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Abstract
The development of new DNA sequencing techniques have made it possible
to generate high-resolution genomic data at an unprecedented pace. However,
the high dimensionality in combination with the substantial levels of technical
errors and biological variability make the analysis challenging. Tailored statis-
tical methods need therefore to be developed and applied in order to facilitate
correct biological interpretation. The first two papers in this thesis are focused
on finding tumor-specific (somatic) mutations in cancer, while in the third pa-
per a new method to assess genomic variability in microbial communities is
developed.

In paper I, the aim was to characterize somatic mutations in pheochro-
mocytoma/paraganglioma, and to identify mutations that contribute to ma-
lignancy. Statistical analysis of exome sequencing data from nine replicated
paired normal–tumor samples revealed 225 unique somatic mutations. A sig-
nificantly higher rate of mutations was found in malignant compared to benign
tumors. In addition, three genes with recurrent somatic mutations, exclusively
located in malignant tumors, were identified.

In paper II, exome sequencing data was used to detect somatic mutations
in 17 patients with acute myeloid leukemia. The identified mutations were
evaluated as markers in a more sensitive analysis of remaining cancer cell levels
after treatment. All but one of the studied patients were found to have potential
markers in their somatic mutation profiles.

In paper III, a hierarchical Bayesian model for detecting genetic differences
on nucleotide level between groups of microbial communities is proposed. The
model is based on a Dirichlet-multinomial distribution and takes both within-
and between-sample variability into account. The evaluation of the perfor-
mance show that the model has a high sensitivity and maintains a low false
positive rate even when the between-sample variability is high.

The thesis demonstrates the importance of dedicated statistical analysis and
understanding of the error structure in DNA sequence data, in order to assure
accurate identification of mutations and differences in genomic variability.

Keywords: DNA sequence data, exome sequencing, calling of somatic muta-
tions, metagenomics, hierarchical Bayesian model, genomic variability
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Chapter 1

Introduction

In all cells of all organisms the genetic material, the genome, contain informa-
tion on how the cells should develop and function. Differences in the genome
determine, together with the encountered environment, our traits, develop-
ment and responses. Evolution of new functions and organisms is possible due
to changes in the genome. The genetic material consists of DNA molecules,
which are build up by long chains of four different building blocks. These are
collectively called nucleotides and are denoted A, C, G and T. To be able to
analyse how the information encoded in the DNA molecules govern biological
processes, the information need to be read. That is, the type of nucleotide
present at each position in the genome need to be mapped out. The term "se-
quencing" refer to the procedure of elucidating the order of the nucleotides in
DNA molecules.

Until recently, sequencing was a time consuming and costly project. For
example, when the first human genome was sequenced, it was a large collabo-
rative project that had taken over 10 years to complete (Lander et al., 2001).
Therefore, an early strategy for investigating the association of a property to
variations in the human genome was to only read a very limited set of positions
instead of the whole sequence. However, new innovative techniques for DNA
sequencing, commonly referred to as next generation sequencing (NGS), have
dramatically lowered the cost and effort for sequencing and revolutionized the
ability to analyse genomes. Therefore, it is now possible to compare the infor-
mation in the whole genome, or part of it, from many samples. The connection
between genetic alterations and different properties, such as for example a dis-
ease, can thereby be investigated down to unprecedented resolution.

An impressive example of what now is possible is the whole-genome se-
quencing of 2,636 Icelanders reported by Gudbjartsson et al. (2015). The data
is paired with other unique resources for the Icelandic population, such as a
genealogy for the nation documented several hundred years back, access to na-
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tionwide healthcare information and additional sequence data for over 100,000
Icelanders previously analysed at lower resolution. The article describes the
landscape of genetic variants in the human genome in relation to, for example,
functional annotation and gene position. In addition, three examples of con-
nections between genetic variants and diseases found using the data are given,
and additional such findings are reported in subsequent articles (Swaminathan
et al., 2015; Oddsson et al., 2015).

The alterations in the nucleotide sequences giving rise to the genetic vari-
ability discussed above are commonly called mutations. The different genetic
variants that mutations create are called alleles. Mutations can occur in several
different ways. An exchange (also called a substitution) of one nucleotide for
another, will here be denoted a single nucleotide variant (SNV). One or a few
nucleotides can also be inserted or deleted from the DNA chain, such muta-
tions are called insertions and deletions, respectively, or with a common name
indels. These small-scale mutations are in focus in the work described in this
thesis. Examples of such mutations are SNVs and indels in the BRCA1 gene,
changing the properties of the encoded protein and giving rise to increased risk
for breast cancer (King et al., 2003). However, there are also mutations on a
larger scale, with amplification or loss of larger parts up to whole chromosomes
(a whole DNA molecule) or structural rearrangements within or between chro-
mosomes. An example is the gain of an extra copy of chromosome number 21
or parts of it, giving Downs syndrome to the carrier. Although mutations can
have damaging effects, it is important to note that they are a prerequisite for
evolution and gain of new beneficial properties. One example is a mutation
in the FUT2 gene that give rise to immunity against winter vomiting disease
(Thorven et al., 2005).

