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Abstract: This paper presents a vehicle energy management system that uses information
about upcoming topography and speed limits along the planned route to schedule the speed and
the gear shifts of a heavy diesel truck. The proposed control scheme divides the predictive control
problem into two layers that operate with different update frequencies and prediction horizons.
The focus in the paper is on the top layer that plans the vehicle speed in a convex optimization
problem leaving the gear decision to be optimized in the lower layer in a dynamic program. The
paper describes how predictive information of the movement pattern of surrounding vehicles
can be incorporated into the convex optimization of the vehicle speed by using a moving time
window constraint.
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1. INTRODUCTION

Recent studies show that eco-driving can reduce the energy
consumption and CO2 emissions of transporting people
and goods with up to 10% Barkenbus (2010). For heavy-
duty trucks eco-driving primarily means proper gear selec-
tion and utilizing a narrow over and under speed interval
as a kinetic energy buffer, thereby reducing the energy
dissipated in the brakes. With the likely increase in the
number of vehicles that drive with radar assisted cruise
control the fuel saving potential of eco-driving and eco-
cruising technologies is increasing.

Several vehicle manufacturers currently provide cruise con-
trollers that save fuel by utilizing information about the
upcoming topography, controlling the speed over a reced-
ing horizon. Typically, these cruise controllers reduce the
speed while climbing uphill and then roll over the crescent
and during the downslope. When the topographic profile
is relatively simple this behavior can be implemented with
heuristic control strategies but if the topographic profile is
more complex it is preferable to use a predictive controller
that is based on optimal control as in Van Keulen et al.
(2010, 2011); Hellström et al. (2009). As will be shown in
this paper, relying on optimal control techniques have an
additional advantage in that it is possible to expand the
controller with information about the movement pattern
of surrounding traffic.

Due to their nonconvex nature, it is most straightfor-
ward to apply dynamic programming (DP) (Bellman and
Dreyfus, 1962) to solve the optimal control problems. A
⋆ This research was supported by the Chalmers Energy Initiative
and the Swedish Energy Agency.

real-time implementable DP-algorithm that decides the
gear shifts and the vehicle speed for conventional trucks
is presented in Hellström et al. (2009, 2010). The DP-
algorithm is able to enforce a constraint on the trip time
by using a time penalty and achieves close to optimal fuel
consumption for all types of topographic profiles.

However, DP suffers from the curse of dimensionality
(Bertsekas, 2000), which means that computation time
grows exponentially with the number of states and control
signals. Additional states are required in order to include
predictions of slowly moving traffic in front of the truck,
additional energy storages due to hybridization and pre-
dictive control of the auxiliary systems, see Pettersson and
Johansson (2006); Koot et al. (2005).

To overcome the computational limitations of DP, Johan-
nesson et al. (2014) proposes a decentralized hierarchical
predictive control system that can handle models with
several states, while keeping the computational complexity
down. The vehicle speed and possible additional energy
states are optimized in the top layer with a direct optimal
control algorithm whereas gear shifts and engine on/off
decisions are optimized in a lower control layer with a
DP algorithm. To avoid the computational complexity
of a mixed-integer problem, the direct optimal control
algorithm in the top layer uses a powertrain model which
is only physically accurate as long as the vehicle is driv-
ing with a preselected cruise gear; all lower gears are
abstracted by using a lower efficiency for acceleration re-
quests that exceed what can be delivered in the cruise gear.
This modelling approach encourages the direct optimal
control algorithm to avoid unnecessary gear shifts.
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This paper expands the control algorithm from (Johan-
nesson et al., 2014; Murgovski et al., 2015) with predictive
information of the movement pattern of surrounding vehi-
cles. In order to add constraints that prevent the vehicle
from colliding with slow traffic in front, it is required to
model the relation between travelled time and travelled
position at all samples along the prediction horizon. An
exact model of this relation results in nonlinear equality
constraints. To reach problem convexity the nonlinear con-
straints must be relaxed to inequality constraints.

Relaxing equality constraints to inequality constraints is
a valid technique if it can be ensured that the solution of
the resulting problem also satisfies the equality constraint.
In the paper we investigate cases when the relaxation is
and is not valid. For the cases when the relaxation is not
valid, an affine approximation is proposed to model the
relation between travelled time and travelled position, and
the error of the approximation is investigated.

To reduce the complexity of the presentation, the paper
only treats conventional vehicles. For information on how
to expand the model to hybrid vehicles, see Johannesson
et al. (2014).

