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Electro-thermal Control of Modular Battery

using Model Predictive Control with

Control Projections ⋆

Faisal Altaf ∗ Bo Egardt ∗ Lars Johannesson ∗

∗ Department of Signals and Systems, Chalmers University of
Technology, Gothenburg, Sweden (e-mail: faisal.altaf@chalmers.se).

Abstract: This paper proposes a novel model predictive control algorithm to achieve voltage
regulation and simultaneous thermal and SOC balancing of a modular battery using limited
future load information. The modular battery is based on multilevel converter (MLC), which
provides a large redundancy in voltage synthesis and extra degree-of-freedom in control. The
proposed algorithm is based on orthogonal decomposition of controller into two components,
one for voltage control and the other for balancing control. The voltage control decisions are
made using a simple minimum norm problem whereas the balancing control decisions are made
in two stages. The first stage computes a balancing control policy based on an unconstrained
LQ problem and the second stage enforces constraint on control actions via projection on a
time-varying control constraint polytope. The control algorithm shows promising performance
in a simulation study of a four cell modular battery. The performance and the simplicity of the
control algorithm make it attractive for real-time implementation in large battery packs.

Keywords: Batteries, cell balancing, SOC balancing, thermal balancing, modular battery,
multilevel converters (MLC), model predictive control (MPC).

1. INTRODUCTION

The battery-powered electrified vehicles (xEVs) have
gained a lot of interest from academia as well as industry
to improve fuel efficiency and reduce CO

2
emissions. The

battery pack of xEVs is one of the most expensive, but a
key component in the powertrain. Therefore, the battery
lifetime is an important factor for the success of xEVs.
The lithium-ion batteries, due to their relatively higher
specific energy and long cycle-life, are currently emerging
as one of the major alternative choices for future xEVs.
However, like all other battery types, the ageing rate of
each Li-ion cell in a battery pack is greatly affected by
various factors like state-of-charge (SOC) level, depth-of-
discharge (DOD), temperature, and c-rate etc as shown
by Vetter et al. (2005); Wang et al. (2011); Bandhauer
et al. (2011), and Groot (2014). In short, the cells in the
string being stored or cycled at higher SOC-level, DOD
and temperature age faster than those at lower SOC,
DOD, and temperature. Therefore, thermal, SOC, and
DOD imbalances in a battery pack may cause nonuniform
ageing of cells. Another serious issue is that the cell im-
balance and nonuniform ageing are tightly coupled, which
may lead to a vicious cycle resulting in the premature
end of battery life. In addition to nonuniform ageing, the
SOC imbalance also has a detrimental impact on the total
usable capacity of the battery, see review papers by Lu
et al. (2013) and Altaf et al. (2014) for details. Thermal,
SOC, and DOD imbalance is inevitable in battery packs
of xEVs due to variations in cell parameters and operating
conditions, see Dubarry et al. (2010); Mahamud and Park

⋆ The work was supported by the Chalmers Energy Initiative.

(2011). Thus, thermal and SOC balancer is very critical
for optimal performance of automotive batteries. The SOC
balancing can be achieved using various types of passive or
active SOC balancers, see Gallardo-Lozano et al. (2014);
Cao et al. (2008), whereas thermal balancing can poten-
tially be achieved using reciprocating air-flow as proposed
by Mahamud and Park (2011).

The notion of simultaneous thermal and SOC balancing
using a single active balancing device was introduced in
our previous work, see Altaf et al. (2012, 2013); Altaf
(2014). A similar kind of conceptual study has also been
carried out recently by Barreras et al. (2014). Thermal
and SOC balancing are two tightly coupled and somewhat
conflicting objectives, but it is possible to achieve both
simultaneously in average sense subject to load variations
and surplus voltage in a battery pack as argued by Altaf
et al. (2014). In addition, it also requires a special balanc-
ing device that enables the non-uniform load scheduling
of cells based on load predictions over a certain reason-
able horizon. The MLC-based modular battery balancing
system is a potential candidate for this purpose. The
MLC, see Malinowski et al. (2010), consists of n cascaded
power units (PUs), each containing a smaller battery unit
and a full-bridge dc-dc converter, which enables bidirec-
tional power flow from each battery module. The modular
battery is reconfigurable to generate a range of terminal
voltages. It also provides a large redundancy in the voltage
synthesis, which gives extra degree-of-freedom in control.

