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Abstract

In a burning plasma, such as the next generation tokamak experiment ITER,
significant numbers of highly energetic particles will be produced via nuclear
reactions. The presence of energetic particles, be it fusion born alpha particles
or ions accelerated by auxiliary heating schemes, may excite kinetic instabili-
ties and thereby affect the heating and transport of all particles in the plasma.
Of particular interest is the toroidal Alfvén eigenmode (TAE), a cavity mode
that can be excited by super Alfvénic ions as they slow down due to friction-like
collisions with the background plasma and eventually hit the wave-particle res-
onances. Such modes have attracted much attention during almost 30 years,
since their detection provides diagnostic opportunities to probe the plasma
core. However, their presence and long-term behavior are still far from un-
derstood. They may have detrimental effects on the plasma confinement and
heating, but can potentially also be utilized as a collisionless way to channel
power from the fast ions to the bulk plasma.

In this thesis we employ linear and nonlinear analysis to study fast parti-
cle driven TAEs whose signals exhibit frequency sweeping. Their existence is
tied to the formation and evolution of phase space structures known as holes
and clumps in the non-thermal fast particle distribution. A one-dimensional
“bump-on-tail” model is employed and used to investigate the stability of a
phase space plateau that emerges early in the mode evolution cycle. Fast par-
ticle collisions and sources are included in the analysis in order to substantiate
the role of the plateau as a hole/clump breeding ground from which the fre-
quency sweeping initiates. Furthermore, the ideas of phase-locking of fast ions
orbits in the wave-particle resonances is used to calculate the radial motion of
already established hole/clump modes during the frequency sweeping for the
ideal cases of deeply trapped and well passing particles, and it is proposed that
the intensity of the sweeping signals correlates with the fast ion environment
through which the hole/clump moves.

Keywords: Fusion plasma physics, wave-particle interaction, toroidal Alfvén
eigenmode, bump-on-tail, holes and clumps.
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1
Introduction

Throughout the world there is a steadily increasing demand for energy pro-
duction, more than what the current energy sources can provide for in an
economically feasible and environmentally friendly manner [1]. From an envi-
ronmental point of view, there are limits to how much energy can be supplied
from fossil fuels such as oil and coal. Together with the increasing energy de-
mand in the world it is clear that there is a necessity for new environmentally
friendly energy sources. This is where fusion comes in.

Thermonuclear fusion is the energy source of the stars. It is the process
where two nuclei merge to one nucleus that has a lower binding energy and
therefore energy is released. In order to bring two positive nuclei close enough
to fuse the repulsive Coulomb force needs to be overcome. The tempera-
tures required to accomplish economically feasible thermonuclear fusion here
on Earth is approximately 107 − 108 K, which is higher than the center of the
Sun. At these temperatures the gas is completely ionised and is known as a
plasma.

The most promising candidates for fusion energy production involves the
hydrogen isotopes deuterium (D) and tritium (T) in the following reactions:

D + D −→ He3 + n+ 3.27 MeV (1.1a)

D + D −→ T + H + 4.05 MeV (1.1b)

D + T −→ He4 + n+ 17.58 MeV (1.1c)

The reaction probability and energy output is highest for the D-T reaction,
with the resulting energy shared by the neutron (80%) and the helium isotope
(20%), henceforth referred to as the alpha particle, and will probably dominate
future fusion experiments. However, present day experiments are mainly run
with D-D reactions that have a significantly lower flux of neutrons.
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2 Chapter 1 Introduction

In order to use nuclear fusion as an energy source the plasma needs to
be confined. In stars, confinement of the plasma is provided by gravitation.
Here on Earth, the current main schemes for confinement are inertial fusion
and magnetic confinement. Inertial fusion is the compressing and heating of a
capsule of D-T by uniform radiation from a laser. An outer layer evaporates
with a resulting implosion of the capsule that creates the condition for fusion
to occur. Magnetic confinement, on the other hand, uses the basic fact that
a plasma consists of charged particles which follow magnetic field lines. The
problem is the design of the magnetic field topology for the confinement.

Tokamaks [2] are axisymmetric, toroidal configurations that confine plasma
particles through the use of an externally generated toroidal magnetic field with
a smaller poloidal magnetic field generated inside the device by running cur-
rents through the plasma. There is a large number of tokamak experimental
facilities operating or being constructed, the largest currently in operation is
the Joint European Torus (JET), see Fig. 1.1. JET holds the world fusion
power record of 16 MW from a total input power of 24 MW [3]. The largest
experimental tokamak facility, currently under construction, is the internation-
ally funded facility ITER, which will be almost twice the linear size of JET.
The main objectives of ITER are to momentarily produce ten times more ther-
mal energy from fusion heating than is supplied by auxilary heating and to
maintain a substantially longer fusion pulse (up to eight to ten minutes) than
current experiments [4].

Figure 1.1: Graphic view of JET (left) and MAST (right), obtained from [3].

So far, the performance of a fusion facility is measured by the so called
fusion triple product, niTiτE [5]. Here, ni and Ti are the density and temper-
ature of ions and τE is the energy confinement time, which is the relaxation
time of the plasma due to heat conduction and is tied to the plasma volume.
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In tokamaks, the fusion triple product can also be expressed as βτEB
2, where

B is the magnetic field strength and β is the ratio of particle to magnetic
pressure. In conventional tokamaks, β is limited to a few percent by large
scale instabilities. Spherical tokamaks, like MAST (Mega Ampére Spherical
Tokamak), see Fig. 1.1, are tokamaks with a large ratio of minor to major
radius. This geometry allows it to operate with a considerably higher β. Note
however, that the magnetic field strengh in a spherical tokamak is much lower
due to restraints on the field coils by the more compact geometry.

Tokamak plasmas are heated ohmically by a current in the plasma, though
external heating schemes are also necessary, such as neutral beam injection
(NBI) and radio frequency heating. NBI consists of a highly energetic beam of
neutrals injected into the plasma where they are ionized and heat the plasma
through collisions while radio frequency waves heat the plasma through reso-
nant interaction between circularly polarized waves and the plasma particles.
In a burning fusion D-T plasma, such as in ITER, self-heating by the fusion
generated alpha particles will be important to heat and maintain the plasma
temperature. Common to all these heating schemes is the resulting highly en-
ergetic particles with velocities greatly exceeding the thermal velocity of ions
in the plasma. As these fast particles decelerate due to collisions they transfer
their energy to the background ions and electrons.

The presence of energetic ions, mainly in the plasma core, affects heating
and transport of particles in the plasma [6]. These ions are not in thermody-
namical equilibrium and the free energy available in their velocity distribution
can destabilize wave like perturbations in the equilibrium plasma when the
motion of the fast ions matches that of the wave phase velocity. A desta-
bilization of the perturbation occurs when the fast particle pressure is large
enough to overcome the total damping by the bulk plasma [7]. One important
class of magnetohydrodynamic perturbations is the shear Alfvén waves. These
waves oscillate at relatively low frequencies and propagate at the characteristic
Alfvén speed. The importance of these Alfvén waves is due to the fact that the
magnitude of the Alfvén speed is comparable to, or below, that of the energetic
ions in the plasma. As the ions slow down they can destabilize and interact
with various Alfvénic waves (cf. [8]).

The remainder of this thesis is organized as follows: In Chapter 2, we
consider some properties of single charged particle motion in toroidal geometry.
We also introduce the concept of waves as oscillating perturbations in electric
and magnetic fields in the plasma. Focus lies on the toroidal Alfvén eigenmode
(TAE), which exists due to the toroidal geometry of a tokamak. Finally, we
derive an expression for the radial motion of the TAE due to its interaction
with energetic particles. Chapter 3 is devoted to linear and nonlinear aspects
of wave-particle interaction, where the instabilities are driven by a low density
population of highly energetic particles. We will see that interaction occurs



4 Chapter 1 Introduction

between resonant particles travelling at roughly the phase velocity of the wave
and the wave itself. This interaction leads to exponential damping/growth
of the wave amplitude known as Landau damping/drive. We will employ a
one-dimensional electrostatic “bump-on-tail” model to describe the nonlinear
wave-particle interaction. We discuss the implications of the emergence of
a phase space plateau early on in the mode evolution cycle and calculate a
condition for negative wave energy and marginal stability of modes close to
the plateau edges. We finish with a brief discussion on the connection between
the one-dimensional model and the three dimensional tokamak geometry.



2
Toroidal Systems

Magnetic confinement of plasma particles can be implemented in several differ-
ent ways. Many of these methods utilize externally generated magnetic fields
designed in such a way that the field lines define a torus, i.e a cylinder deformed
until it closes on itself. The most common type of toroidal magnetic confine-
ment device is the tokamak. In tokamaks, the plasma particles are mainly
confined by means of a large magnetic field in the toroidal direction, which is
generated by external coils. This results in circulating particles that follow the
magnetic field lines around the torus. However, a small poloidal field compo-
nent produced by a transformer induced plasma current is also necessary in
order to average out radial drifts. This is because the toroidal magnetic field
varies radially in space, with associated so called ∇B- and curvature drifts of
the particles resulting in a vertical separation of electrons and ions. The charge
separation leads in turn to a potential difference and an associated E×B- drift,
which results in a radial drift outwards of both ions and electrons.

In general, a tokamak cross section may be elliptically elongated, D-shaped
and asymmetric with respect to the horizontal and vertical midplanes. In this
thesis, however, we will use a circular approximation described by the toroidal
coordinates (r, θ, ζ), see Fig. 2.1.

In this chapter we start by introducing the Magnetohydrodynamic model in
Sec. 2.1 that is often used to analyze plasma equilibria and linear perturbations
with low oscillation frequency. Then, in Sec. 2.2, we study single charged parti-
cle motion in the presence of an electromagnetic field in the toroidal geometry.
We start by determining the invariants of particle motion and then use them
to characterize two types of particle orbits. Finally, in Sec. 2.3, we consider
Alvénic waves in cylindrical and toroidal geometry. We discuss the possible
destabilization of these waves due to interaction with energetic particles and
the resulting radial drift of the particles trapped in the wave field.

5



6 Chapter 2 Toroidal Systems

Figure 2.1: Poloidal cross section of a circular tokamak, displaying the
toroidal coordinates (r, θ, ζ). The distance R0 from the toroidal axis to
the geometric center of the cross section is called the major radius and the
minor radius, r, denotes distances within the cross section.

2.1 Magnetohydrodynamic Model

MHD is a single fluid model where macroscopic properties such as densities,
temperatures and pressures are used to describe the plasma. These quantities
are derived from the velocity moments of the distribution function for each
plasma species. When using the moment procedure, it always leads to a sys-
tem of more unknowns than equations so one needs to truncate the series of
moments by some proper assumptions, usually referred to as closure.

In MHD, ion and electron fluids are combined into one single fluid. For the
MHD description to be valid the plasma needs to be collision dominated, i.e
locally Maxwellian, which means that the MHD time scale must be sufficiently
long for there to be adequately many collisions. The displacement current can
then be neglected in Maxwell’s equations. Without the displacement term,
Ampére’s law is not Lorentz invariant, which means that it is only valid for
velocities much lower than the speed of light in vacuum. This is not a problem
in the MHD description, since the time scale is much longer than the time it
takes light to traverse the plasma. Furthermore, the dominant fluid velocity is
the E×B-drift, which means that MHD describes low frequency phenomena.

