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Decadal analysis of stratospheric ozone depletion using data assimilation
and Odin/SMR measurements
Kazutoshi Sagi
Department of Earth and Space Sciences
Chalmers University of Technology

Abstract
Serious ozone depletion has been measured every Antarctic spring since the early
80’s. This ozone depletion is considered to be a result of photo-chemical reactions
and catalytic cycles resulting from anthropogenic halogen containing gases facilitated
by the formation of Polar Stratospheric Clouds (PSCs). The reactive halogen species
are released through heterogeneous reactions on the surface of the particles.

Arctic ozone depletion is, on the other hand, less severe and show larger variability
than Antarctic loss because of the unstable and warmer condition. However, the
Arctic stratosphere has been becoming colder and the Arctic ozone loss in the 2011
winter was comparable to Antarctic losses. Currently, global ozone is beleived to
be recovering as a result of the Montreal Protocol (1987) on the control of ozone
depleting substances (ODSs). Ozone depletion is directly/indirectly linked to the
climate because the absorption of UV radiation changes the temperature field. It is
therefore important to quantify the loss for future climate prediction.

The aim of this thesis is to quantify ozone depletions in several Arctic and Antarc-
tic winters using ozone profiles measured by Odin/SMR and a data assimilation tech-
nique which is generally used in numerical weather prediction. The DIAMOND (Dy-
namical Isentropic Assimilation Model for Odin Data) is used in this thesis. A new
vertical transport scheme was implemented into the DIAMOND model to account for
the diabatic descent inside the polar vortex during the polar night. The new version
of the DIAMOND model was examined for the specific northern winter (2009/2010)
when SMILES (Superconducting Submillimeter-Wave Limb-Emission Sounder) ob-
served stratospheric species as well as SMR. A decadal record of ozone depletion has
been determined by comparing the assimilated fields to passively transported fields
initialized by assimilation of SMR ozone data. Ozone retrieved from the emission line
at 544 GHz has been demonstrated for use in ozone depletion studies in the thesis.

Two different chemical mechanisms, the Cl catalytic cycle with PSC formation
and NOx related chemistry, can explain losses at different altitudes that occurred in
the polar winters. This thesis also propose an alternative methodology for quantify-
ing ozone depletion utilising assimilation information.

Keywords: remote sensing, stratosphere, data assimilation, limb sounding, ozone
loss
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Chapter 1

Introduction

The ozone loss that occurs inside of the Antarctic polar vortex in the lower strato-
sphere in early spring is understood to be related to catalytic destruction by species
such as Cl, Br and NOx and also the formation of Polar Stratospheric Clouds (PSCs)
[Solomon, 1999]. This phenomenon has had large scientific and political impact be-
cause the ozone protects life on earth by absorbing harmful solar ultra-violet radiation.
Currently ozone depleting substances (ODSs) are slowly decreasing in the stratosphere
as a result of the Montreal Protocol (1987) on the control of ODSs. Many studies
show that global ozone is also recovering since the end of the nineties [e.g., Jones
et al., 2009, Tummon et al., 2015]. However the WMO assessment 2014 reported that
the speed of the recovery is slower than it reported in the previous assessment.

Ozone loss also occurs in the northern hemisphere. Arctic ozone loss was consid-
ered to be less severe than the Antarctic ozone hole due to an unstable and warmer
vortex limiting the formation of PSCs. However, in 2011 several groups reported
unprecedented ozone depletion over the Arctic polar region approaching that of the
Antarctic ozone hole [e.g. Arnone et al., 2012, Manney et al., 2011, Sinnhuber et al.,
2011]. We still do not know if the loss in 2011 was a unique case or can be repeated in
the future. Ozone depletion and climate change are indirectly linked. Several studies
predicted that the stratospheric cooling induced by increasing atmospheric carbon
dioxide enhances ozone depletion [Austin et al., 1992, Shindell et al., 1998]. In prac-
tice, the Arctic lower stratosphere has been getting colder over the past decades
[WMO, 2011]. The linear dependence between the ozone depletion and the volume
of air having a temperature below the threshold for polar stratospheric cloud (PSC)
formation [Rex et al., 2006] implies that the Arctic stratospheric ozone depletion may
become worse if the cooling trend continues.

It is still necessary to keep monitoring stratospheric ozone. Atmospheric ozone
is observed from many platforms; ground based observations, ozone sondes, airborne
instruments and satellite missions. The techniques employed by those platforms can
be categorized into two main groups. In-situ measurements generally have superb
precisions at specific measurement stations. Remote sensing products on the other
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2 Introduction

hand allow us to cover a large area although they are often less precise.
Quantifying ozone loss has been carried out using several methods based on differ-

ent assumptions and instruments [e.g. Eichmann et al., 2002, Grooß and Müller, 2003,
Rex et al., 2006, Singleton et al., 2007, Tilmes et al., 2004, Tsvetkova et al., 2007].
The methods, summarized in WMO [2007], are the ozone/tracer correlation method
[e.g. Tilmes et al., 2004], the match method [e.g. Rex et al., 2006], the vortex-average
method [e.g. Eichmann et al., 2002], the passive subtraction method [e.g. Singleton
et al., 2007] and the Lagrangian transport calculation method [e.g. Grooß and Müller,
2007]. Indeed each method has different advantages and disadvantages, however, the
comparison of different techniques shows reasonable agreement [e.g. Feng et al., 2011,
Kuttippurath et al., 2010, Sonkaew et al., 2013, WMO, 2007].

The subject of this thesis is to study Arctic and Antarctic ozone depletion during
the past decade. Rösevall [2007] presented a method which can map polar ozone
depletion by assimilating satellite observational data into a two dimensional wind
driven transport model. The Dynamical Isentropic Assimilation Model for Odin Data
(DIAMOND) was developed for the estimation of polar ozone loss in his studies. In
this thesis the DIAMOND model is used and optimized for analyzing ozone loss
in both Northern and Southern hemispheres. In paper A, a new vertical transport
scheme is implemented into DIAMOND to describe the continuous descent of air
during the polar night inside the polar vortex. Paper A investigates ozone loss in
the 2009/2010 Arctic winter by assimilating SMILES ozone and Odin/SMR ozone
observations. Paper B extends the analysis of polar winters in both hemisphere when
the SMR ozone version 2.1 data are available (from 2002 to 2013). For the first time,
ozone retrieved from the emission line centred at 544 GHz in the SMR observed spectra
is used in order to quantify ozone depletion in paper B. This provides better results
at lower altidudes. A comparison between SMR 501 GHz ozone ver. 2.1 and SMR
544 GHz ozone ver. 2.0 has been performed in the paper B as well as comparison
with previously published results. By using the results of the inter-annual ozone
depletion over more than a decade in paper B, paper C accessed the relative year-
to-year contributions of halogen-induced and NOx-induced ozone depletions in the
Northern hemisphere. This thesis also discusses a new methodology for ozone loss
quantification with the re-use of assimilation information in chapter 6 .



Chapter 2

Stratospheric Ozone

The atmosphere is a layer of air trapped by the Earth’s gravity. The atmosphere,
however is much thin compared to the radius of the Earth and has a mass of ap-
proximately 5× 1018 kg, it is essential to life and exhibits large variety of dynamical
and/or meteorological phenomena. The pressure decreases exponentially with height.
Almost 99 % of the atmospheric mass settles below 30 km. Equation 2.1 gives a re-
lation between the pressure P at given altitude z and surface pressure P0 for an
isothermal atmosphere.

P (z) = P0 · exp(−
z

H
) (2.1)

Here H is a scale height of the atmosphere and is generally about 7 – 8 km on the
Earth. The atmosphere commonly complies with the ideal gas law

PV = N · kB · T, (2.2)

where V is the volume, N is the number of molecules in that volume, kB is Boltzmann’s
constant (1.38× 1023 m2 kg s−2 K−1) and the absolute temperature in Kelvin.

The atmosphere can be divided into 4 layers by the vertical structure of temper-
ature. Figure 2.1a shows the typical temperature profile. In the lowest layer called
the troposphere, the temperature decreases with height. The thickness of the tro-
posphere varies with latitudes and seasons. Generally, the tropopause which is the
limitation of the troposphere is at about 15 km in the tropics and at 7 km in polar
regions. The troposphere is characterized by strong turbulence and vertical mixing.
The highest abundance of water vapour and atmospheric phenomena such as clouds
and precipitation can be seen in this layer.

Above the tropopause the temperature gradient is reversed in the layer named
the stratosphere. The stratosphere contains 90 % of atmospheric ozone absorbing the
ultra-violet (UV) radiation, which explains the positive lapse rate. Compared to the
troposphere, the stratosphere is very dry and vertical mixing is hinder.

The next layer is the mesosphere. The temperature decreases with height in this
layer due to the lack of ozone and radiative cooling to the space. A minimum temper-
ature of less than 185 K is found in the summer hemisphere at the mesopause which

3



4 Stratospheric Ozone

(a) Temperature (b) Ozone

Figure 2.1: (a) A typical mid-latitude summer temperature profile and (b) an ozone
profile in number density (solid line) and in VMR (dashed line) represented by AFGL
standard atmosphere.

is placed at approximately 80 km. Above the mesopause the temperature increases
to reach maximum values due to the photolysis of O2 and N2 as well as ionization.
This last layer is called the thermosphere.

2.1 Stratosphere

The positive temperature gradient in the stratosphere means that warmer air lies over
the cooler air, causing stable conditions. The stability of the atmosphere can be also
categorized using the dry adiabatic lapse rate Γd (= −dT/dz = 9.8 K km−1).