A common class of diseases that has genetic origin are different types of
cancer, where mutations alter the normal functions of a cell and turns it into a
cancer cell (Hanahan and Weinberg, 2011). Cancer is a heterogeneous group of
diseases, that can have large differences in their genetic causes. Even within a
specific type of cancer, such as breast or lung cancer, there are many combina-
tions of mutations that can give rise to a tumor (Vogelstein et al., 2013). Which
mutations a specific tumor harbor influence, for example, the aggressiveness of
the disease and the ability for the tumor to metastasize (Armaghany et al.,
2012; Brodeur et al., 1984). Furthermore, the response to treatment can be
dependent on which mutations that are present in the tumor, and additional
mutations can give rise to drug resistance during treatment (Garnett et al.,
2012; Zahreddine and Borden, 2013; Nilsson et al., 2009). It is therefore an
important field of research to characterize which mutations that cause different
types of cancer and how they influence the progression and properties of the
disease. This is required both to gain a more thorough understanding of tumor
biology and to be able to develop better diagnostics and treatment. However,

2



“main” — 2016/1/18 — 9:15 — page 3 — #11

the analysis is impeded by the fact that tumor cells have a higher mutation
rate than normal cells. Many of those mutations acquired during tumor growth
are so called passenger mutations and do not influence the progression of the
disease (Martincorena and Campbell, 2015). Also, a mix of inherited mutations
that exist in all cells of an individual and acquired mutations are often together
causing the tumor development (Knudson, 1971).

Another area where genetic variability is studied is microbiology. Microor-
ganisms are vital parts of ecosystems, but historically it has been hard to
analyse the full complexity of microbial communities. The methods have been
dependent on the ability to culture the studied organisms in a laboratory. A
microbial community can consist of thousands of species and only a limited
amount of those have been able to culture. However, with the advent of NGS
techniques the field of metagenomics also burst forth. In metagenomics all
the genetic material from a sample taken directly from the environment is se-
quenced, without any prior cultivation. Thereby the genetic variability, and
hence the compositions of species and biological functions, and its connection
to different conditions and properties can be investigated.

To better understand the processes in microbial communities is of great
importance in many different fields, such as agriculture, waste water treatment
and medicine. For example, bacteria exist practically everywhere, both in the
environment and within humans. Often they contribute with important func-
tions, such as in the digestion process in the gut. However, bacteria can also
cause infections and we are dependent on having antibiotics to treat those in-
fections. An emerging problem is bacteria that have become resistant to one or
several types of antibiotics. This phenomena may turn infections that are today
easily treatable into life-threatening ones. Also in the long run it can hamper
our way of practice medical treatment. For example, effective antibiotics are
important when doing surgery, to hinder infections in the wounds. Resistance
towards antibiotics typically depends on changes in the genetic material of the
bacteria. Mutations in protein coding genes is one way of acquiring resistance.
For example, only three SNVs in the genome of the bacterium Escherichia
coli is enough to make it highly resistant to certain types of antibiotics (Bagel
et al., 1999). To be able to advance our understanding of the mechanisms
behind antibiotic resistance, one important part is thus to examine which mu-
tations that exists in bacteria and that are promoted under selection pressure
from antibiotics.

As described above, the new sequencing techniques have made it possible to
generate massive amounts of data and opened up a wealth of new opportunities
for analysis of genomes. There are, however, also a number of new challenges
related to data handling and analysis. After extraction of the genetic material
from the studied sample, the DNA molecules are heavily fragmented and many
such fragments are then sequenced rapidly and in parallel (Metzker, 2010). The

3
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term "massively parallel sequencing" is hence often used for these techniques.
Each region of interest in the genome is covered several times, by sequencing
millions of DNA fragments coming from multiple cells. The reads (i.e sequenced
fragments) are then mapped to a reference genome, generating piles of reads
(Figure 1.1).

Figure 1.1: Sequenced DNA fragments are mapped to the human reference genome
and viewed by the visualization tool Integrative Genomics Viewer (Thorvaldsdóttir
et al., 2013). The colored vertical lines represent positions where there are discrep-
ancies (variant alleles) compared to the reference. On top, a histogram shows the
number of times each position is read.