The modular battery has multiple electro-thermal control
objectives including thermal balancing, SOC balancing,
and terminal voltage control. The electro-thermal control



problem of the modular battery can be formulated and
solved off-line as a constrained convex optimization prob-
lem, see Altaf et al. (2012, 2013); Altaf (2014). The solu-
tion is globally optimal if full information about complete
future driving (i.e. future demand of load current and
voltage over whole driving cycle) is accessible. However,
in almost all vehicle applications, complete drive cycle is
hardly known a priori, which makes the original problem
infeasible for real world applications. Since it may still
be possible to predict future driving over short horizons
using, for example, a Markov Chain model, the natural
alternative approach is to solve the problem in the model
predictive control (MPC) framework as proposed by Altaf
et al. (2015). In Altaf et al. (2015), a linear quadratic model
predictive control scheme is proposed, which achieves the
balancing objectives by using load forecast over a short
prediction horizon. The control scheme is based on the de-
composition of controller into two orthogonal components,
one for voltage control and the other for balancing control.
The voltage control problem is a simple minimum norm
problem, whereas the balancing problem is formulated and
solved as a control-constrained LQ MPC problem.

This paper is an extension of Altaf et al. (2015). The
main purpose is to devise an alternative control algorithm,
which uses the same controller structure as proposed
in Altaf et al. (2015), but solves the balancing control prob-
lem using a simpler approach instead of solving control-
constrained LQ problem at each step of MPC. The main
idea is to solve the control-constrained balancing problem
in two stages at each step. In the first stage, unconstrained
optimal balancing control decisions are made based on
unconstrained LQ control policy and in the second stage
the control constraint is handled via projection of un-
constrained controls on control constraint set (polytope).
This control scheme based on control projections adds
more insight into properties of MLC-based thermal and
SOC balancer and offers some nice interpretations. This
new method (so-called projected LQ) of solving balancing
problem is fast and can be easily implemented online as it
is based on simple Riccati recursion and projections, which
are rarely needed if the SOC imbalance and/or the load
demand is not too high.

The new control scheme is evaluated in a simulation study
for Standard ARTEMIS Rural drive cycle. The study is fo-
cussed on an air-cooled modular battery consisting of only
four series-connected modules for illustration purpose. In
order to analyze the effectiveness of the control scheme,
the cells are assumed to have significant differences in their
resistances, capacities, and initial SOCs. The load on the
modular battery is assumed to be three-phase electric drive
of Toyota Prius PHEV running in pure EV mode.

The paper is organized as follows. Section 2 gives an
overview of MLC-based modular battery. The electro-
thermal state-space model and the control algorithm based
on LQ MPC scheme are presented in sections 3 and 4 re-
spectively. The simulation results are discussed in section 5
and conclusions are drawn in section 6.

2. MLC-BASED MODULAR BATTERY: OVERVIEW

The (cascaded h-bridge) MLC-based modular battery,
supplying voltage vL(t) ∈ [0, vLmax] ⊆ R+ to a variable
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Fig. 1. MLC-based n-cell modular battery in green box.

load (three-phase ac drive of xEV) with current demand
iL(t) ∈ [iLmin, iLmax] ⊆ R, is shown in Figure 1. The MLC
consists of n series-connected PUs, each containing a full-
bridge (FB) and an isolated Celli represented by open-
circuit voltage source (OCV) voci in series with resistance
Rei. This modular structure enables the distribution of a
single large high-voltage battery into n smaller low-voltage
units (cells). We can generate three different discrete levels
of output voltage vLi(t) ∈ {−VBi, 0,+VBi} from each PUi,
allowing four quadrant operation in iL–vLi plane, which
enables control of bidirectional power flow from each cell.