−dT
dz

> Γd unstable

−dT
dz

= Γd neutral (2.3)

−dT
dz

< Γd stable

An other useful tool when discussing atmospheric stability is potential temperature
Θ, expressed as below,

Θ = T

(
P0

P

)Rd
Cp

, (2.4)

where Rd is the dry gas constant and Cp is the heat capacity of the gas, respectively.
Θ is described as the temperature that the dry air parcel would have if it moves
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Figure 2.2: Schematic view of dynamics of coupling between the stratosphere and the
troposphere. Deep convection at the equator penetrates through the tropopause (heavy
line), causing large-scale ascent of air. Mid-latitudes are the area where horizontal mixing
exists. Near the pole the cold air descends. Source : Holton et al. [1995]

to the surface adiabatically. According to the description of potential temperature,
dT/dz = −Γd gives dΘ/dz = 0 and when the atmosphere is in stable condition
dΘ/dz is positive. In the stratosphere potential temperature is always rising hence
stable. Vertical motions are consequently small and stratospheric air tends to move on
isentropic surfaces. Thus potential temperature is often used as a vertical coordinate
in the stratosphere.

The stratosphere is denoted by large-scale ascent at the equator and large-scale
descent in the polar regions. Figure 2.2 shows the schematic view of dynamical
processes in the stratosphere. Exchange of air passing the tropopause rarely happens
except in the Tropics due to deep convection and close to strong frontal systems.

Westerly winds typically occur in the winter hemisphere. The strongest wind is
referred to as a jet stream at where the temperature has the largest gradient due to
the polar night terminator. This jet stream is called the polar night jet and the area
poleward of the jet is known as the polar vortex. The polar vortex isolates cold air
from subtropical air.

The circulation in the stratosphere is weaker than in the troposphere and is driven
by the breaking of planetary waves induced by topographical features at the surface.
This circulation is named the Brewer-Dobson circulation (BDC). Planetary waves
or Rosby waves propagate from the troposphere into the stratosphere where they
dissipate and provide a westward torque. The main mechanism behind the BDC is
the poleward transport produced by the westward torque of the Coriolis force. The
distribution of long-lived tracer gases in the stratosphere is strongly influenced by the
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BDC.
An other interesting phenomena in the stratosphere is a part of seasonal and semi-

seasonal oscillations. The quasi-biennial oscillation (QBO) dominates the oscillation
of the stratospheric equatorial zonal wind between easterlies and westerlies with a
period of roughly 28 months. The alternating wind regimes are developed in the
middle stratosphere and propagate downwards to the tropical tropopause. Currently
gravity wave propagation is considered to be the main contributor to the QBO. More
details can be found in Holton and Hakim [2012].

2.2 Ozone chemistry

Ozone is arguably the most important species in the stratosphere. Ozone molecules
consist of three oxygen atoms and absorb the ultra violet (UV) radiation which is
harmful to life. Figure 2.1b shows an ozone profile in number density and volume
mixing ratio for the mid-latitudes between 10 to 120 km. The ozone layer lies between
20 to 40 km, while its peak in volume mixing ratio (8-11 ppmv) is located around
35 km. The number density peak of ozone is however situated at a lower altitude
of about 15–25 km, since pressure decreases exponentially with increasing height.
The absorption of UV light by ozone molecules leads to the negative lapse rate and
increasing temperature in the stratosphere. The mean total ozone typically varies in
a range of 300-400 DU1).

Chapman [1930] suggested a theory for ozone formation and destruction in the
stratosphere. The following reactions in the theory are collectively called the Chap-
man mechanism.

O2 + hν (λ < 242 nm) −→ 2O (J1)

O + O2 + M −→ O3 + M (R1)

O3 + hν (λ = 242− 336 nm) −→ O(1D) + O2 (J2)

O(1D) + M −→ O + M (R2)

O + O3 + M −→ 2O2 + M (R3)

Here hν is the energy of a photon and M symbolizes a third body in the reaction,
removing the excess energy due to collision. O(1D) denotes atomic oxygen in an
excited state. The binding energy of O2 (498 kJ/mol) is equal to the photon energy
at 242 nm. The oxygen molecule is hence photolysed. The atomic oxygen provided
from (J1) is in the ground-level triplet state O(3P ) and highly reactive due to its
two unpaired electrons. The O(3P ) immediately reacts with a oxygen molecule and
produces ozone in (R1). (R1) is significant in the area where the concentration of O is

1)The Dobson unit (DU) is a unit of measuring ozone concentration. One DU refers to the
number of molecules of ozone that would be required to provide a layer with 0.01 millimeters thick
at a standard atmosphere (273 K and 1013.25 hPa). 1DU = 2.6× 1020 molecules O3 m−2.
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high such as the upper stratosphere or low latitudes. Ozone is also photolysed by the
UV radiation at wavelengths below 336 nm. Since (R1) and (J2) are fast reactions,
(J2) is not a terminal sink of ozone. The excess energy acquired by M is in the form
of thermal energy and heats up the stratosphere. (R2) is the actual reaction of the
sink in the Chapman mechanism.

Observational studies showed that the Chapman mechanism and atmospheric
transport alone do not correctly describe the real ozone distribution especially at
mid-latitudes and in the polar stratosphere. Further reactions of catalytic species
such as Br, Cl, NO and HO have to be considered to remove ozone from the strato-
sphere.

X + O3 −→ O2 + XO (R4)

O + XO −→ O2 + X (R5)

Net : O + O3 −→ 2O2

Here, X and XO represent a catalyst and an intermediate product, respectively. These
reactions are usually faster than the Chapman reactions hence they constrain the
ozone distribution. The following sub-sections introduce more details of the Cl and
NO chemistry related to this thesis.

2.2.1 Clx chemistry

Chloroflourocarbons (CFCs) are anthropogenic gases. Concentrations of CFCs in
the atmosphere were increasing during the 1970’s with a rate of 2 – 4 % yr−1. CFC
molecules are inactive in the troposphere and are transported into the stratosphere.
The main source of chlorine in the stratosphere is photolysis of organic chlorine species
(e.g. CFCs, HCFCs and CCl4). An example is the case of CFC-12 (CF2Cl2):

CF2Cl2 + hν −→ CF2Cl + Cl. (J3)

The reactions of the free Cl atoms and the chlorine monoxide radicals ClO lead to
ozone destruction.

Cl + O3 −→ ClO + O2 (R6)

ClO + O −→ Cl + O2 (R7)

Net : O + O3 −→ 2O2

This cycle stops when Cl and ClO are converted to the reservoir species, HCl and
ClNO3 by reactions with CH4 and NO2.

Cl + CH4 −→ HCl + CH3 (R8)

ClO + NO2 + M −→ ClNO3 + M (R9)
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HCl has a lifetime of few weeks and is the most abundant inorganic stratospheric
chlorine species. It constitutes more than 95 % of the chlorine species above 50 km
[WMO, 2011]. ClNO3 is an important reservoir at altitudes below 30 km. The lifetime
of ClNO3 is on the order of a day. Hypochlorous acid HOCl is another chlorine
reservoir.

Cl + O3 −→ ClO + O2 (R6)

OH + O3 −→ HO2 + O2 (R10)

ClO + HO2 −→ HOCl + O2 (R11)

HOCl + hν −→ OH + Cl (J4)

Net : 2O3 −→ 3O2

The latter cycle is significant at lower altitudes (below 20 km) [Brasseur et al., 1999].

2.2.2 NOx chemistry

In the late 1960s many countries considered the use of a supersonic aircraft fleet flying
in the stratosphere. Atmospheric chemists worked to assess the effects of such a fleet
on the ozone layer. Nitric oxide (NO) is formed by oxidation of atmospheric N2 at
high temperatures. In the stratosphere NO reacts rapidly with ozone to produce NO2,
which then photolyses:

NO + O3 −→ NO2 + O2 (R12)

NO2 + hν −→ NO + O (J5)

O + O2 + M −→ O3 + M (R1)

This cycle occurs during daytime with a time scale of one minute and does not affect
the ozone budget so is called a ”null-cycle”. NO and NO2 interconvert into each
other. Odd nitrogen (NOx) comprises the sum of nitrogen oxides (NO+NO2+NO3).
The main source of odd nitrogen species and related nitrogen compounds in the
stratosphere is the oxidation of N2O transported from the troposphere by O(1D).

N2O + O(1D) −→ 2NO (R13)

(R13) accounts for only about 5 % of the loss of N2O in the stratosphere. The rest
(95 %) is conversion to N2 by photolysis and alternative oxidation reactions by O(1D)
[Jacob, 1999]. Another known but smaller source of stratospheric NOx is a polar
winter descent of NOx created mainly by energetic particle precipitation (EPP) in
the mesosphere and lower thermosphere [Barth, 2003]. NO lifetime is long enough
to be transported down to the stratosphere by the meridional circulation without
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photochemical destruction in polar night conditions [Brasseur and Solomon, 2005,
Pérot et al., 2014]. Hence irregular events such as aurora and solar proton events
(SPEs) provide NOx, which can influence the ozone concentration.

The nitrogen family has two cycles that destroy the stratospheric ozone. The first
cycle involves both ozone and atomic oxygen and is thus dominant in the middle
stratosphere [Brasseur and Solomon, 2005]:

NO + O3 −→ NO2 + O2 (R12)

NO2 + O −→ NO + O2 (R14)

Net : O + O3 −→ 2O2

The other cycle does not require atomic oxygen and is more effective below 30 km:

NO + O3 −→ NO2 + O2 (R12)

NO2 + O3 −→ NO3 + O2 (R15)

NO3 + hν −→ NO + O2 (J6)

Net : 2O3 −→ 3O2

The loss of NOx in daytime is the oxidation by OH.