2. OUTLINE AND CONTRIBUTION

The paper starts by introducing the notation in Section
3. The considered vehicle is described in Section 4 and
modelled in Section 5. The control objective is introduced
in Section 6 and the predictions of surrounding vehicles are
modeled in Section 7. The hierarchical control architecture
is briefly described in Section 8 and the optimization
problem that is solved in the top layer is described in
Section 9 with an alternative formulation in Section 10.
Problem convexity is analyzed in Section 11 where also
approximations required to reach a Linear Program (LP)
are described. Simulations that support the analysis in
Section 11 are presented in Section 12. The paper is
concluded in Section 13.

Contribution: Besides the focus on conventional vehicles
instead of hybrid vehicles, the contribution when compared
to Johannesson et al. (2014); Murgovski et al. (2015) is
how to include predictions of surrounding traffic while
maintaining problem convexity.

3. NOTATION

The nomenclature used in the paper is as follows: the sym-
bols F , P , and E describe force, power and energy, while
the subscripts V , E, B, T , and A describe vehicle, internal
combustion engine, the driveline retarder and mechanical
brakes, transmission, and auxiliaries. The subscript d is
added to denote dissipative terms, while the expression
(·) denotes a function of variables. The vehicle velocity,
v, and the signals describing force, power and energy are
functions of time, although explicit notation is omitted for
improved readability.

4. VEHICLE INFORMATION

The studied vehicle is a long haulage diesel truck with the
main vehicle parameters given in Table 1. The truck is

Table 1. Vehicle parameters

Parameter Value
Vehicle mass m = 40 tonne
Effective mass in cruise gear me = 40.03 tonne
Wheel radius Rw = 0.5m
Aerodynamic drag coefficient cdAf = 5.2
Rolling resistance coefficient cr = 0.005
Air density ρa = 1.184 kg/m3

Gravitational acceleration g = 9.81m/s2

Engine maximum power PEmax = 350 kW

equipped with a 12 gear Automated Manual Transmission
(AMT). The final drive ratio is decided so that gear 12
gives a favorable engine rpm when driving at about 80
km/h. When driving on the highway the truck will most
of the time be in gear 12 which is therefore also referred
to as the cruise gear.

5. VEHICLE MODEL

The vehicle is modelled as a point mass system with the
longitudinal vehicle dynamics described by

mev̇ = FV − FV d(·)−mg sinα, (1)
where FV is the propulsion force, v is the longitudinal
speed, α is the road gradient, g is the gravitational
acceleration, m is the vehicle mass and me is the equivalent
mass that includes the actual vehicle mass and terms
reflecting inertia of rotational components. The vehicle is
subject to dissipative (retarding) forces

FV d(·) =
ρaAfcd

2
v2 +mgcr cosα (2)

consisting of the aerodynamic drag and the rolling resis-
tance; see Table 1 for parameter values.

The kinetic energy is given by

EV =
mev

2

2
, (3)

and the relation
dv

dt
= v

dv

ds
=

1

2

d

ds
v2, (4)

gives
dEV

ds
= FV −mg sinα(s)− ρaAfcdEV

me
−mgcr cosα(s).

(5)
Equation (5) can be discretized in distance based on the
assumption that α and FV are constant during the sample
distance ss (zero order hold). This yields
EV (k + 1) = EV (k)+(
FV −mg sinα(k)− ρaAfcdEV

me
−mgcr cosα(s)

)
ss. (6)

Similarly, the time to travel one sample of length ss with
the kinetic energy EV is given by

ts =
ss√

2EV /me

. (7)

resulting in the travel time

t(k + 1) = t(k) +
ss√

2EV (k)/me

. (8)

The force FV is given by
FV = FE − FB , (9)



where FE is the force from the engine, FB is the force from
the driveline retarder and mechanical brakes.

The forces are limited according to
FE,min

(
EV , κ, PA

)
≤ FE ≤ FE,max

(
EV , κ, PA

)
, (10a)

0 ≤ FB ≤ FB,max(EV ), (10b)
where κ ∈ {1, . . . , 12} is the gear number, FE,min and
FE,max are the engine friction and maximum torque char-
acteristics translated to act on the vehicle point mass,
FB,max is the maximum total brake force from the retarder
and mechanical brakes, PA is the mechanical alternator
power that is drawn from the engine to supply the auxil-
iary systems.

