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ABSTRACT
Random testing is increasingly popular and successful, but
tends to spend most time rediscovering the “most probable
bugs” again and again, reducing the value of long test runs
on buggy software. We present a new automated method to
adapt random test case generation so that already-discovered
bugs are avoided, and further test effort can be devoted to
searching for new bugs instead. We evaluate our method
primarily against RANDOOP-style testing, in three different
settings—our method avoids rediscovering bugs more suc-
cessfully than RANDOOP and in some cases finds bugs that
RANDOOP did not find at all.
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1. INTRODUCTION
In recent years random testing has become increasingly

popular and successful. For example, RANDOOP has been
used very successfully to test object-oriented software, finding
hundreds of errors in Java and .NET libraries in the very first
experiment [9]. QuickCheck [7] has become the dominant
testing tool in the Haskell community; the commercial version
has been used to test implementations of the basic software
used in vehicles against the AUTOSAR standard, finding
hundreds of bugs and problems, many of them in the standard
itself [2]. CSmith has been used to find hundreds of bugs
in production quality C compilers, including gcc [11]. But
random testing suffers an awkward problem: the same bugs
tend to be found again and again and again.

The fundamental problem is that different bugs usually
have widely different probabilities of appearing in generated
test cases; running enough tests to find rarely occurring
bugs will therefore find commonly occuring ones many, many
times. The problem is exacerbated by test-case reduction
(e.g. by delta-debugging [12]), which is often combined with
random testing to produce small, understandable failing
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tests—reducing a test case that provokes a less likely bug
may often result in a test case that provokes a more likely
one instead. Chen et al. term this effect bug slippage [5].

There are many approaches to mitigating this problem.
RANDOOP generates sequences of method calls by com-
bining and extending already-discovered sequences that do
not fail, thus avoiding hitting exactly the same failing test
case again and again, and then partitions failing tests into
equivalence classes based on the last method call, reporting
one error from each class. QuickCheck users develop models
of the software-under-test, manually adding ‘bug precondi-
tions’ to avoid provoking already-discovered bugs, or even
modelling buggy behaviour in a so-called ‘variant’ in order to
test code that can only be reached after a buggy operation;
this manual adaption of the model was a substantial part of
the work involved in the AUTOSAR testing project referred
to above. Chen et al. developed a ranking method for test
cases reported by CSmith and other compiler fuzzers, based
on metric spaces, with the goal of reporting diverse tests that
reveal different bugs early in the list [5].

All these approaches suffer disadvantages, however. RAN-
DOOP’s feedback mechanism avoids executing exactly the
same failed test case repeatedly, but will still find many
variations on it. So, much testing time may still be wasted
provoking the same bug repeatedly. Chen et al.’s ranking
is a postprocessing step, and so does not avoid wasted time
spent rediscovering already known bugs, or prevent test case
minimisation from causing bug slippage. QuickCheck’s ap-
proach does avoid spending time on already known bugs, and
also avoids bug slippage, because QuickCheck’s ‘shrinking’
(test case minimization) respects preconditions while reduc-
ing test cases—so will not reduce a test case to one already
excluded by a bug precondition. On the other hand, it re-
quires manual effort to diagnose bugs and formulate suitable
bug preconditions or bug models. Our goal in this paper is
to automate this process, so that, as bugs are discovered, we
can automatically focus test effort on areas not yet known
to be buggy, resulting in a set of minimized test cases that
should (ideally) all represent different bugs. We have created
an extension to QuickCheck that does just this.

Our approach is to generalize each bug as it is found,
to a ‘bug pattern’, and then adapt test case generation so
that test cases matching an existing bug pattern are never
generated again, neither randomly nor during shrinking. We
explain our technique (which we call ‘MoreBugs’) in section
2, with reference to a simple example taken from the Erlang
run-time environment. Our evaluation (in section 3) shows
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that MoreBugs is able to find bugs that QuickCheck and
RANDOOP cannot find. In section 4 we discuss limitations
of our approach; sections 5 and 6 discuss other related work
and conclude.