NO2 + OH + M −→ HNO3 + M (R16)

At nighttime nitrogen trioxide NO3 reacts with NO2 and is converted to N2O5.

NO3 + NO2 + M −→ N2O5 + M (R17)

This formation of N2O5 can occur only at night because during the daytime NO3

coverts back to NO by (J6). HNO3 and N2O5 are non-radical species and have long
lifetimes in the stratosphere. They are eventually converted back to NOx:

HNO3 + hν −→ NO2 + OH (J7)

HNO3 + OH −→ NO3 + H2O (R18)

N2O5 + hν −→ NO3 + NO2 (J8)

Thus they are reservoirs for NOx.
Other minor reactions are not mentioned here. These reactions can be seen in

Jacob [1999] and Brasseur and Solomon [2005].



10 Stratospheric Ozone

Figure 2.3: Temporal evolution of zonal mean total ozone column in DU in 2012. Data
was taken from ECMWF operational analyses

2.3 Ozone distribution

Ozone concentrations in the stratosphere is a balance between photochemical produc-
tion and removal related to the photolysis and the reactions with catalytic species.
However, this balance is not local because ozone molecules produced at certain places
are transported to other regions before the photochemical destruction. Figure 2.1b
and 2.3 show a vertical ozone profile for the northern summer at mid-latitudes and
the seasonal variation of zonal mean total ozone in DU, respectively. Stratospheric
ozone is mainly produced in the tropics where the solar flux is maximum by (J1) and
(R1). The ozone-rich air is then transported towards the poles by the BDC. As noted
in 2.1, the BDC is driven by planetary waves from the troposphere. However, more
waves propagate into the stratosphere in the northern hemisphere than in the south-
ern hemisphere because of the irregular distribution of land and sea. The increased
wave breaking in the surf zone makes the BDC stronger. Thus the amount of ozone
transported towards each pole is not same due to the different strengths of the BDC
and the maximum ozone is found at lower altitudes at higher latitudes in northern
winter [Wallace and Hobbs, 2006, Wayne, 1991].

2.4 Polar ozone depletion

Severe large ozone depletion, well known as the ”ozone hole”, was discovered in the
early 80’s. The ozone hole occurs over the Antarctica in early spring. The mechanism
behind the loss is not explained by the gas phase reactions shown in previous sections
alone. This is because that under the low solar exposure condition in polar spring the
amount of atomic oxygen is small hence (R7) and (R14) are not efficient reactions.
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Further studies revealed that exceptionally high ClO in this season and area plays a
key role in ozone depletion [Jacob, 1999].

The following reactions give how the ClO-dimer cycle destroys ozone in the polar
vortex.

ClO + ClO + M −→ ClOOCl + M (R19)

ClOOCl + hν −→ ClOO + Cl (J9)

ClOO + M −→ Cl + O2 + M (R20)

2× (Cl + O3) −→ 2× (ClO + O2) (R21)

Net : 2O3 −→ 3O2

Another catalytic cycle involving Br radicals is also important in the depletion:

ClO + BrO −→ Cl + Br + O2 (R22)

( or ClO + BrO −→ BrCl + O2 (R23)

and BrCl + hν −→ Cl + Br ) (J10)

Cl + O3 −→ ClO + O2 (R24)

Br + O3 −→ BrO + O2 (R25)

Net : 2O3 −→ 3O2.

Ozone cannot be destroyed by these reactions during polar night and other periods
of darkness because sunlight is required to complete each cycle.

The high ClO value is sustained by extremely cold temperature inside the vortex.
Specifically, heterogeneous2) reactions on Polar stratospheric clouds (PSCs)3) produce
ClOx. On PSCs particles, the Clx reservoirs HCl and ClNO3 are converted to active
chlorine:

HCl + ClNO3
PSC−→ Cl2 + HNO3 (R26)

Cl2 + hν −→ 2Cl. (J11)

Recent research demonstrates that low temperature are more critical than PSCs pres-
ence because (R26) also proceeds in the aqueous H2SO4 aerosols present in the strato-
sphere at temperatures below 200 K [Jacob, 1999]. PSCs rather play an important

2)Chemical reaction takes place in different phases (solid and gas, solid and liquid, two immiscible
liquids and so on).

3)PSCs are categorized into three types by different threshold temperatures; nitric acid trihydrate
(NAT) (type Ia) and ternary solution of HNO3,H2SO4 and H2O (type Ib) below 195 K and water
ice (type II) below 188 K.
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role in the ozone hole formation as a remover of HNO3 from the stratosphere by
sedimentation. This prevents the removal of ClO by (R9) and (R17).

Generally, loss of ozone is greater in the Antarctic pole winters than in the Arctic
as a result of much colder temperatures. Since the southern hemisphere has less
geographical variation than the northern hemisphere which means that the planetary
waves are less active, the polar vortex is more symmetric and stable, which isolates
cold air parcels.



Chapter 3

Remote Sensing of Atmospheric
Composition

This chapter introduces the concept of measuring atmospheric composition using
remote sensing. In situ measurements directly sample the atmosphere with high
accuracy and precision. However their temporal and spatial coverage is poor. Atmo-
spheric remote sensing from space is providing global measurement coverage. A short
introduction of basic principles for remote sensing will be given first. This chapter
also includes specific examples of the remote sensing technique related to the thesis.

3.1 Principles

Remote sensing applies electro-magnetic (EM) theory and radiative processes. All
objects with non-zero temperature emit EM radiation. EM radiation is characterized
by a spectrum of energy. Wavelength λ, frequency ν = c/λ or wave number κ = 1/λ
can be a variable of the spectrum (where c is the speed of light1)). Here, to quantify
the radiation, we consider an idealized physical body that absorbs entirely the incident
electromagnetic radiation. This is called a ”black body”. The radiation from a black
body obeys the Planck’s Law:

Bν =
2hν3

c2(ehν/kBT − 1)
(3.1)

where kB is Boltzmann’s constant2) and h is Planck’s constant3). It can also be
expressed in wavelength,

Bλ =
2hc

λ5(ehc/λkBT − 1)
(3.2)

1)c = 3 × 108 [m s−1]
2)kB = 1.38 × 10−23 [J K−1]
3)h = 6.63 × 10−34 [J s]

13
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The total energy flux F emitted by the black body can be estimated by integration
of Equation 3.2 over all wavelengths and a half sphere, giving F = σsT

4. σs is a
Stefan-Boltzmann’s constant4). This equation means that total energy emitted by a
black body per unit surface area and time is simply proportional to temperature to
the fourth power.

Local thermodynamic equilibrium (LTE) can be applied in the middle atmosphere
(stratosphere and mesosphere). The energy population in gases will be modified
by collisions. If the frequency of collision is higher than the life time of quantum
states, the energy level populations dominantly depend on the local temperature and
are given by Boltzmann’s distribution. This is the concept of LTE. Kirchhoff’s law
refers to the relation between radiative emission and absorption in thermodynamic
equilibrium.

aν = εν (3.3)

Here aν is absorptivity and εν is emissivity of material, respectively. A corollary of
Kirchhoff’s law is that an arbitrary body emits as much as it absorbs. Most objects
are not perfect black bodies. The emitted radiation Lν for a body with emissivity εν
can be written using Bν ,

Lν = εν Bν (3.4)

3.1.1 Emission and absorption

Once EM waves travel through a medium the photons will encounter molecules or
atoms. When this happens the interactions include scattering and absorption by the
particles or molecules. A molecule may undergo a transition to a higher energy level
by absorbing EM radiation and it may drop to a lower level by emitting radiation.
The bound change in internal energy, ∆E, is related to the absorbed or emitted
frequency by:

∆E = hν (3.5)

Thus a molecule can emit/absorb radiant energy only if the wavelength of the radia-
tion corresponds to the difference between two of its energy levels. Rotational tran-
sitions only require the lowest energy corresponding to wavelengths in the microwave
and far-infrared (IR) regions. Transitions within vibrational states correspond to
wavelengths in the far-IR to near-IR regions. Highly energetic waves, near-IR, vis-
ible and UV wavelengths refers to transitions between electronic states. Electronic
transitions can involve rotational and vibrational transitions.