The fuel consumption during one sample is modeled using
a quasi-stationary assumption

EEf = f
(
FE , EV , κ

)
. (11)

6. CONTROL OBJECTIVE

For simplicity, it is assumed in this paper that the truck is
driving on the highway on a segment with a constant speed
limit. The driver inputs a desired average speed, vref , and
corresponding maximum and minimum speeds vmax, vmin

to the cruise controller. In the paper, vref will be called the
set speed.

The objective to be minimized by the predictive control
system is a combination of the fuel consumption, a penalty
on gear shifts, and a comfort penalty

J =
N∑

k=1

(
EEf (k) ss + h

(
κ(k), κ(k − 1)

)
+ wC(·, k)

)
, (12)

where N is the length of the prediction horizon and

wC(k) =γ1

(
FE(k)− FB(k)

− FE(k − 1) + FB(k − 1)
)2

(13)

is the comfort penalty, EEf is the fuel consumption, and h
is the gear shift penalty function. The penalty parameter
γ1 ≥ 0, allow the controller to be tuned for increased
comfort. Increasing γ1 means that some of the fuel gains
might be sacrificed for a smoother velocity trajectory
without fast changes of the acceleration and driveline
torque.

To prevent gear shifts that only result in small fuel gains at
the expense of comfort and increased wear, the gear shift
penalty function, h, can be set higher than the actual fuel
energy required to execute a shift.

7. SURROUNDING TRAFFIC

Based on the assumption that the truck will stay in the
lane and not overtake, predictions of the movement of
vehicles in front can be translated to a lower bound on
the travel time

tmin(k) ≤ t(k), (14)
where tmin(k), k ∈ {1, . . . , N} is the minimum travel
time at each position along the prediction horizon which

guarantees a safe distance or time lag to a vehicle in front.
Similarly, an upper bound on the travel time

tmax(k) ≥ t(k), (15)
can be introduced to guarantee a maximum time lag from
the desired average speed entered by the driver, vref(k), k ∈
{1, . . . , N}, or to guarantee a minimum time lag to the
predicted motion of a proceeding vehicle.

8. CONTROL ARCHITECTURE

Problem (12) is a mixed-integer problem. It is desired
to avoid the computational burden that is required to
solve such problems. Therefore, a hierarchical control ar-
chitecture is introduced that results in less computational
complexity at the expense of a suboptimal solution to
(12). The hierarchical control architecture has one real-
time control layer that actuates the control decisions and
two two predictive control layers that plan the speed and
gear shift strategy and that operate on different time scales
with different update frequencies, prediction horizons, and
model abstractions.

The top control layer is responsible for planning a vehicle
speed reference that is sent to the cruise controller as well
as to the gear shift optimization which takes place in the
lowe predictive control layer. At each update the optimiza-
tion problem is initialized with the current dynamic state,
the travel time, the desired total trip time (or desired
average speed), information about road topography and
speed limits as well as a prediction of the motion of
surrounding vehicles within the prediction horizon. It is
assumed that the prediction of the motion of surrounding
vehicles is based on radar information and or vehicle to
vehicle communication. To be able to react to changes in
the predicted movement pattern of surrounding vehicles
the optimization should be updated at about 5 Hz.

The lower predictive control layer is responsible for se-
lecting a gear that minimizes (12) for the given speed
reference. Since the speed reference is given from the
optimization in the top layer and is assumed to be followed
exactly, what remains is a low complexity optimization
problem with only integer state variables: gear and engine
on/neutral. This problem can be solved in real-time with
DP, on currently available electric control units, using an
update rate faster than 0.2 s and a prediction horizon of
1 km.

In the real time control layer, a cruise controller tracks
the speed reference with a constraint on the distance
to the vehicle in front. The cruise controller generates
an acceleration request that is allocated to the engine,
driveline retarder and mechanical brakes based on the
priority to use the mechanical brakes as little as possible.

9. SPEED REFERENCE OPTIMIZATION

The speed reference optimization will only have an indirect
impact on the gear shift cost,

∑N
k=1 h

(
κ(k), κ(k − 1)

)
in

that the generated speed reference should avoid provoking
gear shifts by not requesting unnecessary high accelera-
tion. For a truck driving on the highway it is sufficient to
accurately model the maximum torque characteristics on
the preferred cruise gear; torque requests exceeding what



can be delivered on the cruise gear is modeled with an arti-
ficial lower efficiency. The approach is thus to minimize an
approximated version of the objective (12) where ẼEf (·, k)
is introduced as approximation of EEf (·, k) + h(k). The
details of the approximation is described in Section 9.1
and the required approximations for problem convexity is
described in Section 11.