The characteristic properties of the MHD fluid are expressed by

• the total mass density
ρ ≡ mini +mene , (2.1)
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• the total charge density

ρc ≡ e(Zini − ne) , (2.2)

• the center-of-mass velocity

v ≡ minivi +meneve
mini +mene

≈ vi , (2.3)

• the current density
J ≡ e(Zinivi − neve) , (2.4)

• and the total scalar pressure

P = Pe + Pi , (2.5)

where mi,me, ni, ne,vi, ve, Pi and Pe are the masses, number densities, fluid
velocities and pressure of ions and electrons, respectively, Zi is the ion charge
number and e is the magnitude of the electron charge. With the assumption
of quasi-neutrality, Zini ≈ ne, one finds ρc = 0 and the MHD set of equations
are

• the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0 , (2.6a)

• the momentum equation

ρ
dv

dt
= J×B−∇P , (2.6b)

• the adiabatic equation of state

d

dt

(
P

ργ

)
= 0 , (2.6c)

• the resistive Ohm’s law

E + v ×B = ηJ , (2.6d)

• Ampére’s law (without the displacement current)

∇×B = µ0J , (2.6e)
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• and Faraday’s law

∇× E = −∂B
∂t

. (2.6f)

Here, γ is the ratio of specific heats at constant pressure and constant volume,
η is the plasma resistivity and µ0 is the permeability of free space. Note that
the Maxwell relation ∇ · B = 0 is implied. The fact that the displacement
current is neglected in Ampére’s law also means that

∇ · J = 0 . (2.7)

In many cases a further simplification is made by assuming that the plasma
conductivity is high enough that the right hand side of Ohm’s law can be
neglected. The resulting model is called ideal MHD and one of its consequences
is that the parallel component of the electric field is zero. It is not obvious
that the criteria for ideal MHD are fulfilled. However, it seems to provide an
accurate description of the macroscopic fusion plasma behavior [9] and is thus
frequently used to describe plasma equilibrium and stability of waves. For that
reason we will use it for the basic analysis of low frequency Alfvén waves in
this thesis.

2.1.1 Equilibrium Analysis

Tokamak equilibria are efficiently analyzed by the MHD equilibrium equations
(2.6) under the conditions of no time dependence (∂/∂t = 0) and no plasma
flows (v = 0). The equations describing the static plasma equilibria becomes

J×B = ∇P , ∇×B = µ0J , ∇ ·B = 0 . (2.8)

Note that this implies that
B · ∇P = 0 , (2.9)

which means that the magnetic field lines lie on surfaces of constant pressure.
Since the magnetic field has both poloidal and toroidal components, these so
called flux surfaces close on themselves both toroidally and poloidally, and
must therefore be nested tubes with the innermost known as the magnetic
axis. Hence, P = P (ψ), where ψ, the poloidal flux, is constant along magnetic
field lines, i.e a function only of r. In a toroidal device the poloidal magnetic
flux can be expressed as

ψP =
1

2π

∫
V (r)

B · ∇θ d3x , (2.10)

where d3x = J−1drdθdζ, J is the Jacobian and V (r) is the volume bounded
by the magnetic flux surface of radius r.
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In a tokamak, we may express the magnetic field with a toroidal and a
poloidal component

B = BT + BP , (2.11)

where BT � BP and the toroidal magnetic field strength varies radially as
R−1:

BT ≡
I(r)

R
=

Bs(r)

1 + ε cos θ
. (2.12)

Here, Bs ≡ I(r)/R0, I(r) is the current in the exterior field coils, R0 is the
distance from the axis of symmetry to the magnetic axis and

ε ≡ r/R0 , (2.13)

is the inverse aspect ratio, which is generally small throughout a tokamak.

2.1.2 Linear Stability Analysis

When we have an equilibrium plasma the next step is to look at its stability
properties. To simplify the analysis we will restrict ourselves to linear stability,
and represent the dependent variables as the sum of an equilibrium part plus
a small perturbation,

B = B0 + B1 , J = J0 + J1 , (2.14a)

P = P0 + P1 , ρ = ρ0 + ρ1 , (2.14b)

where the equilibrium and perturbed quantities are denoted by the subscripts
0 and 1, respectively. We can transform the MHD equations to a frame of
reference moving with the equilibrium velocity v0, which means that v =
v1 and, by ideal Ohm’s law, E = E1. The equilibrium quantities are then
functions of space only while the perturbations are of space and time. From
the set of equations (2.6a) - (2.6f), with ideal Ohm’s law, we obtain sets of
equations to zeroth order for the equilibrium (2.8) and to first order for the
stability:

∂ρ1

∂t
+∇ · (ρ0v1) = 0 , (2.15a)

ρ0
∂v1

∂t
= J0 ×B1 + J1 ×B0 −∇P1 , (2.15b)

∂P1

∂t
+ v1 · ∇P0 +

γP0

ρ0

(
∂ρ1

∂t
+ v1 · ∇ρ0

)
= 0 , (2.15c)

∂B1

∂t
= ∇× (v1 ×B0) , (2.15d)

∇×B1 = µ0J1 . (2.15e)
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Since the equilibrium equations (2.8) are independent of time, the zeroth order
quantities (ρ0, P0, B0 and J0) take the form

Q0(r, t) = Q0(r) . (2.16a)

The stability equations are linear, we can represent the perturbations as normal
modes of frequency ω

Q1(r, t) = Q1(r)e−iωt . (2.16b)

If we introduce the perturbed displacement vector ~ξ as

v1 =
∂~ξ

∂t
= −iω~ξ(r)e−iωt , (2.17)

the linear stability equations (2.15) yield [9]

− ω2ρ1
~ξ = F(~ξ) , (2.18)

which is an eigenvalue equation with the frequency ω as the eigenvalue. Here,
F is given by

F(~ξ) =
1

µ0

{
(∇×B0)×

[
∇× (~ξ ×B0)

]
+∇×

[
∇× (~ξ ×B0)

]
×B0

}
+∇(~ξ · ∇P0 + γP0∇ · ~ξ) . (2.19)

What is important to note is that F is Hermitian [9]. This means that ω2 ∈ R.
If ω2 > 0 then ω ∈ R and the solution to (2.18) is a mode with frequency ω,
and if ω2 < 0 then iω ≡ γ ∈ R and there is an instability with Re(ω) = 0.
The eigenvalue problem (2.18) needs to be solved for a given magnetic field in
a certain geometry, with given initial values and boundary conditions. Note
that, it is customary to Fourier transform.

The simplest case of a homogeneous magnetic field in an infinite geometry
results in two kinds of waves, the shear and compressional Alfvén waves. For
us the most interesting is the shear Alfvén wave

ω2 = k2
‖v

2
A , (2.20)

where k‖ is the parallel wave number with respect to the magnetic field and
vA is the Alfvén speed

v2
A ≡

B2
0

µ0ρ0

. (2.21)

This wave propagates along and at angles to the magnetic background field
but the fluctuation in the magnetic field is perpendicular to it (i.e B1 ⊥ B0),
hence the name shear wave. Furthermore, this wave has no density or pressure
fluctuations (i.e P1 = ρ1 = 0) and is therefore said to be incompressible.
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2.2 Guiding Center Motion

In the guiding center approximation the particle motion is decomposed into a
rapid gyration around the so called guiding center position, which drifts along
the field line (with a possible acceleration/deceleration) and a drift across it.
The gyrating motion is known as Larmor gyration and the frequency is the
cyclotron frequency, ωc.

In the absence of wave fields, the trajectory of a particle can be character-
ized by the following three invariants of motion:

• the total particle energy, E

• the generalized toroidal momentum, pζ

• the magnetic moment, µ

To derive the invariants we use the Lagrangian for a single particle in an
electromagnetic field

L =
Mv2

2
+ Ze (v ·A− φ) , (2.22)

where M , Ze and v are the mass, charge and velocity of the particle, φ and A
are the electrostatic potential and magnetic vector potential used to describe
the electric and magnetic field according to

E = −∇φ− ∂A

∂t
, (2.23)

B = ∇×A . (2.24)

The total energy of the particle is given by E = H, where H is the Hamiltonian
of the system and can be found by the Legandre transformation [10]

H = v · ∂L
∂v
− L = W + Zeφ , (2.25)

where W is the particle kinetic energy. By the Euler-Lagrange equation

∂L
∂ri

=
d

dt

(
∂L
∂ṙi

)
, (2.26)

where ri, i = 1, 2, 3, represent the coordinates (in this case (r, θ, ζ)), we find
that

dE

dt
=
dH

dt
= 0 , (2.27)

and hence E is an invariant of particle motion. Note however, that in the
presence of a wave field, L will depend explicitly on time and E is no longer
invariant.
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From the Lagrangian description we also find the second invariant, the
generalized toroidal momentum. The individual components of the canonical
momentum are given by

pi =
∂L
∂ṙi

. (2.28)

By the Euler-Lagrange equation (2.26) we see that whenever the Lagrangian
does not depend on a certain variable, the associated canonical momentum is
an invariant. Thus, for an axisymmetric tokamak, independent on the toroidal
angle ζ,

dpζ
dt

= 0 , (2.29)

where, by equations (2.22) and (2.28), the generalized momentum can be ex-
pressed as

pζ = MR2dζ

dt
+ ZeAζ . (2.30)

Here, dζ/dt is the toroidal angular velocity of the particle and Aζ is the toroidal
covariant component of the vector potential. Using the definition for the vector
potential (2.24) in toroidal coordinates (r, θ, ζ) together with the condition of
axisymmetry, ∂(..)/∂ζ = 0, one obtains expressions for the radial and poloidal
components of the magnetic field

B · ∇r = J
∂Aζ
∂θ

, (2.31a)

B · ∇θ = −J ∂Aζ
∂r

. (2.31b)

The magnetic field (2.11) has no radial component, thus, by Eq. (2.31a),

Aζ = Aζ(r) + C1 , (2.32)

where C1 is a constant. This means that, by Eq. (2.31b),

Aζ = −
∫ r B · ∇θ

J
dr′ + C2r = − 1

2π
ψP ≡ −ψ . (2.33)

Here, C2 is a constant, which we used Gauge freedom to set to zero, and ψP is
the poloidal flux (2.10). We can then express the toroidal momentum (2.30)
as

pζ = MR2dζ

dt
− Zeψ . (2.34)

Note that, in the presence of an external wave field depending on ζ, axisym-
metry will be broken and pζ will no longer be invariant.
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Finally, due to the periodicity of the particles gyration around a magnetic
field line, it can be shown that the magnetic moment

µ =
Mv2

L

2B
, (2.35)

is an adiabatic invariant, i.e constant as long as the gradients in the magnetic
field are sufficiently small as compared to the plasma dimensions and the time
scale of variation is long compared to the gyration frequency. This is true in
a tokamak since the magnetic field varies on a large scale as compared to the
radius of gyration, the Larmor radius, rL. Here, vL = rLωc is the constant
angular velocity of the gyrating particle.

As an example, when there is no electric field, ∇φ = 0, there are no accel-
erating forces and the particle kinetic energy

W =
Mv2

2
, (2.36)

is a constant of motion. Together with the magnetic moment (2.35) we then
write an expression for the particle velocity parallel to the magnetic field in
terms of the invariants of the particle motion,

v‖ = ±
√

2

M
(W − µB) , (2.37)

which changes only due to the variation of B. The guiding center velocity can
then be expressed as [11]

vgc =
v‖
B
B−

v‖
B
B×∇

(
v‖
ωc

)
. (2.38)

Furthermore, when the plasma pressure is much smaller than the magnetic
field pressure, β ≡ P/(B2/2µ0) � 1, the components of the guiding center
velocity, in toroidal coordinates (r, θ, ζ), becomes

dr

dt
= r̂ · vgc =

v‖
r

∂

∂θ

(
v‖
ωc

)
, (2.39a)

dθ

dt
=
θ̂

r
· vgc =

v‖
qR0

[
1− q

ε

∂

∂r

(
v‖
ωc

)]
, (2.39b)

dζ

dt
=
ζ̂

R
· vgc =

v‖
R

[
1 +

ε

q

∂

∂r

(
v‖
ωc

)]
, (2.39c)

where (r̂, θ̂, ζ̂) are unit vectors and q is the safety factor,

q =
B · ∇ζ
B · ∇θ

, (2.40)

i.e the number of toroidal revolutions a field line executes during one poloidal
revolution.
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2.2.1 Trapped and Passing Particles

The magnetic field in a tokamak (2.12) has a maximum poloidally. Due to the
conservation of the magnetic moment µ, this means that particles may bounce
when approaching this maximum, depending on their ratio of perpendicular
and parallel energy. Hence, there are two kinds of particles, trapped and
passing particles. The trapped particles bounce toroidally and poloidally at
the points where their velocities parallel to the total magnetic field vanish,
while the passing particles encircle the magnetic axis and the torus toroidally
and poloidally.