Discrete energy transitions are affected by line-broadening processes, pressure and
Doppler effects. The absorption spectrum of a single line is written using its shape
and strength

γa(ν) = Sf(ν − ν0) (3.6)

S =

∫
γa(ν) dν (3.7)

4)σs = 5.6698 × 10−8 [W m−2 K−4]
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here γa(ν) is absorption coefficient, f(ν − ν0) is the line shape function with the line
centre wavenumber ν0, and S is the line strength. The line shape is determined by
the broadening mechanisms: 1) the natural line width from the uncertainty principle
is negligibly small, 2) pressure broadening is dominating in the lower atmosphere
and 3) Doppler broadening is important above the upper stratosphere. In the lower
atmosphere, frequent collisions due to high pressure reduce upper state lifetimes,
hence broadening the absorption lines. This is so-called pressure broadening. Pressure
broadened lines have a the Lorentzian line shape:

f(ν − ν0) =
α/π

(ν − ν0)2 + α2
(3.8)

α = α0

(
P

P0

)(
T0

T

)n
(3.9)

Where α is the pressure broadened absorption line halfwidth at half maximum and
α0 is the line width at a reference temperature T0 and pressure P0 (n is determined
empirically). The point is that the line width is propotinal to pressure. Thus, the
lower the pressure with increasing altitude, the narrower the line becomes. On the
other hand, molecules in a gas move with a certain velocity. This motion results in
a Doppler shift in the absorbing frequency. Molecules with the random velocities ex-
hibited a Maxwell-Boltzmann distribution, and the resulting line shape is a Gaussian.
In this case the line shape and Doppler line halfwidth αD are written by:

f(ν − ν0) =
1

αD
√
π

exp

[
−(ν − ν0)2

α2
D

]
(3.10)

αD = ν0

√
2kBT

mc2
(3.11)

where m is mass of molecules. The Doppler width is proportional to the wavenumber.
When the pressure broadened Lorentz halfwidth becomes comparable to the Doppler

width, the clear relationship between line shape and altitude disappears. At these
altitudes, line shapes become a convolution of the Lorentzian and Gaussian shape.
The Voigt line shape gives a more realistic description of a line transition in the true
atmosphere. However, there is no simple analytical function for the Voigt profiles, so
various approximations are applied.

3.1.2 Scattering

Scattering is a physical process where incoming radiation is redistributed into all
directions by the interaction with a particle. Two scattering processes are considered
in the theory of scattering. In inelastic scattering the kinetic energy of an incident
particle is not conserved: some of the energy of an incident particle can be used
to excite the target in some manner (rotation, vibration, ionization etc.). On the
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other hand the whole process of elastic scattering is conservative. This means that
no exchange of energy happens during the interaction between molecules and atoms.

In this section we only consider elastic scattering. The characteristics such as the
scattering attenuation γs and the scattering angle distribution are determined by the
size and refractive index of the interacting particle and wavelength. The scattering
can be divided into 3 groups by the relationship between the particle’s diameter d
and wavelength.

π d

λ


� 1 (Rayleigh scattering)

≈ 1 (Mie scattering)

� 1 (Geometric scattering)

(3.12)

For gas molecules in the UV/visible, the Rayleigh theory applies. The scattering
cross-section in the scattering angle θ is given by:

σs =
2π5

3

d6

λ4

(
n2 − 1

n2 + 2

)2

(1 + cos2(θ)) (3.13)

where n is the refractive index of the particle. More light is scattered in the backward
and forward directions and the light is completely polarized at θ = 90 ◦ . Note that
the λ−4 dependence makes blue wavelengths much more efficiently scattered than red
light. This is the reason why the sky is blue in daytime. Integration over 4π steradian
and summed over all particles gives the Rayleigh scattering extinction coefficient γR,
which is also proportional to λ−4.

The Mie theory is applied to typical atmospheric aerosols. The Mie scattering
cross section is more complex than that for Rayleigh scattering. The Mie scattering
extinction γM is generally proportional to λ−1. Mie scattering is responsible for the
white appearance of the clouds.

The last type of scattering is nonselective scattering. The wavelength-dependency
of the nonselective scattering is infinitesimally small. A haze is a good example for
nonselective scattering.

3.1.3 Radiative transfer equation

Incoming radiation passing through the atmosphere is attenuated due to scattering
and absorption by aerosols and gases. The attenuation of the radiation depends on

1. the intensity of radiation,
2. the local concentration of the medium,
3. the effectiveness of the absorbers and scatterers.

The radiative transfer equations describes the intensity of the monochromatic
radiation Lν along a path s in the medium.

dLν
ds

= −γ Lν + Sν (3.14)
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Here the first term on the right hand side indicates extinction of incident radiation
Lν through the medium as a rate of the extinction coefficient γ (= γa + γs) and the
second term describes the additional source radiation given as a source function Sν .

For the case when scattering can be ignored such as at microwave frequencies and
the cloud free atmosphere, the solution of Equation 3.14 is given as,

Lν(s) = Lν(0)e−τν(0,ν) +

∫ s

0

γa(s
′, ν)Bν(T (s′))e−τν(s′,ν) ds′ (3.15)

The opacity or optical thickness τν (s1, s2) between two points s1 and s2 on the line-
of-sight is defined as

τν(s, ν) =

∫ s2

s1

γa(s, ν) ds (3.16)

and the corresponding transmission ην (s1, s2) is given by

ην(s) = e−τ (s1,s2) (3.17)

3.1.4 Retrieval, Inverse method and Optimal Estimation

In order to derive physical quantities such as temperature, pressure or ozone con-
centrations, solving the inverse problem is required. Often the inverse problem has
no mathematically unique solution. This is called an ill-posed problem. To obtain a
solution, an optimal estimation approach can be used in order to search for the ap-
propriate constraint which determine the optimal solution from all possibilities which
are consistent with the observation. In this section, the inverse method and optimal
estimation solving for an atmospheric parameter is briefly introduced. Comprehensive
details on this method are described in Rodgers [2000].

The forward model F, modeling radiative transfer and sensor characteristics, de-
scribes the measurement y as a function of the true state parameters of the atmosphere
x and true model parameters b:

y = F(x,b) + ε (3.18)

with a measurement error ε. The retrieved state vector x̂ is given by the inverse
model, I:

x̂ = I(x,b, c). (3.19)

In this equation, the forward model parameters b are normally not perfectly known,
for instance spectroscopic or instrumental parameters. c stands for an additional
parameters which constrain the retrieved state. For simplicity, we ignore b from
following paragraphs. All these quantities written in boldface mean the vectors.

Optimal Estimation Method

The Optimal Estimation Method (OEM) is employed in a linear retrieval algorithm.
This method is based on Bayes’ theorem and combines statistical prior informations
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on the variability of the searched parameters with measurements, using the associ-
ated errors as weights. Gaussian statistics are assumed for the measurement y, the
parameters x are to be retrieved. The estimated state vector x̂ is determined by
minimizing the quantity χ2:

χ2 = (y − F(x))T S−1y (y − F(x)) + (x− xa)T S−1a (x− xa) (3.20)

where Sy and Sa stand for the error covariance matrices for the measurement vector
y and the a priori state vector xa. The first term in Eq. 3.20 determines how much
measurement information is used, while the second term constrains the estimated
state by the a priori state.

Normally, the forward model is not linear, thus a linearization by Taylor series
expansion around a priori state xa is required. Then Eq. 3.18 can be rearranged into,

y = F(xa) + K(x− xa) + ε (3.21)

The matrix K is the differential weighting functions of the forward model with respect
to the state vector x:

K =
∂F(x)

∂x

∣∣∣∣
xa

(3.22)

Through the minimization of Eq. 3.20, the retrieved state can be obtained

x̂ = xa + (KTS−1y K + S−1a )−1KTS−1y (y −Kxa) (3.23)

Since the problem is non-linear, this estimated x̂ is not accurate enough. Iterative
processes are required to reach sufficient accuracy. If we apply a Newton iteration
scheme, the optimal estimated state at iteration step i + 1 can be written as

xi+1 = xa + (KT
i S−1y Ki + S−1a )−1KT

i S−1y (y − F(xi) + Ki(xi − xa)) (3.24)

Error analysis

A linearization of the inverse function gives the contribution function matrix,

Dy ≡
∂x̂

∂y
= (KTS−1y K + S−1a )−1KTS−1y (3.25)

The averaging kernel matrix, A, represents the sensitivity of the retrieved state to
the true state, which is given by

A ≡ ∂x̂

∂x
= DyK (3.26)

Equ. 3.23 can be also written as

x̂ = xa + Dy(y −Kxa) (3.27)
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The retrieved error can be obtained by rearranging Eq. 3.27

x̂− x = Dyε+ (A− I)(x− xa) (3.28)

Here I is the identy matrix. The first term contributes the error due to statisti-
cal measurement noise and second term gives the smoothing (or null-space) error.
Covariance matrices for each error are formulated, according to

SM = DySyD−1y (3.29)

SN = (A− I)Sa(A− I)−1 (3.30)

where SM and SN are covariance matrices for the measurement and smoothing errors,
respectively.

3.2 Limb Sounding

Understanding of stratospheric ozone and its chemistry has developed significantly
since Dobson scientifically confirmed the existence of the ozone layer by construct-
ing his first ground based UV spectrometer and monitoring of total ozone in the
1920’s [Dobson and Harrison, 1925]. A huge number of atmospheric remote sensing
instruments and techniques have been designed for atmospheric chemistry. In gen-
eral, remote sensing techniques are categorized into two main groups, i.e. passive
and active. In addition, remote sensing is also subdivided on the basis of observation
geometries, platforms and spectral coverage.

In the attached articles, ozone data observed from two limb sounding instruments
SMR (Sub-Millimetre Radiometer) and SMILES (Superconducting subMIllimeter-
wave Limb Emission Sounder) were used. In the limb sounding technique, atmo-
spheric constitutes are derived from infrared or microwave radiation emitted by the
atmosphere along the line of sight (LOS). The limb viewing geometry is illustrated
in Figure 3.1. The limb sounding instruments obtain measurements at numerous
tangent altitudes z0. Most information in the emission originates near the tangent
point s0 because the LOS passes through comparatively narrow layers above s0 due
to the exponential decrease in pressure with height. The 90 ◦ down looking nadir
sounding geometry is for the case when the LOS crosses the surface and s0 is found
below the ground. Compared to the nadir geometry, limb viewing has advantages
such as better vertical resolution and enhanced sensitivity to trace constituents. A
disadvantage of limb viewing on the other hand are the higher probability of cloud in-
terference.Both SMR and SMILES employ microwave emission detectors, which offers
some insensitivity to clouds.