When identifying mutations using DNA sequence data, the task is to de-
cide for which positions there actually are mutations and for which positions
discrepancies from the reference genome only represent errors in the data. The
methods need to be sensitive, to detect mutations also in regions with few se-
quenced fragments, and at the same time have a low false positive rate, due
to the high dimensionality of the data. As an example, only sequencing the
set of protein-coding genes in humans gives around 50 million positions and
the whole human genome has over 3 billion nucleotides. To have both high
sensitivity and specificity is however a non-trivial task, since the data contains
considerable levels of noise coming from errors introduced during sample prepa-
rations and sequencing of the DNA, and from limitations in the bioinformatic
data processing (Olson et al., 2015). As an example, in the sample prepa-
ration the DNA fragments need to be amplified. This can lead to insertion
of wrong nucleotides and bias in what parts of the genome that are ampli-
fied (Aird et al., 2011). Furthermore, a typical read is around 100 nucleotides
long and often contain multiple sites with sequencing errors. The relatively
short fragment length and errors within the reads can make it hard to decide
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where a read should be correctly placed along the reference. The problem is
more severe in genome regions with repetitive patterns and for genes that are
evolutionary closely related and hence may have similar nucleotide sequences
(Treangen and Salzberg, 2012). Accumulation of incorrectly placed reads can
lead to discrepancies from the reference genome that are artificial but look like
true mutations. Moreover, the errors introduced during sequencing are both
random and systematic. For example, errors occur more often at the end of
reads and within certain patterns in the nucleotide sequence (Minoche et al.,
2011). If not accounted for, these errors can lead to biased results. A quality
score, related to the probability of an error, is estimated for each nucleotide
and read placement. These scores can be utilized in bioinformatical algorithms
and statistical models used to preprocess the reads and infer mutations. In
conclusion, to be able to employ the NGS data and transform it into accurate
information that can be used for new biological insights, statistical methods
and competence are crucial. There is however a need for development of new
and tailored computational and statistical methods to take full advantage of
the potential in the data.

To summarize, the research activity utilizing next generation sequencing
techniques have grown dramatically over the past years. Still we are only in
the beginning of what can be investigated and to which accuracy. Improved
bioinformatical and statistical methods are important to develop, as well as
infrastructure to handle the vast amount of data The experimental methods
continue to evolve, producing data with higher quality and new types of infor-
mation. One example is techniques for sequencing the genetic material from
single cells, instead of pools of cells that are done today, giving even higher
resolution in the information (Shapiro et al., 2013). To implement sequencing
techniques, and the possibilities they give, into daily clinical use in our hospitals
is also an ongoing area. Altogether, we are in a position with unprecedented
and evolving opportunities for studying gene function, biological diversity on
different levels and evolution.
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Chapter 2

Finding somatic mutations in
exome sequencing data

In paper I and paper II the focus is on finding tumor-specific mutations in
protein-coding regions (the exome) for the cancer types pheochromocytoma/
paraganglioma and acute myeloid leukemia, respectively. To complement the
relatively brief method sections in paper I and paper II, the bioinformatical and
statistical approaches used to preprocess the raw sequence data, identify can-
didate somatic mutations and filter for technical valid and biological important
somatic mutations are summarized in the sections below.

In a tumor cell there is a mix of inherited (germline) mutations, and mu-
tations that are specific to the tumor cells, denoted somatic mutations. The
search for somatic mutations is, in important aspects, different from identifying
germline mutations. One aspect concerns in what ratio sequenced fragments
are expected to harbor discrepancies from the reference genome for a somatic
mutation. In human cells, all but the sex chromosomes are inherited pairwise,
giving two copies of each gene. In general, all the cells in the body contains
the same genetic material. A germline mutation is therefore expected to on av-
erage show up in 50% (heterozygous) or 100% (homozygous) of the sequenced
fragments. That is, the variant allele frequency (VAF) is expected to be 50%
or 100%. However, in samples from tumor cells this is no longer the case. Dur-
ing development and growth of a tumor, new somatic mutations are acquired.
Tumors are thus often heterogeneous and have subclones, meaning that the
genetic material differs between groups of cells. While some somatic mutations
can be common to all cells, due to an early mutation event or a large selective
advantage, others exists only in subclones. Both types are important to find, in
order to fully understand the genetic origin and which combinations that cause
different properties. Furthermore, samples from tumors often contain normal

7
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cells to a certain extent. Tumor cells can also mutate to have more or less than
two copies of each gene. Altogether, this means that the ratio of chromosomes
in the sample harboring a somatic mutation can take on values from, in prin-
ciple, just above zero to 100%. Thus, the assumption on which VAF to expect
in the data for a position with a somatic mutation must be relaxed.

Another aspect is directly connected to the definition of a somatic mutation;
that it should not be present in normal cells. A paired experimental design,
including samples from both normal and tumor cells from each patient, is
therefore needed. For each position, the tumor and normal sequence data is
compared and if variant alleles are present in the tumor sample but not in the
normal sample, a candidate position for a somatic mutation is found (Figure
2.1).

Tumor sample Normal sample

Figure 2.1: Sequenced DNA fragments aligned to the human reference genome and
viewed by Integrative Genomics Viewer, where variant alleles are shown by colored
letters. Variant alleles are detected in the tumor sample but not in the normal, i.e. a
candidate somatic mutation.