The FB switches are commonly operated using a high
frequency switching function si(t), which is generated by a
modulator using a certain pulse-width modulation (PWM)
scheme. In this paper, we are only interested in controlling
the average behavior of a switched modular battery during
each switching period Tsw of si(t). Therefore, assuming
fast PWM operation of switches, we define duty-cycle,

ui(t) :=
1

Tsw

∫ t

t−Tsw

si(τ)dτ , (1)

of each PUi. Note that ui(t) ∈ [−1, 1], where negative
value implies vLi(t) < 0 and positive value implies vLi(t) ≥
0. In this study, we assume that the controller is positively
constrained i.e. ui(t) ∈ [0, 1] (so-called unipolar control
scheme). This scheme does not allow polarity inversion of
any cell in the string, which simply implies that at any
time instant, either all cells are charging (for iL(t) < 0) or
all are discharging (for iL(t) > 0).

The average inputs (iBi(t), VBi(t)) and average outputs
(iL(t), vLi(t)) of ideal FBi are linearly related through
unipolar duty cycle ui(t) ∈ [0, 1] as follows

iBi(t) = iL(t)ui(t), vLi(t) = V on
Bi (t)ui(t), (2)

where iBi(t) is the current through each Celli, vLi(t) is the
voltage output from each PUi, iL(t) is the load current
through the output terminals of the modular battery, and

V on
Bi (t) = voci − iL(t)Rei (3)

is the terminal voltage of Celli during its so-called ON
period (i.e. the time interval in a switching period Tsw

during which Celli is connected in series electrical path
and delivering/absorbing power). The terminal voltage
and power of the modular battery are given by

vL(t) =

n
∑

i=1

vLi(t), PL(t) =

n
∑

i=1

PLi(t), (4)

respectively, where PLi(t) = vLi(t)iL(t) is the power
output from each PUi, see Altaf et al. (2012) for details
on averaging of all switched waveforms involved here.



3. STATE-SPACE ELECTRO-THERMAL MODEL

The electro-thermal model of an air-cooled modular bat-
tery consisting of n series-connected modules with ideal
switches is presented in this section. The electrical be-
havior of cells is studied using the simple cell model,
see Hu et al. (2012), which for each cell is based on
internal resistance (Rei), in series with OCV (voci). The
voci of all cells is assumed constant in this study. This
approximation is somewhat justified for certain types of
lithium-ion cells (for example LiFePO

4
/graphite (LFP)) if

we assume battery operation in a typical SOC window of
20% to 90%. The thermal behavior of air-cooled battery
is modeled using lumped capacitance and flow network
modeling approach, see Mahamud and Park (2011); Lin
et al. (2013a,b). The model considers only cell casing tem-
perature with constant coolant temperature and speed at
inlet. All internal parameters of cells are assumed constant
i.e. they are not function of time, temperature and SOC.
For more modeling details, see Altaf et al. (2012, 2013),
and Altaf (2014).

3.1 Electro-thermal Model of One Cell

The electro-thermal model of any Celli inside modular
battery for a given load current iL(t) is given by

ξ̇i(t) = −
1

3600Cei

iL(t)ui(t), (5a)

Ṫsi(t) =

i
∑

j=1

atijTsj(t) +
Rei

Csi

i2L(t)ui(t) + wtiTf0, (5b)

vLi(t) = dvi(t)ui(t), (5c)

where atij and wti are thermal circuit parameters given by

atij =





∏(i−1)
k=(j+1) βk

∏(i−1)
k=j αk



 asi, ∀i > j, atij = 0, ∀i < j (6a)

atij = −asi, ∀i = j ≥ 1, wti = −
i

∑

j=1

atij ∀i ≥ 1 (6b)

for coolant flow from Cell1 towards Celln, Cei is the prac-
tical charge capacity of Celli, Rei is the internal resistance
and Csi [JK

−1] is the heat capacity of Celli. Temperature,
Tsi(t), and normalized SOC, ξi(t), are states, Tf0 is the
given constant inlet fluid temperature, vLi(t) is the voltage
output of PUi in response to the input current iBi(t), and
dvi(t) = V on

Bi (t), defined in (3), is a time-varying feed-
through gain from control input ui(t) to the voltage output
vLi(t). All other parameters are defined in Table 1.