3.2.1 Odin/SMR

Odin is a Swedish-led satellite mission in association with Canada, Finland and
France. The Odin mission was designed for radio astronomy and limb sounding
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Figure 3.1: A schematic diagram of a limb emission observation geometry. The instru-
ment flies at the height of zr from the surface and receives emissions along the line of sight
(LOS). The lowest altitude z0 of the LOS is called the tangent altitude. The tangent
point is defined by the position s0 on the LOS.

of the Earth’s middle atmosphere [Murtagh et al., 2002, Nordh et al., 2003]. Odin
was launched on 20 February 2001 into a sun-synchronous polar orbit with an in-
clination of 98 ◦ at altitude of ∼ 600 km, and descending and ascending nodes at 6
and 18 hours local solar time respectively. Odin carries two different limb sound-
ing instruments, OSIRIS (Optical Spectro- graph/InfraRed Imaging System) and
SMR (Sub-Millimetre Radiometer). The SMR instrument is made up of four tunable
single-sideband Schottky-diode heterodyne microwave receivers which are connected
to autocorrelation spectrometers [Frisk et al., 2003]. The ozone and N2O datasets
used in paper A and B are products of the Chalmers processor version 2.1 [Urban
et al., 2005a].

The SMR ozone profiles are retrieved from the emission line at 501.5 GHz. The
altitude range is from approximately 17 km to 50 km with an altitude resolution
of 2.5–3.5 km. An estimated single-profile precision is less than 20 % (∼ 1.5 ppmv)
[Urban et al., 2005a, 2006]. Validation studies of the SMR v2.1 ozone against balloon
sonde measurements has been carried out by Jones et al. [2007] and Jégou et al.
[2008].

The N2O profiles retrieved from the emission line at 502.3 GHz and cover altitudes
in the range 12–60 km with a resolution of ∼1.5 km. The estimated systematic error
is less than 12 ppbv [Urban et al., 2005a]. The validation of the N2O is reported by
Urban et al. [2005b]. Other measurement comparisons with the Fourier Transform
Spectrometer (FTS) onboard the Atmospheric Chemistry Experiment (ACE) and the
Microwave Limb Sounder (MLS) on the Earth Observing System (EOS) Aura satellite
are shown by Strong et al. [2008] and Lambert et al. [2007], respectively.
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3.2.2 SMILES

SMILES (Superconducting subMIllimeter-wave Limb Emission Sounder) is a passive
atmospheric sensor attached to the Japanese Experiment Module (JEM) on board the
International Space Station (ISS). SMILES was developed to measure vertical pro-
files of middle atmospheric species related to ozone chemistry by the Japan Aerospace
Exploration Agency (JAXA) and the National Institute of Information and Communi-
cations Technology (NICT). SMILES was in operation from October 2009 until April
2010 providing atmospheric composition data typically within the latitude range of
38 ◦ S – 65 ◦N [Kikuchi et al., 2010]. Approximately 1630 scans are obtained per day.
Since the ISS has a non sun-synchronous orbit, the local time of SMILES measure-
ment locations evolve over 24 h after 1 – 2 month. SMILES detects the ozone emission
line at 625.371 GHz. An Acousto-Optical Spectrometer (AOS) with a bandwidth of
1.2 GHz with a resolution of 1.2 MHz produced the spectra. The superconductor-
insulator-superconductor (SIS) mixers provided a low measurement noise; less than
0.7 K for a single AOS channel and a single spectrum. See Kikuchi et al. [2010] and
Kasai et al. [2013] for further detail about the SMILES instrumentation.

Ozone data used in paper A were produced by the NICT level-2 chain version
2.1.5. The retrieval method described by Baron et al. [2011] was employed. The
SMILES ozone profile covers altitudes from 16 to 90 km with a resolution of ∼3 - 4
km and ∼6 - 10 km for the stratosphere and mesosphere, respectively. The systematic
error is lower than 0.3 ppmv in the stratosphere. The SMILES NICT ozone data was
validated by Kasai et al. [2013].





Chapter 4

Transport Model

The model used in this thesis is called the DIAMOND (Dynamic Isentropic Assimila-
tion Model for OdiN Data). This model is an off-line wind driven isentropic transport
and assimilation model designed to simulate quasi-horizontal ozone transport in the
lower stratosphere with low numerical diffusion [Rösevall et al., 2007a]. This chapter
deals with the numerical transport model that computes the air flow for understand-
ing the behavior of stratospheric chemical species especially ozone as described in
chapter 2. The assimilation part of the model will be discussed in Chapter 5.

Two major numerical approaches are considered when solving the continuity equa-
tion of a fluid, the Lagrangian and the Eulerian. The idea of the Lagrangian method
is to follow an arbitrary gas or air particle along its path and trace the change of
its direction of motion, density and pressure along its way. On the other hand,
the Eulerian approach focuses rather on the entire fluid field than on individual air
parcels. Most numerical schemes can be divided into two classes based on Eulerian
and semi-Lagrangian.

The Semi-Lagrangian scheme is an adapted Lagrangian approach. This scheme
basically solves the transport problem based on Lagrangian methodology by capturing
the behavior of a limited number of air parcels which initially coincide with a modeled
area. Modeled concentrations at fixed time intervals are interpolated on the initial
model grids. The advantages of semi-Lagrangian schemes are low computational cost
and hence fast calculation time as time steps used in the schemes are not limited by
stability conditions related to the grid spacing. However, the interpolation at each
time interval does not conserve tracer concentrations. Therefore semi-Lagrangian
schemes are not applied in this study.

An Eulerian scheme uses a fixed grid to divide space into small grid boxes. The
transport problem is then solved numerically by estimating the tracer flow in and out
of each box in a large number of discrete time-steps. The Eulerian scheme discretizes
the continuity equation in time and space. Discretization errors in spatial differentia-
tion causes numerical diffusion and oscillation. The Courant-Friedrichs-Lewy (CFL)
condition is a necessary condition for stability while solving certain partial differential

23
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equations. It means that the propagation speed of information must be faster than
the propagation speed of the phenomenon. To achieve a fine grid size in the spacial
domain under CFL condition, the time steps have to be shorter compared to mean
flow. This can make Eulerian schemes quite time consuming, especially when imple-
mented on global latitude/longitude grids that have very fine grid spacing near the
poles. To achieve good numerical robustness, many schemes have been developed.

4.1 Modeling Eulerian tracer transport with low

numerical diffusivity

The model used in the current studies employed the second order moments (SOM)
tracer advection scheme of Prather [1986]. The SOM algorithm is regarded as suffi-
ciently accurate for their many published scientific applications.

Eulerian transport scheme

For a flow field (u, v, w), the advection equation of a (passive or active) tracer ψ in
an Eulerian coordinate is:

∂ψ

∂t
= −u∂ψ

∂x
− v∂ψ

∂y
− w∂ψ

∂z
(4.1)

We begin with the up-stream scheme. The ψ(x, t) donates the continuous tracer
distribution function of an atmospheric constituent. To simplify the explanation, we
consider 1-dimensional equations and describe the discretized physical state ψ at the
center of the grid box x at the time t as below:

Ψi
j ≡ ψ(xj, t

i) (4.2)

ti ≡ i∆t (4.3)

xj ≡ jL. (4.4)

Here ∆t is a temporal resolution (timestep) and L is the grid size. i and j denote the
step number of time and grid, respectively. The Taylor expansion of ψ(x, t) around
the grid box xj is given as

ψj(x, t) = ψ(xj, t) + ψ′(xj, t)(x− xj) +
1

2
ψ′′(xj, t)(x− xj)2 +

1

6
ψ′′′(xj, t)(x− xj)3 + ...

(4.5)
The discretization of ψ(x, t) in an individual grid box should be the mean of ψj(x, t),

Ψi
j =

1

L

∫ xj+L/2

xj−L/2
ψj(x, t) dx (4.6)

= ψ(xj, t) +
L2

24
ψ′′(xj, t) +

L4

384
ψ′′′′(xj, t) + ... (4.7)

By the integration over one grid box, the odd terms in equation 4.5 are canceled out.
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Ideal discretization of the tracer field

The ideal discretization Ψ(x, t) after one time step, which means ψ(x, t) moves to-
wards the point at the distance u∆t without any numerical errors, will be given as

Ψi+1
j =

1

L

∫ xj+L/2−uj∆t

xj−L/2−uj∆t
ψ(x, t) dx (4.8)

Equation 4.8 can be converted under an assumption of positive uj

Ψi+1
j =

1

L

∫ xj+L/2

xj−L/2−uj∆t
ψj−1(x, t) dx+

1

L

∫ xj+L/2−uj∆t

xj−L/2
ψj(x, t) dx (4.9)

= (uj∆t/L)ψ(xj−1, t) + (1− uj∆t/L)ψ(xj, t)

+
L

2
(uj∆t/L)(1− uj∆t/L) (ψ′(xj−1, t)− ψ′(xj, t))

+
L2

24
(ψ′′(xj−1, t)− ψ′′(xj, t))

+
L2

24
(1− 2uj∆t/L)3 (ψ′′(xj−1, t)− ψ′′(xj, t)) + ... (4.10)

The first order upstream scheme

An updated Ψi+1
j by taking the first order upstream difference scheme is obtained as

following expressions,

Ψi+1
j =

{(
(L− |uj∆t|)Ψi

j + |uj∆t|Ψi
j−1

)
/L if uj ≥ 0(

(L− |uj∆t|)Ψi
j + |uj∆t|Ψi

j+1

)
/L if uj < 0

(4.11)