Following [11] we insert the expression (2.12) for the magnetic field into
the expression (2.37) for the parallel velocity and obtain

v‖ =
v‖0
κ

√
κ2 − sin2 θ

2
, (2.41)

where we have defined the trapping parameter

κ2 ≡ W − µBs(1− ε)
2µBsε

, (2.42)

and

v‖0 = v‖(θ = 0) = ±κ
√
µBsε

M
. (2.43)

Note that W and µ are invariants of the particle motion, and that we have used
the large aspect ratio approximation where Bs = constant. Hence, κ2 depends
on the radius r only through the ε-factor. The trapped particles reverse their
motion parallel to the magnetic field at the poloidal angles θB = ±2 arcsinκ
where v‖ = 0. By conservation of energy and magnetic moment, we see that
κ2 < 1 for trapped particles, and that the passing particles satisfy κ2 > 1.
Due to the curvature and ∇B-drifts, the particle orbits may also differ slightly
radially from the magnetic flux surfaces. This is known as finite orbit width
effects, and is the result of the second terms within the brackets on the right
hand side of (2.39b) and (2.39c).

Expressions for the particle guiding center position for trapped and passing
particles can in principle be calculated by integration of equations (2.39a) -
(2.39c). The procedure is to transform time integrals to integrals over the
poloidal angle θ using (2.39b), i.e

dt =
qR0

v‖

[
1− q

ε

∂

∂r

(
v‖
ωc

)]−1

dθ . (2.44)

In practice, however, the integrations can only be carried out as a power series
in ε. In this thesis, all integrations are performed to lowest order, which essen-
tially means that finite orbit width effects are neglected. Thus, all quantities



2.3 Toroidal Instabilities 15

in (2.44) are to be evaluated at the average particle radial position during
a poloidal orbit. This means that averages over the poloidal orbits may be
calculated as

〈...〉B =
1

τB

∫ τB

0

(...) dt =
1

τB

θ(τB)∫
θ(0)

(...)
qR0

v‖
dθ , (2.45)

where

τB =

τB∫
0

dt =

θ(τB)∫
θ(0)

qR0

v‖
dθ , (2.46)

is the temporal period of a poloidal orbit, which, for passing particles, is

τB =

π∫
−π

qR0

v‖
dθ =

4qR0

v‖0
K (1/κ) . (2.47)

Here,

K(k) =

∫ π/2

0

1√
1− k2 sin2 ϕ

dϕ , (2.48)

is the complete elliptical integral of the first kind. The poloidal frequency as-
sociated with the motion is

ωB =
2π

τB
=

πv‖0
2qR0K(1/κ)

. (2.49)

The corresponding expression for the bounce period for trapped particles be-
tween the angles θB = ±2 arcsinκ becomes

τB =
8qR0κ

v‖0
K (κ) , (2.50)

with the bounce frequency

ωB =
2π

τB
=

πv‖0
4qR0κK (κ)

. (2.51)

2.3 Toroidal Instabilities

We now consider a nonuniform magnetic field in a general geometry. The
linearization procedure of Sec. 2.1.2 leads to the following equation [12]

∇ ·
(
ω2

v2
A

∇⊥φ
)

+ B0 · ∇
{

1

B2
0

∇ ·
[
B2

0∇⊥
(
B0 · ∇φ
B2

0

)]}
= 0 , (2.52)
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for the electrostatic potential φ of a shear Alfvén wave with high toroidal mode
number and in the low β limit, where ∇⊥φ = B0 × (∇φ×B0)/B2

0 .
In periodic, toroidal systems, any linear quantity may be Fourier decom-

posed according to

φ(r, θ, ζ; t) =
∑
m,n

φm,n(r)ei(nζ−mθ−ωt) , (2.53)

where m and n are the so called poloidal and toroidal mode numbers. If
the inverse aspect ratio ε is small, as in tokamaks, the equilibrium magnetic
field is dominated by the toroidal magnetic field (2.12). This magnetic field is
symmetric in ζ, but because of the ε cos θ term there is no symmetry in θ. For
Alfvén type instabilities this leads to a coupling between neighboring poloidal
harmonics of φ. If we assume that the mode numbers m and n are large, the
equations describing this coupling are [13][

Lm L1

L1 Lm−1

] [
φm
φm−1

]
= 0 , (2.54)

where

Lm =
d

dr

[(
ω2

v2
A

− k2
‖m

)
d

dr

]
− m2

r2

(
ω2

v2
A

− k2
‖m

)
, (2.55a)

L1 =
ε̂

4q2R2
0

d2

dr2
. (2.55b)

Here, the parallel wave number is given by

k‖m ≡ k ·B0/B0 =
nq(r)−m
q(r)R0

, (2.56)

vA is the Alfvén speed (2.21) and in [14] it was shown that ε̂ ≈ 5r/2R0. Note
that the toroidal mode number n is suppressed in Eqs. (2.54)-(2.56) since it
holds for any large enough n.

2.3.1 Cylindrical Limit

In the cylindrical limit ε → 0, the magnetic field strength (2.12) is constant.
This means that the translational symmetry in θ is restored, and the set of
coupled equations (2.54) decouples into

d

dr

[(
ω2

v2
A

− k2
‖m

)
dφm
dr

]
− m2

r2

(
ω2

v2
A

− k2
‖m

)
φm = 0 , (2.57)

for each poloidal harmonic. A particularly easily found branch of solutions
to (2.57) has ω2 = ω2

A = k2
‖mv

2
A. According to Eq. (2.57), however, such
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modes have logaritmically divergent mode amplitudes and furthermore are
almost completely damped due to the radial dispersion (well defined radial
wave packages simply deconstruct since their constituents travel at different
phase velocities, a process known as phase mixing) [15]. This damping is known
as continuum damping and the radial spectrum of the logaritmically divergent
modes is called Alfvén continuum, whose qualitative behavior is plotted in
Fig. (2.2).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Normalized minor radius, r/a
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Figure 2.2: Qualitative figure displaying the Alfvén frequency ωA, decreasing
along the branch −k‖mn(r)vA(r) from r = 0 until k‖mn = 0 and then increase
monotonically along k‖mn(r)vA(r) to the plasma edge, when n = 5 and m
ranges from 7 to 10.

2.3.2 Toroidal Alfvén Eigenmodes

Toroidal Alfvén eigenmodes (TAEs) are discrete frequency waves [16] that
exist due to toroidicity induced coupling between poloidal harmonics. In the
cylindrical limit, neighbouring poloidal continua cross at the surfaces r = rm
(see Fig. 2.2), where

k‖mvA = −k‖m+1vA ≡ ω0 , (2.58)

which implies that

q (rm) ≡ qm =
2m+ 1

2n
. (2.59)

Inserting (2.59) in (2.58) yields

ω0 =
vA

2qmR0

. (2.60)
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Accounting for toroidicity by letting ε become finite, only affects the proxim-
ity of rm, where small gaps of width ∆ω ≈ ε̂ ω0 are induced in the Alfvén
continuum, see Fig. 2.3. The distance between neighboring such gaps is ap-
proximately [18]

|rm+1 − rm| ≈
rm
nqs

, (2.61)

where the magnetic shear s is defined as

s ≡ r

q

dq

dr
. (2.62)

Nonzero ε also results in a discrete frequency eigenmode, which forms due to

Q0 = 1.0000
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Figure 2.3: Alfvén continuum for n = 4, discharge #42979 at JET. The
equilibrium was reproduced with the MHD equilibrium code HELENA [17]
and the continuum by the MHD linear instability code CSCAS. Here, radial
variable is s ∝

√
ψ and Im[λ] ∝ ωA.

the interaction of neighboring poloidal harmonics in the vicinity of the gap.
In the low shear limit, s � 1, the distance between the gaps is sufficiently
large for the eigenmode to be localized near its own gap and not interact with
modes from neighboring gaps. According to boundary layer theory [18] the
coupling between different harmonics takes place in a narrow inner region and
in the outer region each poloidal mode satisfies the cylindrical mode equation
(2.57). To determine the mode structure, a matching procedure for the outer
and inner regions has to be used [18]. The result in the low shear limit is a
discrete frequency eigenmode at the bottom of each toroidicity induced gap
with the frequency given by

ωTAE = ω0

[
1− ε̂

(
1− π2s2

8

)]
. (2.63)
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Since the mode is inside the gap it does not fulfill the condition for continuum
damping. This eigenmode is therefore weakly damped and it consists of an
even combination of the coupled neighboring poloidal harmonics, see Fig. 2.4.

0.00 0.20 0.40 0.60 0.80
- 1 . 0 0

- 0 . 6 0

- 0 . 2 0

0 . 2 0

X 1 0
- 3

S

RE V1

Figure 2.4: Radial structure for coupled, neighbouring poloidal harmonics
constituting an even TAE for n = 4, discharge #42979 at JET with corre-
sponding continuum in Fig. 2.3. The mode is localized around the first radial
gap, but the tail of one of the poloidal harmonics reaches into the next gap.
The eigenmode is found by means of the spectral MHD code MISHKA [19].

Note that to arrive at the system (2.54), ideal Ohm’s law has been used,
which neglects any parallel electric field. In the inner regions, we should re-
ally include both the toroidicity induced coupling and nonideal effects. The
nonideal effects are due to parallel electron dynamics (from E‖ 6= 0) and first
order finite ion Larmor radius (FLR) effects. Also note that the theory pre-
sented here only gives criteria for the existance of toroidal Alfvén eigenmodes.
A driving mechanism is needed to excite these modes, such as e.g. resonant
interaction between the wave and fast particles.

2.3.3 Energetic Particle Drive

The dispersion relation (2.18) has been derived within the framework of ideal
MHD, using a linear approach where all quantities are assumed to consist of
a stationary part and a small perturbation. This results in a real frequency
ω = ωTAE. Fast ions, with vf � vth, where vth is the thermal velocity of the
bulk ions in the plasma, need to be treated using kinetic theory, which will be
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presented in Sec. 3.2. The result can then be added to the MHD result, with
the fast particles contributing to the imaginary part of the linear frequency,
which becomes ω = ωTAE + iγL [20]. Since all perturbed quantities vary in
time as e−iωt, the fast particles result in an exponential growth of the wave
provided that γL > 0. This also means that the linear theory is only valid
initially.

Free energy is available to drive the mode when the fast particle pressure
is large enough to overcome the total damping by the bulk plasma. For a TAE
mode this is when [21,22]

γL
ωTAE

= −
(

1− ω∗f
ωTAE

)
F

(
vf
vA

)
≥ γd
ωTAE

, (2.64)

where ωTAE is the frequency of the considered mode, γL is the linear growth
rate of the wave caused by the fast particles, ω∗f is the fast particle drift fre-
quency and γd is the total damping rate associated with the bulk plasma. The
function F (vf/vA) depends on the distribution function of the fast particles
in velocity space.

