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Formation of Enhanced Uniform 
Chiral Fields in Symmetric Dimer 
Nanostructures
Xiaorui Tian1, Yurui Fang2 & Mengtao Sun3

Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and 
other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields 
for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields 
close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic 
helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, 
but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer 
structures can provide uniform chiral fields in the gaps with large enhancement of both near electric 
fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis 
at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 
times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with 
opposite handedness can be obtained simply by changing the polarization to the other side of the 
dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small 
quantity of chiral molecule.

Optical activity (OA), that the material responses differently to left circularly and right circularly polar-
ized light (LCP and RCP, respectively)1, is very universal and important in nature. Most amino acids 
and sugars which are building blocks of life have optical activity due to their chiral structures. Chirality 
sensitive circular dichroism (CD), optical rotatory dispersion (ORD) and Raman optical activity (ROA) 
are three significant spectroscopic techniques for chiral material analysis and have been widely used in 
biomolecule science1,2. However, the optical activity of most nature molecules is inherently weak, which 
limits those applications to samples in a level of large quantity.

Plasmonic chiral nanostructures, which can show optical activity that are several orders of magnitude 
stronger than nature molecules, offer an important way of realizing small quantity of molecules detec-
tion, and attract intense attention in recent years3,4. Surface plasmons (SPs), collective oscillations of free 
electrons confined at metal-dielectric interfaces, are responsible for such strong chiral response. In the 
past several years, far-field chiroptical response of huge optical activity has been observed and studied in 
various chiral plasmonic nanostructures, such as two-dimensional or planar nanostructures5–10 , bi- and 
multilayered structures11–17, as well as three-dimensional helical nanostructures of different forms18–23, 
and so on24. Plasmon-enhanced chiroptical response of nearby chiral molecules has also been studied 
both theoretically and experimentally25–30.

In addition to the far-field, chiroptical near-fields enhancement as well as their handedness con-
trol is also, even more important, especially for enhancing weak chiral effects of molecules in appli-
cations of molecular analysis, because the chirality enhancement of adsorbed chiral molecules on the 
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nanostructures is an averaged effect of the chiral field close to the whole structure. The approximate 
absorption of a chiral molecule in a chiral electromagnetic field is31,32

 ( )ω
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where α′′, γ ′′ and ′′G  are the imaginary parts of electric, magnetic and mixed electric-magnetic dipole 
polarizability of the molecules, respectively. The last item in equation (1) determines the different absorp-
tion (circular dichroism, CD) of molecules to chiral fields with different handedness. For a given mole-
cule, it is proportional to the so-called optical chirality C of the local electromagnetic field, which is 
defined as33,34

 ε ω
= − ⋅ ( ⋅ ) ( )
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This definition applies to any monochromatic field, no matter with or without nanostructures, and no 
matter chiral or achiral structures. For plane waves of circularly polarized light (CPL), the optical chiral-
ity = ± ⋅ | |ε ω ECCPL C2

20  (+  for LCP and − for RCP, respectively). The basic information obtained from 
equation (2) is that for fields with non-zero optical chirality, there should be parallel components of 
electric and magnetic fields. Enhanced chiral fields with optical chirality larger than CCPL, i.e. so-called 
chiral “hot” spots, have been obtained in different plasmonic chiral structures25,35–38, even in a single 
achiral nanoparticle39. However, for most of them (both chiral and achiral) there are chiral hot spots with 
both left and right handedness around the same structure, which will decrease or even cancel the 
enhancement because molecules are generally distributed randomly over the whole structure. This makes 
them not good candidates for chirality enhancement. In 2012, Schäferling proposed a very simple square 
structure to yield chiral near-fields for sensing with linear polarization40, and in 2014, they theoretically 
provide another helical structure to yield ultra-uniform chiral near-field inside the helix with large opti-
cal chirality which seems to be an ideal system for molecule analysis and sensing application41. Standing 
single and multi-helix structures have been fabricated by several groups with different methods, which 
show quite good chiral response mostly in infrared range42–44. Considering the convenience of the sample 
preparation in visible range, we designed easily fabricated dimer structures to realize the uniform chiral 
field. In this work, we show that simple Au block dimer structures can provide very uniform chiral fields 
with large optical chirality in the gaps under linearly polarized light illumination with polarization off 
the dimer axis. Chiral fields with opposite handedness can be obtained simply by changing the polariza-
tion to the other side of the dimer axis. An analytical dipole model is suggested to explain this behavior 
theoretically. Polarization, thickness, length and gap dependent situations are investigated. The results 
show plasmonic block dimer structures may have promising applications in related fields such as envi-
ronment sensors, especially in ROA measurement.

