
Predictive cruise control with autonomous overtaking

Nikolce Murgovski and Jonas Sjöberg

Abstract— This paper studies the problem of optimally con-
trolling an autonomous vehicle, to safely overtake a slow-
moving leading vehicle. The problem is formulated to minimize
deviation from a reference velocity and position trajectory,
while keeping the vehicle on the road and avoiding collision with
surrounding vehicles. We show that the optimization problem
can be formulated as a convex program, by providing convex
modeling steps that include change of reference frame, change
of variables, sampling in relative longitudinal distance, convex
relaxation and linearization. A case study is provided showing
overtaking scenarios in proximity of an oncoming vehicle, and
a vehicle driving on an adjacent lane and in the same direction
as the leading vehicle.

I. INTRODUCTION

The high percentage of traffic accidents and fatalities
in overtaking and lane change maneuvers, is motivating
the introduction of driver assistance and fully automated
maneuvering systems that are expected to increase highway
safety [1]. Several of these systems, such as adaptive cruise
control and lane keeping aid, are already standard in many
production vehicles [2].

This paper investigates a higher level of automated driving,
where the vehicle autonomously takes decisions to stay
within its own lane, or to perform an overtaking maneuver
in a case of a slow-moving leading vehicle. The problem
can be casted as an avoidance of moving obstacles, which is
typically addressed by grid/graph search techniques [3], [4],
or by nonlinear, model predictive control (MPC) approaches
[5], [6].

MPC approaches have shown increased attention in recent
years, due to their ability to systematically handle system
constraints and nonlinearities [7]. For example, a nonlinear
MPC has been used for obstacle avoidance maneuvers [5],
as well as for combined steering and braking control [6].
The nonlinear MPC relies on iterative solutions of optimal
control problems, where the control problems are nonlinear
and generally non-convex. In order to decrease computational
demands of the nonlinear MPC, methods have been proposed
to linearize the optimal control problem, such that a convex
problem is solved in each MPC stage [8], [9]. However, it
has been indicated in [8], [9] that for the studied problem, the
linearization step makes the planning of the entire overtaking
maneuver infeasible in a single optimization stage.

This paper studies the nonlinear and non-convex opti-
mization problem that is to be solved at every MPC stage.
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Fig. 1. Scenario where the ego vehicle (E) is overtaking a leading vehicle
(L) on a road with two lanes. The center of gravity of the ego vehicle is
allowed to reside between the limits ymin and ymax, depicted by the thick
solid lines.

The problem is first transformed into a moving reference
frame and then, similarly as in [5], the time-dependent
system is translated into a position-dependent system. Our
contribution is showing that for a point mass vehicle model,
two additional steps of convex relaxation of travel time
and linearization of control input constraints yield a convex
program. In comparison to previous studies, e.g. [5], [8], [9],
the proposed modelling steps allow consideration of moving
obstacles, such that the entire overtaking maneuver can be
planned into a single optimization stage, by solving a convex
quadratic program (QP). When overtaking is performed in
the neighborhood of other surrounding vehicles that drive
with a different speed, or in an opposite direction of the
leading vehicle, the maneuver can be planned by solving a
convex second order cone program (SOCP).

The paper is organized as follows. Section II formulates
the non-convex optimal control problem of overtaking a
leading vehicle. In Section III modeling steps are shown
that formulate the optimal control problem as a convex QP.
The overtaking scenario with other surrounding vehicles is
studied in Section IV. Section V provides a case study
with three overtaking scenarios. The paper is ended with
discussions and conclusions in Section VI.

II. VEHICLE MODEL AND PROBLEM FORMULATION

An overtaking scenario is studied, where an automated
vehicle, which is referred to as the ego vehicle (E), is ap-
proaching a slower moving leading vehicle (L), as illustrated
in Fig. 1. The ego vehicle is steered by an MPC, where
the control action is re-optimized in successive stages. This
paper, however, discusses in detail only a single optimization
stage, with a prediction horizon of x̃f relative length in
front of the ego vehicle. Within the prediction horizon of
the stage, the road is considered straight and the leading
vehicle is considered to travel with a constant longitudinal
speed vL. The task of the predictive controller of the ego
vehicle is to track a longitudinal reference velocity vr(t) and
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lateral position yr(t), and to safely perform an overtaking
manoeuver.