Our main contributions are:

• A fully automatic method to avoid provoking already-
known bugs at test case generation time, and to avoid
bug slippage when failed tests are minimized.

• Experimental results showing that this method can, in
some cases, reduce the number of tests needed to find a
set of bugs quite dramatically, and even find new bugs
in well-studied software.

2. THE “MORE BUGS” METHOD
We take as our motivating example the Erlang process

registry, essentially a local name server. Processes in Erlang
have dynamically allocated identifiers (“pids”), which can be
stored in the registry along with a readable name; from then
on, other processes can refer to them by name instead of by
pid. The process registry provides the following API:

register(Name, Pid)→ ok

unregister(Name)→ ok

whereis(Name)→ Pid | undefined

The operations are as follows: register associates a
name with a process ID, unregister forgets that name, and
whereis looks up a name to get a process ID.

We can create a simple QuickCheck model of the pro-
cess registry, which just tests random sequences of calls to
register1, unregister, whereis, and spawn (which creates
a new process). With no stated postconditions, the model
just tests the property that no exceptions are raised. Gener-
ating tests from the model quickly finds a counterexample:

unregister(a)

In fact, unregister raises an exception if the name it is
passed is not already registered—our model is wrong. Now,
before we do anything else, we might like to know if there are
any other problems with the model, but QuickCheck reports
the same counterexample 19 times out of 20. One time out
of twenty we find a different counterexample:

Pid = spawn()
register(a, Pid)
register(a, Pid)

That is, registering a name that is already registered also
raises an exception. This bug is very simple, yet is reported
very rarely.

Why is this? It is a combination of two factors:

1. Any test case that contains an unregister of a not-
registered name will fail. As we generate longer and
longer test cases, the probability that our test case
contains such a call approaches 1.

2. QuickCheck’s shrinking minimizes a failing test case
by (among other things) removing as many function
calls as possible. If the counterexample contains a call
to unregister, it is very likely that QuickCheck will
shrink it to just a call to unregister.

1We choose names randomly from a small set, so that colli-
sions occur frequently.

How can we avoid finding the same bug over and over again?
Our idea is to take a failing test case and automatically
generalize it to a whole class of suspicious test cases, which
we call a bug. We continue to test the system, but ignoring
any test cases matching that bug.

More precisely, our algorithm maintains a set of bugs,
which is initially empty. We test the system, ignoring any
test cases matching any of the bugs.2 If we find a failing
test case, we generalize it, add the resulting bug to the bug
set, and repeat. Eventually, the bugs will cover all possible
failing test cases, and we will not be able to provoke a failure.

Note that we overgeneralize failing test cases. This is
because our goal is not necessarily to find all bugs in the soft-
ware under test—we want to find more bugs than using ran-
dom testing, but not so many that the user is overwhelmed.

The remaining problem is: how do we generalize failing
test cases into bugs? In the remainder of this section we will
describe our approach. It is fully automatic, though the user
can tune it for better results. It is syntactic, so that we can
avoid existing bugs during test case generation, which is vital
if we want to make effective use of the time available for
testing. We have implemented it in QuickCheck, although it
should apply equally well to RANDOOP or similar tools.

2.1 Take one: subsequence checking
A very simple approach is as follows: take the failing test

case, look at the names of the functions it calls and ignore
their arguments. This gives us a sequence of function names
S, which we take as the bug.

Given a test case, we can compute the sequence T of its
function names too; the bug then matches the test case if S
is a subsequence of T .

Testing the process registry, we generalize the unregister

bug to any test case that contains a call to unregister.
Thus, when we re-run QuickCheck, it does not generate any
calls to unregister, and we immediately find the second
counterexample, which was so hard to find earlier:

Pid = spawn()
register(a, Pid)
register(a, Pid)

We generalize this counterexample to the bug spawn, register,
register, and thereafter do not generate any test case that
contains a call to spawn, followed by two calls to register.
Since we have also ruled out calling unregister, the only
test cases left are ones where we spawn some processes, and
then call register—once—followed by spawning some more
processes. This is not likely to provoke any new failures, and
indeed it does not. This method finds two bugs; we will now
improve it so that we can find more.