In tokamaks, the fast ions gyrate in circles of radius rL ' vf/ωcf . Simulta-
neously, the density profile of the fast particles in a tokamak plasma decreases
with increasing radius, which means that there are more particles that gyrate
at smaller radii then at a larger radii. This produces a drift velocity in the
poloidal direction called the diamagnetic drift velocity and an associated drift
frequency given by [21]

ω∗f = −m
r

v2
f

ωcf

1

pf

dpf
dr

(2.65)

where m is the poloidal wave number and ωcf and pf are the cyclotron fre-
quency and the pressure of the fast ions. If ω∗f is larger than the wave fre-
quency, there is an effective inversion of the velocity space distribution function
gradient ∂f/∂v, so that

ω − ω∗f
ω

∂f

∂v
> 0 , (2.66)

which means that the free energy available from the fast ions can drive the
mode even when ∂f/∂v < 0, cf. Chapter 3.

2.3.4 Paper A: Particle Motion in Frequency Sweeping Alfvénic
Waves

We now consider a single isolated TAE mode in the presence of a low den-
sity population of energetic particles. After the initial exponential growth of
the mode amplitude, the nonlinear TAE evolution can be analyzed using a
one-dimensional “bump-on tail” model, cf. [23]. The model and its connection
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to TAEs will be explained more thoroughly in Sec. 3.4. For now it suffices
to mention the so called bursting type eigenmodes, the subject of Paper A,
where the mode develops highly persistent sidebands with time dependent fre-
quencies. As their frequencies evolve in time, they also move radially through
the plasma. This motion can be calculated by recognizing that fast particles
trapped in resonance with the wave field will follow the mode locus radially,
while executing their guiding center and Larmor gyration orbits. For fast parti-
cles to be synchronized with the wave, they must satisfy a resonance condition

ω = 〈k · v〉B . (2.67)

For low frequency Alfvén waves, we will consider only the gyrocenter motion.
This can be motivated by looking at the resonance condition (2.67), which,
when k‖ is given by (2.56), takes the form

ω = nωζ −mωθ + lωc , (2.68)

where

ωζ =

〈
dζ

dt

〉
B

, (2.69a)

ωθ =

〈
dθ

dt

〉
B

, (2.69b)

are the bounce averaged frequencies of toroidal and poloidal motion, n and m
are the toroidal and poloidal mode numbers and l ∈ N. Since Alfvén waves
have ω � ωc, we must have l = 0.

For simplicity, we limit ourselves to well passing particles (κ2 � 1), for
instance NBI generated energetic ions, in a large aspect ratio tokamak (ε� 1)
for which the particle drifts are negligible. The condition (2.67) for wave-
particle resonance then becomes

ω(t) = k‖ v‖ , (2.70)

where ω(t) is the wave frequency, k‖ is given by (2.56) and v‖ is given by
(2.37). We assume that k‖ is a function of radius only through the safety
factor, meaning that all equations will be evaluated at the major radius of the
torus R = R0. The parallel velocity (2.37) then takes the form

v‖ = ±
√

2

m
(W − µBA) , (2.71)

where BA = B(r = 0). Since µ is an adiabatic invariant, the differentiation
with respect to time of equation (2.70) results in

ω̇ =
dk‖
dr

v‖ṙ +
dv‖
dW

k‖Ẇ =
ms

qR0r
v‖ṙ +

k‖
Mv‖

Ẇ , (2.72)
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where s is the magnetic shear, given by (2.62). The Hamiltonian of the system
can be expressed as a sum of kinetic and potential energy. For particles trapped
in the wave the time rate of change of the potential energy is small, so we can
assume that Ẇ ≈ Ḣ = Ė, where E is the total particle energy. We now wish
to get an expression for Ė in terms of r.

In the absence of wave fields the toroidal angular momentum pζ is a con-
stant of motion due to axisymmetry. In the presence of an external wave field,
depending on ζ and time, the axisymmetry will be broken and pζ and E are
no longer constants of motion. However, it can be shown that, when the wave
evolves slowly,

ṗζ −
n

ω
Ė = 0 , (2.73)

holds. This is simply a consequence of the dependence of the perturbed wave
field on ζ and t, which only enters as the combination ωt−nζ in the exponential
of Eq. (2.53) when we are dealing with isolated modes with a single n. To lowest
order in ε, the toroidal angular momentum (2.34) can be expressed as

pζ ≈MRv‖ − Zeψ , (2.74)

where we have used (2.39c). Furthermore, in this limit, the poloidal magnetic
flux (2.10) becomes

ψ ≈ BA

∫ r

0

r′

q(r′)
dr′ . (2.75)

Note that all quantities denoted with the subscript 0 are to be evaluated at the
magnetic axis and those not labeled with 0 are taken at the bounce averaged
radius. After bounce averaging and differentiation with respect to time

ψ̇ =
1

Ze

(
M

d

dt

〈
Rv‖

〉
B
− ṗζ

)
. (2.76)

By Eq. (2.45), for well passing particles with θ(0) = −π and θ(τB) = π, we get

〈
Rv‖

〉
B
≈ 2π

qR2
0

τB
≈ R0v‖0 , (2.77)

where the bounce time (2.47) has been used in the limit of well passing parti-
cles. Inserting (2.73) and (2.77) into (2.76) yields the expression for Ė, which
substituted into (2.72) gives the radial drift of the particles as

ṙ

r
= − ω̇

ωc

m

k2
‖r

2

(
1− m2s

k3
‖r

2qR

ω

ωc

)−1

. (2.78)

A similar expression can be calculated for deeply trapped particles (κ2 � 1) us-
ing the resonance condition (2.68). The bounce averaged frequency of poloidal
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motion is given by Eq. (2.51) in the limit of deeply trapped particles and the
bounce averaged frequency of toroidal motion is calculated using (2.69a). The
resulting radial drift can be expressed as

ṙ

r
= −ω̇

(
(1− s)ω +m

(
3

2
− 2s

)
ωθ

)−1

. (2.79)



24 Chapter 2 Toroidal Systems



3
Nonlinear Wave-Particle

Interaction

We now proceed to study the nonlinear evolution of fast particle driven modes.
This is important in order to establish the long term effect of the fast parti-
cles on the overall plasma confinement and performance. E.g., it has been
demonstrated that well established, saturated TAEs with benign mode am-
plitudes are capable of transporting and redistributing fast particles, which
might have a detrimental effect on the plasma confinement as a whole [24].
Also, even though more ferociously evolving TAEs have traditionally been as-
sociated with local (phase space) perturbations, it has lately been suggested
that such behavior may entirely deplete he plasma of fast particles [25]. In this
thesis we limit ourselves to the study of single, isolates modes, which is moti-
vated when the modes are well separated in phase space so that their regions of
influence do not significantly overlap. By means of action-angle variables and
the framework of canonical transformations, particle motion in a single TAE
mode with reasonably well defined frequency can be described by a one di-
mensional model where the equations look very much like fluid equations [26].
For TAEs, this can be conceptually understood since even in the presence of
a TAE field the particle motion is characterized by two constants of motion.
The first is the magnetic moment µ, which remains constant due to the fact
that the TAE frequency is much smaller than the ion cyclotron frequency. The
second is a combination of the toroidal canonical momenta pζ and the total
particle energy E, see Eq. (2.73).

In this chapter we start by considering electrostatic longitudinal waves in
a one dimensional uniform plasma. In Sec. 3.1 the plasma is considered cold
and a fluid description is used to describe the mode oscillations. Then, in
Sec. 3.2, thermal effects are included, which leads to a dispersive dependence

25
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of the mode frequency on the wave number. Kinetic theory is then employed
to further investigate the effect of finite plasma particle velocities, and we
will see that this leads to substantial interaction between a group of parti-
cles travelling at roughly the phase velocity of the wave and the wave itself.
Those particles are called resonant, and their interaction with the wave leads
to exponential damping (or growth) of the wave amplitude, known as Landau
damping/drive, that is phenomenonically described in Sec. 3.3. In Sec. 3.4 we
consider the evolution of fast particle driven instabilities using a simple one
dimensional electrostatic “bump-on-tail” model, in which the resonance lies in
the high energy tail of the distribution from the bulk plasma and a bunch of
extra particles have been added around the resonance to mimic fast particles
in a tokamak. Within the bump-on-tail description, inclusion of dissipation in
the main plasma, modeled in the simplest possible fashion via a friction force
term in the background plasma fluid equations, reveils the emergence of a
phase space plateau during the nonlinear phase. It is our belief that the struc-
ture and dynamics of this plateau, with modes close to its edges referred to as
edge modes in Papers B and C, directly determines the nonlinear mode evolu-
tion life cycle. In Sec. 3.5 we derive a condition for negative energy for these
edge modes. Then, in Sec. 3.6, we study the case of marginal stability of the
edge modes with a smooth plateau distribution. Finally, in Sec. 3.7, we make
a connection between the one dimensional model and the three dimensional
geometry of a tokamak.

3.1 Electrostatic Plasma Waves in a Cold Plasma

We consider an electrostatic wave with spatial period λ and wave number
k = 2π/λ in a one-dimensional uniform, static plasma fulfilling vth � ω/k,
where vth is the thermal velocity of the electrons and ω is the wave carrier
frequency. The wave can be treated as a small perturbation to the stationary
and homogeneous background plasma, which in this limit is considered cold.
The wave frequency is high enough that the ions are unaffected by the wave
field due to their much larger mass, and therefore do not contribute to the
dynamics except to keep the equilibrium plasma neutral, ni = ni0. The electron
density and velocity on the other hand are decomposed as an unperturbed part
and a small perturbation, ne = ne0 + δne and ve = ve0 + δve, where ne0 = ni0
and we set ve0 = 0. As always in connection with the latter assumption, we
consider the case when the electric field, E(x; t), is purely a wave quantity
and thus has no equilibrium part either, so that there is no net acceleration of
the plasma as a whole. We assume that the electric field is small enough that
fluid nonlinearities are unimportant. The electrons then respond linearly to
the electric field and their perturbed velocity and perturbed density satisfies
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the linearized fluid equation of motion and the continuity equation

∂δve
∂t

= − e

me

E , (3.1a)

∂δne
∂t

+ ne0
∂δve
∂x

= 0 , (3.1b)

where e and me are the (magnitude of the) charge and mass of the electron,
respectively. Now, the Poisson equation provides closure,

∂E

∂x
=

e

ε0
(ni − ne) = − e

ε0
δne , (3.2)

where ε0 is the permittivity of free space. We express the electric field using
the electrostatic potential E = −∂Φ/∂x, and since the equations are linear we
Fourier expand the perturbed quantities,

Φ, δve, δne ∼ ei(kx−ωt) . (3.3)

The differential equations (3.1) - (3.2) then become algebraic and can be com-
bined to give the dispersion relation

ω2 = ω2
pe ≡

e2ne0
ε0me

. (3.4)

i.e a function on the form ω = ω(k). This wave is called the longitudinal wave
since it propagates parallel to the electric field. The lack of an oscillating mag-
netic field makes this a purely electrostatic wave. Also, there is no depencence
on k in the dispersion relation, which means that there is no dispersive effect.
This is the reason that we will later choose this particular mode to emulate a
TAE mode in Section 3.4.