1) Longitudinal and lateral dynamics: The ego vehicle
is modeled as a point mass system, with state and control
vectors defined as

xE(t) = [xE(t), ẋE(t), yE(t)]T , uE(t) = [ẍE(t), ẏE(t)]T

where xE and yE denote longitudinal and lateral position in
the inertial frame. The ego vehicle is represented by the linear
system

ẋE(t) = AxE(t) +BuE(t),

A =

 0 1 0
0 0 0
0 0 0

 , B =

 0 0
1 0
0 1

 . (1)

2) State and control constraints: Constraints are imposed
on the state and control signals of the ego vehicle

xE(t) ∈ [xmin(·),xmax(·)], uE(t) ∈ [umin(t),umax(t)],

with the limits defined as

xmin(·) = [0, vL + ε, ymin(·)]T (2)

xmax(·) = [free, vxmax(t), ymax(·)]T (3)

umin(t) = [axmin(t), vymin(t)]T (4)

umax(t) = [axmax(t), vymax(t)]T (5)

where we use (·) as a shorthand notation for a function
of decision variables. Here, ε is a small positive number
that indicates a strict inequality, i.e., ẋE(t) > vL ≥ 0,
∀t ∈ [0, tf ], which clearly states that the scenario of interest
is when the leading vehicle is slower than the ego vehicle.
The final time tf and the final position xf are free, while the
vehicle is initially placed at zero time and zero position. The
speed and acceleration limits satisfy vymin(t), axmin(t) ≤ 0,
vymax(t), vxmax(t), axmax(t) ≥ 0, ∀t ∈ [0, tf ].

The lateral limits

ymin(·) =

{
wl + w, xE(t) ∈ xL(t) + [−lLf , lLr]

w, otherwise

ymax(·) =

{
2wl − w, xE(t) ∈ xL(t) + [−ls, le]
wl − w, otherwise

(6)

are enforced to keep the ego vehicle on the road and provide
safe overtaking. The position of the leading vehicle is com-
puted as xL(t) = xL0 + vLt, where xL0 is its initial position.
The center of gravity of the ego vehicle is prevented to enter
the critical zone [−lLf , lLr] around the leading vehicle. The
zone is here represented as a rectangle, although for the
method being discussed the zone may have any other shape.
The coefficients wl and w represent lane width and lateral
safety margin, respectively. The remaining coefficients lLf ,
lLr, ls, le denote longitudinal lengths. They are computed as a
function of the difference between the mean reference speed
of the ego vehicle and the speed of the leading vehicle, and
are constant within the optimization stage. The latter two
lengths are introduced to permit overtaking only within a
certain window [−ls, le] around the leading vehicle.

Additionally, a constraint is imposed on lateral speed,

ẏE(t) ∈ [smin, smax]ẋE(t) (7)

which requires longitudinal motion in order to perform
any change in lateral movement. Here, smin = − arctanβ,
smax = arctanβ, are functions of a slip angle β, where the
slip angle is chosen to ensure generation of a path that can
be followed by a car in a cartesian coordinate system [8].

3) Problem statement: We can now formulate the opti-
mization problem as

min
uE(t)

J(xE(t),uE(t), u̇E(t)) (8a)

subject to
ẋE(t) = AxE(t) +BuE(t) (8b)
xE(t) ∈ [xmin(·),xmax(·)] (8c)
uE(t) ∈ [umin(t),umax(t)] (8d)
xE(0) = xE0 (8e)
ẏE(t) ∈ [smin, smax]ẋE(t) (8f)

where the constraints are imposed element-
wise, ∀t ∈ [0, tf ]. The initial state values are
denoted by xE0 = [xE0, vE0, yE0]T and satisfy
xE0 ∈ [xmin(t = 0),xmax(t = 0)]. The objective J(·)
includes penalties for deviation from the reference velocity
vr(t) and reference position yr(t), and may also include
cost for longitudinal acceleration and lateral speed, cost
for final state values, cost for the final time, etc. Detailed
implementation of this function is deferred to Section III-D.
Optimization variables are the control trajectories uE(t).

