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MIMO Linear Precoder Design with Non-Ideal
Transmitters

Ayça Özçelikkale, Tomas McKelvey, Mats Viberg

Abstract—We investigate the linear precoder design problem
for multiple-input multiple-output (MIMO) channels under non-
ideal transmitter hardware. We consider two different non-ideal
hardware models: i) an additive noise model in which the level
of the noise at an antenna is proportional to the signal power
at that antenna, ii) an additive precoder error model. We focus
on the problem of minimizing mean-square error at the receiver
under transmit power constraints at the transmitter. For the first
hardware impairment model, this scenario leads to a non-convex
formulation for which we propose a block-coordinate descent
technique. The proposed method has a convergence guarantee
and provides rank-constrained solutions. For the second model,
analytical expressions for the optimum designs are provided. We
compare the performance of our hardware impairment aware de-
signs with that of designs developed with ideal hardware assump-
tions. Our results suggest that significant gains can be obtained
by the proposed designs for sufficiently high signal-to-noise ratio
values.

Index Terms— non-ideal hardware, hardware impairment,
robust precoder design.

I. INTRODUCTION

Multiple-input multiple-output systems offer significant in-

creases in the capacity of wireless channels in rich scattering

environments [1], [2]. An important practical issue in MIMO

communications is the design of precoders and receiver filters,

which have been successfully used to improve the performance

of MIMO systems [3–5].
In practice, MIMO systems are affected by various hardware

impairments including phase-noise, IQ-imbalance, amplifier

non-linearities [6–8]. The impact of some of these distortions

can be partially compensated using compensation algorithms

at the receiver or calibration methods at the transmitter, but

nevertheless residual transmitter impairments still remains ef-

fective [6], [7]. Although these residual transmitter impair-

ments are known to affect the performance of communication

systems [6–11], this point has been mostly overlooked in the

case of optimization of linear precoder design. Previous work

on communication system design under residual transmitter

impairments have mostly focused on channel capacity as the

performance metric [8–11]. On the other hand, although robust

solutions for linear precoder design have been studied for var-

ious scenarios, these works typically focus on the uncertainty

due to partially known channel state [12–14].
Here we focus on the robust linear precoder design for a

transmitter with non-ideal hardware. To capture the effect of
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the residual hardware impairments, we consider two different

models. The first one is an additive noise model where the

noise has a special covariance structure, which is validated

with the experiments [6], [7] and supported by analytical ar-

guments [8]. The second one is an alternative additive precoder

error model. We focus on the problem of minimizing mean-

square error at the receiver under transmit power constraints

at the transmitter. We consider statistically robust designs that

provide performance guarantees on average. Our results illus-

trate that when the channel signal-to-noise ratio (SNR) is high,

significant gains can be obtained by the proposed hardware

impairment aware designs compared to non-robust designs

for both models. These results also suggest that hardware

impairments at the levels considered in these experiments,

which are chosen to be consistent with the standards, will only

be crucial when operating at considerably high SNR values.

The rest of the paper is organized as follows. In Section II,

the system model and the additive noise model is described.

The precoder optimization problem under this model is in-

vestigated in Section III. In Section IV, we discuss the al-

ternative precoder error model. In Section V, performance of

our designs are illustrated. Finally, the paper is concluded in

Section VI.

Notation: The complex conjugate transpose and transpose

of a matrix A are denoted by AH and AT, respectively. The

ith row jth column element of a matrix A is denoted by [A]ij .

For A ∈ C
n×n, diag(A) denotes the diagonal matrix formed

with [A]11, . . ., [A]nn on the main diagonal. Frobenius norm is

denoted by ||A||= (tr[AAH])1/2. I denotes the identity matrix

with the suitable dimensions. Positive semi-definite ordering

is denoted by �. An optimal value of an optimization vari-

able A is denoted by A∗. For a scalar a, (a)+ is defined as

(a)+ = max(a, 0). E[.], and tr[.] denote the expectation and

trace operators, respectively.

II. SYSTEM MODEL

A. Channel Model

In the narrow-band and stationary scenario we focus on, the

multi-antenna transmitter transfers the message to the receiver

according to

y = Hx+ w (1)

where H ∈ C
nr×nt represents the channel gain from the trans-

mitter to the receiver. Zero-mean complex proper Gaussian

random vector w ∈ C
nr×1 ∼ CN (0,Kw), Kw = E[wwH]

denotes the noise.