2.1 Preprocessing of the data
The purpose of the preprocessing of the data, before the actual identification of
the mutations, is to correct or at least compensate for errors introduced during
sample preparation, sequencing and mapping to the reference genome.

We start from the point where we have access to the reads, i.e. sequenced
DNA fragments, and the quality value for each sequenced nucleotide (denoted
Q). The scores are related to the probability of an sequencing error, P , accord-
ing to

Q = −10 log10 P.

The first step is to filter the data based on the quality values, to ensure that
reads with overall low quality is discarded. Also, the quality often drops towards
the end of the reads, and such stretches can be trimmed of during the filtering

8
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step. In paper I and paper II we used the tool PRINSEQ to perform quality
filtering (Schmieder and Edwards, 2011).

Then, the reads are mapped (aligned) to the reference genome. That is,
the original position in the genome for each sequenced DNA fragment is to be
found. A number of different algorithms for aligning reads have been developed
(Li and Homer, 2010). In paper I and paper II we used BWA (Li and Durbin,
2010) in paired-end mode, as recommended in the Best Practices developed at
the Broad Institute (Van der Auwera et al., 2013). Paired-end refers to the
type of sequencing performed, where the DNA fragment size is aimed at being
at least twice the length of a read and then the fragment is sequenced from
both edges. In this way the mapping is enhanced, since information from both
reads in a pair can be utilized. A mapping quality score is assigned to each
read, indicating how well the read matched the reference sequence. Reads who
matched several intervals in the reference equally well are flagged, by giving a
mapping quality score of zero.

The DNA amplification used in the sample preparation can lead to the
same fragment being sequenced twice or more, especially when low amount
of DNA is used as input material. To not account for the same information
several times, such duplicated reads needs to be removed. We used a tool
called Picard (http://broadinstitute.github.io/picard) to mark read-pairs with
the same genomic starting positions for both reads as duplicates. In duplicate
marking, all reads from the same sample preparation must considered simulta-
neously. It is worth noting that when using formalin-fixed paraffin-embedded
(FFPE) tumor material as in paper I, the levels of duplicates were in general
much higher than for fresh-frozen (SF) material. This is likely due to the ad-
ditional rounds of amplification that were needed in the sample preparation
of the FFPE material. Also, the Picard algorithm left to a larger extent du-
plicated reads unmarked, due to inconsistent mapping of one of the reads in
the pair, in the data from FFPE samples. This produced a significant amount
of false positive somatic mutations in the FFPE material. We removed those
by adding a down-stream filter requiring the mutations to be found in several
different positions in the supporting reads. This problem was also noticed and
solved similarly by another study utilizing FFPE material (Yost et al., 2012).

In regions with insertion or deletions in the sequenced sample, the map-
ping algorithm often have a hard time deciding whether to include indels or
mismatched nucleotides in the alignment, especially at the end of reads. Each
read-pair is mapped independently of the others, which can produce inconsis-
tent decisions for different reads at the same position. The process of correcting
for such inconsistency is called indel realignment. Intervals that need to be cor-
rected are searched for and all reads in such an interval are realigned together
(DePristo et al., 2011). For a paired design with samples from normal and tu-
mor cells, it is important to perform indel realignment with all reads from one

9
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patient included at the same time. Otherwise, different consensus decisions
may be taken in the tumor and the normal samples, creating false positives
when inferring somatic mutations.

The quality scores for the nucleotides are used extensively in the algorithms
for identifying mutations, and in the subsequent filters. However, the quality
scores contain systematic errors associated to for example sequencing machine
cycle and sequence context. A process called "base recalibration" is shown
to effectively reduce the bias in the quality scores (DePristo et al., 2011). In
paper I and paper II we applied base recalibration taking sequence context,
sequencing cycle, original base quality score and read group ID into account
(Van der Auwera et al., 2013). The read group ID gathers reads from the same
sample preparation and machine lane together.

2.2 Identification of candidate somatic mutations

To identify genomic positions harboring a mutation in the sample, positions
with mutations need to be differentiated from those where discrepancies in
the matching of the reads to the reference genome only represents noise in
the data. A statistical method for identifying somatic mutations need to be
sensitive, both to be able to detect low-frequency mutations and mutations in
regions with low sequence coverage. At the same time specificity is important,
because of the many positions to be considered and the considerable levels of
noise in the data. Also, a mutation found in the tumor need to be classified
as somatic or germline, for which the normal sample is utilized. Typically a
statistical model is used to identify candidate somatic mutations, followed by
filtering the candidate list to further remove false positives. The first step is
described in this section, while the filtering part is the topic of the following
section.

