energy in each emission.

A computationally efficient representation of the bremsstrahlung collision operator has been obtained using
an expansion in Legendre polynomials, withwhich the operator is reduced to a set of one-dimensional energy
integrals. This allows for rapid evaluation of the self-consistent electron distribution function in the presence of
bremsstrahlung losses derived from the full Boltzmann operator.
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Figure 3. Fraction of plasma kinetic energy carried by electrons of energy greater thanW. The values are calculated fromnumerical
solutions of the kinetic equation, and are shown as a function of normalized electron kinetic energy. Filled regions indicate the values
spannedwhen Zeff and the normalized electricfield - +( ) ( )E E Z1 1c eff are varied between 1 and 35, and 0.05 and 0.25,
respectively.
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