The optimization problem (8) is non-convex and mixed-
integer. Non-convexity arises in the state limits (8c), i.e. in
the mixed-integer lateral limits (6). In Section III, we provide
modeling steps for an exact convex reformulation of (6).

III. CONVEX MODELING

The problem (8) is reformulated here as a convex program.
Convex modeling steps are performed, including change of
reference frame, change of variables, sampling in relative
distance and linearization.

A. Change of reference frame

The problem (8) is transformed here into a reference frame
that moves longitudinally with speed −vL relative to the road
frame. This transformation allows the system to be viewed
as a projection on a TV screen, where the transformed
reference frame represents the TV frame in which the leading
vehicle appears stationary, while the road moves towards
the ego vehicle with speed −vL. We consider the origin of
the moving frame located at the initial position of the ego
vehicle, at time t = 0. Thus, the position of the ego vehicle
in the moving frame can be expressed by subtracting the
vector pL(t) = [vLt, vL, 0]T from the vehicle’s state vector.
The transformation is implemented as a variable change

x̃E(t) = xE(t)− pL(t), ũE(t) = [¨̃xE(t), ẏE(t)]T (9)



where x̃E(t) = xE(t)−vLt is the longitudinal position of the
ego vehicle relative to the leading vehicle.

With the use of the latest variable change, the original
problem formulation (8) is translated to a formulation in the
moving reference frame

min
ũE(t)

J(x̃E(t), ũE(t), ˙̃uE(t)) (10a)

subject to
˙̃xE(t) = Ax̃E(t) +BũE(t) (10b)
x̃E(t) ∈ [xmin(·),xmax(·)]− pL(t) (10c)
ũE(t) ∈ [umin(t),umax(t)] (10d)
x̃E(0) = xE0 − pL(0) (10e)

ẏE(t) ∈ [smin, smax]( ˙̃xE(t) + vL) (10f)

where the matrices A and B are exactly as in (1).
The lateral limits in (10c) are now expressed as

ymin(·) =

{
wl + w, x̃E(t) ∈ xL0 + [−lLf , lLr]

w, otherwise

ymax(·) =

{
2wl − w, x̃E(t) ∈ xL0 + [−ls, le]
wl − w, otherwise.

(11)

With this transformation, the rectangular regions around
the leading vehicle appear stationary in the moving frame.
However, the set (10c) is still not convex, since the time the
ego vehicle will approach the critical zone depends on the
optimal speed of the ego vehicle that is yet to be determined.
A reformulation that will finally transform (10c) to a convex
constraint is provided in Section III-B.

B. Sampling in relative longitudinal distance

The optimization problem is reformulated here into a
spatial domain, by sampling into the longitudinal distance, x̃,
in the moving frame. The shorthand notation (·)′ is used to
denote a derivative with respect to distance, i.e., y′ = dy/dx̃.

An immediate consequence from the transformation in
spatial domain is that the position of the ego vehicle can be
removed from the state vector. The state and control vectors
are now defined as

x̂E(x̃) = [ ˙̃xE(x̃), yE(x̃)]T , ûE(x̃) = [ ˙̃x′E(x̃), y′E(x̃)]T

and the ego vehicle is presented by the simple linear system
x̂′E(x̃) = ûE(x̃). The lateral limits (11) are now completely
defined as functions of the spatial coordinate x̃, i.e.,

ymin(x̃) =

{
wl + w, x̃ ∈ xL0 + [−lLf , lLr]

w, otherwise

ymax(x̃) =

{
2wl − w, x̃ ∈ xL0 + [−ls, le]
wl − w, otherwise.