One method that has been used to identify candidate somatic mutations,
especially in early studies, is a simple comparison between mutation lists from
tumor and normal samples (Pleasance et al., 2010). One starts with using a
method for identifying germline mutations, such as for example Unified Geno-
typer (DePristo et al., 2011), on the normal and tumor sample separately.
Then the list of mutations in the normal sample is subtracted from the list of
mutations in the tumor sample. One major disadvantage with this method is
that low-frequency mutations in the tumor are in risk of being missed, since
the statistical model, incorrectly, assume heterozygous or homozygous (VAF
0.5 or 1.0) mutations. Further, all germline mutations that are missed in the
normal sample but detected in the tumor will show up as false positive somatic
mutations.

To improve the performance, a number of dedicated statistical methods for
identifying somatic mutations have recently been developed (Roth et al., 2012;

10
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Cibulskis et al., 2013; Larson et al., 2012; Saunders et al., 2012; Koboldt et al.,
2012). Several articles comparing these methods have been published, for ex-
ample Wang et al. (2013) and Xu et al. (2014). For the subset of these methods
where the statistical model is set up under the assumption of only heterozygous
and homozygous mutations, the sensitivity to detect low-frequency mutations
is shown to be reduced.

To identify candidate SNVs in paper I and paper II, we used a method
called MuTect (Cibulskis et al., 2013). It allows for a continuous range of
possible frequencies for the sought somatic mutations in its statistical model.
To detect genomic positions with a mutation in the tumor sample, MuTect
applies a Bayesian classifier. Two alternative models are considered for each
position harboring variant alleles in the data, one denoted L(Mm

f ) assuming
that a variant allele m with frequency f is present in the sample and one
denoted L(M0) assuming that no variant alleles truly exist in the sample. The
likelihood for each model is calculated based on the sequence data, taking the
read nucleotides and their quality scores into account. For details on calculation
of the likelihoods, see Online Methods in Cibulskis et al. (2013). The ratio of
the likelihoods times the prior probability for each model is calculated and
compared to a decision threshold log10 δT :

log10
L(Mm

f )P (m, f)

L(M0)(1− P (m, f))
≥ log10 δT .

The choice of δT tells how many times more confident one wants to be in the
model with a mutation, to declare it as a candidate mutation. By assuming a
constant prior probability P (m, f), the equation can be rearranged to

log10
L(Mm

f )

L(M0)
≥ θT ,

where θT is a constant depending, on δT and P (m, f), that can be tuned to
achieve different sensitivity. When the performance of MuTect was evaluated in
Cibulskis et al. (2013), a δT of 2 and a prior probability for a somatic mutation
of 3× 10−6 were chosen, yielding a threshold of θT = 6.3. In paper I and paper
II we instead choose to set θT = 8, representing both a lower prior probability
for somatic mutations in the studied tumor types and a higher ratio of the
likelihoods needed to call a mutation.

For each position with a candidate mutation in the tumor, a similar method
is used for the normal data in order to classify the mutation as somatic or
germline. The mutation frequency in the model with a germline mutation is
assumed to be 0.5 (assuming heterozygosity). To assure that there is convinc-
ing evidence for not having a germline mutation at the position, ten times
higher likelihood for the model without a mutation is required to classify a
candidate mutation as somatic. In addition, a filter for the maximum number,

11
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or proportion, of variant alleles that are allowed to be observed in the normal
sample is added. In paper I and paper II we choose to reject a candidate so-
matic mutation if three or more variant alleles, or a proportion above 8%, were
observed in the normal sample.

To identify candidate indels in paper I and paper II, we used a combination
of two methods, Varscan2 and Strelka (Koboldt et al., 2012; Saunders et al.,
2012). In Varscan2, all positions in the normal and tumor samples are first
inspected separately to see if there are a larger proportion of variant alleles
in the data than a user-defined threshold. In paper I and paper II we set
the threshold to 0.05. For positions where the threshold is exceeded in the
tumor but not in the normal, the Fisher’s exact test is used to test if there
is evidence for a significant difference in allele frequency between tumor and
normal. In Strelka, a Bayesian approach is instead used. Briefly, the VAF
in the normal sample is modeled as a mixture of heterozygous/homozygous
genotypes and noise. The VAF in the tumor sample is modeled as a mixture
of the normal sample and additional somatic variation. Thereby, a continuous
range of possible frequencies for the sought somatic mutations are allowed for,
and base qualities are taken into account. For full details about the statistical
model used in Strelka, see Saunders et al. (2012).

Finally, it is worth noting that before applying the statistical models de-
scribed in this section, all methods have their own prior filtering regarding
which positions that have enough covering data to be evaluated and which
reads that are of sufficient quality to be used. For each method utilized in
paper I and paper II, we used the default settings (Cibulskis et al. (2013),
http://varscan.sourceforge.net/, Saunders et al. (2012)).