B. Precoding at the Transmitter with Non-Ideal Hardware

With an ideal transmitter, the channel input x can be ex-

pressed as

x = Aos. (2)

Here the zero mean complex proper Gaussian random vector

s ∈ C
ns , s ∼ CN (0,Ks), Ks = I denotes the data and

Ao ∈ C
nt×ns denotes the linear precoder.

Here we are interested in the effect of non-ideal hardware at

the transmitter. Using the residual hardware impairment model

from [8–11], the channel input is given as

x = Aos+ v. (3)

Here v ∈ C
nt , v ∼ CN (0,Kv) denotes the residual hardware

impairments that remain effective after utilizing compensation

algorithms and/or calibration. The Gaussian assumption on the

noise is supported by experiments (see for instance [6, Fig.7])

as well as by the central limit theorem and the fact that this

term models the overall effect of various different hardware

impairments [6–8]. The covariance of v is given as [6–8]

Kv = αv diag(AoA
H
o ). (4)

Here the level of noise at an antenna is proportional to the

signal power at that antenna. This property is verified by ex-

periments [6], [7] and the resulting model has been utilized to

study performance of various multiple antenna systems with

hardware impairments [8–11].
The constant αv ≥ 0 determines the quality of the hardware.

As αv increases, the quality of the hardware decreases. Here

the distortion noise v is assumed to be statistically independent

of the signal s due to the usage of impairment compensation

algorithms [6], [8]. We note that in contrast to w, v emerges

as colored and channel dependent noise at the receiver. More-

over, its statistics depend on the precoder Ao which will be

optimized.
A commonly used practical quality measure for non-ideal

hardware is the error vector magnitude (EVM) [15]. The scal-

ing factor αv relates to EVM as follows

EVM =

√

E[||v||2]
E[||Aos||2]

=
√
αv (5)

For comparison with the model in (3), we also consider an

alternative hardware impairment model with additive precoder

error. This alternative model is discussed in Section IV.

C. Signal Recovery

Upon receiving y, the receiver forms an estimate of s. The

associated mean-square error can be expressed as

(6)ε(Ao, B) = E[||s−By||2],
where B represents the linear estimator adopted by the re-

ceiver. We note that receiver filters based on mean-square error

have been used to improve performance of various MIMO

systems, for instance by providing a reasonably accurate al-

ternative for preprocessing of coded data symbols [3], [4]. An

optimum B can be found as [16, Ch2]

(7a)B∗=KsyK
−1
y

=AH
o H

H
(

HAoA
H
o H

H+αvH diag(AoA
H
o )H

H+Kw

)−1

We note that due to the Gaussian distribution and the statistical

independence assumptions on the relevant signals, B y gives

the minimum mean-square error (MMSE) estimation of s. The

resulting MMSE can be expressed as

(8a)ε(Ao) = tr[Ks −KsyK
−1
y KH

sy]

(8b)= ns − tr[AH
o H

H(HAoA
H
o H

H +Kw̄)
−1HAo]

(8c)= tr[(I +AH
o H

HK−1
w̄ HAo)

−1]

where (8c) follows from Sherman-Morrison-Woodbury iden-

tity [17] and

(9)Kw̄ = αvH diag(AoA
H
o )H

H +Kw

denotes the covariance of the effective noise at the receiver,

i.e. w̄ = Hv + w.

III. LINEAR PRECODER DESIGN

Our aim is to find the robust precoder design that minimizes

the MMSE under hardware impairments. We consider our

designs under the following power constraint at the transmitter

E[||Aos||2] = tr[AoA
H
o ] ≤ P, P > 0. (10)

Here the power constraint is given in terms of Aos instead

of Aos + v, since the former is the variable we have control

over. For the former, the power constraint is considered as a

constraint on the design whereas for the latter it is considered

as a contraint at the output of the antenna system. Nevertheless,

(10) can be equivalently expressed as a power constraint on

Aos+ v as follows

E[||Aos+ v||2] = tr[AoA
H
o ] + αv tr[diag(AoA

H
o )] (11)

≤ (1 + αv)P. (12)

We are interested in the following precoder design problem

(P1) min
Ao

ε(Ao) (13a)

s.t. tr[AoA
H
o ] ≤ P. (13b)

where ε(Ao) is as defined in (8). We note that this formulation

investigates statistically robust designs that provide perfor-

mance guarantees on average as opposed to robust design

approaches based on outage or worst-case performance.
Here ε(Ao) is not a convex function of Ao. Although an op-

timal solution to the precoding problem can be constructed for

the case with αv = 0 [3], [5], these results do not immediately

generalize to (13).
It is possible to rewrite Problem P1 in terms of a new

variable RAo
= AoA

H
o � 0. However, such a formulation

in general does not lead to a convex optimization problem. In

particular, using tr[AB] = tr[BA], (8b) can be expressed as

(14)
εR(RAo

) = ns − tr[(HRAo
HH + αvH diag(RAo

)HH

+Kw)
−1HRAo

HH].