2.2 Take two: subsequence matching
Notice that the counterexample in the previous section does

not apply to just any old sequence spawn, register, register:
we must spawn a process and then register that process (a)
twice. We would like to capture in our bugs the requirement
that certain function arguments be identical.

Instead of just extracting the list of function names from
the test case, we abstract our test cases, replacing concrete

2To get a good distribution of test data, we in fact build up
the test cases one command at a time, and never choose a
command that would cause the test case we have built so far
to match a bug.



values by free variables which can stand for anything. We give
these abstracted variables names beginning with a question
mark, to distinguish them from ordinary Erlang variables.

We allow the user to specify how to abstract test cases,
but by default, we replace all function arguments by distinct
variables—except that if the same value appears more than
once in the test case, then we replace all occurrences with
the same variable. For the example above, we get

?Pid = spawn()
register(?A, ?Pid)
register(?A, ?Pid)

(Note that ?A is a variable, meaning that we do not care
which name we choose for the process.)

Now we say that a bug matches a test case if there is a
ground instance of that bug that is a subsequence of the
test case. In this example, our bug matches any test case
that spawns a process, and later registers that process twice,
giving it the same name both times—perhaps with other
function calls in between.

The strategy of the previous section amounts to an ex-
tremely weak form of abstraction where we replace all func-
tion arguments with a “don’t-care” variable:

? = spawn()
register(?, ?)
register(?, ?)

By capturing equality constraints, our tool is able to more
precisely characterize the spawn, spawn, register bug, and
rules out fewer test cases having found it. Running the tool
again, we find a third counterexample:

Pid1 = spawn()
Pid2 = spawn()
register(a, Pid1)
register(a, Pid2)

Unsurprisingly, we cannot give a process a name that
is already taken. Unfortunately, our tool also finds two
variations on this bug:

Pid1 = spawn()
Pid2 = spawn()
register(a, Pid2)
register(a, Pid1)

Pid1 = spawn()
register(a, Pid1)
Pid2 = spawn()
register(a, Pid2)

These three counterexamples differ only in the order of
the calls—they lead to the same state, and provoke the same
exception. This motivates finding parallel bugs.

2.3 Take three: parallel matching
The duplication we described in the last section is very

common. For example, a system might have several initial-
isation functions, which the test case will have to execute
before doing anything interesting, but it may not matter in
which order they are called. We would like to capture in our
generalisations the possibility that order does not matter.

We therefore augment our bugs with a parallel composition
operator. A bug is a sequence, as before, but each element can
be either a function call or a parallel composition p|q. Here,
p must be a single function call, while q is a sequence, and
may itself use parallel composition. There is no concurrency
here: p|q just means that we run p at some point during q.
A parallel bug matches a test case if some sequentialisation
of the bug matches the test case.

We can express our latest family of counterexamples by
the following parallel bug:

?Pid1 = spawn(),
register(?A, ?Pid1) |

(?Pid2 = spawn(), register(?A, ?Pid2))

This bug expresses that we can execute register(?A, ?Pid1)
at three possible points: before ?Pid2 = spawn(), before
register(?A, ?Pid2), or after register(?A, ?Pid2).

But how can generalize a sequential test case into a parallel
bug? Our idea is to detect parallelism by testing. Suppose
the failing test case consists of n statements s1, s2, ..., sn. We
take the first statement, s1, and try to move it later on in
the test case. If the test case still fails, then evidently it did
not matter exactly when we executed s1, and we introduce
a parallel composition. More precisely, suppose the test case
still fails if we move s1 after each si, i.e. for i from 2 to k
s2, ..., si, s1, si+1, ..., sn still fails. Then we put s1 in parallel
with statements s2 to sk, giving us s1 | (s2, ..., sk), sk+1, ..., sn.
We then recursively perform this procedure on the two state-
ment blocks that are left, s2, ..., sk and sk+1, ..., sn.

When performing the recursive parallelisation we must
decide which sequentialisations to test for previously intro-
duced parallel compositions; clearly testing all of them is not
feasible. We settled for testing two sequentialisations: one
where all operations on the left-hand side of a parallel com-
position are called before the right-hand side, and one where
they are called after all of the operations in the right-hand
side. This may lead us to overgeneralize some bugs, but the
effect is dwarfed by the other generalizations we do.