2.3 Filtering of candidate somatic mutations

The methods used to identify candidate somatic mutations operates at data
from one position at the time, assuming that the sequencing errors are ran-
dom and independent, and further that all reads are aligned correctly. These
assumptions are in general not met. For example, reads can be aligned at the
wrong place or with wrong decision where to incorporate mismatches/indels,
and sequence errors tend to accumulate for certain preceding sequence patterns.
Thus, the whole error structure in the data is complex and not fully captured
by the models and the list of candidate somatic mutations often contains a
high rate of false positives. The statistical models described above are there-
fore in general complemented with different approaches for filtering the list of
candidate somatic mutations. For example, MuTect has multiple numbers of
filters implemented that we applied to the lists of candidate somatic mutations
in paper I and paper II (Cibulskis et al., 2013). Important steps of the filtering
includes removing mutations at positions with proximal gaps, i.e. where the
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aligned reads spanning the position harbor surrounding indels, and mutations
where the variant alleles mainly sit at the start or end of reads. Furthermore,
positions where the mapping quality scores are low for the reads supporting
the mutation or indicate that many of the reads could equally well have been
placed at another region, are also excluded. Another example is the removal of
mutations with strand bias, i.e where mismatches are seen mainly in one read
direction and thus can be assumed to be dependent on sequence context.

However, the filters added to each method do not cover all systematic errors
that can occur. The paired design used when calling somatic mutations means
that data from each tumor sample is compared to data from the normal sample
in the same patient. The aim is primarily to exclude germline mutations, how-
ever technical artifacts present in both both tumor and normal data are also
captured. To remove false positives due to rare but systematic position-specific
errors, not only the paired normal sample but all of the normal samples can be
utilized. In paper I and paper II we used an approach where we screened all the
normal samples at all positions where candidate somatic SNVs were identified.
If two or more samples failed the normal criteria (at most 2 reads or 8% of
the reads harboring the variant allele) at a specific position, the corresponding
candidate somatic mutation was excluded. During the analysis of the data
in paper I and paper II we also noticed that mutations or variant alleles were
identified recurrently at certain positions for samples sequenced under the same
conditions. That is, position-specific sequencing errors correlated to sequenc-
ing machine (e.g HiScanSQ or NextSeq) and its settings, including chemistry
version, were present. An important aspect of the study design is therefore
to handle and sequence paired samples together. Furthermore, to fully utilize
the screening of normal samples, it is of value to have access to as many other
samples as possible sequenced under similar conditions.

We have now arrived at a list of somatic mutations that are evaluated and
filtered from a technical perspective. One remaining question is which of the
somatic mutations that influence the disease in a crucial way and which that
are merely passenger mutations. Worth noting is that in paper I this is an
important part of the aims, while the functional consequences is not in focus in
paper II since the search there is rather for a genetic marker with the property
of being present in all tumor cells.

A first step to elucidate the importance of the mutations is to annotate them
with respect to gene name, location in functional elements, if any amino acid
substitution occur and the (germline) population frequency of the mutation. In
paper I and paper II we used the tool ANNOVAR to annotate the list of somatic
mutations (Wang et al., 2010). Mutations with a population frequency below
1% were excluded from the lists. In the paper II, these common mutations are
removed due to higher likelihood of being missed germline mutations, and thus
unsuitable as tumor cell markers. This also applies to the case in paper I, and
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in addition the probability is low that a mutation common in the population
causes the rare cancer disease that is studied. For the mutations located in
protein-coding parts, only mutations resulting in a change in the amino acid
chain of the encoded protein (nonsynonymous mutations) were kept in paper
I. A change in the amino acid chain is a prerequisite for altering the function
of a protein, but different changes affects the protein structure and function to
different extents. As a further guidance to the functional consequences of the
somatic mutations found in paper I, we also annotated the mutations with the
scores from five different functional prediction algorithms (Liu et al., 2013).

A strong criterion for influence on the disease is whether a gene is mu-
tated recurrently, i.e. has somatic mutations in several patients. However,
when analysing large collection of samples or tumors with high mutation rate,
recurrent mutations in a gene can occur just by chance, especially for large
proteins. There are statistical methods testing for the hypothesis that a gene
exhibits more mutations than expected according to the background mutation
rate (Raphael et al., 2014). In paper I such tests on gene level were not applica-
ble, due to the low somatic mutation rate in combination with a heterogeneous
disease and rather few samples. We instead high-lighted all the genes that har-
bored recurrent mutations, with the exception of genes that were previously
suggested to often represent false positives in cancer studies due to large size
or high mutation frequency (Lawrence et al., 2013).
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Chapter 3

Summary of papers

3.1 Paper I – Malignant pheochromocytomas/
paragangliomas harbor mutations in trans-
port and cell adhesion genes

Pheochromocytoma (PCC) and paraganglioma (PGL) are rare neuroendocrine
tumors, located in the adrenal medulla or extra-adrenal paraganglia. Just
over 10% of the patients with a primary PCC/PGL tumor develop malignant
disease. The prognosis for patients with malignant disease is poor and the
metastases may occur several years after removing the primary tumor. Thus
long-term surveillance of PCC/PGL patients is required. This is emphasized
by the fact that although some factors that may indicate a higher risk of future
malignancy are known, there is currently no reliable way to predict if a primary
tumor will metastasize or not. Inherited mutations predisposing for PCC/PGL
have been characterized, but less is known about additional somatic events
leading to tumor progression and malignancy.