3.2 Electro-thermal Model of Modular Battery

Using (5a)–(5c) as basic building block and treating Tf0 as
a dummy state, the continuous-time (CT) electro-thermal
model of a n-cell modular battery is given by the following
standard linear time-varying (LTV) state-space system

ẋ(t) = Ax(t) +B(iL(t))u(t), (7a)

y(t) = Cx(t) +D(iL(t))u(t). (7b)

Here x(t) =
[

ξT(t) ϑT(t)
]T

∈ R
2n+1 is the complete

state vector, ξ(t) = [ξ1 · · · ξn]
T

∈ R
n is a vector of

SOCs, ϑ(t) =
[

TT
s (t) Tf0

]T
∈ R

n+1 is an augmented

Table 1. Definition of Cell/Coolant Parameters

Parameters Expression Units

OCV of Celli voci V

Electrical Resistance Rei Ω
Charge Capacity Cei Ah

Thermal Resistance Rui KW−1

Air Density ρf kgm−3

Air Specific Heat Capacity cpf JK−1kg−1

Air Volumetric Flow Rate V̇f m3s−1

Air Thermal Conductance cf = ρf cpf V̇f WK−1

Temperature Coeff. asi = (CsiRui)
−1 s−1

Thermal Coupling Coeff. αi = Ruicf Unitless
Thermal Coupling Coeff. βi = −1 + αi Unitless

thermal state with Ts(t) = [Ts1 · · · Tsn]
T

∈ R
n, u(t) =

[u1 · · · un]
T

∈ R
n is the unipolar control input vector,

y(t) =
[

ϑT(t) vL(t)
]T

∈ R
n+2 is the output vector, and

A =

[

AE 0
0 Aϑ

]

, B(iL(t)) =

[

BEiL
Bϑi

2
L

]

,

are constant system and time-varying input matrices re-
spectively. The corresponding state-space matrices of elec-
trical and thermal subsystem are given by

AE = 0n×n, BE = −
1

3600
diag (be1, · · · , ben) ∈ R

n×n,

Aϑ =

[

AT WT

0Tn 0

]

, Bϑ =

[

BT

0Tn

]

,

BT = diag (bt1, · · · , btn) ∈ R
n×n,

WT = [wt1 · · · wtn]
T
∈ R

n,

where AT ∈ R
n×n is a lower triangular constant thermal

subsystem matrix with coefficients atij given by (6a)

and (6b), and the coefficient bei =
1

Cei
and bti =

Rei

Csi
. The

constant output matrix C and time-varying feed-through
matrix D(t) are respectively defined as follows

C =

[

0 In+1

0Tn 0Tn+1

]

, D(iL(t)) =

[

0
Dv(t)

]

,

where

Dv(t) = [dv1(t) · · · dvn(t)] ∈ R
1×n, (8)

is a direct feedthrough gain from control vector u(t) to the
total voltage output vL(t). From the output equation (7b),
it is easy to see that vL(t) is simply given by

vL(t) =

n
∑

i=1

vLi =

n
∑

i=1

dvi(t)ui = Dv(t)u(t). (9)

The discrete-time (DT) state-space model is given by

x(k + 1) = Adx(k) +Bd(iL(k))u(k), (10a)

y(k) = Cx(k) +D(iL(k))u(k), (10b)

where Ad and Bd(k) are obtained using Euler approxima-
tion assuming iL(k) to be constant during each sampling
interval [kh, (k + 1)h] where h is a sampling step size.

3.3 Control Constraint Set

The unipolar control scheme imposes control constraint
ui(k) ∈ [0, 1] for each Celli. Therefore, the control con-
straint set of n-cell modular battery is given by

U = {u(k)|Huu ≤ hu, ∀k}, (11)

for suitably defined Hu and hu.



4. CONTROL PROBLEM FORMULATION

The electro-thermal control objectives include simulta-
neous thermal and SOC balancing as well as terminal
voltage control of modular battery. Assuming that the full
future load demand is available, we may impose zone and
terminal constraints on SOC and temperature deviations,
formulate the problem as a state and control constrained
convex optimization problem over whole driving horizon
Nd, and then solve it to get optimal control trajectory
{u(k)}Nd

k=1 in one shot. However, this assumption is quite
unrealistic especially in xEVs.