2.4 Bug subsumption
In fact, our tool finds yet another counterexample:

Pid = spawn()
register(a, Pid)
register(b, Pid)

Is this not the same bug we discussed in section 2.1? No: the
earlier bug registered a process twice with the same name,
but here we register a process with two different names! This
also raises an exception, hence the counterexample.

Our abstraction generalizes this counterexample into the
following bug:

?Pid = spawn()
register(?X, Pid)
register(?Y, Pid)

Notice, though, that this bug is a generalisation of the first
spawn, register, register bug that we found in section 2.2!
Any instance of the first bug is an instance of this one. Hence
we do not need to keep the first bug any more.

Therefore, whenever we find a new bug, we check whether
it subsumes any existing bugs; if it does, we forget the old
bug. How do we check if bug A subsumes bug B? If bug B
is sequential, we simply check if A matches B, as if B were
a normal test case. If B is parallel, we enumerate all of B’s
sequentialisations and check if A subsumes all of them; if B
has more than 1000 sequentialisations, we give up and declare
that A does not subsume B. 1000 is a bit arbitrary; we found
it small enough that subsumption testing is fast, while large
enough that it was almost never exceeded. We discuss briefly
the consequences of this limitation in Section 4.



3. COMPARISON WITH RANDOOP
MoreBugs uses feedback from failed tests to guide the gen-

eration of future tests; it clearly employs a form of feedback-
directed random testing. Feedback-directed random testing
originated with RANDOOP [9], still the best known tool of
this type, so we aimed to compare MoreBugs to it. However,
RANDOOP tests Java classes fully automatically, using re-
flection to identify the API under test, while QuickCheck
tests Erlang or C code, against a state machine model pro-
vided by the user that specifies both how tests should be
generated, and the properties that ought to hold. A direct
comparison is thus not straightforward.

We decided therefore to carry out two experiments. First,
we extended QuickCheck to test Java classes without a spec-
ification, using reflection to identify the API as RANDOOP
does—which allowed us to compare MoreBugs and RAN-
DOOP on examples from the RANDOOP test suite. Sec-
ond, we implemented a RANDOOP-style tool on top of
QuickCheck, and compared it to MoreBugs on two examples:
a version of the registry example, and some vehicle software
in C previously tested with QuickCheck.

It may seem tempting to compare MoreBugs with Adaptive
Random Testing [4] instead, but as we discuss in section 5,
ART is not directly comparable because it requires a distance
metric for test cases. While finding such a distance metric
for QuickCheck-style test cases is a good research problem,
it is beyond the scope of this evaluation section.

3.1 MoreBugs on the RANDOOP test suite
Our first experiment compares the variety of bugs found

by MoreBugs and RANDOOP: in a codebase with both easy-
and hard-to-find bugs, do the easy bugs mask the hard ones?
We decided to test this using RANDOOP’s test suite.

As RANDOOP is for Java, we built a QuickCheck model
for testing Java code. Our model uses an Erlang-to-Java
interface and reflection to generate random sequences of Java
API calls. The model postcondition checks two properties: 1)
there are no NullPointerExceptions, provided that the test
case itself does not use null; and 2) equals is reflexive, sym-
metric, and compatible with hashCode. These are the same
conditions that RANDOOP checks. Other exceptions are
not considered to be bugs—they are more likely to indicate
a random test case that misuses the API in some way.