The optimization problem is formulated with the opti-
mization variables: FE(k), FB(k), k ∈ {1, . . . , N − 1} and
EV (k), t(k) k ∈ {1, . . . , N}.
The optimization problem is then given as

min J̃ =
N∑

k=1

(
ẼEf (·, k) + wC(·, k)

)
, (16a)

subject to (6)-(11) and (14),(15),

EV (1) =
mev

2
0

2
, t(1) = 0, (16b)

FE(1) = FE,0, FB(1) = FB,0, (16c)
mev̂

2
min(k)

2
≤ EV (k), ∀k ∈ {1, . . . , N}, (16d)

EV (k) ≤
mev

2
max(k)

2
, ∀k ∈ {1, . . . , N}. (16e)

The lower limit on the vehicle speed, v̂min(k) as well as
the allowed time window defined by (14) and (15) are
set so that there always exists a feasible solution. The
feasible solution with the feasible speed v̂ is generated by
a forward simulation of the system (6), (10), generating
FV from a stationary feedback that tries to maintain v̂
close to the desired averge speed, vref , unless at a position
directly behind a vehicle that travels with a speed lower
than vref . In this situation the controller instead tries
to keep a fixed distance to the vehicle in front. The
minimum speed is adjusted based on the feasible solution
v̂min(k) = min{vmin, v̂(k)} for all k ∈ {1, . . . , N}. The
maximum allowed travel time in (15) is either calculated
to keep a time lag to the predicted motion of a proceeding
vehicle or calculated as tmax(k) = tref +

∑k
j=1 ss/v̂(j), k ∈

{1, . . . , N − 1} and tmax(N) =
∑N

j=1 ss/v̂(j), where tref is
the maximum allowed time lag from the feasible v̂.

9.1 Engine and transmission model

This section describes the engine torque/force limita-
tions and the approximate engine energy consumption,
ẼEf (·, k).
The maximum wheel force that can be delivered from
the engine depends both on the vehicle speed and the
selected gear as shown in Figure 1. To avoid a mixed-
integer problem all other gears except the most relevant
cruise gear are abstracted in the model. This is done by
modeling the traction force from the engine, FE , with two
force contributions

FE = FE,1 + FE,2, (17)
where FE,1 is the force that can be delivered when the
vehicle is operated in cruise gear and FE,2 is the additional
force that can be delivered by selecting any lower gear.

The maximum wheel force that can be delivered from the
engine when in cruise gear is shown with a dotted grey
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Fig. 1. The maximum wheel force from the engine as a
function of the vehicle speed for all 12 gears. Due
to the maximum power rating of the ICE the total
maximum force at any gear is inversely proportional
to the vehicle speed.
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Fig. 2. The maximum wheel force from the engine as a
function of the vehicle kinetic energy. The boxed areas
corresponds to speed intervals from 60 km/h to 90
km/h and 75 km/h to 85 km/h. The curve ’ICE force
at any gear’ is the maximum engine force for any
admissible gear at a specific speed.

line in Figure 2. In the optimization problem the dotted
grey line is approximated by the piece-wise linear concave
function FE,1,max(EV ), disregarding the non-concave be-
havior at low vehicle speed. In the simulations in Section
12, FE,1,max, is composed of only two linear pieces.
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Fig. 3. Engine model versus measurements. The model is
shown with red lines and the measured fuel mass rate
with blue circles.

The engine friction when operated in cruise gear is mod-
eled as affine in EV ,

TE,fric(·) = a0 + a1EV , (18)
where a1 > 0.

The engine torque/force constraints (10a) are then re-
placed with

FE,1 +
PAts
ss

≤ FE,1,max(EV ) (19a)

− κETE,fric(·) = −κE

(
a0 + a1EV

)
≤ FE,1 +

PAts
ss

(19b)

FE,1 + FE,2 +
PAts
ss

≤ PEmax

v
=

PEmax√
2EV /me

(19c)

0 ≤ FE,2 (19d)
where κE is a constant that transfers torque delivered at
engine output to traction force acting on the vehicle point
mass when the transmission is in cruise gear and where
PEmax is the maximum rated engine power.

When in cruise gear, the engine energy consumption is
modeled with a constant marginal efficiency

ẼEf,1 =

(
FE,1 +

PAts
ss

+ κETE,fric

)
ss

ηE,1

=

(
FE,1 +

PAts
ss

+ κE(a0 + a1EV )
)
ss

ηE,1
. (20)

Model (20) is fitted to measured data and compared with
the measurements in Figure 3.