Results
Chiral fields generated by one dipole and a dipole dimer under external excitation. Figure 1 
illustrates the formation principle of strong chiral fields in the gap of a dipole dimer. Schäferling has 
analytically shown that, for a Hertzian dipole driven by a linearly polarized external field, the chiral 
near-field around the dipole is a four lobes with alternating sign of optical chirality around the scatter, 
here shown in Fig. 1a–i, due to the interaction of the incident magnetic field and the scattered electric 
field by the dipole40. We will show that when two such dipoles are put together with the same oscillation 
direction, if we choose the excitation direction so as that the two lobs with the same chirality over-
lapped, an enhanced chiral field with the same and uniform chirality will be formed in the gap between 
the dipoles, as shown in Fig. 1a(ii–iv). To better understand the interaction and interference of the two 
dipoles, we first analyze the model of two coupled dipoles with coupled-dipole approximation method 
(see Supporting Information for details)45,46. The dipole moments of the two coupled dipoles can be 
expressed as47
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Where α←→j  is the polarizability tensor, and ←→( , )G r re j k  is the electric dyadic Green’s function. Solving this 
set of two equations, we can obtain the self-consistent form of dipole moments
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where 
↔
I  is the unit dyad. In our case, the two same dipoles are located in the same plane perpendicular 

to the incident wave vector k, so the incident fields are the same. The total generated electric field by the 
two dipoles at position r is
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The chirality of the field is then

Figure 1. Formation schematic of enhanced chiral near-fields with uniform optical chirality in the gap of a 
coupled point dipole dimer (a) and Au spherical nanoparticle (10 nm diameter) dimer (b).  
(a) Analytically calculated chiral near-fields distributions of (i) one dipole, (ii) two dipoles with a large gap 
d of 0.06λ , and (iii–iv) two dipoles with a small gap d of 0.04λ . Black arrows show the dipole momentum. 
Signs of ‘+ ’ and ‘–‘ in the scale bar indicate the field is left- and right- handed, respectively, which applies 
to all figures in the following. (b) Numerically calculated chiral near-fields distributions of (i) one sphere, 
(ii) two spheres with a large gap d of 10 nm, and (iii–iv) two dipoles with a small gap d of 2 nm. (c) 
Corresponding electric fields distribution of the case (b)-iii. The right coordinates gives incident polarization 
and direction. (d) Schematic of the directions of incident fields and scattered fields by a dipole dimer.
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Term ⋅ =⁎E B 0d d  as the electric and magnetic field vectors are orthogonal. ⋅ =⁎E B 0in d  because Bd 
is always orthogonal to the dipole pe and thus has not parallel component with Ein. Here we choose 
linearly polarized light with the polarization off the dipole dimer axis by 45° as the incident field. Both 
dipole of plasmonic spherical nanoparticles and pure dipoles can be analyzed with this analytic model. 
The case of pure point dipoles is given in Fig. 1a, which shows how two dipoles coupled together and 
form a strong chiral field in the middle of the gap. Positive (negative) parts in each picture means the 
fields are left (right)-handed. Smaller gap will cause stronger chiral field enhancement (Fig. 1a-ii,iii). A 
simple analysis shows that the chiral field in the middle of the two dipoles has a ( )p d

d 3
 dependence on the 

gap distance d (see Supporting Information). Opposite handed chiral field in the gap can be obtained by 
just rotating the incident polarization by 90° (Fig. 1a-iii,iv).