3.2 Warm Plasma Waves: Linear Landau Damp-
ing

The effect of thermal plasma particle motion on the system described in the
previous section is obtained by the inclusion of a nonzero electron pressure
term in (3.1a) and an equation of state relating the electron pressure and
density. The dispersion relation (3.4) gets a small thermal correction and
becomes (cf. [27])

ω2 = ω2
pe +

3kBT

me

k2 , (3.5)

where kB is Bolzmanns constant and T is the temperature of the electron fluid.
This thermal correction introduces dispersion of the wave by the inclusion of
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a k-dependent term, but the method misses the important hot-plasma contri-
bution from particles energetic enough to interact resonantly with the wave
field. In order to describe wave-particle interaction kinetic theory is used.
The plasma is described in terms of a distribution function f(x, v, t), where
f(x, v, t)dxdv is the probability of finding particles within the phase space el-
ement of volume dxdv, centered at (x, v). The distribution function f evolves
in phase space according to the Vlasov equation

∂f

∂t
+ ẋ

∂f

∂x
+ v̇

∂f

∂v
= 0 , (3.6)

where v̇ = −eE/me and particle-particle interactions (collisions) have been
neglected. We consider a perturbative solution by expansion of the distribution
function according to

f = F0 + δf . (3.7)

Here, F0 is the equilibrium, or unperturbed, distribution function in the absence
of wave fields. It is static by definition, ∂F0/∂t = 0. Also, the uniform
equilibrium plasma fulfills ∂F0/∂x = 0 which means that F0 = F0(v). The
term δf � F0, is a perturbation from the equilibrium distribution due to the
wave field. To linear order, the Vlasov equation (3.6) becomes,

∂δf

∂t
+ v

∂δf

∂x
− eE

me

dF0

dv
= 0 . (3.8)

We Fourier expand the perturbed quantities,

E, δf ∼ ei(kx−ωt) , (3.9)

and Eq. (3.8) becomes an algebraic expression for the perturbed distribution
function

δf = i
eE

me

dF0/dv

ω − kv
. (3.10)

The Poisson equation once again provides closure,

∂E

∂x
= − e

ε0
δne = − e

ε0

∫
δf dv , (3.11)

which by Fourier expansion, together with (3.10) result in a dispersion relation
on the form,

1 +
ω2
pe

k

∫
dF̂0/dv

ω − kv
dv = 0 . (3.12)

Here, F̂0 is normalized with ne0 so that
∫
F̂0(v) dv = 1. Note that the integral

in Eq. (3.12) diverges at v = ω/k. This means that the particles with velocities
close to this resonant velocity will interact heavily with the wave. Landau was
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the first to properly treat this integral [28]. For the weakly damped high
frequency wave (vth << ω/k) we calculate an approximate solution when F̂0

is taken to be a Maxwellian distribution function,

F̂0 =
1√
πvth

e−v
2/v2th , (3.13)

where the thermal velocity vth is defined using

mev
2
th

2
≡ kBT . (3.14)

In the weakly damped case Im[ω] is small and the integration contour is a
straight line along the Re[v] axis with a small semicircle under the pole at
v = ω/k. Eq. (3.12) becomes (cf. [29])

1−
ω2
pe

k2

P ∫ ∞
−∞

dF̂0/dv

v − ω/k
dv + iπ

dF̂0

dv

∣∣∣∣∣
v=ω

k

 = 0 , (3.15)

where the first term inside the bracket is the Cauchy principal value of the
integral and the second is iπ times the residue at the pole, corresponding
to the contribution from the nonresonant particles and the resonant particles,
respectively. For the nonresonant particles, dF̂0/dv is negligably small for large
enough velocities, say nvth (n > 1), which allows us to limit the evaluation of
the integral to this velocity. In this limit we Taylor expand,

1

v − ω/k
' −k

ω

[
1− kv

ω
−
(
kv

ω

)2

−
(
kv

ω

)3
]
. (3.16)

and the integral in (3.15) now consist of four terms

P

∫ ∞
−∞

dF̂0/dv

v − ω/k
dv ≈

2√
πv3

th

∫ nvth

−∞

kv

ω

[
1− kv

ω
−
(
kv

ω

)2

−
(
kv

ω

)3
]
e−v

2/v2th dv , (3.17)

Now, we expand the integration limit to infinity once again, since any errors
this might bring in the Taylor expansion are suppressed by the exponential. In
this high frequency limit the first and third terms goes to zero and by calcula-
tion of the integral from the second and fourth term we obtain an expression
for (3.15) on the form

D(ω) = 1−
ω2
pe

ω2
− 3k2v2

th

2

ω2
pe

ω4
− iπ

ω2
pe

k2

dF̂0

dv

∣∣∣∣∣
v=ω

k

= 0 . (3.18)
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We proceed to find a solution by setting

ω = ωR + iωI , (3.19)

thus,
D(ω) = DR(ωR + iωI) + iDI(ωR + iωI) = 0 , (3.20)

which we Taylor expand around ωR assuming a weak damping, i.e. ωI � ωR,

DR(ωR)+(ω−ωR)
dDR

dω

∣∣∣∣
ω=ωR

+i

[
DI(ωR) + (ω − ωR)

dDI

dω

∣∣∣∣
ω=ωR

]
= 0 . (3.21)

The real and imaginary parts need to be zero separately

DR(ωR)− ωI
dDI

dω

∣∣∣∣
ω=ωR

= 0 , (3.22a)

DI(ωR) + ωI
dDR

dω

∣∣∣∣
ω=ωR

= 0 . (3.22b)

In (3.22a) the second term is much smaller and therefore neglected, thus,

DR(ωR) ' 0 , (3.23a)

ωI = − DI(ωR)
dDR

dω

∣∣
ω=ωR

. (3.23b)

We set
ω2
R = ω2

pe(1 + δ) , (3.24)

where 0 ≤ δ � 1. Eq. (3.23a) becomes,

ω2
pe(1 + δ) = ω2

pe

[
1 +

3k2v2
th

2ω2
pe(1 + δ)

]
≈ ω2

pe

[
1 +

3k2v2
th(1− δ)
2ω2

pe

]
. (3.25)

Here, v2
th � ω2

pe/k
2 so to lowest order δ = 3k2v2

th/2ω
2
pe and

ω2
R = ω2

pe +
3v2

th

2
k2 , (3.26)

which is the same result we got using fluid theory (3.5). By an analogous
calculation Eq. (3.23b) can, to lowest order, be expressed as

ωI =
πω3

pe

2k2

dF̂0

dv

∣∣∣∣∣
v=

ωR
k

. (3.27)
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Note that ωI indeed is small as compared to ωR, and so we may express the
dispersion relation as

ω = ωpe +
3v2

th

4
k2 + iγL , (3.28)

where

γL ≡
πω3

pe

2ne0k2

dF0

dv

∣∣∣∣
v=ω

k

. (3.29)

Since the equilibrium distribution function F0 is taken as a Maxwellian the
slope of the distribution function at the phase velocity of the wave vph = ω/k
is negative which result in a negative γL and the wave amplitude experiences
damping from the interaction with the resonant particles. This phenomenon
is called Landau damping and it is not found within the fluid description of
the plasma.

3.3 Nonlinear Landau Damping

An intuitive understanding of Landau damping can be gained by studying the
motion of single particles in a given electric field

E = A cos(kx− ωpet) . (3.30)

We make a change of variables to a frame that moves at the wave phase velocity

kz = kx− ωpet−
π

2
, (3.31)

and the total energy of a particle in this frame of reference is

W =
me

2
u2 +

eA

k
cos(kz) , (3.32)

where
u ≡ v − ωpe

k
(3.33)

is the wave-frame velocity. Note that W is essentially the wave frame Hamil-
tonian, and is therefore a conserved quantity of the particle motion when the
electric field amplitude A does not change. We set

ωA ≡
√
eAk

me

, (3.34)

which corresponds to a normalization of the mode amplitude that has the
dimension of frequency, and invert Eq. (3.32) to give an expression for the
particle velocity as function of z, given a value of W ,

u(z;W ) = ±

√
2

(
W

me

− ω2
A

k2
cos(kz)

)
. (3.35)
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In Fig. 3.1 the trajectories of energy W are visualized in phase space. The
gray trajectories with u > 0 are called co-passing and describe flows in the
direction of increasing z, while those with u < 0 are called counter-passing
and describe flows in the direction of decreasing z. The particles inside the
so called separatrix (the red curve) are called trapped. The trapped particles
bounce back and forth with a bounce period given by

τB =

∫ z2

z2

dz

u
=

∫ z2

z1

[
2

(
W

me

− ω2
A

k2
cos(kz)

)]−1/2

dz , (3.36)

where z1 and z2 are the turning points at which the total energy of the particle
matches the electrostatic potential energy, i.e. u(z1,2;W ) = 0. By performing
the integration in (3.36) we get

τB =
4

ωA
K(κ) . (3.37)

Here, K(κ) is the complete elliptical integral of the first kind as given by (2.48)
and we have defined

κ2 ≡ 1

2

(
kW

eA
+ 1

)
< 1 . (3.38)

The bounce frequency for the trapped particles is then given by

ωB(W ) =
2π

τB
=

πωA
2K(κ(W ))

, (3.39)

as illustrated in Fig. 3.2 for different values of ωA.
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Figure 3.1: Phase space trajectories of particles in the presence of a sinusoidal
electric field (3.30). The wave frame velocity (3.35) is normalized in units of
ωA/k as defined in Eq. (3.34). The separatrix is highlighted in red.
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Figure 3.2: Bounce frequency of trapped particles for different values of ωA.
Here κ = 0 corresponds to the most deeply trapped particle orbit and κ = 1
corresponds to the separatrix orbit.

The energy dependence of ωB is the basic mechanism behind Landau damp-
ing. As shown in Fig. 3.2, it means that trapped particles on different orbits
complete their periodic motion at different rates. Particles on deeply trapped
trajectories have ωB ∼ ωA, but the ones further out revolve at lower rates
that tends to 0 at the separatrix orbit. Over time, this variation leads to a
phenomenon called phase mixing (cf. continuum damping for Alfvén eigen-
modes in Sec. 2.3): The skewed orbital frequency profiles effectively averages
the particle distribution along the trajectories until it becomes entirely flat
throughout the eye-shaped trapped particle area (the region of phase space
inside the separatrix). Furthermore, redistribution of particles changes their
kinetic energy, so in order for the total energy to remain constant there must
be a corresponding energy exchange between the particles and the wave, which
means that the wave amplitude ωA must evolve as a result of the flattening.
Consider the case when dF0/dv < 0 at the resonant velocity v = ωpe/k at
t = 0, as it is e.g. for the Maxwellian considered in the previous section. Ini-
tially, there are more trapped particles in the lower half of the phase space plot
in Fig. 3.1 i.e. with velocities just below the phase velocity. So as the phase
mixing flattens out the distribution inside the separatrix there is a net trans-
port of particles to higher velocities. That is, a flux of energy from the wave to
the particles, which results in a decrease of the wave amplitude referred to as
nonlinear Landau damping. Linear Landau damping is recovered within this
picture if the perturbation of the distribution function is small enough that the
linearized model equation (3.8) remains valid, i.e if the wave is extinguished
before the particles complete a full orbit.

Nonlinear effects also dominates if the flux of energy is from the particles
to the wave (i.e when dF0/dv > 0 at v = ωpe/k at t = 0) resulting in a drive
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instead of a damping. Nonlinear analysis in the case of Landau drive will be the
subject of Sec. 3.4, however, for now it suffices to say that the mode amplitude
will saturate due to phase mixing and, in principle, an energy balance analysis
can be carried out to determine a saturation level of the mode amplitude.

3.4 Bump-on-Tail Model

A low density population of highly energetic electrons is now added to the main
or bulk plasma. The result is a small “bump” on the tail of the distribution
function for the bulk plasma, cf. Fig. 3.3. We are still considering a one
dimensional electrostatic plasma wave with a prescribed wavelength λ and
wave number k = 2π/λ in a uniform plasma equilibrium. The wave carrier
frequency is assumed to be high enough that the plasma can be separated
as a cold bulk whose response can be described using fluid theory while the
energetic electrons, which may interact resonantly with the wave, must be
treated separately. We include a linear friction force with a damping rate γd,
used to mock up dissipative wave damping in the real plasma [30–33], thereby
damping the velocity perturbations and the linear fluid equation (3.1a) now
takes the form

∂δve
∂t

= − e

me

E − 2γdδve . (3.40)

The damping rate γd is assumed to be significantly smaller than the wave
carrier frequency, which in turn is assumed to remain close to the electron
plasma frequency ωpe in order to accurately represent the electric field as a
single, possibly modulated, sinusoidal mode that oscillates at ωpe,

E(x, t) = A(t) cos(kx− ωpet) , (3.41)

where the amplitude A(t) is assumed to evolve slowly in time as compared
with the mode oscillations, d lnA/dt� ωpe.