(12)

Therefore, the state constraints x̂E(x̃) ∈ [x̂min(x̃), x̂max(x̃)],
with the limits defined as

x̂min(x̃) = [ε, ymin(x̃)]T (13)

x̂max(x̃) = [vxmax(x̃)− vL, ymax(x̃)]T (14)

become convex, linear constraints. Non-convexity is intro-
duced at the control constraints (10d) and the lateral slip
constraint (10f), which in the spatial domain translate to

˙̃x′E(x̃) ∈ [axmin(x̃), axmax(x̃)]/ ˙̃xE(x̃) (15)

y′E(x̃) ∈ [vymin(x̃), vymax(x̃)]/ ˙̃xE(x̃) (16)

y′E(x̃) ∈ [smin, smax](1 + vL/ ˙̃xE(x̃)). (17)

This, however, can be easily handled by the standard MPC
technique of linearization, as it will be shown in Section
III-C.

C. Linearization and convex problem formulation

The constraints (15)-(17) can be modeled as convex by
linearizing the term 1/ ˙̃xE(x̃) about the relative reference
velocity ṽr(x̃) = vr(x̃)− vL. By using

1/ ˙̃xE(x̃) ≈ 1

ṽr(x̃)

(
2−

˙̃xE(x̃)

ṽr(x̃)

)
(18)

the optimization problem can be formulated with linear
constraints,

min
ûE(x̃)

J(x̂E(x̃), ûE(x̃), û′E(t)) (19a)

subject to
x̂′E(x̃) = ûE(x̃) (19b)
x̂E(x̃) ∈ [x̂min(x̃), x̂max(x̃)] (19c)

ûE(x̃) ∈ [umin(x̃),umax(x̃)]
1

ṽr(x̃)

(
2−

˙̃xE(x̃)

ṽr(x̃)

)
(19d)

x̂E(0) = x̂E0 (19e)

y′E(x̃) ∈ [smin, smax]

(
1 +

vL

ṽr(x̃)

(
2−

˙̃xE(x̃)

ṽr(x̃)

))
(19f)

where the constraints are enforced for all x̃ ∈ [0, x̃f ], and
the initial state vector is defined as x̂E0 = [vE0 − vL, yE0]T .
The linearized input constraints (19d), (19f) are an inner
approximation of the feasible set, thus ensuring a feasible
control trajectory in the original formulation (8). If any of
these constraints is activated along the optimization horizon,
then the obtained solution is conservative and may not
be optimal to the original formulation. The optimization
error can be decreased by re-linearizing about the optimal
velocity trajectory, when the control problem is to be solved
iteratively. This is a standard MPC practice [7].

Finally, if the cost function J(·) is chosen to be convex,
the optimization problem (19) would be a convex program.

D. Convex objective function

The performance of the system is evaluated by a quadratic
cost function

J(·) =

∫ x̃f

0

‖x̂E(x̃)− x̂r(x̃)‖2Qdx̃

+

∫ x̃f

0

(
‖ûE(x̃)‖2R + ‖û′E(x̃)‖2S

)
dx̃

(20)

where x̂r(x̃) = [ṽr(x̃), yr(x̃)]T is the vector of reference
trajectories, and Q ≥ 0, R > 0, S ≥ 0 are block diagonal
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Fig. 2. Overtaking scenarios with an oncoming vehicle (O) and with an
adjacent vehicle (A) moving in the same direction on an adjacent lane.
During the overtaking maneuver, the center of gravity of the ego vehicle is
allowed to reside among the limits ymin, ymax and the ramp barrier of the
oncoming or adjacent vehicle.

weighting matrices of appropriate dimensions, penalizing
deviations from the reference trajectories, the control actions
and changes in the control actions.