Hence Problem P1 can be written as

(P̄1) min
RAo

�0
εR(RAo

) (15a)

s.t. tr[RAo
] ≤ P (15b)

rank(RAo
) ≤ ns. (15c)



Here the rank constraint in (15c) ensures that Problem P1 and

Problem P̄1 are equivalent, so that an optimal Ao ∈ C
nt×ns

can be always found from an optimal RAo
∈ C

nt×nt . This

rank-condition forms a non-convex constraint when ns < nt

(otherwise it is trivial in the sense that an optimal Ao ∈
C

nt×ns can be always found from an optimal RAo
∈ C

nt×nt).

Hence in general writing the problem in terms of RAo
does

not result in a convex formulation.

A relaxation of Problem P1 can be formed by lifting the rank

constraint, i.e. omitting (15c) in Problem P̄1. Nevertheless, in

general this relaxation is not tight. To see this, let us consider

the special case with αv = 0. As P increases, the rank of

optimal RAo
typically increases (depending on eigenvalues

of H†H) [3], [5, Table 3.1]. Hence the relaxation will give

solutions with full rank (i.e. nt) under relatively high values

of P . On the other hand, admissable solutions for Problem P1

can be only found from optimal RAo
if it satisfies (15c).

Looking at the expression for ε(Ao) in (8c), the effect of

residual transmitter distortion is seen to enter into the error

expression through Kw̄, the covariance matrix of the effective

noise at the receiver. Kw̄ in general depends on Ao, the pre-

coder to be optimized, which makes this optimization problem

particularly challenging to solve.

A. Precoder Design with Fixed Receiver Filter

In order to propose a design for Problem P1, we first con-

sider the case where the receiver uses a fixed estimation filter.

More precisely, we consider the following problem

(P2) min
Ao

E[||s−By||2] (16a)

s.t. tr[AoA
H
o ] ≤ P. (16b)

For a given B, the mean-square error in (6) can be written as

(17a)ε(Ao, B) = E[||s−B(HAos+Hv + w)||2]
(17b)= E[||(I −BHAo)s||2] + E[||B(Hv + w)||2]
(17c)= ||I −BHAo||2 + tr[B(HKvH

H +Kw)B
H]

(17d)=tr[AH
0 H

HBHBHA0]− 2Re[tr[BHA0]]

+ns+αv tr[BH diag(AoA
H
o )H

HBH]

+tr[BKwB
H]

where Re[z] denotes the real part of z ∈ C. We note that

tr[M diag(AoA
H
o )M

H] = tr[diag(AoA
H
o )M

HM ]

= tr[AoA
H
o diag(MHM)]

= tr[AH
o diag(MHM)Ao]

where M is a matrix of appropriate dimensions. Hence the

terms in (17d) that include diag(AoA
H
o ) can be also expressed

as convex quadratic functions of Ao.

Hence the objective function of Problem P2, i.e. (17d), is

a convex quadratic function of Ao. Similarly the transmitter

power constraint, (10), bounds a convex quadratic function

of Ao from above, hence forms a convex constraint. As a

result, the optimization formulation in (16) is convex, and it

can be solved by standard numerical optimization tools, such

as SDPT3, SeDuMi and CVX [18–20].

Algorithm 1 Algorithm for Problem P1

Initialize:
Set A0

o = I .
Using A0

o and (7a), find B0. Let i=1.
repeat

Using Bi−1, solve (16) for Ai
o.

Using Ai
o and (7a), find Bi.

Using Ai
o,Bi and (17d), find the error ei.

until (ei−1 − ei ≤ ǫ) // The stopping criterion is met.

Output: Ai
o.

B. Joint Precoder and Receiver Filter Design

We now consider Problem P1 in (13). We rewrite it equiv-

alently as follows

(P1) min
Ao,B

ε(Ao, B) (18a)

s.t. tr[AoA
H
o ] ≤ P. (18b)

To find a design for (13), we propose a block-coordinate

descent approach. This method is summarized in Algorithm I.