We then ran QuickCheck with shrinking, both with and
without MoreBugs, and RANDOOP on two examples from
RANDOOP’s test suite: the Apache Commons mathematics
and collections libraries. We ran each tool until it had
generated a large number of failing test cases, which we then
classified. For the mathematics library the results were:

Kind of bug QuickCheck MoreBugs RANDOOP3

Null pointer 98% 68% 98%
Equality 2% 32% 2%

Total failures 161 207 54
Many classes in the mathematics library can be created

without being initialised, and initialised later—using the
class between creation and initialisation provokes a Null-

PointerException. These failures are very easy to find,
which explains the high number of NullPointerExceptions

found by QuickCheck and RANDOOP.
There is one more interesting bug—the Complex class over-

3We ran RANDOOP until it stopped finding more failing
test cases, and allowed it to shrink the resulting test cases.

loads equals but not hashCode, so that two equal complex
numbers can have different hashCodes. QuickCheck struggles
to find it, because it is much easier to get a NullPointer-

Exception, but MoreBugs hits it a third of the time.
On the collections library we get the following results:
Kind of bug QuickCheck MoreBugs RANDOOP
Null pointer 99% 71% 92%

Equality 1% 29% 8%
Total failures 116 96 49
As before, QuickCheck only finds one test case involving

equals. But in this case, there are actually several classes
with a buggy implementation of equals—so QuickCheck
missed some bugs! In fact, RANDOOP also mostly provokes
NullPointerExceptions, and although it finds several bugs
involving equals, it also misses some. Here is one MoreBugs
finds, which is still present in the latest version of the library:

CompositeSet x = newCompositeSet();
Collection y = x.getCollections();
Collection z =

TransformedCollection.decorate(y,
NOPTransformer.getInstance());

The test case creates a collection y, and then transforms the
collection by applying the identity function to each element
to obtain z. After running this code, z.equals(y) is true,
but y.equals(z) evaluates to false, a violation of symmetry.
Neither QuickCheck nor RANDOOP find this bug.

Bug masking is a serious problem in these two examples,
with many trivial null pointer bugs masking more interest-
ing equality bugs. As we might expect QuickCheck does
extremely poorly at uncovering more than one bug. RAN-
DOOP does better but few of its counterexamples are equality
bugs. MoreBugs finds the highest variety of bugs, and finds
the bug above which neither of the other tools can find.

3.2 RANDOOP-style testing of QuickCheck
properties

RANDOOP is designed to test object-oriented software,
in which state is encapsulated in objects. It collects non-
failing sequences of method calls which construct objects,
then generates each new test by first choosing a method
to test, then randomly choosing previously identified non-
failing sequences that construct suitable arguments for the
chosen method; the resulting test case is a concatenation
of the sequences that construct the arguments, followed by
a call of the method under test. Method arguments which
are not of an object type are chosen randomly from a small
set—for example, by default, integer arguments will be 1, 10,
or 100. The test fails if there is a null-pointer exception or a
contract violation in the last method call. Passing tests add
to the non-failing sequences for generating future tests, if
the resulting object has a different state from those objects
that RANDOOP already knows how to construct. Object
states are compared using the Java equals method, which
by default compares representations, but can be overridden
by the programmer to perform a more abstract comparison.
RANDOOP may thus overlook errors which are provoked by
an object O2, if it first finds a way to construct O1 such that
O1.equals(O2).

QuickCheck state machines test systems whose state is
usually opaque. For example, we cannot inspect the internal
state of the process registry, although we can compute the
model state at each point in a test case. The operations in a



test case have preconditions that constrain the model state
in which they can be invoked, which means that operation
sequences cannot simply be concatenated. Operations have
postconditions, checked against the model state; tests may
fail either because of an exception, or because a postcondition
fails to hold. Operation arguments are not usually objects,
and generating random, but appropriate, arguments can be
quite complex.

We decided to reuse existing QuickCheck state machines
for RANDOOP-style testing (henceforth called RDS), inher-
iting the existing generators for operation arguments, and the
existing pre- and post-conditions (corresponding to the con-
tract checks made in the original RANDOOP experiments).
After each successful test, we recorded the sequence of opera-
tions in the test case, and the model state reached at the end
of the test—but we kept only one (the shortest) sequence
reaching each model state. (We thus use model state compar-
ison in the same way RANDOOP uses the equals method,
as an abstract comparison of opaque representations). We
generated test cases by choosing an operation to test, then
choosing an already-reached model state satisfying the opera-
tion’s precondition, and finally appending a newly generated
call of the chosen operation to the recorded sequence that
reached the chosen model state. We avoided generating the
same test case twice, both for RDS and for QuickCheck gen-
eration. The RANDOOP paper [9] partitioned failed tests
into equivalence classes using a tool called REDUCE (which
considered test cases equivalent if the same method failed
with the same exception), and reported one randomly chosen
test from each equivalence class. We use the same approach,
but report a minimal length test case from each class.