Hence the expansion of Ψi
j presented in equation 4.7 and the first order upstream

scheme gives,

Ψi+1
j = (uj∆t/L)ψ(xj−1, t) + (1− uj∆t/L)ψ(xj, t)

+
L2

24
((uj∆t/L)ψ′′(xj−1, t) + (1− uj∆t/L)ψ′′(xj, t))

+
L4

384
((uj∆t/L)ψ′′′′(xj−1, t) + (1− uj∆t/L)ψ′′′′(xj, t))

+... (4.12)

Comparing to the ideal case described in equation 4.10, some terms such as a first
order derivative are not included in first order upstream scheme. The omitted terms
correspond to and produce numerical diffusion with the diffusion constant D =
uL/2 (1 − u∆t/L). A fine grid is needed to reduce the numerical diffusivity of the
first order upstream scheme.
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Second Order Moments

The basic idea of the SOM algorithm is that the quality of the transported field can be
better preserved by tracking the moments of the sub-grid scale tracer distribution up
to order 2. According to Prather [1986], the vector space of orthogonal polynomials
can be expressed as the functions of Kj(x). Each polynomial is expressed below,

K0(x) = 1

Kx(x) = x− L

2
(4.13)

Kxx(x) = x2 − Lx+
L2

6

The tracer distribution in one grid can be approximated with ignoring moments of
order 3 and higher,

ψj(x) = m0K0 +mxKx(x) +mxxKxx(x), (4.14)

with coefficients mq represented in

mq =

∫ L/2
−L/2 ψj(x)Kq(x) dx∫ L/2
−L/2K

2
q (x) dx

(4.15)

Note that m0 is thus the average tracer concentration described in Equation 4.7 while
mx and mxx denote the gradient of the tracer field in a grid box and the curvature,
respectively. In SOM, the following quantities Sq are also defined:

Si0,j =
∫ L

0
ψij(x)K0(x)dx = mi

0,jL

Six,j = 6
L

∫ L
0
ψij(x)Kx(x)dx =

mi
x,jL

2

2
(4.16)

Sixx,j = 30
L2

∫ L
0
ψij(x)Kxx(x)dx =

mi
xx,jL

3

6
.

All of quantities have the units of tracer concentration times grid size. Thus these can
be called moments of the tracer concentration. Considering the case where fluid in grid
box j−1 with width δ = u∆t is transported into the next box j and an equal volume
is flushed out from the box j (see Figure 4.1). The discretized tracer concentration
Ψi+1
j is equal to mi+1

0,j and thus can be calculated from Si+1
0,j . To determine the moment

Si+1
0,j , each grid cell is subdivided before transport into left and right boxes. Using

superscripts L and R to refer to left and right sub-grids, moments are given as

SL,i0,j = (1− α)
[
Si0,j + αSix,j + α(1− 2α)Sixx,j

]
SL,ix,j = (1− α)2

(
Six,j + 3αSixx,j

)
(4.17)

SL,ixx,j = (1− α)3Sixx,j
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LHS	 RHS	 LHS	 RHS	

box ( j-1 )	 box ( j )	
L	

Ψi(x)	 Ψi+1(x)	

δ=uΔt	

Figure 4.1: Schematic picture of transportation of the tracer distribution ψ(x). ψi(x)
in box(j − 1) at time ti moves to rightward by a distance δ = u∆t. The new distribution
ψi+1(x) after one iteration can be a superposition of the moments of ψ(x) in the left hand
side (LHS) and right hand side (RHS) sub-boxes. Adapted from Hofmann and Morales
Maqueda [2006].

and

SR,i0,j−1 = α
[
Si0,j−1 + (1− α)Six,j−1 + (1− α)(1− 2α)Sixx,j−1

]
SR,ix,j−1 = α2

(
Six,j−1 − 3(1− α)Sixx,j−1

)
(4.18)

SR,ixx,j−1 = α3Sixx,j−1

where α = δ/L. The resulting moments over the entire grid cell j after ∆t will be
calculated as the combination of moments of the left box and the right box,

Si+1
0,j = SR,i0,j+1 + SL,i0,j

Si+1
x,j−1 = αSR,ix,j−1 + (1− α)SL,ix,j + 3

[
(1− α)SR,i0,j−1 − αSL,i0,j

]
(4.19)

Si+1
xx,j−1 = α2SR,ixx,j−1 − (1− α)2SL,ixx,j

+ 5
{
α(1− α)(SR,ix,j−1 − SL,ix,j ) + (1− 2α)

[
(1− α)SR,i0,j−1 − αSL,i0,j

]}
.

The SOM method achieves the transportation with very low numerical diffusion
at the cost of its large memory demand. The SOM method requires storing not only
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the mean tracer value Ψ but also the first- and second-order moments. In the two-
dimensional case the number of moments per grid box increases to 6 because a cross
moment i.e., Sxy is also needed.



Chapter 5

Data assimilation

Numerical models are powerful tools for studying chemical and atmospheric transport
processes and monitoring ozone depletion. The result obtained from the models have
been analyzed to investigate the relative roles of each process described in previous
chapters. However, current model performance is still imperfect at reproducing the
observed variability in the concentrations of ozone. This is due to uncertainties in
chemical reactions, emissions, convective and diffusive transport and the complexity
of physical processes in the model. These uncertainties make it hard to simulate
detailed temporal and spatial structures in the stratospheric environment. Data as-
similation (DA) is a technique that allows us to combine observational information
and a numerical model in an optimal way. The basic concept of DA is to calculate a
weighted average. The mathematical form of the weighted average is given as,

Ψ̂ =

∑n
i ωiΨi∑n
i ωi

(5.1)

Here Ψ̂ and ω are the estimated states and the weights, respectively. Different DA
approaches can be categorized by how to give the weights. There are two approaches
to estimate weights in this chapter: these are the Minimum Variance (MV) and
the Maximum of A Posteriori (MAP). The MV estimator results in the conditional
mean of posterior probability density functions (PDF) while the MAP leads to the
conditional mode instead.

5.1 Variation of Data assimilation technique

5.1.1 Optimal Interpolation

Optimal Interpolation (OI) is a simple and basic method and based on the MV
estimator. Following to Daley [1991] (chapter 4), we describe the discretized model
in time as

Ψt+1 = M(Ψt) + εft (5.2)
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where Ψ is a true state vector, M denotes the state transition model and εft is the
process noise. At time t an observation yt of the true state Ψt is made according to

yt = Ht(Ψt) + εot (5.3)

where εo is the observational noise with covariance R. Ht is the observation model
used to interpolate the state in the real atmosphere on the model grids to the positions
of the observation. A model state Ψb is also considered, which has the background
error εb = Ψb − Ψ with covariance B. Under the assumption that the variations of
the observation model H are linear: for any Ψ close enough to Ψb, an estimated (or
analysis) value Ψa is given by the following formulas:

Ψa = Ψb + K(y −H(Ψb)) (5.4)

K = (B−1 + HTR−1H)−1HTR−1

= BHT (HBHT + R)−1 (5.5)

where H is a linear operator of H. The covariance for the estimated state can be
calculated as

Pa = B(I−KT ) = (I−K)B (5.6)

5.1.2 Variational method

The variational method is one of the major streams in DA. This method is based on
the MAP. The three-dimensional analysis (3D-Var) and the four-dimensional analysis
(4D-Var) are famous DA schemes using variational methods.

The analysis state of 3D-Var can be derived by minimizing the following cost
function,

J = (y − H (Ψa
0))T R−1(y − H (Ψa

0)) + (Ψa
0 −Ψb

0)T B−1(Ψa
0 −Ψb

0) (5.7)

OEM discussed in section 3.1.4 is also a version of the variational method for the one-
dimensional case. Thus equations to estimate optimal states such as 5.7 are equivalent
to equations 3.18-3.24 except for the notation1). Note that under the assumption of
the Gaussian background and observation errors, the complete posterior PDF can
be obtained and the MAP estimator is equivalent to the MV. For linear observation
operators and Gaussian error statistics, 3D-Var and OI are therefore equivalent.

The 4D-Var is a simple generalization of the 3D-Var for four dimensional obser-
vations and currently used in many meteorological predictions by ECMWF, SMHI,
Meteo-France, UK MetOffice, JMA etc. The cost function is extended to,

J =
t∑

n=0

(yn − H̃n(Ψa
0))T R−1(yn − H̃n(Ψa

0)) + (Ψa
0 −Ψb

0)T B−1(Ψa
0 −Ψb

0) (5.8)

1)The notations in equations 3.18-3.24 can be converted for the 3D-Var as follows; x → Ψ,
F(x)→ H (Ψ), K→ H, Sy → R and Sa → B.
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where H̃t(Ψ
a
0) = H (Mt(Mt−1(· · ·M1(Ψa

0))). By using tangent linear operators H̃t of
H̃t and M of M, the gradient g (= ∂J/∂Ψ0) is

g =
t∑

n=0

H̃T
n R−1(yn − H̃n(Ψa

0)) + B−1(Ψa
0 −Ψb

0) (5.9)

=
t∑

n=0

MT
0 MT

1 MT
2 · · · MT

n−1 MT
n HT

n R−1(yn − H̃n(Ψa
0))

+ B−1(Ψa
0 −Ψb

0) (5.10)

here MT
t is called as an adjoint of the transition model M. The first term in equation

5.10 indicates that the information of differences between the model and measure-
ments propagates backward in time.