Here we take turns in fixing A and B. For the fixed B step, an

optimal solution for A can be found using (16). For the fixed

A step, an optimal B is found using (7a). We note that due to

non-convexity of (13), we cannot provide any guarantees for

the global optimality of the solutions provided by Algorithm

1. Nevertheless, we observe that the method is guaranteed to

converge as follows:

Lemma 3.1: The sequence {ε(Ai
o)}i∈N converges mono-

tonically.

Proof: The objective function is bounded from below. In

both fixed Ao, and fixed B steps, convex functions are mini-

mized over convex domains and these sub-problems are solv-

able provided P > 0. Hence by [21, Thm. 4.5], {ε(Ai
o)}i∈N

converges monotonically.

IV. AN ALTERNATIVE NON-IDEAL HARDWARE MODEL

For comparison purposes, we now discuss an alternative

hardware impairment model with additive precoder error. Now

the channel input is modelled as

x = As = (Ao +Ad)s, (19)

where Ao denotes the designed linear precoder and Ad denotes

the additional term due to non-ideal hardware. Here we design

Ao and attempt to use it at the transmitter, but non-ideal

hardware introduces an additional term and Ao + Ad is re-

alized instead. Discussion of such implementation errors in an

optimization setting where the design variable is implemented

with an additive error term can be found in [22], [23].

Here s, w, wE and Ad are assumed to be statistically in-

dependent. The elements of Ad are modelled as i.i.d. com-

plex proper Gaussian variables with [Ad]i,j ∼ CN (0, σ2
a).

The Gaussian assumption on Ad is again supported by the

central limit theorem and the fact that this term models the

aggregate effect of impairments in various components used

in the precoder realization.

In the rest of the section, we discuss the relationship be-

tween this additive precoder error model and the previous

additive noise model under a linear receiver filtering scheme.



The performance criterion at the receiver is again the average

mean-square error

(20)εp(Ao, B) = Es,Ad
[||s−By||2]

Here the subscripts s and Ad denote the expectation with

respect to random signals (including the noise) and the random

component of the precoder, respectively. Due to the presence

of the random matrix Ad, which is multiplied by the data

vector s, this performance criterion does not correspond to

the MMSE estimation of s. It rather gives the linear mini-

mum mean-square error (LMMSE) estimate, which gives the

minimum mean-square error achievable by a linear estimator.

For a given B, the mean-square error at the receiver can be

written as

εp(Ao, B) = Es,Ad
[||s−By||2]

= ||I −BHAo||2+EAd
[||BHAd||2]+tr[BKwB

H]

(21)=tr[AH
o H

HBHBHAo]− 2Re[tr[BHAo]]

+ns+nsσ
2
a tr[BHHHBH]+tr[BKwB

H]

where we have used statistical independence of s, w and Ad

and the fact that

(22)EAd
[||MAd||2] = nsσ

2
a tr[MMH]

for a deterministic matrix M of appropriate dimensions.

By taking the derivative of (21) with respect to B, and

equating to zero, an optimal linear estimator B can be found

as

(23)B∗ = AH
o H

H(HAoA
H
o H

H + nsσ
2
aHHH +Kw)

−1.

The resulting mean-square error can be expressed as

(24)εp(Ao, B
∗) = (I +AH

o H
H(Kp

w̄)
−1HAo)

−1

where we have put B∗ into (21) and used Sherman-Morrison-

Woodbury identity [17]. Here

(25)Kp
w̄ = nsσ

2
aHHH +Kw .

The behaviour of LMMSE estimation under the additive pre-

coder error model is quite similar to fading channel scenario

where the channel consists of a known mean component and

a fading component, see for instance [12]. We also observe

that the general form of (21) is similar to (17d), where in

both expressions the residual hardware impairments introduce

an additive error term. Similarly, in both (23) and (7a), (and

also in (24) and (8c)) there is an effective additional noise term

which assumes different expressions under each model. Hence,

although the starting points of the models are seemingly quite

different, their general behaviour can be said to be in a similar

form under LMMSE estimation. In Section V, we present a

comparison of error performance under these two hardware

impairment models.

We note that the optimum precoder for minimizing (24)

under (10) can be found by utilizing the arguments used for

finding the optimum precoder when there is no residual hard-

ware impairment:

Lemma 4.1: Let ns ≤ min(nt, nr). Let G = HH(Kp
w̄)

−1H
has the following singular value decomposition G = UΛGU

H,

where U ∈ C
nt×nt is a unitary matrix and ΛG = diag(λG,i),
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Fig. 1. Mean-square error versus EVM, additive noise model.
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Fig. 2. Mean-square error versus EVM, additive precoder error model.