Following this, small Au nanospheres with radius of 5 nm as plasmonic dipoles are numerically stud-
ied using full wave simulations. As shown in Fig.  1b-i, chiral fields with alternating handedness (four 
lobes with alternating sign of optical chirality) around the plasmonic dipole are formed under linear 
polarization illumination, which is similar to the above dipole result and what has been observed by 
Schäferling40. The underlying physical mechanism is similar to the dipole case, that the scattered field is 
distorted by the scatter, while the incident field keeps unchanged, so there are parallel electric and mag-
netic components; additionally, the plasmonic dipole has a delayed phase response to the incident fields. 
The two aspects together result in a non-zero chiral field, of which the optical chirality reaches a maxi-
mum at the resonant wavelength where the phase difference between the scattered field and the incident 
field is around pi/2 and, the local electric field is mostly enhanced. Actually, within the whole range of 
plasmon decay wavelength, the phase difference is between 0 and pi, thus non-zero chiral fields also exist 
away from the resonant wavelength position. Moreover than the Hertzian dipole condition, the incident 
electric field and scattered magnetic field  

( ⋅ )
⁎

E BIm scatin  also give a non-zero but very small chiral field 
value for this plasmonic scatter because the field is distorted by the particle. When two spheres are put 
together, and under the illumination of linearly polarized light with the polarization off the axis of the 
two dipoles by 45°, the overlapped chiral fields between the dipoles have the same optical chirality sign, 
as shown in Fig.  1b-ii; when the gap decreases, the chiral near-field becomes stronger (Fig.  1b-iii). 
Besides, due to the strong interaction of the two dipoles, intense local field in the gap is obtained (Fig. 1c). 
The strong interaction between the two particles will make their own polarization direction slightly off 
the excitation direction48, which will make the near field pattern rotate a little bit. So the pattern in 
Fig. 1b-iii,iv are asymmetric. As the electric field is always perpendicular to the metal surface, the electric 
field in the dimer gap is seriously distorted by the dimer and no longer in the incident polarization 
direction, while the incident magnetic field is always perpendicular to the polarization direction, the dot 
product 

( ⋅ )
⁎

E BIm inscat  is non-zero, resulting in strong chiral fields. Figure 1d schematically shows the 
directions of scattered and incident fields. The sign of optical chirality of the chiral field and thus the 
handedness of the chiral field can be changed to the opposite by rotating the incident polarization to the 
opposite side of the dimer axis (Fig. 1b-iii,iv), the same as the coupled dipoles condition, which is because 
the angle between the electric and magnetic field vectors changes from acute angle to obtuse angle, or 
conversely. All of the results shown in Fig. 1b match that in Fig. 1a very well, which demonstrates that 
our analysis works very well.

Chiral fields formed by dimers of different shapes. The principle discussed above works quite 
well with many kinds of plasmonic dimers of different shapes. Figure 2 shows the results of Au sphere 
dimer, disk dimer and block dimer. These three dimers have the same gap distance of 5 nm and similar 
size. Electromagnetic enhancement and optical chirality of the field in the gap are studied. Optical chi-
rality enhancement = /Ĉ C CCPL  is used to characterize the chiral field.