IV. SCENARIOS WITH SURROUNDING VEHICLES

Realistic overtaking scenarios may involve more than one
vehicle in the neighborhood of the ego vehicle. If these
vehicles move in the same direction and with the same speed
as the leading vehicle, then in the moving reference frame
each vehicle will create a stationary critical zone that can
be included in the computation of the lateral limits (12),
without infringing the convexity of problem (19). Here, we
investigate other two scenarios, where a surrounding vehicle
drives with a different speed, or in an opposite direction of
the leading vehicle.

A. Overtaking in proximity of an oncoming vehicle
Consider an oncoming vehicle (O), driving with a constant

speed vO ≤ 0 and at a constant lateral position yO = 3wl/2.
Negative speed indicates a motion in the opposite direction
of the leading vehicle, as illustrated in Fig. 2. Using a
rectangular critical zone around the oncoming vehicle will
infringe problem convexity, since the critical zone will not
appear stationary in the moving frame. To remedy the issue,
we apply a convexification step, previously proposed by [8].
The strategy is to model the critical zone of the oncoming
vehicle as a ramp barrier, as illustrated in Fig. 2.

1) Travel time as a state: To model the ramp barrier
constraint, we introduce the travel time t̃(x̃) in the moving
frame as an additional state in the problem, for which it
holds t̃′(x̃) = 1/ ˙̃xE(x̃). Note that, this is not a linear function
and an equality constraint of this form is not convex. The
constraint could be convexified in several ways, but besides
standard linearization techniques, we propose here a convex
relaxation

t̃′(x̃) ≥ 1/ ˙̃xE(x̃), ∀x̃ ∈ [0, x̃f ], (21)

the validation of which is deferred to Section IV-A.4, after
the entire problem of overtaking with an oncoming vehicle
is being formulated.

2) Ramp barrier constraint: The ramp barrier of the
oncoming vehicle can now be formulated as a simple linear
constraint

x̃− xO0 − (vO − vL)t̃(x̃)

lOf
+
yE(x̃)− yO

wl
≤ −1 (22)

where xO0 is the initial position of the oncoming vehicle
and lOf , which is constant in the optimization stage, is a
longitudinal length computed as a function of the difference
between the mean reference speed of the ego vehicle and
the speed of the oncoming vehicle. The constraint (22) is
clearly convex, but if imposed at each sampling instance, it
will forbid the entire half plane, northeast of the oncoming
vehicle, thus not allowing the planning of the entire over-
taking maneuver in a single optimization stage, as originally
indicated in [8]. While this has been a serious burden in
[8], [9], here it can be easily handled by simply switching
off the constraint (22) when the ego vehicle is outside the
overtaking window. Namely, outside the overtaking window,
the ego vehicle is constrained by ymax(x̃) to stay within its
own lane (see Fig. 1), where the oncoming vehicle is not a
hazard to the ego vehicle.

3) Problem statement: Finally, the convex optimization
problem of overtaking with an oncoming vehicle can be
formulated as

min
ûE(x̃)

J(x̂E(x̃), ûE(x̃), û′E(t)) + ε t̃(x̃f ) (23a)

subject to

t̃′(x̃) ≥ 1/ ˙̃xE(x̃) (23b)
x̂′E(x̃) = ûE(x̃) (23c)
x̂E(x̃) ∈ [x̂min(x̃), x̂max(x̃)] (23d)

ûE(x̃) ∈ [umin(x̃),umax(x̃)]
1

ṽr(x̃)

(
2−

˙̃xE(x̃)

ṽr(x̃)

)
(23e)

x̂E(0) = x̂E0 (23f)

y′E(x̃) ∈ [smin, smax]

(
1 +

vL

ṽr(x̃)

(
2−

˙̃xE(x̃)

ṽr(x̃)

))
(23g)

x̃− xO0 − (vO − vL)t̃(x̃)

lOf
+
yE(x̃)− yO

wl
≤ −1 (23h)

where constraints (23b)-(23g) are imposed for all x̃ ∈ [0, x̃f ],
while (23h) is imposed for x̃ ∈ xL0 + [−ls, le]. Note that,
the objective function has been augmented with the term
ε t̃(x̃f ), where ε is a small positive number. The reason for
introducing this penalty is to give an incentive for obtaining
tight equality of (23b) at the optimum, even when the ramp
barrier constraint (23h) is not activated. Also note that,
penalizing travel time, which is not trivial in the time-
dependent formulation, is straightforward to introduce in the
spatial formulation.