The energetic electrons are described kinetically in terms of their phase
space distribution function f(x, v, t). Just as in the previous section f is de-
composed according to Eq. (3.7). Note however that f is now only for the
energetic electrons and not the bulk electrons. This means that the Poisson
equation (3.2) has an extra term from the energetic electrons and becomes

∂E

∂x
= − e

ε0

[
δne +

∫
δfdv

]
. (3.42)

The kinetic equation (3.8) governing the evolution of the distribution function
f is taken as

∂f

∂t
+ v

∂f

∂x
− e

m
E
∂f

∂v
= C

[
f
]

+ S (v) . (3.43)
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The right hand side represents fast particle collisions and sources, whose com-
bined action is to relax f towards an equilibrium distribution F0 (v) that,
for simplicity, is taken as a constant, positive slope throughout the wave-
particle resonance. It is modeled as the following combination of three opera-
tors (cf. [34])

C [f ] + S (v) = −β
(
f − F0

)
+
α2

k

∂

∂v

(
f − F0

)
+
ν3

k2

∂2

∂v2

(
f − F0

)
. (3.44)

The first term is essentially a sink that relaxes the distribution function f to
the equilibrium distribution at rate β. It is called the Krook operator, and is
often used to mock up the effect of more challenging operators. The second
term represents the effect of slowing down of the energetic electrons due to
collisions with the cold particles, and is denoted collisional drag. Note that
the drag operator consists of two parts. The first part acts as a contant force
that slows the particles down and the second acts as a sink that preserves
the equilibrium distribution function F0. Finally, the third term in Eq. (3.44)
is a velocity space diffusion operator with constant diffusion coefficient. It
is included in order to represent energy space diffusion of energetic plasma
particles, which is actually the dominant collisional process at low particle
energy, but also to mimic the effect of stochastic scattering in localized but
overlapping resonances, such as e.g. during RF heating.

All simulations in the remainder of this chapter are computed using a
fully nonlinear algoritm, previously described in Ref. [35] and currently avail-
able online [36], that, given a profile for F0 and values for γd, β, α and ν,
solves Eqs. (3.40), (3.42) and (3.43) for the nonlinear evolution of E(x, t) and
f(x, v, t).

3.4.1 Saturation of Mode Amplitude in the Non-Dissipative
Bump-on-Tail Instability

We consider the collisionless, dissipationless bump-on-tail instability (β = α =
ν = γd = 0). The fast particle equilibrium distribution F0 causes the electric
field amplitude, depicted in Fig. 3.4, to grow at a linear rate γL ∝ dF0/dv due
to energy released by phase mixing. The velocity width of the separatrix in
Fig. 3.1 is proportional to

√
A which means that as the amplitude grows the

velocity width increases and passing particles on orbits just outside the sepa-
ratrix become trapped. Eventually no more energy can be extracted by phase
mixing and the amplitude saturates at ωA = 3.2γL [37]. However, as shown
in Fig. 3.4, the saturation level is modulated, which is due to the presence of
narrow circulating bands of particles on barely trapped orbits just inside the
separatrix, as can be seen in Fig. 3.5.
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F
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Figure 3.3: Cartoon illustrating the bump-on-tail distribution function. The
contribution from the cold electrons is treated using fluid theory and the contri-
bution from the energetic particles is taken as a constant positive slope through-
out the wave-particle resonance.
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Figure 3.4: Mode amplitude evolution of a plasma eigenmode excited by the
presence of energetic particles in the collisionless, dissipationelss limit.

The saturated mode amplitude can be calculated by balancing the energy
lost from the energetic electrons to that gained by the wave. The initial state
is taken as the equilibrium distribution consisting of a constant positive slope
throughout the wave-particle resonance and the final saturated state is taken
as the fully phase mixed equilibrium distribution. In Fig. 3.1 we observe that
the particle trajectories most affected by interaction with the wave field are the
trapped particle trajectories. As a first approximation we therefore neglect the
contribution from the passing particles and only consider the orbits inside the
separatrix where the distribution is completely flat and takes on the value of
the equilibrium distribution function at the resonance. The energy difference
between the initial equilibrium and the final saturated state (per wavelength
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Figure 3.5: Phase space plot illustrating phase mixing of trapped particles in
the collisionless, dissipationless limit at two different times. Initially, there are
narrow circulating bands of particles, remnants of imperfect phase mixing, on
barely trapped orbits (left) which are gradually reduced (right).

λ) is

∆E = E0 − Esat =
me

2

∫ λ

0

∫ ∞
−∞

v2(F0 − Fsat) dv dx . (3.45)

Using the wave frame coordinates defined in (3.31), and (3.33) the initial and
final distributions are

F0 = C +
dF0

du

∣∣∣∣
u=0

u , (3.46)

and
Fsat = C , (3.47)

so Eq. (3.45) becomes

∆E =
2meωpe
k

dF0

du

∣∣∣∣
u=0

∫ λ

0

∫ us(z)

0

u2 du dz , (3.48)

where us = us(z) is the wave frame velocity at the separatrix. Using Eq. (3.35)
for the particle velocity and λ = 2π/k, we calculate the energy difference to
be

∆E =
27

32

meωpeω
3
A

k5

dF0

du

∣∣∣∣
u=0

. (3.49)

Note that ∆E is positive, which means that the particles have lost energy to the
wave, as expected. We balance this energy with the kinetic and electrostatic
energy associated with the perturbed quantities δve and E. Given a sinusoidal
electric field (3.30), the linearized fluid equation of motion (3.1) allows us to
express the kinetic energy density as

K =
ne0meδv

2
e

2
=
ne0e

2A2

2meω2
pe

sin2(kx− ωpet) =
ε0A

2

2
cos2(kz) , (3.50)
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and the electrostatic energy density is

U =
ε0E

2

2
=
ε0A

2

2
sin2(kz) . (3.51)

Thus, the total energy (per wavelength) is∫ λ

0

ε0A
2

2

[
sin2(kz) + cos2(kz)

]
dz =

πε0A
2

k
. (3.52)

Equating Eqs. (3.49) and (3.52) gives

ωA = 2.88γL , (3.53)

where we used Eq. (3.29) for the definition of γL. Note that the mode satura-
tion is a bit low. It was expected to be ωA = 3.2γL, as previously mentioned.

Next, we add the contribution from the passing particles since their tra-
jectories, see Fig. 3.1, are also affected by the interaction with the wave field,
albeit less so than those of the trapped particles. We include their contribu-
tion by assuming that the saturated distribution can be expressed by simply
averaging F0(v) over the particle trajectories, just as for the trapped particles.
We can focus on the co-passing particles since the energy differences associated
with the co- and counter-passing particles are equal. We compute the average
of the distribution (3.46) for the co-passing particles,

Fsat =
2

τ+

∫ λ

0

F0
dz

u
= C +

2λ

τ+

dF0

du

∣∣∣∣
u=0

. (3.54)

Here

τ+ =

∫ τ+

0

dt = 2

∫ λ

0

dz

u
, (3.55)

is the time it takes a passing particle to pass two wavelengths, defined to match
smoothly onto the bounce time for the trapped particles (3.37). By Eq. (3.35)
this is calculated to be

τ+ =
4

ωAκ
K(1/κ) . (3.56)

Note that, contrary to trapped particles, passing particles have κ > 1, where κ
is defined in (3.38). The contribution to the energy difference (3.45) between
the initial and saturated state from the passing particles becomes

2∆E+ =
2meωpe
k

dF0

du

∣∣∣∣
u=0

∫ λ

0

∫ ∞
us

u

[
u− 2λ

τ+

]
du dz , (3.57)

which we calculate by a change in integration order to

2∆E+ =
26eAωpeωA

k4

dF0

du

∣∣∣∣
u=0

∫ ∞
1

[
E(1/κ)− π2

4
K−1(1/κ)

]
κ2 dκ . (3.58)
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Here,

E(k) =

∫ π/2

0

√
1− k2 sin2 ϕdϕ , (3.59)

is the complete elliptical integral of the second kind . The integral in (3.58) is
calculated numerically and together with the contribution from the trapped
particles (3.49) and the energy going into the wave (3.75), the balancing pro-
cedure gives a saturated wave amplitude at

ωA = 3.94γL . (3.60)

This is reasonably close to the expected value of ωA = 3.2γL. The cause of the
discrepancy is the assumption that the final saturated state is simply given
by averaging the initial, linearly unstable distribution over the final state par-
ticle trajectories. The resulting distribution is therefore discontinuous at the
separatrix of the saturated wave, whereas in reality there must be a transi-
tion layer that smoothly connects the inner and ambient averages. The width
and shape of this layer can however only be found via dynamical, nonlinear
analysis, so Eq. (3.60) represents the most refined result obtainable via energy
balance arguments.

3.4.2 Dissipative Bump-on-Tail Model Near Marginal Sta-
bility

Weak dissipation is included in the background plasma, which reduces the ef-
fective linear growth rate to γL−γd and gives an instability threshold γd = γL.
Although natural first to investigate the effect of a small γd general agreement
is that experimental plasmas tend to support modes close to the instability
threshold. For historical reasons we therefore consider the near threshold regime
where 0 < γL − γd � γL, γd. Note, though, that it does not have to be so.
In fact, in Sec. 3.4.3 we mainly focus on the regime far from the instability
threshold, where γd � γL.

The electric field amplitude evolution, when dissipation is present, is de-
pendent on the rate and type of collisions and on the closeness to the stability
threshold. Close to the threshold the presence of Krook-type [38] and velocity
space diffusion [23] on the form (3.44) result in four regimes of possible mode
amplitude evolution, cf. Fig. 3.6. If the collisionality is high enough, the mode
amplitude saturates at a level that reflects the closeness to threshold, i.e the
saturation amplitude depends on γL−γd. At somewhat lower collisionality, the
saturation is followed by periodic modulations, and with even less collisions
the modulations become chaotic. When the collision rate is very low or even
non-existent it is difficult to immediately deduce what happens. We will come
back later to this regime. For now we focus on the first three regimes.
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Figure 3.6: Amplitude evolution near the instability threshold, γd/γL = 0.9,
under the presence of Krook-type collisions of decresing rate, β/γL = 0.3,
β/γL = 0.2, β/γL = 0.1 and β/γL = 0.01.

The amplitude evolutions in Figs. 3.6a - c are only slightly nonlinear. This
behavior can be captured by a perturbative approach where only the first order
nonlinearity is included. An equation for the evolution of the wave amplitude
takes the form [23]

dA

dτ
= A− 1

2

∫ τ/2

0

z2A(τ − z)∫ τ−2z

0

e−ν̂
3z2(2z/3+x)−β̂(2z+x)A(τ − z − x)A∗(τ − 2z − x) dx dz , (3.61)

where

A(τ) ≡ γ
1/2
L

(γL − γd)5/2
ω2
A (t(τ)) , (3.62)

ν̂ =
ν

γL − γd
, β̂ =

β

γL − γd
, (3.63)

τ = (γL − γd)t , (3.64)
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and, x and z are dummy indices. As seen, the lowest order nonlinearity is cubic,
and so Eq. (3.61) is often referred to as the cubic equation. Fig. 3.7 illustrates
the solution to (3.61) in the near threshold regime and under the presence of
Krook-type collisions of decreasing rate. As can be seen in Fig. 3.7d, when the
collisionality is very low Eq. (3.61) is no longer accurate and full nonlinearity
is required. This is the regime in Fig. 3.6d that we now further investigate in
the collisionless limit.
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Figure 3.7: Amplitude evolution near the instability threshold under the pres-
ence of Krook-type collisions of decresing rate, β/(γL−γd) = 5, β/(γL−γd) = 4,
β/(γL − γd) = 2.5 and β/(γL − γd) = 2.3. The amplitude A on the y-axis is
normalized according to Eq. (3.62).