When two same nanoparticles are coupled together, only the bright bonding mode can be excited by 
a plane wave, manifested as two peaks (longitudinal and transverse modes) in the extinction spectra, 
as shown in Fig.  2d–f. From the electric field distributions in dimer gaps shown in the upper row in 
Fig.  2a–c, one can see strong electromagnetic enhancement can be obtained in each dimer, with disk 
dimer showing the strongest enhancement but in a small volume, while block dimer giving the largest 
enhancement volume. As to the optical chirality of the field which is our concern in this paper, strongly 
enhanced chiral near-field is observed for all dimers, especially in the gaps, which can be seen from the 
lower two rows in Fig. 2a–c. Comparing the three cases, chiral fields in the sphere and disk dimer gaps 
are quite confined in a small volume close to the shortest distance, while block dimer gives both large 
and uniform optical chirality distribution due to large interacting area with constant gap distance, which 
is very useful for chiral molecule sensing and especially, for the ROA measurement. Another advantage 
of the dimer structures proposed here is that the handedness of the chiral field can be changed to the 
opposite simply by rotating the incident polarization. For example, in a typical ROA measurement, one 
just measures the spectra under linearly polarized light with two symmetrically crossed polarizations off 
the dimer axis. Though the previous reported helical structure gives uniform and strong chiral fields, the 
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handedness of the field cannot be changed once the structures is fixed, which limits its application. As 
discussed in Fig. 1, uniform chiral fields can exist in quite a broad dipole resonance wavelength range 
(data not shown). In the following, we will focus on the block structure since it shows better property of 
strong and uniform chiral fields in a large volume.

Polarization-dependent optical chirality of block dimer. Considering most experimental situa-
tions, block dimers on glass substrate embedded in water are studied in the following, instead of the ideal 
case of in air. Figure 3 shows how chiral fields evolve from a symmetric distribution around a single block 
to a confined and with uniform optical chirality in the gap of a block dimer. It can be seen that the dipole 
model given in Fig. 1 well tells the formation mechanism of the uniform chiral fields in dimer structures.

In order to get deeper understanding of this system, polarization-dependent chiral fields of the block 
dimer are investigated, shown in Fig. 4. Only fields in dimer gaps are considered, because strongest chiral 
fields are confined here. The extinction spectra show the variation trend of the longitudinal and transverse 
modes of the dimer under different polarizations. To well mimic the real experiment, volume averaged 
optical chirality defined as ∫= ⋅ˆ ˆC C dV

V V
1  is also considered in gaps. Unsurprisingly, 0° or 90°  

excitation gives near zero chiral field value (shown in Fig. 4b(i,v),c(i,v). This is because at 90° the scattered 
electric field has the same oscillating direction with the incident polarization, resulting in always orthogonal 
electric and magnetic field components, and at 0° the scattered electric field in the gap is near zero.  
When polarization of the incident field is off the two symmetry axes (x and y axis), the excited bonding 
mode and orthogonal incident field component offer parallel electric and magnetic components with 
delayed phase, which results in non-zero optical chirality, as shown in Fig.  4b(ii–iv), c(ii–iv). It is easy  

Figure 2. Chiral fields formed by different shaped dimers: (a) 40 nm radius Au spheres, (b) 40 nm radius, 
30 nm height Au disks and (c) 60 nm (length) × 60 nm (width) × 30 nm (height) Au blocks dimer. The 
uppermost images in (a–c) show the electric near-field distributions of dimers. The lower two rows of 
images in (a–c) show the chiral field enhancement distributions of different cut planes. (d–f) Corresponding 
extinction spectra. The x-y slices are cut from the middle position of height.
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to understand that 45° excitation gives the strongest chiral field. The volume averaged chirality enhance-
ment reaches 18 times for 45°, which is a very big value.

The case of RCP excitation is also studied for a comparison, shown in Fig.  4b–iii. As reported in 
previous papers, under circularly polarized light excitation, dimers can provide enhanced CD of mole-
cules49. The above formation mechanism given in Figs 1 and 3 can also be used to understand the chi-
rality enhancement under circularly polarized light excitation, but with time varying scattered and 
incident field directions. The dot product  

( ⋅ )
⁎

E BIm inscat  is a time-averaged value, resulting in a smaller 
value. Uniform chiral fields in the gap can be obtained as well, but at some other different wavelengths 
off resonance, depending on the phase delay between the incident field and the excited near-fields, which 
is different for different dimers. For this dimer structure, relative uniform chiral filed occurs at 835 nm. 
At the resonant wavelength of 750 nm, the phase delay and the rotation of the incident light results in a 
non-uniform chiral field. The volume averaged optical chirality at the resonance is very small as well, as 
shown by the red dashed curve in Fig. 4b-iii. The uniform chiral field at off resonant wavelength is not 
convenient to be used in practice as it is hard to decide the wavelength.