λG,1 ≥ λG,2, . . . , λG,nt
. Then there is an optimum precoder

Ao for minimizing εp(Ao, B
∗) in (24) with the following form:

Ao = ŪΛ1/2 (26)

where Ū is the nt × ns submatrix of U where only the first

ns columns are included. Λ = diag(pi) is the diagonal matrix

with

pi = ν(λ
−1/2
G,i − λ−1

G,i)
+, i = 1, . . . , ns (27)

where ν is chosen so that the power constraint is satisfied with

equality
∑ns

i=1 pi = P .

The proof follows from, for instance, [3], [5]. We note that

the assumption ns ≤ min(nt, nr) is made only for conve-

nience in presentation and an optimum solution solution can

be found for all cases.

V. NUMERICAL RESULTS

We now illustrate the performance of the hardware im-

pairment aware designs. In our examples, we consider the

following channel model [24]

H =

L
∑

i=1

κiaR(θR,i)a
T
T (θT,i). (28)

Here ac(θ) = [1 ej2πd cos(θ) . . . ej2π(nc−1)d cos(θ)]T , where

c = T,R. Here aT (θT,i) is the array steering vector at the

transmitter and aR(θR,i) is the array response vector at the

receiver corresponding to ith path in the channel. κi is the cor-

responding complex path amplitude. We normalize the channel

matrix as H/||H||. The following parameters are used for the



experiments: L = 2, κ1 = κ2 = 1, d = 0.5, θR,1 = π/6,

θR,2=π/3, θT,1=π/4, θT,2=π/5. Let nt=3, nr=2, ns = 2,

Kw=σ2
wI . P =10, ǫ=10−7ns. SNR= 1/σ2

w (dB). The error

values are normalized by dividing with ns = tr[Ks]. The rel-

evant convex optimization problems are solved using [18–20].

We denote the proposed hardware impairment aware designs

with TXR. The performance of the designs that assume ideal

hardware is shown with TXNR. We note designs for TXNR

can be found analytically [3], [5]. The performance of all

designs is reported using an estimator B that is aware of the

hardware impairments, making the non-robust linear precoder

designs the sole ingredient that degrade the performance.
The level of hardware impairments in the two models are

parameterized by two different variables; αv and σ2
a in Sec-

tion II and in Section IV, respectively. To relate these two

parameters, we define the following parameter for the additive

precoder error model

αa
.
=

Es,Ad
[||Ads||2]

Es[||Aos||2]
=

nsntσ
2
a

P
(29)

Here we have used the fact that optimum strategies use all

the available power, i.e. Es[||Aos||2]=P . We set αa=αv and

consider αv ∈ [0, 0.22] in the experiments. We note that 3GPP

LTE specifies EVM=
√
αv to be in the range [0.08, 0.175]

[15].
The trade-offs between the error and the hardware impair-

ment levels are presented in Fig. 1 and Fig. 2, for the additive

noise model of Section II and additive precoder error model

of Section IV, respectively. We observe that for both models

high levels of hardware impairment degrade the system per-

formance leading to higher performance gap between robust

and non-robust solutions. Comparing the results for varying

SNR values, shows that this performance gap quickly dimin-

ishes when the SNR decreases. This suggests that hardware

impairments at the levels considered in these experiments will

only be crucial when operating at considerably high SNR

values. Comparing Fig. 1 and Fig. 2 we observe that the error

performances of the robust solutions under the two impairment

models are very close. This is consistent with the fact that the

hardware impairments levels are relatively small and they are

adjusted using (29) and setting αa =αv . Yet it also suggests

that the fact that in the first model the level of the additive

noise is proportional to the signal power at that antenna may

have limited effect on the performance of the robust solutions.

VI. CONCLUSIONS

Linear precoder design in MIMO systems is investigated un-

der transmitter impairments. Our results illustrated that when

the channel SNR is high enough, significant gains can be

obtained by the proposed robust impairment-aware designs

compared to non-robust solutions. We have considered two

hardware impairment models, one of which introduces an ad-

ditive noise term and the other one introduces an additive

precoder error. Our numerical results suggest that although the

starting point of these two impairment models are different, the

error behaviour of the proposed robust solutions under these

two models are quite similar for the level of hardware im-

pairments considered. Further investigation of the relationship

between these two models is considered future work.
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