Fig. 3.8 shows a phase space plot of the fast particle distribution at the
wave-particle resonance near marginal stability in the collisionless limit. We
observe the presence of coherent entities that emerge and move in phase space.
Further studies of the distribution function in Figs. 3.9 and 3.10 reveil that
the entities are regions of depletion/protrusion known as holes and clumps.
There is a continuous production of holes and clumps that arise pairwise sym-
metrically shifted of the wave-particle resonance of the unstable bulk mode.
Once formed, each pair traverse phase space in order to compensate for en-
ergy losses due to background dissipation. The convection of the holes is to
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higher velocities and that of the clumps to lower velocities. To a first approx-
imation the motion preserves the value of the distribution function for the
trapped particles, i.e the level of the trapped particles remains constant, so
the depth/height of the hole/clump relative to the ambient distribution in-
creases as they move. Analytically, energy conservation between the power
dissipated in the cold plasma and the energy gained by the motion of the
holes and clumps results in a frequency shift that initially evolves according
to ω − ωpe ∝ ±

√
t [39]. On a longer time scale fast particle collisions and

other effects, such as the shape of the distribution, the dependence of γd on
the frequency, particle inclusion/release through the separatrix via amplitude
growth/decrease etc. [40], can affect the frequency sweeping. The resulting
spectrogram in Fig. 3.11 exhibits the frequency sweeping pattern. The shifts
up and down of the side bands are synched to the motion of the holes and
clumps in phase space.

Figure 3.8: Phase space plot of the fast particle distribution near marginal
stability, γd/γL = 0.9, showing moving entities known as holes and clumps.

Contrary to diffusive and Krook-type collisions, the inclusion of drag on
the form (3.44) have been shown to promote the amplitude evolution regime in
Fig. 3.6d. Furthermore, they introduce an asymmetry by enhancement of the
holes and their sweeping rates and depletion of the clumps. Historically, this
was first observed within the framework of Eq. (3.61) [35] where drag enters as
a phase in the exponential that causes an oscillation of the nonlinear term that
makes it impossible for the amplitude to saturate as opposed to the cases in
Figs. 3.6a - c. The presence of drag has an interesting effect on the frequency
sweeping pattern in the spectrogram, as can be observerd in Fig. 3.12 where
so called hooks and steady state holes appear [34, 40]. Similar features have,
in fact, been obseved experimentally [41]. This and other observed nonlin-
ear mode evolutions in the different amplitude regimes will be the subject of
Sec. 3.7.
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Figure 3.10: A single hole as a trapping region in phase space with the sepa-
ratrix highlighted in red [40]. Note that the distribution function on the y-axis
is δf = f − F0.

3.4.3 Papers B and C: Dissipative Bump-on-Tail Model Far
fom Marginal Stability

We now consider the effect of very weak dissipation, γd/γL � 1, which turns
out to unlock the mysterious “spontaneous creation” [39] of the hole-clump
formation mechanism. Fig. 3.13 shows a phase space time series of the fast
particle distribution at the wave-particle resonance far from marginal stability
in the collisionless limit. We observe the initial phase mixing of the reso-
nant particles and the eye-shaped form of the saturated state. However, then
dissipation kicks in and trapped particles are gradually released as the wave



44 Chapter 3 Nonlinear Wave-Particle Interaction

t .
L

1000 2000 3000 4000

(!
 -

 !
pe

)/
.

L

-40

-20

0

20

40

Figure 3.11: Fourier spectrogram of the electric field amplitude showing fre-
quency chirping near the stability threshold, γd/γL = 0.9.
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Figure 3.12: Left: Spectrogram displaying hooked frequency sweeping. Right:
Spectrogram showing a hole reaching a steady state frequency.

amplitude damps out and the separatrix shrinks and the particles begin to
stream freely. This generates a nearly unmodulated phase space plateau cen-
tered at the initial resonant velocity with a velocity width somewhat smaller
than the maximum width of the separatrix. The initial mode eventually damps
out but notice the presence of small up- and downshifted modulations just in-
side the edges of the plateau in the second snapshot. These begin to grow, as
seen in the third snapshot, and eventually evolve into a hole-clump pair that
detatches from the plateau. In the Fourier spectrogram they correspond to fre-
quency sweeping modes and, as obseved in Fig. 3.14, the frequency sweeping
is initiated noticeably shifted from the initial resonance.

In Papers B and C we follow and expand the disposition of [42] in order
to substantiate the idea of the intermediate plateau as a hole-clump breeding
ground via destabilization of edge modes. The edge modes are negative energy
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Figure 3.13: Phase space plot of the fast particle distribution far from
marginal stability, γd/γL = 0.1.
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Figure 3.14: Fourier spectrogram of the electric field amplitude showing fre-
quency chirping far from the stability threshold, γd/γL = 0.1.

eigenmodes of the plateau that grow in the presence of dissipation and nonlin-
early evolve into holes and clumps, just as described in the previous paragraph.
We employ linear and nonlinear stability analysis to investigate the role of fast
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particle collisions and sources and also relaxation of the edge gradients of the
plateau. It turns out that it is not the existence of a plateau that determines
whether holes and clumps appear but rather the effect of collisions on that
plateau. Krook-type collisions and velocity space diffusion inhibit hole-clump
formation mainly by relaxation of the plateau that in turn reduces the growth
rates of the edge modes in a fairly complicated way. The asymmetry of the
growth rates of the holes and clumps, favoring the hole over the clump, in
the presence of drag collisions is due to convection of the entire plateau down
along the ambient slope distribution. Furthermore, slight relaxation of the
edge gradients of the plateau is found to have no qualitative effect unless the
corresponding Landau pole needs to be taken into account.

3.5 Negative Wave Energy

The reason that the edge modes of Papers B and C grow rather than damp in
the presence of dissipation, and later develop into holes and clumps, is that they
have negative wave energy. This was demonstrated in [42] via consideration of
the so called dielectric energy [43,44]

ED =
ε0
4
|A|2∂(ωεR)

∂ω
. (3.65)

Here, A is the perturbed electric field amplitude, ω is the mode frequency
and εR is the real part of the dispersion relation, fulfillling εR(ω) = 0. The
dispersion relation according to Landau (cf. [45]) is

ε = 1−
ω2
pe

ω(ω + i2γd)
−

ω2
pe

kne0

[
P

∫ ∞
−∞

dFP/dv

ω − kv
dv + iπ

dFP
dv

∣∣∣∣
v=ω

k

]
= 0 . (3.66)

Under the assumptions that k∆v, γd, γL � ωpe and |δω| ≤ k∆v, where δω ≡
ω − ωpe and FP is the discontinuous “plateau” distribution in Fig. 3.15, we
Taylor expand the second term and the dispersion relation takes the form

εR = δω − γL
π

[
ln(k∆v + δω)− ln(k∆v − δω) +

2δωk∆v

(k∆v)2 − δω2

]
= 0 . (3.67)

To lowest order the condition for negative energy, i.e. ED < 0, becomes

k∆v

γL

[
1−

(
δω

k∆v

)2
]2

<
4

π
, (3.68)

which is indeed fulfilled for the edge modes.
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In order to meet initial criticism on the edge mode wave energy analy-
sis presented above, a more rigorous expression for the wave energy is now
derived following [46]. The distribution function is decomposed according to
Eq. (3.7), which together with the Vlasov equation (3.8) allows us to express
the perturbed electric field as

E =
me

e

(
∂δf

∂t
+ v

∂δf

∂x

)
1

dF0/dv
. (3.69)

Note, there is no problem where dF0/dv = 0 since by (3.10) δf is then also
zero. Now, Ampére’s law relates the perturbed currents in the two electron
species to the electric field

∂E

∂t
=

e

ε0

∫ ∞
−∞

∑
ν

v δfν dv , (3.70)

where ν indicates particle species, including bulk and energetic electrons. We
multiply Eq. (3.70) with E, integrate over one period in space and get

1

2

∫ λ

0

∂E2

∂t
dx =

e

ε0

∫ λ

0

∫ ∞
−∞

∑
ν

vδfνE dvdx , (3.71)

which by (3.69) becomes

1

2

∫ λ

0

∂E2

∂t
dx =

me

ε0

∫ λ

0

∫ ∞
−∞

∑
ν

vδfν

(
∂δfν
∂t

+ v
∂δfν
∂x

)
dvdx

dF0ν/dv
. (3.72)

Since

δf
∂δf

∂x
=

1

2

∂

∂x
(δf)2 , (3.73)
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and due to periodicity in δf , the second term on the right hand side of (3.72)
is zero. Thus, Eq. (3.72) can be expressed as

∂

∂t

[∫ λ

0

(
−me

2

∫ ∞
−∞

∑
ν

v(δfν)
2

dF0ν/dv
dv +

ε0
2
E2

)
dx

]
= 0 , (3.74)

which defines the following constant,

E =

∫ λ

0

(
−me

2

∫ ∞
−∞

∑
ν

v(δfν)
2

dF0ν/dv
dv +

ε0
2
E2

)
dx , (3.75)

the wave energy in the electrostatic model.
We Fourier expand the perturbed quantities according to Eq. (3.9). How-

ever, Eq. (3.75) needs real quantities so we use

Re [E] = A cos(kx− ωt) , (3.76)

and, by (3.10),

Re [δfν ] = −A sin(kx− ωt) e

me

dF0ν/dv

ω − kv
. (3.77)

For simplicity, we take the unperturbed distribution of the bulk electrons to
be cold, ne0δ(v), and for the energetic electrons we consider the discontinuous
shelf distribution, i.e.

F0(v) = ne0δ(v) + FP (v) . (3.78)

Eq. (3.75) becomes

E =

∫ λ

0

[
ne0e

2A2

2meω2
sin2(kx− ωt) +

ε0A
2

2
cos2(kx− ωt)

]
dx

−
∫ λ

0

e2A2

2me

sin2(kx− ωt)
∫ ∞
−∞

v
dFp/dv

(ω − kv)2
dvdx

=
λA2

4

[
ne0e

2

meω2
+ ε0 −

e2

me

∫ ∞
−∞

v
dFp/dv

(ω − kv)2
dv

]
. (3.79)

In the end, what we need to calculate is

I =

∫ ∞
−∞

v
dFp/dv

(ω − kv)2
dv . (3.80)

After a bit of algebra, we find

I =
C

k

{
ln(k∆v + δω)− ln(k∆v − δω)

+
2k∆v

((k∆v)2 − δω2)2

[
(k∆v)2(3δω + 2ωpe)− δω3

]}
, (3.81)
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where

C ≡ lim
k∆v→0

dFP
dv

∣∣∣∣
v=ω/k

=
2kne0γL
πω3

pe

(3.82)

is the gradient of the ambient, linear slope. We now express the logarithms of
(3.81) using the dispersion relation (3.67). To the lowest order in δω/ωpe, i.e
neglecting all δω terms in the final term of Eq. (3.81), we then get back the
condition (3.68).