Thickness-dependent optical chirality of block dimer. The thickness of block has a significant 
effect on the chiral field. Block dimers with thickness of 15 nm, 30 nm and 60 nm are studied, as shown 
in Fig.  5. Both length and width of each block are 60 nm. The gap distance is 5 nm. From the volume 
averaged optical chirality shown in Fig. 5b and optical chirality distributions in Fig. 5c, it all can be seen 
that thinner block shows much larger optical chirality, mainly because the scattered filed can be well 
confined in the gap for thinner blocks. When the thickness increases, the induced field in the deeper 
position becomes weaker because of the screen effect of the metal, resulting in weak even zero chiral 
field distribution. Moreover, when the thickness becomes thicker and thicker, the delay effect is more and 
more obvious, and when the dimer is on a substrate, hybrid new resonant modes will appear because of 
the coupling between the substrate and dimer. The RCP excitation situations are shown for a comparison. 
One can see that for thinner dimers, the chiral field enhancement with linearly polarized light is always 

Figure 3. Formation schematic of enhanced chiral near-fields with uniform optical chirality in the 
gap of a Au block (60 nm × 60 nm × 30 nm) dimer located on glass substrate in water surroundings, 
excited under polarizations indicated by blue arrows. (a) Chiral near-fields distributions of (i) one Au 
block, (ii) two blocks with a large gap d of 50 nm, and (iii–iv) block dimers with a small gap d of 5 nm. 
(b) Corresponding electric fields distribution of the case (a)-iii (left image); the right schematics show 
directions of incident fields and scattered fields (only fields in the gap are concerned) by a block dimer. 
All slices are cut from middle positions of the height.
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larger than the RCP, and the RCP conditions have non-uniform chiral near-fields in the gap (Fig. 5d). 
As the thickness increases, the enhancements become similar.

Length-dependent optical chirality of block dimer. Figure 6 shows the effect of block length on 
the optical chirality of the fields in the gap. From Fig. 6a it can be seen that when the length increases, 
extinction cross section becomes larger, which means the dipole momentum becomes stronger. 
Figure 6b,c show that, when the length increases, the enhancement of the optical chirality also increases, 
and the chiral field becomes more uniform. In Fig. 6c–i, the chiral field is not so uniform because the 
length (defined in y axis) of the particle is less than the width, which causes the coupled dipoles mainly 

Figure 4. Polarization-dependent optical chirality in the gap of Au block dimers 
(60 nm × 60 nm × 30 nm, gap d = 5 nm) on glass in water environment. (a) Extinction spectra. (b) Volume 
averaged optical chirality in the gap. Insets show chiral near-field distributions in a plane parallel to the 
gap at the resonant peak positions, cut from the middle position of the gap. Red curves are for the case of 
RCP excitation. (c) Corresponding optical chiral near-field distributions in x-y plane at the dipole resonant 
wavelength, cut from middle of the height. The scale bar applies to all images except the inset images in b–i 
and b–v, whose intensity is magnified by 5 times to get a better view.
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oscillating in x direction even if the excitation is in 45° direction. In such an oscillation situation, the 
chiral field with both ‘+ ’ and ‘−’ signs exist on the longer sides of the block for single block. When bring 
such two blocks together, chiral fields with opposite signs will overlap. As the two dipoles are parallel 
standing side by side, the middle of the block will be weak, and the side by side bonding mods will cause 
dramatically change of the field in the gap. RCP excitation in comparison shows non-uniform chiral field 
as well (Fig. 6d). For the case of longer length, the volume averaged chiral field enhancement reaches 30, 
which is as strong as the helical structure41.