3.3 Evaluation: the Process Registry
We evaluated our test generation strategies on an extended

version of the registry model discussed above. The extensions
were: 1) a postcondition for whereis(Name) requiring it to
return the correct registered pid, or undefined if Name is
not registered; and, 2) a new operation kill(Pid) to kill
a process, treated as a no-op in the model. In fact, dead
pids cannot be registered, and killing a registered process
removes it from the registry, so this extension introduces more
inconsistencies between the model and the implementation
(or ‘bugs’ for the purposes of this experiment).

Running MoreBugs on this example generates a list of
five reduced bugs, shown in Figure 1. Bugs 1, 2 and 5 were
discussed above; bugs 3 and 4 were introduced by killing
processes. There is actually a sixth way of provoking an
exception in this example:

V1 = registry_eqc:spawn(),
registry_eqc:register(d, V1)
registry_eqc:kill(V1),
registry_eqc:unregister(d)

Here the unregister fails, even though the name d was
registered, because V1 was removed from the registry by the
kill. MoreBugs does not find this case because it is an
instance of Bug 1 (it contains a call of unregister).

RDS testing reports three failed tests in this case, corre-
sponding to bugs 1, 3 and 4 in Figure 1. Only three bugs
are reported because REDUCE-style partitioning finds only
three equivalence classes: there are only three functions that
can fail, and with only one exception or contract failure in
each case. Bugs 2 and 5 provoke the same exception in the

1. registry_eqc:unregister(a)

2. V1 = registry_eqc:spawn(),
registry_eqc:register(a, V1)
| registry_eqc:register(b, V1)

3. V1 = registry_eqc:spawn(),
registry_eqc:kill(V1),
registry_eqc:register(a, V1)

4. V1 = registry_eqc:spawn(),
registry_eqc:register(d, V1)
| registry_eqc:kill(V1),
registry_eqc:whereis(d)

5. V1 = registry_eqc:spawn(),
registry_eqc:register(a, V1)
| V3 = registry_eqc:spawn(),
registry_eqc:register(a, V3)

Figure 1: Registry bugs found by MoreBugs.

same function (register) as bug 3, so only one of these
bugs can be reported. However, this is really just an artefact
of the fact that register raises the same exception in the
event of failure, no matter why the registration failed. We
therefore replaced the REDUCE test case classification with
a custom one which distinguished the three reasons why a
call to register might fail. Using this refined classification,
RDS testing reports the same bugs as MoreBugs.

The real question, though, is how quickly are the bugs
found? We first measured how often each bug is provoked in
(a) random test cases generated by QuickCheck, (b) shrunk
test cases generated by QuickCheck, (c) RDS test cases. In
each case, we ran long enough to generate 10,000 failing test
cases. We report how often each bug was found per thousand
calls to the API under test (since generated test cases vary
in length between the three methods). The results were:

Bug QC-S QC+S RDS
1 258.1 53.2 12.8
2 13.9 3.1 3.1
3 18.9 3.8 3.1
4 1.1 0.24 1.8
5 5.7 2.0 5.1

Total 297.7 62.7 25.9

In this table, QC-S denotes QuickCheck without shrink-
ing, and QC+S denotes QuickCheck with shrinking. We
see that bug 1 (unregister) is provoked far more often by
QuickCheck than the other bugs, with shrinking (by a factor
of 14− 220×) or without (13− 480×). RDS finds them with
a more even distribution (with the most common bug only
found 2.5 − 7× as frequently as the others). Shrinking is
costly, accounting for 80% of the cost of QuickCheck testing
when it is enabled—although this is probably because these
bugs are so easy to provoke, so much more time is spent
shrinking them to a minimal example than finding them in
the first place. RDS performed many more calls per bug
found, probably because RDS constructs longer and longer



sequences that do not fail, to which a single possibly-failing
call is appended—which means that as time goes by it is
less and less likely that a call will provoke a failure. On the
other hand, there is a bound on the length of test cases that
QuickCheck will generate.