In order to encourage the optimization to, if possible, plan
the driving with low enough acceleration so that the cruise
gear can be kept, the additional force exceeding what can
be delivered in the cruise gear is modeled with a lower
marginal efficiency ηE,2 < ηE,1. The result is the following
engine energy consumption model:

ẼEf (·) =

(
FE,1 +

PAts
ss

+ κE(a0 + a1EV )
)
ss

ηE,1
+

FE,2ss
ηE,2

,

(21)
which is physically correct only when in cruise gear.

The engine energy consumption is the sum of the useful
mechanical work EE = FEss and the energy dissipation
ẼEd:

ẼEf = EE + ẼEd = (FE,1 +
PAts
ss

+ FE,2)ss + ẼEd.

(22)
Simple manipulations give the energy dissipation as

ẼEd(·) =
((

FE,1 +
PAts
ss

+ κE (a0 + a1EV )
)
/η1

− FE,1 −
PAts
ss

+ FE,2 (1/η2 − 1)
)
ss, (23)

which is linearly increasing in both EV and ts due to
1/η1 > 1 and 1/η2 > 1.

10. MINIMIZATION OF ENERGY DISSIPATION

An alternate view on problem (16) is given in this section.
By making the dissipative terms

ED(·, k) = FBss + FV d(·, k)ss + ẼEd(·, k) (24)
explicit in the objective function we show that problem
(16) equivalently can be viewed as a minimization of the
total energy dissipation. Using (6) and (9) the useful
mechanical work from the engine can be expressed as

EE(·) = (FV + FB)ss = EV (k + 1)− EV (k) + FBss
+mg sinα(k)ss + FV d(·)ss. (25)

Objective (16) is then reformulated by replacing with
expression (25):

min J̃ =
N∑

k=1

(
ẼEf (·, k) + wC(·, k)

)
=

N∑
k=1

(
EE(·) + ẼEd(·, k) + wC(·, k)

)
=

N∑
k=1

(
EV (k + 1)− EV (k) + FBss

+mg sinα(k)ss + FV d(·)ss + ẼEd(·, k) + wC(·, k)
)

= EV (N + 1)− EV (1) +
N∑

k=1

mg sinα(k)ss

+
N∑

k=1

(
ED(·, k) + wC(·, k)

)
, (26)

which shows that problem (16) is equivalent to minimizing
the total energy dissipation.

11. CONVEX APPROXIMATIONS AND
RELAXATIONS

Assuming that (10) is well described as affine in EV ,
problem (16) is a non-convex problem due to the non-linear
equality constraint (7) and the concave inequality con-
straint (19c). One approach is to solve problem (16) with
Sequential Quadratic Programming (Nocedal and Wright,
2000). However, in order to get a better understanding of
the problem it is worthwhile to investigate approximations
and when convex relaxations of the nonconvex problem are
valid.



First, to reach a convex problem formulation (19c) is
linearized and replaced with

FE,1(k) + FE,2(k) +
PAts
ss

≤
(
FE,tot,0(k) + aFE

(k)EV (k)
)
,

(27)

where FE,tot,0(k) and aFE (k) are position dependent coef-
ficients with values given from the linearization.

By studying the curve ’ICE force at any gear’ in Figure
2 it is evident that the linearization (27) is a reasonable
approximation of (19c) over the narrow speed interval from
75 km/h to 85 km/h.

The second step is to investigate if equality will always
hold when (7) is relaxed to

ts(k) ≥
ss√

2EV (k)/me

, (28)

which is a convex inequality constraint due to the convex-
ity of 1/

√
x.

Assume first that there is no vehicle in front. Then the
relaxation is always valid, since the cost is linear in ts.
Assume now that there is a slowly moving vehicle in front
of our vehicle so that (14) holds with equality for the
optimal solution at sample N1, or equivalently

N1∑
k=1

ts(k) = tmin(N1), (29)

which due to linearity means that all terms with ts(k) in
the objective can be summed as

N1∑
k=1

PAts(k)(1/ηE,1 − 1) = PAtmin(N1)(1/ηE,1 − 1). (30)

The cost directly associated with ts up to sample N1 will
thus be defined by tmin(N1) and is thereby unaffected by
a possible inequality gap in (28) at one or more samples.
Therefore, the argument that the cost is linear in ts can
no longer be used to prove that the relaxation is valid.
Instead, the relaxation can only be shown valid in special
cases when the FB and FE,2 is kept zero throughout the
solution.