Gap-dependent optical chirality of block dimer. It is in expectation that as the gap decreases, 
the chiral field becomes stronger and stronger because the field enhancement becomes larger and larger 
nonlinearly (Fig. 7). However, when the gap decreases, it becomes harder for the incident light to induce 
field deep in the gap because of the screen effect of the metal, resulting in the scattered field weak in the 
middle and strong in the sharp edges, which make the chiral field is less uniform and weaker in the mid-
dle (Fig. 7ci). Although the chiral field is non-uniform, it still has the same handedness in the whole gap 
area, so smaller gap is still a better choice in experiment. The volume averaged chiral field enhancement 
reaches 30 for the 2 nm gap dimer as well (Fig. 7b–i). For all of the gaps, the volume averaged chiral fields 
have larger values with linearly polarized light excitation than the RCP excitation.

From the ‘uniform’ point of view, one can see that when the gap distance is 5 nm, the chiral field is 
almost uniform and enhancement is strong enough (Fig. 4). In practice, the sizes of chiral molecules rang 
from below 1 nm to tens of nanometers or even more. But for most of biomolecules, e.g. sugars, amino 
acides and nucleotides, the sizes are ~0.5–1 nm; globular proteins are ~2–10 nm. In this range, the gaps 
we simulated are mostly applicable in sensing and other applications. Even if the gap is fixed to 5 nm, it 
is still suitable for smaller molecules sensing.

Discussion
In this paper, we proved that very simple plasmonic dimer structures can provide very strong chiral 
fields with large enhancement on both near electric fields and chiral fields under linear polarization illu-
mination off the dimer axis at dipole resonance. Chiral fields with opposite handedness can be obtained 
simply by changing the polarization to the other side of the dimer axis. A uniform gap distance of 
block dimer gives ultra-uniform chiral fields. Polarization, thickness, length and gap dependent optical 

Figure 5. Thickness-dependent optical chirality in the gap of Au block-dimers (60 nm × 60 nm × T nm, 
gap d = 5 nm) on glass in water environment. (a) Extinction spectra. (b) Volume averaged optical chirality 
in the gap. Red curves are for the case of RCP excitation. (c and d) Super chiral near-field distributions at 
the dipole resonant wavelength excited by linear polarized light (c) and RCP light (d). Rows (in (a) and (b)) 
or columns (in (c) and (d)) of i, ii and iii correspond to T =  15 nm, T =  30 nm and T =  60 nm respectively. 
The x–y slices are cut from middle of the height; x–z slices are cut from the middle position of the gap.
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chirality studies of Au block dimers were investigated in detail to optimize the uniform chiral fields. 
Situations of dimer structures with different parameters excited by RCP light were also studied in detail, 
as shown in Figs 5–7. All results show that they give weaker, non-uniform chiral fields and small vol-
ume averaged optical chirality in the gap at the resonant wavelength. As discussed in the main text, for 
the RCP condition, when we plot the near chiral field in the longer wavelengths, which is far from the 
resonant wavelength, but not in the longest peak tail position, they sometimes show uniformity in the 
gap. However, it is hard to decide at which wavelength they are uniform. There is neither any feature 
shown in the far field spectra (extinction or scattering) nor other methods by which one can decide 
the wavelength. Therefore, it is not useful in practice. Under linearly polarized light excitation, when 
the wavelength shifts from the blue side far from the bonding dipole mode, the chiral field is not uni-
form anymore because the anti-bonding mode and higher-order modes will cause the field dramatically 
changing in the gap.

From the chiral near field pictures shown above, one can see that the corners/edges of the blocks are 
very sharp, which will yield drastic field enhancement in vicinity and then much stronger chiral field. 
Even for the case of the most uniform field obtained in this paper, the chiral fields at the corners/edges 
are obviously stronger. In simulations, the mesh size indeed will (if it is not smaller far away than the 
object features) seriously affect the near field distributions. However, the effect of mesh design in our 
structure is not so obvious because, compared with the sharp edge or corners, the interfaces are more 
important in such numerical simulation The sharp features don’t change the handedness of the chiral 
field, just show stronger enhancement and make the chiral field not very uniform around them. But this 
effect is positive for actual applications.