The problem (23) is not a QP, even when the objec-
tive function is quadratic. The problem is a SOCP, since
the constraint (23b) can be represented as a second order
cone constraint [10]. A QP formulation can be obtained by
linearizing (23b) about the reference velocity vr(x̃). This,
however, may introduce noteworthy approximation error,
since (23b) will be active at each sampling instance within
the overtaking window. The error can be kept within certain
bounds by frequently re-optimizing and re-linearizing in
successive MPC stages.

4) Validity of the travel time relaxation:



Proposition. The global minimum of the non-convex version
of problem (23), where (23b) is not relaxed, can be obtained
by solving the relaxed convex problem (23).

Proof. We will prove the proposition by contradiction. Sup-
pose that an optimal solution of problem (23) is found for
which it holds t̃′∗(x̃) = 1/ ˙̃x∗E(x̃) + δ(x̃), where δ(x̃) is a
slack variable that is nonnegative for all x̃ ∈ [0, x̃f ]. Then,
it is possible to construct an alternative suboptimal solution
with the same optimal control signals û∗E(x̃), but with a state
derivative trajectory ť′(x̃) = t̃′∗(x̃)− δ(x̃). Defining such a
trajectory is a feasible solution, indeed, since the ramp barrier
constraint

x̃− xO0 − (vO − vL)ť′(x̃)

lOf
+
yE(x̃)− yO

wl
≤ −1 (24)

will not be violated, because the vector on the left side of
the inequality is less than or equal (for all x̃ ∈ [0, x̃f ]) to the
vector of the feasible (and optimal) solution where t̃′∗(x̃) is
used. However, the final time of this feasible solution satis-
fies ť(x̃f ) = t̃∗(x̃f )−

∫ x̃f

0
δ(x̃)dx̃ ≤ t̃∗(x̃f ), which directly

implies from the objective (23a) that the solution with non-
zero slack variables, t̃′∗(x̃), could not have been optimal, but
rather the solution where the slack variables are zero is the
optimal.

B. Overtaking in proximity of a vehicle on an adjacent lane

Consider an overtaking scenario with a surrounding ve-
hicle (A) driving with a constant speed vA > vL on an
adjacent lane and with the same direction as the ego vehicle.
The adjacent vehicle lateral position is yA = 3wl/2, while
its initial longitudinal position xA0 is outside the overtaking
window, such that the ego vehicle may realize the overtaking
maneuver before the adjacent vehicle passes by the leading
vehicle. Similarly as with the oncoming vehicle, the con-
straint on critical zone is modeled by a ramp barrier

x̃− xA0 − (vA − vL)t̃(x̃)

lAr
− yE(x̃)− yA

wl
≥ 1 (25)

which is imposed for x̃ ∈ xL0 + [−ls, le]. The length lAr

is computed as a function of the difference between the
mean reference speed of the ego vehicle and the speed of
the adjacent vehicle and is constant within the optimization
stage.

The problem formulation for this scenario is exactly as
problem (23), but with the constraint (23h) replaced by (25).