We know how often each single bug is provoked, but how
quickly can we find all 5 bugs? To measure this, we ran
each tool until all five bugs had been found, and measured
how many API calls were performed up to that point. Since
this varies from run to run, we repeat each experiment as
many times as possible in 30 minutes, and report both the
number of repetitions and the mean number of API calls per
experiment. The results were:

QC-S QC+S RDS MoreBugs
N T N T N T N T

212 944 88 4893 573 781 604 713

N denotes the number of experiments run for each method,
and T denotes the average number of API calls per experi-
ment.

Our experiment shows that MoreBugs was able to find all
five bugs a little faster than RDS, on average, presumably
because it is more successful at avoiding retesting already
discovered bugs. But it is also important to recall that
QC+S and MoreBugs are finding minimized test cases in this
time; QC-S and RDS are finding unminimized random test
cases, which are unlikely to be very useful for debugging until
they have been minimized, either manually or by a separate
tool. Minimizing test cases is quite costly in itself—for this
example, QuickCheck’s shrinking is several times more costly
than finding the bugs in the first place. So, that MoreBugs
can find minimal test cases for all five bugs, in less time
than RDS can find random test cases, is an excellent result.
If finding minimal failing tests is the goal, then MoreBugs’
speedup over QC+S is particularly striking.

3.4 Evaluation: An AUTOSAR CAN stack
For a larger example we chose an implementation of a

network stack for a CAN bus for which we happen to have a
QuickCheck model [2] of the AUTOSAR standard [3]. The
model consists of 5,000 lines of Erlang code modelling 50
API functions, and the implementation is around 20,000
lines of C code. The model is configurable to support a
wide range of valid behaviours, so in order to emulate a
faulty implementation with a suitable number of bugs we
simply configured the model so that it did not match the
behaviour of the actual implementation. For the experiment
we chose to enable 9 different “bugs” of varying complexity.
We then measured for each method the average number of
calls required to find each bug.

Bug QC+S RDS MoreBugs
1 5k 100k 5k
2 1,000k - 1,000k
3 2,000k - -
4 500k - 2,000k
5 1,000k - -
6 2,000k - 500k
7 - - 500k
8 - - 1,000k
9 1,000k - 1,000k

In this example there is no measurable difference in the
bug finding capabilities of QC+S and MoreBugs. This is

disappointing, but perhaps not surprising given that even
the easiest to find bug only fails in less than 1% of test cases.
This means that QC+S does not spend a significant time
generating and shrinking previously found bugs, and so there
is not much need for MoreBugs in this example.

RANDOOP-style testing, however, performs very poorly,
only finding the simplest bug. The likely explanation for
this is that getting the CAN stack into a state where it is
operational and interesting things can happen is a rather
delicate procedure, involving around ten API calls. The gen-
erators used by QC+S and MoreBugs are aware of this and
are biased to frequently generate the proper setup sequence.
It is not immediately obvious how to best adapt RDS to
deal with this problem. One possibility would be to some-
times pick a sequence of operations—such as the CAN setup
sequence—instead of a single operation when extending a
previous test case.

It is also the case that RDS runs much shorter test cases.
MoreBugs and QC+S use an average of 40 operations per
test case with several hundred operations in the longest tests,
while running RDS for an hour yields no test case longer
than 40 operations with an average of 13. Adding sequences
would improve this slightly, but most likely not remove the
problem.

4. LIMITATIONS
MoreBugs performs badly when a test fails because an

operation that should be invoked was not. For example, in the
process registry example, the test case unregister(a) fails
because a has not been registered, after which MoreBugs will
never generate any calls to unregister—and so will not find
any more complex bugs involving unregister. We have no
fix for this problem at present—except to correct the bugs
and run MoreBugs again, when a different set of bugs will
be found.