Since the relaxation is not always valid, an alternative is
to approximate (7) with an affine equality constraint,

ts(k) ≈ b0 + b1Ev(k). (31)

Figure 4 shows the time error when approximating (7) with
one affine function over the speed interval from 70 km/h to
90 km/h. The error is less than 2% which over a prediction
horizon of 5 km when driving with an average speed of 80
km/h corresponds to a maximum position error at the end
of the horizon of 100 m.

The only non-linear constraint in the problem formulation
is constraint (7). This means that if (7) is approximated
with an affine equality constraint the problem is turned
into a linear program. In a real implementation, it is of
interest to consider a penalty for jerk, which is natural to
include with a quadratic penalty in the change in vehicle
propulsion force. In that case the problem becomes a
quadratic program (QP).
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Fig. 4. Approximation of the sample time. The top window
shows the sample time as a function of the kinetic
energy and the bottom shows the error when approx-
imating with an affine function.

12. SIMULATIONS

Due to lack of space the simulations only cover the speed
reference optimization showing no simulations of the whole
system with gear shift decisions and tracking of the refer-
ence speed. The simulations show the main characteristics
of the optimal solutions and shows cases when the relax-
ation (28) is and is not valid. The simulations also show
the solution with the affine approximation (31).

The studied scenario is as follows: The studied truck starts
at the top of a hill with a slowly moving vehicle 13 seconds
in front and there are two hills within the prediction
horizon of 4 km. The reference speed is set to 80 km/h
and the vehicle is allowed to over speed with 8 km/h. The
vehicle in front is predicted to travel at 75 km/h and the
minimum allowed time lag between the vehicles is set to 3
seconds.

Two variants of the speed reference optimization are
studied. The first variant, shown in Figure 5 and 6
omits constraint (16d), with the result that there are no
lower bounds on the kinetic energy. Instead, tmax(k), k ∈
{1, . . . , N} is set so that the maximum time lag from the
feasible initial guess, labeled ’Initial guess’ in Figure 5,
is never allowed to exceed 5 seconds. The figures show
that the optimal solution climbs the hills on cruise gear
(FE,2(k) = 0, ∀k ∈ {1, . . . , N}) and avoids activating the
mechanical brakes ending up three seconds behind the
vehicle in front at the end of the prediction horizon.

The second variant is presented in Figure 7 and 8 with the
sole purpose to show that (28) does not necessarily hold
with equality if FB and FE,2 are not zero at all times for
the solution of the relaxed problem. In the optimization
the speed in never allowed to go below 72 km/h unless
when climbing the steep hill at the end of the prediction
horizon. As seen in Figure 7 the optimization ends up being
to 2.5 seconds behind the vehicle in front despite that the
minimum allowed time lag between the vehicles is set to 3
seconds. The reason is that optimal solution satisfies (28)
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time lag from the set speed of 5 seconds. The top
window shows the speed trajectories on top of the
road topography which is depicted in shaded grey.
The lower window shows the time lag to the vehicle
in front which is set to never be below 3 seconds.
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Fig. 6. Optimal force trajectories from an optimization
with a maximum allowed time lag from the set speed
of 5 seconds. The top window shows the engine force
trajectories on top of the road topography which is
depicted in shaded grey. The lower window shows the
brake force trajectory.

with inequality resulting in an error in the relation between
travelled time and travelled position.
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Fig. 7. Optimal speed reference with a minimum allowed
speed of 72 km/h. The top window shows the speed
trajectories on top of the road topography which is
depicted in shaded grey. The lower window shows
the time lag to the vehicle in front which is set to
never be below 3 seconds. It is for this case verified
that the time relaxation is not valid, while the affine
approximation works better.
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Fig. 8. Optimal force trajectories from an optimization
with a minimum allowed speed of 72 km/h. The top
window shows the engine force trajectories on top of
the road topography which is depicted in shaded grey.
The lower window shows the brake force trajectory.



13. CONCLUSION

The paper shows that predictions of the movement pattern
of surrounding vehicles can be incorporated as a moving
time window constraint when planning the vehicle speed
reference in a convex optimization problem. By proposing
an affine approximation of the relationship between time
and kinetic energy, a time error of less than 2% can be
held over the prediction horizon. This may be sufficient for
planning purposes of platoons. If the problem is included
in a model-predictive control formulation the error can be
kept small by updating the solution frequently. In future
work the speed reference optimization presented in the
paper will be extended to vehicle platoons and the control
of traffic flows.
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