V. CASE STUDY: OVERTAKING IN THREE SCENARIOS

We provide here a case study of three overtaking scenarios.
In the first scenario, the ego vehicle, with a reference speed
of 70 km/h, is overtaking a leading vehicle, with speed of
50 km/h, without the presence of other surrounding vehicles.
In the second scenario, the overtaking takes place in the
proximity of an oncoming vehicle, which is driving with
70 km/h in the opposite direction of the leading vehicle. In
the third scenario, the ego vehicle is about to overtake the
leading vehicle, before a vehicle driving with 70 km/h on an
adjacent lane and in the same direction as the ego vehicle,

TABLE I
PROBLEM DATA.

x̃f = 180m, wl = 5m, w = 1.5m, ls = 40m, le = 37.3m
lLf = 15m, lLr = 12.3m, lOf = 48.4m, lAr = 9.5m
xE0 = 0m, xL0 = 75m, xO0 = 650m, xA0 = 0m
yE0 = 2.5m, yL0 = 2.5m, yO0 = 7.5m, yA0 = 7.5m
vr = 70 km/h, vL = 50 km/h, vO = −70 km/h, vA = 70 km/h
vxmax = 80 km/h, vymin = −4m/s, vymax = 4m/s
axmin = −4m/s2, axmax = 1m/s2, β = 10◦, ε = 0.01
Q = diag(0.01, 0.1), R = diag(2, 20), S = diag(100, 400)
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Fig. 3. Overtaking scenario where the ego vehicle, driving with 70 km/h, is
overtaking a leading vehicle, driving with 50 km/h. The top plot shows the
relative position of the ego vehicle in the moving frame, while the other two
plots show the absolute position and velocity in the inertial frame. A time-
lapse is shown with five time instances, 1) the initial time, 2) the time when
the ego vehicle is positioned at the beginning of the overtaking window, 3)
the beginning of the critical zone of the leading vehicle, 4) the end of the
critical zone, and 5) the end of the overtaking window.

passes by the leading vehicle. The remaining problem data
is provided in Table I.

The optimal control problem (23) is transferred to a
discrete form using first order Euler discretization, with
sampling interval of 1 m relative distance. The problem is
then automatically translated to a standard SOCP, by using
the CVX modeling language [11], [12]. The problem is
solved with the SOCP solver ECOS [13], for which CVX
reported an average computation time of about 70 ms spent
on the solver, on a PC with 2.67 GHz dual-core processor and
4 GB RAM. Note, however, that the computation time can
be decreased by linearizing (23b) and solving the problem
with a dedicated QP solver, instead of the generalized SOCP
solver.

In all three scenarios, the reference lateral position of the
ego vehicle is assigned at the middle of its own lane, except
within the critical zone of the leading vehicle, where the
reference position is at the middle of the adjacent lane, as
depicted in Fig. 3. It can be observed in Fig. 3 - 5, that the
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Fig. 4. Overtaking scenario in the proximity of an oncoming vehicle driving
with 70 km/h. The ego vehicle accelerates to about 76.5 km/h in order to
overtake the leading vehicle and return to its own lane, before activating
the ramp barrier of the oncoming vehicle.

optimal position trajectory of the ego vehicle is smooth in all
three scenarios. The longitudinal velocity of the ego vehicle
in the first scenario is equal to the reference, while in the
remaining two scenarios the ego vehicle accelerates in order
to avoid a collision with the oncoming or adjacent vehicle.

The figures also show a time-lapse with five time in-
stances, where the marker depicting each vehicle is shaded
from a lighter to a darker color as the time elapses. It can
be observed in the top plots that in the moving frame, the
leading vehicles appears stationery as time passes, while the
remaining vehicles move with a relative speed with respect
to the leading vehicle.

VI. DISCUSSION AND CONCLUSION

This paper provides convex modeling steps for the prob-
lem of optimal overtaking within the scope of a predictive
cruise control. We show that the originally non-convex opti-
mal control problem, can be formulated as a convex program
that can be solved efficiently. The resulting convex program
is a QP, when all surrounding vehicles drive with the same
speed as the leading vehicle. When a surrounding vehicle
drives with a different speed, or in an opposite direction of
the leading vehicle, the convex program is a SOCP, which
could be approximated to a QP by linearizing one constraint.

Future studies may focus on extending the proposed
approach on overtaking scenarios with curvy roads, with
surrounding vehicles that may not drive with constant speed,
and with measurements that may include sensor noise and
uncertainty.
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