MoreBugs aims to generate a single instance for each
bug, but there are a few cases where this may fail. One
case is when subsumption checking fails due to too many
possible sequentialisations of a parallel test case. In this case
MoreBugs can report a subsumed bug. This is unfortunate,
but not a big problem in practice. Failure to discard a
subsumed test case will not affect subsequent testing, except
by a small performance penalty having to avoid more bugs.
Note that discarding a bug that is not in fact subsumed could
lead to non-termination, so we need to err on the side of not
discarding bugs.

We generalize argument values all at once. It would be
interesting to consider an incremental generalization of values,
backed by tests to see whether each generalization is valid—
just as we do when parallelizing bugs.

MoreBugs only finds parallel compositions where the left
hand side is a single command. Sometimes the most general
form of a bug is a parallel composition with multiple com-
mands on both sides, and in this case MoreBugs will report
several bugs instead of one. We have not found this to be a
big problem in practice.

Finally, MoreBugs only generates test cases consisting
of sequences of function calls, and our bug generalizations
depend heavily on this. But the same problem (repeated
provocation of the same bug) may arise when test cases take
other forms, such as a collection of input values, and with
other test case generation methods, such as concolic testing
[10]. It would be interesting to see whether similar ideas can



be developed in other contexts.

5. RELATED WORK
Adaptive Random Testing (ART) [4] is a way of increasing

diversity in random tests. Rather than running every random
test generated, ART repeatedly generates a set of candidate
tests, but only runs the one ‘furthest’ from any previous run
test. This leads to a greater variety of tests, and has been
shown to reduce the mean number of test to find the first
bug by up to 50%. However, it requires a distance metric to
be defined on test cases, which is not easy for non-numerical
software, and the overheads of the method can make it slower
than random testing in practice [1].

Ciupa et al. adapt ART to objected oriented software,
by defining a distance metric on object states, and selecting
objects with the greatest average distance to previously used
objects for use in test cases [6]. Evaluation on the EiffelBase
library showed a reduction in the number of tests needed to
find the first fault by a factor of five, on average, compared
to random testing. But this method requires access to object
states; MoreBugs is a black-box testing method based entirely
on recognising patterns in test cases.

Directed random [8] or concolic testing [10] combines ran-
dom testing with constraint solving to force control down
new paths in the software under test; the branch conditions
along the path taken by a random test are collected, then one
of them is negated to produce a constraint on the test inputs
that will force one of the branches to made differently. These
approaches have been very successful at improving code cov-
erage and finding bugs, but they are white box methods that
require instrumenting the code under test.

6. CONCLUSION
We have presented MoreBugs, an extension to QuickCheck

that, once a bug is discovered, avoids generating more test
cases that are likely to provoke the same bug. The goals are
to reduce debugging time, by presenting each bug only once,
and to improve testing effectiveness by concentrating test
effort on areas not yet known to be buggy.

We compared MoreBugs against RANDOOP, which proved
harder than expected, because QuickCheck and RANDOOP
are really designed for different purposes, and test different
kinds of software in different ways. We had to adapt both
tools to make them applicable in the other’s context, reim-
plementing the core RANDOOP algorithms to work with
QuickCheck examples, and building a trivial QuickCheck
model of a Java class library to apply QuickCheck and More-
Bugs to RANDOOP examples. Nevertheless, despite these
difficulties we were able to make comparisons on several large
examples.

First, in a small experiment with several easily-provoked
bugs, MoreBugs was able to find all the bugs, and report
minimized test cases, more quickly than QuickCheck or
“RANDOOP-style” testing could find them at all. In a much
larger experiment using automotive software, with much
harder-to-find bugs, then MoreBugs was much quicker to find
some bugs, but not others. In this experiment, “RANDOOP-
style” testing performed very poorly, perhaps because this is
not its intended domain. In a final experiment using Java
libraries from the RANDOOP test suite, and the real RAN-
DOOP tool, MoreBugs was able to provoke subtler bugs
much more often than either QuickCheck or RANDOOP,

finding some bugs which RANDOOP missed altogether—and
which are still present in those libraries today.

MoreBugs does have limitations, because of its syntactic
generalization of counterexamples, but our experiments show
that it can increase the effectiveness of random tests and
does find more bugs at once than random testing.
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