Therefore, Altaf et al. (2015) proposed a control strategy
based on LQ MPC scheme to solve the original problem
using limited future driving information (i.e. horizon N ≪
Nd). The proposed scheme prioritizes the load voltage reg-
ulation (supply = demand). Thermal and SOC balancing
are treated as secondary objectives, which are achieved by
optimally using any redundancy available in the modular
battery after meeting power demand. The control strategy
is mainly developed based on the decomposition of total
controller into two orthogonal components as follows

u(k) = uv(k) + ub(k) ∈ U , (12)

where control uv(k) ∈ N (Dv(k))
⊥ is for voltage control

and ub(k) ∈ N (Dv(k)) is for balancing control where
N (Dv(k)) is the nullspace of Dv(k) and N (Dv(k))

⊥ is the
orthogonal complement of N (Dv(k)). The time-varying
nullspace of Dv(k) is a hyperplane in R

n given by

N (Dv) = {u(k)|Dv(k)u(k) = 0} = R(Vn) ⊆ R
n, (13)

where R(Vn) is the range-space of null-space basis matrix

Vn(k) = [vn,1(k) · · · vn,n−1(k)] ∈ R
n×n−1,

which contains parameterized orthonormal basis vectors
vn,i(k) ∈ R

n of null-space. A particular choice of Vn,
obtained using MATLABr Symbolic Toolbox, is given by

Vn(k) =

[

V ′
n(k)
In−1

]

, (14)

where V ′
n(k) = −

[

dv2(k)

dv1(k)
· · ·

dvn(k)

dv1(k)

]

∈ R
1×(n−1) is

a row vector with elements dvi(k) = voci − iL(k)Rei.
The proposed orthogonal decomposition guarantees the
voltage constraint satisfaction while giving the possibility
of simultaneous balancing. The voltage control problem is
a minimum norm problem, whereas the balancing problem
is formulated as a control-constrained LQ MPC problem.

In this study, we simplify the balancing controller even
further. The aim is to achieve u(k) ∈ U using a simpler ap-
proach instead of solving control constrained LQ problem
at each step of MPC. We propose to compute the balancing
control policy ub(k) in receding horizon fashion based on
unconstrained LQ problem whereas control constraint, if
violated, is handled later via projection of unconstrained
control actions on control constraint set. In the following,
we first summarize the voltage control problem and then
in section 4.2 we formulate and solve the alternative bal-
ancing control problem in detail.

4.1 Voltage Controller: Least-norm Problem

The control uv(k) at each time instant can be computed by
directly solving the output equation (9) to satisfy vL(k) =

vLd(k) for any given load current demand iL(k). How-
ever, Dv(k)uv(k) = vLd(k) has infinite solutions due to
nonempty nullspace of Dv(k), which is an n–dimensional
row vector. A unique solution uv ∈ N (Dv)

⊥ is simply
given by the following least norm problem

minimize ‖uv(k)‖

subject to Dv(k)uv(k) = vLd(k),

uv(k) ∈ U ,
(P-I)

which is feasible for load demands iL(t) ∈ [iLmin, iLmax]
and vLd(t) ∈ [0, vLdmax] with appropriately defined limits
iLmin, iLmax, and vLdmax. Note that uv(k) is a feedforward
controller, which uses information only about demanded
load data vLd(k) and iL(k), given at each time instant.

4.2 Balancing Controller: LQ MPC with Projections

The balancing control objective is to find a control policy
ub(k) that minimizes SOC and temperature deviations
among cells without increasing average battery temper-
ature relative to that of unbalanced battery, disturbing
voltage vL(k), and violating the constraint u(k) ∈ U . The
null-space N (Dv) provides the extra degree-of-freedom,
which can be used to tweak temperature and SOC of cells
while exactly satisfying the voltage demand. Therefore,
after computing the voltage control decision uv(k), we can
appropriately choose balancing control ub(k) ∈ N (Dv) to
achieve thermal and SOC balancing objectives simultane-
ously. The balancing control can be computed by the linear
combination of the basis vectors of nullspace as follows

ub(k) =

n−1
∑

i=1

ρbi(k)vn,i(k) = Vn(k)ρb(k) ∈ Ub(k), (15)

where Vn(k) is given by (14) and ρb(k) ∈ R
n−1 are

coefficients of null-space basis vectors, and Ub(k), discussed
below, is a time-varying set of feasible ub(k). Note that
the problem of finding optimal ub(k) is now equivalent
to finding optimal control coefficients ρb(k). We solve the
constrained balancing control problem in two stages :

(1) Unconstrained LQ Control Problem: Firstly, we for-
mulate the balancing control problem on standard
LQ form to find unconstrained policy ub,lq(k) =
Kub

(k)x(k). The control policy ub,lq(k) is computed
indirectly i.e. we first solve the LQ problem in terms
of ρb(k) and then, using (15), we get ub,lq(k).