The variational methods compute optimal initial states by minimizing the cost
function J. The 4D-Var scheme thus produces continuous analysis states which not
only agree with observations but also following the processes in the model. Other
advantage of 4D-Var is that it is available for complex nonlinear models. Further-
more, it is possible to enforce external constraints by inserting additional terms into
cost function. On the other hand, the primary difficulty in implementing 4D-Var
schemes is the need to develop an adjoint model for the system. In addition, the
variational scheme requires several iterations to get optimal values. This fact makes
the computational cost high.

5.1.3 Kalman filter

The Kalman filter (KF) is based on the MV estimator in the framework of a sequential
DA as well as OI. The analysis equations of the linear KF are exactly the same with
equations already described in the OI method. The weight K is now also called
”Kalman gain”. The cycle of KF is performed with the following steps,

1. Initial forecast of the state by the model,
2. Kalman gain computation,
3. State calculation and error analysis,
4. State and error covariance forecast for the next time step.

The main difference between KF and OI is the updating of the error covariance matrix
B in step 4. The analysis error covariance Pa is estimated from equation 5.6 and is
also transported by the model. From equation 5.2, the forecast background error
covariance matrix B in the time step ∆t can be calculated as

Bt+1 = MtP
a
tM

T
t . (5.11)

Storing and transporting of full covariance matrices make the computational cost
expensive. Moreover, model calculations by using a linearized matrix M of the trans-
portation may become numerically unstable [Ménard et al., 2000]. The DIAMOND
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model adapted a less computationally expensive method suggested by [Ménard et al.,
2000]. In this method the error covariance matrix B would be replaced by an empir-
ical correlation function F(i,j) and the estimated error standard deviation in model
grids σ,

Bi,j = σiσjF (i, j), (5.12)

where i and j are indexes of the model grid. The correlation function F is assumed to
be a function of the geographical distance, r(i, j), between each grid point and to be
a Gaussian function tuned by an empirical parameter L to fit to the transport model.

F (i, j) = exp

(−r2(i, j)

2L2

)
(5.13)

The σ is advected by the model described in chapter 4 along with the tracer Ψ.
When the tracer is assimilated, the σ should be updated by equation 5.6. Equation
5.6 can be written for the assimilated σ as

(σa)2 = (σb)2 − diag(KBT) (5.14)

For the additional factors in error development such as missing chemical process in
the model or imperfection of the transport scheme, a linear increment with time has
been used to approximate the growth of uncertainty in the tracer fields [Rösevall
et al., 2007a].

σt+∆t = σt + kσ ·∆t (5.15)

The error growth is terminated when σ reaches the standard deviations expected in
a climatology.



Chapter 6

Estimation of ozone loss

The subject of this thesis is to present a decadal series of ozone loss quantified by
assimilating Odin/SMR data into a low diffusive transport and assimilation model
DIAMOND. Assimilating a long record of Odin/SMR stratospheric ozone measure-
ments is used to produce an ozone field in the transport model prior to the onset of
ozone destruction in the polar vortex that occur when sunlight comes back to high
latitudes in the early polar spring. Passively transported ozone fields without any
further assimilation during the polar winter and spring can be useful as a reference
fields describing the ozone layer that would have existed for the case of no polar ozone
depletion occurring in the stratosphere. In this study, ozone depletion is subsequently
mapped and quantified by subtracting the passively transported reference ozone fields
(passive ozone) from ozone fields that have been continuously forced by assimilation
of satellite data;

∆Ψn ≡ Ψa
n −Ψp

n, (6.1)

where ∆Ψn, Ψa
n and Ψp

n represent chemical ozone change, active ozone and passive
ozone at time n, respectively.

The passive ozone fields can alternatively be compared to individual satellite ozone
profiles. And the vortex mean ozone loss can be calculated statistically as an averaging
value of such comparisons. However satellite observations do not always evenly cover
the entire polar vortex. This fact leads to that estimated ozone depletion may have
local biases in measurements. On the other hand, assimilation of satellite datasets
allows us to distribute the ozone mixing ratios at different locations in the stratosphere
in a statistical way. Subtraction of passive ozone from active ozone is thus a beneficial
method for visualizing ozone destruction. In addition, assimilating a large data set of
satellite measurements can furthermore includes less random noise in measurements
than using individual satellite measurements.
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6.1 Development of the estimation of ozone deple-

tion based on data assimilation information

The estimation of ozone loss described as above requires at least two calculations,
i.e active ozone fields and passive ozone fields. Currently a new less computationally
intensive method to estimate ozone loss based on the data assimilation technique has
been developed. The new method is described by the following equation.

∆Ψn =
n−1∑
p=0

Mn,n−pI(n− p) (6.2)

Here I(n) is an analysis increment at time n, and Mn,n−p is a transport model from
time n − p to n. The analysis increment, which is given as the second-term on the
right hand side in equation 5.4 in a Kalman filter, can be expressed as,

I(n) = Ψa
n −Mn,n−1Ψa

n−1, (6.3)

The propagation of the analysis increment from n− 1 to time n is given as

Mn,n−1I(n− 1) = Mn,n−1Ψa
n−1 −Mn,n−2Ψa

n−1, (6.4)

and similarly we get

Mn,n−2I(n− 2) = Mn,n−2Ψa
n−2 −Mn,n−3Ψa

n−3, (6.5)

for different time periods. The right hand side of Equation 6.2 is a summation of
equations 6.3, 6.4 and 6.5 up to n− (n− 1),

n−1∑
p=0

Mn,n−pI(n−p) = I(n)+Mn,n−1I(n−1)+Mn,n−2I(n−2)+...+Mn,1I(1)

= Ψa
n −Mn,0Ψa

0. (6.6)

Since the passive ozone is initialised with the initial analysis (time 0),

Ψp
n = Mn,0Ψa

0. (6.7)

Thus equation 6.2 theoretically equals to equation 6.1. This also demonstrates that
the the ozone loss estimation described in appended papers is the exact accumulated
ozone change due to chemical reactions which are not included in a transport model.
Since the new method is based on use of analysis increment, we call it ”increment
method” in the following paragraph.
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Figure 6.1: An example of the increment method compared with our standard ozone loss
estimation. Panels (a) and (b) show the horizontal distribution of chemical ozone change
on 30 March 2011 at a potential temperature of 500K derived using the standard method
and the increment method described in equation 6.1 and 6.2, respectively. Odin/SMR
544 GHz ozone measurements were assimilated into a 2D advection model to obtain these
maps. The analysis period of this experiment is from 1 Jan 2011 to 30 March 2011.
Ozone loss is illustrated as blue areas, while the red aresa shows regions of production.
The difference between (a) and (b) is presented in the panel (c).

Evaluation of the increment method has been performed using the DIAMOND
model and Odin/SMR 544 GHz ozone. Figure 6.1 shows an example of a comparison
between the previous and new methods. We have excellent agreement between two
methods in the results of several experiments on the 2D advection model. However
these two ozone maps never perfectly match, since the numerical schemes of the
active and passive ozone fields and the increment fields are different. For the case of
a three months run in the 2D advection model, the maximum discrepancy between two
ozone change calculations is approximately ± 0.2 ppmv. Further development of this
methodology requires some more tasks to be solved. For instance, in experiments
examining Antarctic ozone loss with the 3D advection model, larger discrepancies
occurred below 500K inside the polar vortex. This was because the increment method
detected unexpected ozone enhancement at the height. We do not yet have a clear
understanding of this. It may in part be due to larger numerical diffusion that can
be generated by the additional vertical transport and attending boundary conditions.
Further study is in progress.





Chapter 7

Summary of papers

7.1 Summary Paper A

Paper A studied ozone depletion for the 2009/2010 Arctic winter using measurements
taken by the Odin/SMR and SMILES instruments. The object of the paper was to
illustrate the applicability of the high sensitivity ozone measurements observed by
SMILES for polar ozone loss assessment despite the lack of full geographical coverage.

To begin with, a new scheme for calculating the vertical transport was directly
introduced into the DIAMOND model and tested for the long-lived species N2O. As
noted in Section 2.1, vertical motions can normally be ignored when using potential
temperature as a vertical coordinate in the stratosphere. However, there is a strong
cross isentropic descent inside the vortex due to radiative cooling of air masses during
the polar night . In the previous work using the DIAMOND model the diabatic de-
scent was taken into account by tracing N2O [Rösevall et al., 2007a,b, 2008]. Rösevall
et al. [2008] also used the diabatic heating rate Q [K/sec] derived from SLIMCAT
3d chemical transport model calculations [Chipperfield, 2006] to estimate contribu-
tions of the vertical transport and added the contributions on the ozone loss amount
post-priori. In order to improve the methodology, the first-order upstream method
was implemented because the general descent rate is small enough to satisfy the CFL
condition. Model calculations with the new vertical transport scheme showed good
performance when comparing modelled N2O fields and assimilated N2O fields.

The ozone loss for the 2009/2010 winter was quantified by subtracting modelled
ozone from the assimilated ozone fields. Instrumental biases due to geographical
issues such as the number of available measurements and the measurement precision
appeared in assimilated ozone results as differences between SMILES and SMR. Paper
A reported that the vortex mean of the SMILES assimilation tends to emphasize the
contribution near the vortex edge, which results in larger ozone loss estimates for the
SMILES assimilation for all periods. However assimilations from both instruments
show clear similarities in the ozone distributions and their time evolution. Paper
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A concluded that approximately 1 ppm (20%) ozone loss occurred and that two
mechanisms were found to be behind the loss in the 2009/2010 winter. Chlorine
catalytic ozone destruction chemistry (see section 2.4) was dominant below a potential
temperature of 500K from the middle of January. Other chemical reactions related
to NOx can be considered to induce depletions above the 600K potential temperature
surface which where observed from the end of January.