3.6 Analytic Model for Smooth Relaxation of Plateau
Edge

Nonlinear simulations in Paper B revealed that the rate of hole-clump produc-
tion from a plateau distribution with smooth edges decreases and eventually
ceases with increasing edge width. This was observed in the presence of ve-
locity diffusion among the fast particles, which acts to relax the gradients of
the distribution and thereby widen the edge region of the plateau, and when
simulations were initiated with a continuous plateau distribution of varying
edge width. In Paper B, we surmised that this was due to Landau damping
from a nonzero gradient of the distribution at the location of the edge modes.
For that reason we now study the distribution function

FP (u) = Cu

{
1− 1

2

[
tanh

(
u+ ∆u

a

)
− tanh

(
u−∆u

a

)]}
, (3.83)

used in Paper B and depicted in Fig. 3.16. Here, u is the wave frame velocity
(3.33), C is given by (3.82) and a sets the extent of the edge region. In the
limit a→ 0, Eq. (3.83) reduces to the discontinuous shelf distribution in Paper
B.

The dispersion relation (3.66) is, just as in the previous section, Taylor
expanded and simplifies to

δω + iγd −
γL
π

[
P

∫ ∞
−∞

1

C

dFP/du

u− δω
du+ iπ

1

C

dFP
du

∣∣∣∣
u=δω

]
= 0 . (3.84)

We introduce the dimensionless variables

z ≡ δω

∆u
, α ≡ a

∆u
, x ≡ u

∆u
, γ ≡ γd

γL
, w ≡ π∆u

γL
, (3.85)

and consider marginal stability, at which z ∈ R, contrary to the unstable
situation described in Papers B and C. Then the first and third terms in (3.84)
balance individually, as do the second and fourth terms (i.e the dissipative
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Figure 3.16: Simplified fast electron plateau distribution with smooth edges
used in Paper B.

term, which acts to excite the edge modes, and the Landau term, which will
be shown to damp them). So, we get

wz = P

∫ ∞
−∞

{
1− 1

2

[
tanh

(
x+ 1

α

)
− tanh

(
x− 1

α

)]

+
x

2α

[
tanh2

(
x+ 1

α

)
− tanh2

(
x− 1

α

)]}
dx

x− z
, (3.86a)

and

γ = 1− 1

2

[
tanh

(
z + 1

α

)
− tanh

(
z − 1

α

)]
+

z

2α

[
tanh2

(
z + 1

α

)
− tanh2

(
z − 1

α

)]
. (3.86b)

The contribution from the first term in the integral in (3.86a) is zero, but the
other terms require numerical treatment. We first note that the remaining
integrands are negligably small outside large enough |x|, say, |x| = s, which
allows us to limit the evaluation of the integrals to the interval [−s, s]. We
calculate the principal value by adding and subtracting certain terms, which
results in a finite value of the integral in (3.86a) in the limit x → z so that
numerical integration can be employed without problems. Eq. (3.86a) becomes

wz = I2 + I3 , (3.87)
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where

I2 =

∫ s

−s

{
− 1

2

[
tanh

(
x+ 1

α

)
− tanh

(
x− 1

α

)]

+
1

2

[
tanh

(
z + 1

α

)
− tanh

(
z − 1

α

)]}
dx

x− z

− 1

2

[
tanh

(
z + 1

α

)
− tanh

(
z − 1

α

)]
ln

∣∣∣∣ s− z−s− z

∣∣∣∣ , (3.88a)

and

I3 =

∫ s

−s

{
1

2α

[
tanh2

(
x+ 1

α

)
− tanh2

(
x− 1

α

)]

− 1

2α

[
tanh2

(
z + 1

α

)
− tanh2

(
z − 1

α

)]}
x

x− z
dx

+
1

2α

[
tanh2

(
z + 1

α

)
− tanh2

(
z − 1

α

)][
z ln

∣∣∣∣ s− z−s− z

∣∣∣∣+ 2s

]
. (3.88b)

Once z has been calculated via Eq. (3.87), the marginal stability criterion
for a(w) is calculated from (3.86b), displayed in Fig. 3.17 and verified using
nonlinear simulations of the initiated plateau in Eq. (3.83) when γ = 0.1,
γ = 0.2 and γ = 0.5 at w = 4π. The conclusion of this analysis is that, unlike
for positive energy waves, the positive slope of the fast particle distribution
at the plateau edge acts to damp edge modes, much like ordinary Landau
damping. The analytical results match perfectly onto the nonlinear numerics,
as demonstrated by considering marginal stability.

3.7 Connection to Fast Particle Driven Instabili-
ties in Tokamak Plasmas

Similarly as in previous sections, we consider resonant interaction between a
low density population of energetic ions and a TAE. Only now, in the more
complicated three dimensional geometry of a tokamak, the wave phase velocity
needs to be synched with the poloidal and toroidal orbital frequencies of the en-
ergetic particles or multiples thereof, cf. Sec. 2.3.4. Furthermore, as previously
mentioned, the linear instability growth rate depends on the gradient of the
fast particle pressure. A commonly accepted idea is therefore that a gradual
build-up of the energetic ion population, due to auxiliary heating or nuclear
fusion reactions, eventually leads to a positive linear growth rate and mode
destabilization. The energetic ions subsequently loose energy to the wave,
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Figure 3.17: Edge width parameter a(w) corresponding to marginal stability
when γ = 0.1, γ = 0.2 and γ = 0.5. Result of nonlinear simulations at w = 4π
are shown for the three values of γ.

which relaxes the gradient of the distribution toward a critical slope. This se-
quence of gradual build up followed by a collapse is expected to maintain the
gradient just above critical level, i.e in the near threshold regime, and, histor-
ically, this idea has been supported by experimental results, cf. [8]. Recently,
however, observations of bursting TAEs on the ASDEX Upgrade indicate that
mode destabilization may occur far from the stability threshold [47].

Experimentally, there have been many observations where the nonlinear
mode evolution matches those of the numerically calculated amplitude evo-
lutions in Fig. 3.6. The first three scenarios are illustrated in Fig. 3.18,
where, on JET, ICRH accelerated ions excite TAEs of different toroidal mode
number. As the ICRH power is increased the initially saturated amplitude
exhibit modulations and the Fourier signal splits (this phenomenon is known
as frequency splitting), and finally blurrs out as the wave evolution becomes
chaotic. In relation to the bump-on-tail model, the transition from steady
state to modulations of the mode amplitude occurs due to a gradual build up
of the linear growth rate as the fast particle pressure builds up. The diffu-
sive collisionality is meanwhile constant, which in turn leads to an effective
decrease in collision rate [48]. A Doppler shift, due to plasma rotation from
unidirectional NBI beams, separates the modes in frequency. The final mode
evolution in Fig. 3.6, which leads to frequency sweeping signals (see Fig. 3.19),
is mainly found on the spherical tokamak MAST, where the TAEs are excited
by NBI generated fast ions, although, hooked frequency sweeping events have
also been observed on JET [41].
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Figure 3.18: Magnetic spectrogram of JET shot #40329 as presented in [8]
displays ICHR driven Alfven instabilities with toroidal mode numbers, which
range from n = 4 to n = 10.

Figure 3.19: Magnetic spectrogram of MAST shot #27183 (left), displaying
frequency sweeping TAEs and of JET shot #54895 (right), displaying hooked
frequency sweeping.



54 Chapter 3 Nonlinear Wave-Particle Interaction



Bibliography

[1] U. S. Energy Information Administration, www.eia.doe.gov, Jan 4, 2016.

[2] J. Wesson, Tokamaks, Oxford University Press, Oxford, 3rd edition
(2004).

[3] CCFE Culham Center Fusion Energy, www.ccfe.ac.uk, Jan 26, 2016.

[4] International Thermonuclear Experimental Reactor, www.ITER.org, Jan
4, 2016.

[5] J. D. Lawson, Some Criteria for a Power Producing Thermonuclear Re-
actor, Phys. Soc. B 70, 6 (1957).

[6] A. Fasoli, C. Gormenzano, H. L. Berk, B. . Breizman, S. Briguglio,
D. S. Darrow, N. . Gorelenkov, W. W. Heidbrink, A. Juan, S. V. Kono-
valov, R. azikian, J. M.oterdaeme, S. E. Sharapov, D. Testa, K. Tobita,
Y. Todo, G. Vlad and F. Zonca, Progress in the ITER Physics Basis,
Chapter 5: Physics of energetic ions, Nucl. Fusion 47, S264 (2007).

[7] W. W. Heidbrink and G. J. Sadler, The Behavior of Fast Ions in Tokamak
Experiments, Nucl. Fusion 34 (4), 535 (1994).

[8] S. E. Sharapov, B. Alper, H. L. Berk, D. N. Borba, B. N. Breizman,
C. D. Challis, I. G. J. Classen, E. M. Edlund, J. Eriksson, A. Fasoli,
E. D. Fredrickson, G. Y. Fu, M. Garcia-Munoz, T. Gassner, K. Ghan-
tous, V. Goloborodko, N. N. Gorelenkov, M. P. Gryaznevich, S. Hacquin,
W. W. Heidbrink, C. Hellesen, V. G. Kiptily, G. J. Kramer, P. Lauber,
M. K. Lilley, M. Lisak, F. Nabais, R. Nazikan, R. Nyqvist, M. Osakabe,
C. Perez von Thun, S. D. Pinches, M. Podesta, M. Porkolab, K. Shino-
hara, K. Schoepf, Y. Toda, K. Toi, M. A. Van Zeeland, I. Voitsekhovich,
R. B. White, V. Yavorskij, ITPA EP TG and JET-EFDA contributors En-
ergetic particle instabilities in fusion plasmas, Nucl. Fusion 53, 104022
(2013)

[9] J. P. Freidberg, Ideal magnetohydrodynamic theory of magnetic fusion
systems, Rev. Mod. Phys. 54 (3), 801 (1982).

55



[10] H. Goldstein, C. Pool, J. Safko, Classical Mechanics, 3Addison Wesley,
3rd edition (2002).

[11] M. Lisak, On the Linear and Quasi-Linear Theory of Thermonuclear In-
stabilities in a Tokamak Reactor, Phys. Scripta 29 (1), 87 (1984).

[12] J. Candy, B. N. Breizman, J. W. Van Dam and T. Ozeki, Multiplicity of
low-shear toroidal Alfvén eigenmodes, Phys. Lett. A 215, 299 (1996).

[13] M. N. Rosenbluth, H. L. Berk, J. W. Van Dam and D. M. Lindberg, Mode
structure and continuum damping of high-n toroidal Alfvén eigenmodes,
Phys. Fluids B 4 (7), 2189 (1992).

[14] H. L. Berk, J. W. Van Dam, Z. Guo and D. M. Lindberg, Continuum
damping of low-n toroidicity induced shear Alfvén eigenmodes, Phys. Flu-
ids B 4 (7), 1806 (1992).

[15] L. Chen and A. Hasegawa, Plasma heating by spatial resonance of Alfvén
wave, Phys. Fluids 17 (7), 1399 (1974).

[16] C. Z. Cheng, L. Chen and M. S. Chance, High-n Ideal and Resistive Shear
Alfvén Waves in Tokamaks, Ann. Phys. 161, 21 (1985).

[17] G. T. A. Huysmans, J. P. Goedbloed and W. O. K. Kerner, p. 371 in
Proc. of the CP90 Conference on Computational Physics, Amsterdam,
World Scientific, Singapore, 1991.

[18] B. N. Breizman and S. E. Sharapov, Energetic particle drive for
toroidicity-induced Alfvén eigenmodes and kinetic toroidicity-induced
Alfvén eigenmodes in a low-shear tokamak, Plasma Phys. Control. Fusion
37, 1057 (1995).

[19] A. B. Mikhailovskii, G. T. A. Huysmans, W. O. K. Kerner and S. E. Shara-
pov, Optimization of Computational MHD Normal-Mode Analysis for
Tokamaks, Plasma Phys. Rep. 23 (10), 844 (1997)
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