In paper I, the aim was to investigate somatic mutations in benign and ma-
lignant PCCs/PGLs tumors and identify somatic mutations that contribute to
the malignant transformation. Exome-sequencing of paired samples (normal–
tumor) from four patients with benign and five patients with malignant tumors
was performed. Two biological replicates were taken from each tumor, one from
fresh-frozen (SF) and one from formalin-fixed paraffin embedded (FFPE) ma-
terial. The raw sequencing data was quality-trimmed, aligned to the human
reference genome, marked for duplicates, realigned patient-wise and base recal-
ibrated. Somatic SNVs and indels were then identified, annotated and filtrated.

The resulting landscape of somatic mutations included 225 unique muta-
tions, located in 215 genes, and with an median variant allele frequency of
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0.27. The average mutation rate per sample was 0.54 mutations/megabase,
placing the mutation rate of PCC/PGL tumors in the lower range compared
to other cancer types. A significantly higher rate of mutations in malignant
tumors compared to benign ones was seen. Four genes had somatic mutations
in more than one patient; HRAS, MYCN, MYO5B and VCL. Mutations in
HRAS were found in benign sporadic cases, similar to the findings in previous
studies of PCC/PGL. Recurrent mutations in MYCN, MYO5B and VCL are
however novel findings in PCC/PGL and were exclusively found in malignant
PGL cases. Out of these three mutations, MYCN is a previously known onco-
gene. MYO5B and VCL have functions related to cell migration, an important
mechanism for malignant potential in tumors. When screening publicly avail-
able PCC/PGL datasets, three additional MYO5B mutations were found, two
in patients with malignant disease and one in a tumor displaying pathological
risk factors for malignancy.

The overlap between SF and FFPE samples was in general high, with on
average 58% of the mutations found in SF samples also present in corresponding
FFPE samples. This exemplifies the usefulness of FFPE material in exome-
sequencing studies for somatic mutations. Also, the unique mutations identified
in each sample confirms the heterogeneity of tumors and shows that biological
replicates contribute to a more complete picture of the landscape of somatic
mutations.

3.2 Paper II – Patient-tailored analysis of mini-
mal residual disease in acute myeloid leukemia
using next generation sequencing

Acute myeloid leukemia (AML) is the most common form of acute leukemia in
adults. The initial treatment is based on chemotherapy, and to guide the choice
of treatment intensity, risk stratification tools are of great importance. One of
the most important factors for risk stratification is early response to treatment.
The response is monitored by analysing the levels of minimal residual disease
(MRD), i.e. the amount of remaining leukemic cells. This analysis also has
an important role in monitoring patients in remission after treatment with a
high risk of relapse. Today, multiparameter flow cytometry (MFC) is the most
commonly used method for MRD analysis. It utilizes the immunophenotype
of the leukemic cells, i.e. the set of expressed proteins connected to the cell
membrane. The technique has several disadvantages, including a potential shift
in the immunophenotype, which can lead to false negative results. Instead
genetic aberrations in the leukemic cells can be utilized for MRD analysis.
However, the genetic heterogeneity of the disease means that there is no limited
set of recurrent genetic variants that can be used in all cases.
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3.3. Paper III – A hierarchical Bayesian model for assessing differential
nucleotide composition between metagenomes.

In the work described in paper II the aim was to identify leukemia-specific
mutations in patients with AML and evaluate their suitability for patient-
tailored MRD analysis. For a mutation to be suitable for MRD analysis and
avoid false negative results due to subclonality, it is important that the muta-
tion is both present in all leukemic cells and does not exist in any other cells.
To get the profiles of somatic mutations in individual patients, leukemic cells
and normal lymphocytes were isolated from 17 patients with AML using fluo-
rescence activated cell sorting. The two fractions were then exome sequenced.
After data preprocessing, identification of candidate somatic mutations and
filtering to remove potential false positives, in total 262 somatic SNVs and in-
dels were found. The majority of the mutations had a variant allele frequency
(VAF) around 0.5, corresponding to being present as heterozygous mutations
in all leukemic cells. A comparison of the observed VAF distribution to a
simulated distribution was done, taking sequencing depth into account and as-
suming heterozygosity for all mutations in the simulation. Although it showed
an overall correspondence, some mutations had lower VAF than expected from
the simulation. To remove mutations not likely to be present in all leukemic
cells, a 95% confidence interval around the VAF of each mutation was calcu-
lated. Mutations where the interval was below 0.50 were excluded. In total
191 leukemia-specific mutations passed this filtering and were thus considered
as candidates for MRD analysis. All patients but one had MRD candidates in
their somatic mutation profile (median 11 per case, range 0-25).