The generation of chiral near fields reported so far mainly has three kinds. The first condition is 
chiral metal nanostructures under circularly polarized light (CPL) illumination; the second condition is 
non-chiral structures under CPL illumination; the third one is special structures under linearly polarized 
light illumination. For the first two situations, the chiral near field is usually non-uniform, and in a lot of 
cases, there are both left- and right- handed field coexisting in the hot spot (where it is useful)35,38,39,50. 
For the averaged enhancement factor spectra of the chiral near field excited with CPL in reported results, 
mostly the enhancement varys between positive and negative values in different wavelength38,50. While for 

Figure 6. Length-dependent optical chirality in the gap of Au block-dimers (L × 60 nm × 30 nm, gap 
d = 5 nm) on glass in water environment. (a) Extinction spectra. (b) Volume averaged optical chirality in 
the gap. Red curves are for the case of RCP excitation. (c and d) Super chiral near-field distributions at the 
dipole resonant wavelength excited by linearly polarized light (c) and RCP light (d). Rows (in (a) and (b)) or 
columns (in (c) and (d)) of i, ii and iii correspond to L =  30 nm, L =  60 nm and L =  90 nm respectively. The 
x-y slices are cut from middle of the height; x–z slices are cut from the middle position of the gap.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 5:17534 | DOI: 10.1038/srep17534

the linearly polarized light exited helical structures, the chiral field is very uniform and chiral enhance-
ment factors are kept in one sign in the whole range_ENREF_41, as well as our structures in this paper. 
Besides, in our conditions, the enhancement peaks are always following the plasmon resonance peaks.

More simulations show that this kind of chiral field also exists in other shaped dimers, such as nano 
rod, nano rice and bowtie structures. From the above figures one can see that the chiral fields in the 
gap and at the ends along the dimer axis have the same handedness, while on the sides have opposite 
handedness. It is useful in practice because for chemically wet synthesized structures, the opposite faces 
or ends usually have the same crystal facet while the face and the end have different ones, thus one can 
selectively attach specific molecules just to the faces or ends. In SERS experiment, one can control the 
molecules to adsorb in gap on the hot spot. It is especially useful in single molecule ROA experiment. 
The huge electric field enhancement provides strong enough Raman signals and the large chiral field 
guarantees the chiral response of the molecule.

Methods
All full wave numerical simulations were done by using finite element method (FEM, commercial soft-
ware package, Comsol Multiphysics 5.0). The Au (Palik) objects were put on glass substrate in water 
environment or only in air. Non-uniform meshes were used for formatting the object accurately. The 
smallest mesh close to the object is 1 nm and the biggest mesh is set less than λ /6. Perfect matched layer 
(PML) was used to minimize the scattering from the outer boundary. The dimers were put in x-y plane. 
The incident light was set to 1 V/m and propagates in the z direction. Electromagnetic fields on an imag-
inary spherical surface with a radius larger than 300 nm enclosing the structure was used to calculate the 
far-field scattering cross section with the Stratton− Chu formula. The absorption cross section was cal-
culated by integrating the Ohmic heating within the Au dimer. The super chiral field was plotted with 
= /Ĉ C CCPL , where C is defined as  = − ⋅ ( ⋅ )ε ω ∗E BC Im

2
0 , and = ± ⋅ | |ε ω ECCPL C2

20 . The volume 
averaged chiral spectra were got with ∫= ⋅⟨ ˆ⟩ ˆC C dV

V V
1 .

Figure 7. Gap-dependent optical chirality in the gap of Au block dimers (60 nm × 60 nm × 30 nm) 
on glass in water environment. (a) Extinction spectra. (b) Volume averaged optical chirality in the gap. 
Red curves are for the case of RCP excitation. (c and d) Super chiral near-field distributions at the dipole 
resonant wavelength excited by linear polarized light (c) and RCP light (d). Rows (in (a) and (b)) or 
columns (in (c) and (d)) of i, ii and iii correspond to Gap d =  2 nm, d =  5 nm and d =  10 nm respectively. 
The x–y slices are cut from middle of the height; x–z slices are cut from the middle position of the gap.
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