7.2 Summary Paper B

Chemical ozone losses during the 2002–2013 winters were estimated by using Odin/SMR
ozone measurements. For the first time, we have shown the inferred ozone loss derived
from SMR ozone retrieved from a emission line centred at 544 GHz in this paper.

An internal comparison between the two datasets of 501 GHz and 544 GHz ozone
has been carried out. The comparison showed a clear improvement in the results
when using the 544 GHz ozone particularly in the early polar spring periods. Paper
B also compared the loss in the 2004/2005 Arctic winter to the losses derived from
other methods and instruments as presented in Sonkaew et al. [2013]. The comparison
suggests that our ozone loss estimate is in agreement with other results within the
error range although slightly smaller. 544 GHz ozone loss in the Arctic 2004/2005
winter is in good agreement with SCIAMACHY loss below 450K, while showing no
loss around 550K where SCIAMACHY detected 0.5 ppmv loss. The comparison with
Antarctic ozone depletions by Kuttippurath et al. [2015] shows agreement with MLS
ozone loss within 0.1 ppmv, while our results were constantly 0.3 ppmv lower than
Mimosa-Chim model calculations.

In the Northern hemisphere, our results show large inter-annual variability. Three
types of chemical ozone losses are found to occur in cold, warm winters and winters
intermediate between cold and warm. The cold type loss maximises in March below
500K as in the Southern hemisphere. For cold type loss, the maximum loss happened
in 2010/2011 with a loss in volume mixing ratio of 2.1 ppmv at 450K. In the warm
winters losses of 1.5 ppmv took place at 700K and are related to the occurrence
of major sudden stratospheric warming (SSW) events in January. In the Southern
hemisphere during the 2002 to 2012, chemical ozone losses generally started in mid-
August and grew to 2.5 ppmv by the end of October. The vertical extent of this
loss was 425 – 550K. Small inter-annual variability was seen. Antarctic winters had
approximately 80 DU loss in the stratospheric column, except for 2002 when an
unusual SSW occurred in the mid-September. In both hemisphere stratospheric ozone
columns show a small increase, nevertheless the statistical confidence is not high
enough to conclude that recovery is underway.
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7.3 Summary Paper C

In paper B, we found different types of chemical ozone loss in the northern hemisphere
characterised by different altitude ranges and periods of maximum peak loss. These
are the halogen-induced loss in the lower stratosphere and the NOx-induced loss in the
mid-stratosphere. Konopka et al. [2007] showed that NOx-induced loss is comparable
to ClOx-induced loss, in a case study of the SSW in 2002/03 winter. They concluded
that meridional transport from lower latitudes is the main reason of the NOx-induced
loss in 2002/03 winter. This paper re-assessed and quantifies their conclusions over a
much longer period having more major SSW events. In this study we have extended
the analysis period for each assimilation experiment until the end of April to see how
ozone loss occurs even in the weak polar vortex or remnants of the vortex after the
final warming.

We focused on the loss in the 2010/2011 winter to investigate the halogen-induced
loss. The very strong vortex during the winter perfectly separated ozone change
distributions in the lower and middle stratosphere, which created the largest depletion
in the last decade. We also found that similar tendencies are seen in the other
relatively cold winters, such as 2004/05 and 2007/08. We selected the four winters
2003/2004, 2005/2006, 2008/2009 and 2012/2013 due to their prolonged zonal wind
reversal and performed a composite calculation. Then we compared the composite
with the loss of winter 2010/2011 as a representative of the halogen-induced case.
Pronounced mid-stratospheric ozone losses are consistent with occurrences of such
major SSW events, and their attendant large transport from lower latitudes.





Chapter 8

Outlook

This thesis quantifies ozone depletions in several Arctic and Antarctic winters using
a long record of stratospheric ozone profiles measured by Odin/SMR and a data
assimilation technique. According to paper B and C, ozone holes in the Southern
hemisphere have continued to occur during the last decades, while large inter-annual
variability in ozone loss is found in the Arctic lower and middle stratosphere. Hence
it is still necessary to monitor stratospheric ozone depletion and its feedback on
atmospheric processes.

During the past two decades, 1990-2010, many satellite missions based on limb
observation have been launched.These satellite missions have provided vertically re-
solved profiles of many atmospheric constituents with an unprecedented spatial and
temporal coverages. It allows us to use a large number of measurements of chemi-
cal species, both long-lived and short-lived, that are important to conduct scientific
studies. At the time of writing the golden age of middle atmospheric observations has
nearly ended. ENVISAT and its instruments were lost in April 2012. JEM/SMILES
failed in April 2010. The other missions (Odin OSIRIS and SMR, SCISAT-1 with
ACE and MAESTRO, Aura with MLS and OMI, and TIMED with SABER) are
getting older and are far beyond their expected lifetimes. The NASA OMPS and
SAGE-III are short term missions, and provide limited set of species. Furthermore
SAGE-III will not see over the poles.

Filling gaps in observations by using DA

In the future we may have to depend more upon numerical models than real mea-
surements to study phenomena in the middle atmosphere. Model predictions however
vary depending on initial settings, parameterisation and boundary conditions. DA
can play a role model calculations by providing optimal use of the few available mea-
surements and thus help to compensate for the lack of limb observations. This also
allow us to assess the impact of chemical species, which have significant sources and
sinks that are difficult to model accurately, on stratospheric ozone.

As described in section 2.2.2, EPP in the mesosphere and upper stratosphere can
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Figure 8.1: Correlation between assimilated NO and estimated ozone change inside the
polar vortex [EQL 70 ◦N : 90 ◦N ] at the potential temperature of 900K in 2010/2011
(left panel) and 2012/2013 winters (right panel). The colour indicates a number of days
from 1 January 2011 and the central date of SSW in 2013 (6 January 2013), respectively.
The dots with border show when SMR NO measurements constrained the analysis. In
other words, NO without a border is mostly values interpolated by the transport model.

generate NO which is rapidly converted into NO2. NOx can descend into the mid
polar stratosphere, reacting with other molecules along the way. Hence it is expected
that mesospheric NOx can change the amount of stratospheric ozone. However no
observations have found significant evidence for its impact on ozone loss. SMR ob-
serves NO, which is retrieved from an emission line centred at 551.7 GHz over an
altitude range of 30 to 115 km with a vertical resolution of about 7 km [Sheese et al.,
2013]. NO measurements from this frequency channel were available only one day per
month before 2007, and approximately four days per month since 2007. I attempted
DA of SMR NO as well as ozone in order to obtain a better interpolation in time and
space constrained by transport in the atmosphere. Figure 8.1 presents correlation
plots between assimilated NO and inferred ozone loss in 2010/2011 and 2012/2013
Arctic winters, respectively, at the potential temperature of 900K which is the lower
altitude limit of the NO measurement. The two loss peaks at the right and centre in
figure 8.1 can be explained with horizontal mixing of NOx-rich air. Due to the major
SSW in January 2013, losses are larger. The 2013 winter has an additional third
peak in the loss around 90 days from the SSW, which is not seen in winter 2011. The
period of this third peak in loss is consistent with when an unusually strong tongue
of NO descent reached 40 km (∼900K) [Pérot et al., 2014]. However since the current
version of the DIAMOND model does not include any chemistry the NO assimilation
is highly uncertain as we do not correctly handle NO2-NO conversion.
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Supplement the DIAMOND model with full chemistry

In order to obtain correct estimates of ozone and related species, we have to consider
ozone chemistry since stratospheric ozone interacts with many other species. Ozone
chemistry is very complex (e.g see in chapter 2). In future work a full chemistry
scheme should be introduced into the passive transport scheme. This will allow us
to predict local scale chemical conditions in the atmosphere in a manner similar to
numerical weather predictions (NWPs). However the chemical forecast is more chal-
lenging than NWPs [Lahoz and Errera, 2010]. The full scale chemistry would need
several species to be assimilated and transported. The chemical time scales differ
widely in the atmosphere. And the chemical equations are strict and their effects are
clearly seen as strong correlation between species. Therefore chemical predictions re-
quire accurate specification of sources and sinks, parametrization of physical processes
and radiation, and chemical initial conditions as well as dynamical parameters. The
BASCOE (Belgian Assimilation System for Chemical ObsErvations) system based on
4D-Var is one of the DA system with full chemistry [Errera et al., 2008, Errera and
Ménard, 2012]. However that system requires considerable computing power. In this
thesis I showed a new methodology to extract chemical ozone change information,
which can make a analysis speed up. The final goal of the DIAMOND is a minimal
DA system with full chemistry and the increment method so that we can take an
instant photo of the responses of chemical species to the atmosphere with ease.
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50 Bibliography

D Moore, H Nakane, M C Parrondo, A D Risley, P Skrivankova, R Stübi, P Vi-
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J D Rösevall, D P Murtagh, J Urban, A K Jones, and Others. A study of polar
ozone depletion based on sequential assimilation of satellite data from the EN-
VISAT/MIPAS and Odin/SMR instruments. Atmos. Chem. Phys., 7(3):899–911,
2007b. doi: 10.5194/acp-7-899-2007. URL http://www.atmos-chem-phys.net/

7/899/2007/.
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