To detect the low frequencies of mutations that are desirable in MRD anal-
ysis, targeted deep sequencing, where specific parts of the genome is selected
and sequenced to a high depth, can be utilized. The technique was used on
follow-up samples from a patient with AML. Four mutations from the set of
previously identified MRD candidates for the patient were analysed. The re-
sults showed that this approach for MRD analysis was more sensitive than the
ordinary MFC method. Furthermore, when the MFC method failed to correctly
capture the relapse after 10 months, due to a change in immunophenotype for
a majority of the leukemic cells, all four of the somatic mutations were detected
with a high mutation load.

3.3 Paper III – A hierarchical Bayesian model
for assessing differential nucleotide composi-
tion between metagenomes.

In paper III the focus is shifted from humans to metagenomes and from de-
tecting mutations in one individual at the time to comparing groups of samples
from different conditions. A metagenome consists of all the genetic material
in an environmental sample, which can be a complex mixture of thousands
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of species. The development of new DNA sequencing techniques have revo-
lutionized the way we can study such microbial communities, with access to
information about the genetic material from in principle all species down to
nucleotide resolution. This has been utilized for studying both the human
microbiome and its connection to diseases, as well as the structure and diver-
sity of environmental microbial communities under different conditions. Still,
the detailed information on which genetic variants that are selected for in mi-
crobial communities under different experimental, medical and environmental
conditions remains to a large extent to be studied. However, the statistical
analysis of genetic variants in metagenomes and comparison between condi-
tions is challenging. The data exhibits considerable levels of noise and the
biological variability between communities is often large. Both high sensitivity
and specificity is needed, especially since the datasets typically contains few
samples and are high-dimensional.

The work in paper III is part of an ongoing study with an overall aim to
develop a method that is able to make accurate inference about changes in
nucleotide composition, i.e. genetic variants, between groups of metagenomes
from different conditions. A hierarchical Bayesian model for the observed nu-
cleotide counts at each genomic position is proposed. The model is based on a
Dirichlet-multinomial distribution, where the multinomial part accounts for the
within-sample variability arising from picking DNA fragments at random for
sequencing. The Dirichlet distribution models the sample-specific nucleotide
composition and hence accounts for the between-sample variability. The per-
formance of the proposed model is evaluated for simulated data and compared
to using the ordinary χ2-test. The results show that the model has a high
sensitivity to detect positions with a difference in nucleotide composition. The
false positive rate is kept at a low level even with high levels of between-sample
variability, which is not the case for the χ2-test. The ability to differentiate
between positions with and without effect is thus considerable improved. The
study demonstrates the importance of methods that models the biological and
technical variability encountered in metagenomics data, in order to be able
to make accurate inference about differential nucleotide composition between
conditions.
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Chapter 4

Future work

The work described in paper III is an ongoing study. A model for assessing
differential nucleotide composition, based on the Dirichlet-multinomial distri-
bution, is proposed and evaluated for simulated data.

As future work, we aim to improve the estimation of the position-specific
overdispersion parameters, by using a shrinkage approach. This will be im-
plemented through adding a common prior distribution for the overdispersion
parameters to the model. We will evaluate different choices of prior distribu-
tion, based on the fit to the overdispersion distribution in real data and the
estimated impact on model performance. In addition, we will consider alter-
native ranking scores, with the aim to find a score that is more robust towards
the combination of high overdispersion and skewed nucleotide compositions

The evaluation of the current model was done for two different nucleotide
compositions and effects. However, real data may contain many more possible
configurations of nucleotide compositions and effects. Also, a mix of those and
different levels of biological and technical variability will be encountered. We
will therefore perform a more extensive evaluation of the model with a larger
set of composition and effect combinations. The ranking ability when mixing
positions with different overdispersion will also be investigated.

When evaluating the performance of a model, using data simulated under
the model will give to optimistic results. In reality, all the assumptions of the
model and in the simulations are not fulfilled and the structure and complexity
of real data is thus different. The advantage of simulated data is that the true
answer to the inference problem is known, which is typically not the case in real
data. We will therefore also evaluate the model performance using resampling
of real metagenomic data (similar to Jonsson et al. (2016)). The idea is to have
a larger collection of metagenomes and randomly select two subsets of those.
An effect is then added to a part of the positions in one group, according to
some model. In this way properties such as gene abundance, sequence depth
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distribution, nucleotide composition and overdispersion will be according to
real data. Still, the procedure can be repeated many times and the model
evaluated for sensitivity and specificity. Furthermore, using resampled data
will give us the opportunity to try out different choices in the preprocessing
of the data and in the filtering of candidate positions, and adopt those to suit
real metagenomic data.

Finally, we will apply the model on publicly available metagenomic data.
In particular, we aim to investigate how the selective pressure of antibiotics
affects the genotype distribution in gut metagenomes.
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