(2) Constrained Control via Projection: Secondly, we
compute constrained control action by projecting
ub,lq(k) on the constraint set Ub(k).

In the following, we discuss all the important ingredients
involved in these two stages.

Balancing Control Constraint (Truncated Null-Space):
The null-space coefficients ρb(k) must be chosen such that
the total control u(k) ∈ U . This means we can only choose
balancing control from so-called truncated null-space Ub ⊆
N . In simple words, Ub defines the set of feasible balancing
controls at each time instant. The truncated null-space
Ub can be easily represented in terms of constraint on
coefficients ρb(k). This is achieved by mapping control con-
straint set U and voltage control uv(k) on the coefficient
space as follows. From (12), it is straightforward to see that
ub(k) must satisfy the following time-varying constraint



umin − uv(k) ≤ ub(k) = Vn(k)ρb(k) ≤ umax − uv(k), (16)

which can be represented by the following convex set

Pb(k) = {ρb(k) |Hρb
(k)ρb(k) ≤ bρb

(k)} ⊆ R
n−1, (17)

in variables ρb(k) where umin = 0n, umax = 1n, and

Hρb
(k) =

[

−Vn(k)
Vn(k)

]

, bρb
(k) =

[

−bρb,min(k)
bρb,max(k)

]

(18)

are time-varying inequality constraint matrices where
Vn(k) is defined in (14) and

bρb,min(k) = umin−uv(k), bρb,max(k) = umax−uv(k) (19)

define time-varying lower and upper boundaries on null-
space N (Dv) as well as its coefficients ρb(k). Now we can
define balancing control constraint set as follows

Ub(k) = {ub(k) = Vn(k)ρb(k) | ρb(k) ∈ Pb(k)} ⊆ R
n. (20)

Note that Ub(k) is a polytope whose boundaries are func-
tion of load demands (vLd and iL). For example, for a 4-
cell battery with vL = 9.25V , Fig. 3(a) shows projection
of Ub(iL) on 2-dimensional plane for various values of iL.

Balancing Objective Function: The standard quadratic
objective function given by

J(x(k), ρb(k : k +N ′ − 1)) = ‖x(k +N ′)‖2
P̄x

+

N ′
−1

∑

l=0

[

‖x(k + l)‖2
Q̄x

+ ‖ρb(k + l)‖2Rρb

]

,
(21)

with N ′ =

{

N, if k ≤ Nd −N + 1,

Nd − k + 1, otherwise
(22)

over prediction horizon N achieves the desired balanc-

ing goal by adding quadratic costs qE
(

ξi(l)− ξ̄(l)
)2

and

qT
(

Tsi(l)− T̄s(l)
)2

+ qT̄ T̄
2
s (l) for all cells at each time

instant l inside prediction phase where ξ̄(l) = 1
n
1Tn ξ(l) and

T̄s(l) = 1
n
1TnTs(l) are mean SOC and mean temperature

of the modular battery respectively. The penalty weight
matrices for complete objective function are given by

Q̄x = blkdiag
(

γ1Q̄E, γ2Q̄T + γ3Q̄T̄ , 0
)

, (23)

P̄x = blkdiag
(

γ1P̄E , γ2P̄T + γ3P̄T̄ , 0
)

, (24)

Rρb
(k) = γ4V

T
n (iL(k))Rub

Vn(iL(k)), (25)

where γi ≥ 0 are trade-off weights, which signify the
relative importance of each objective, Rρb

(k) and Rub

are time-varying penalty weights for ρb(k) and ub(k)
respectively, and

Q̄E =
1

2
M̄T

2 QEM̄2, P̄E =
1

2
M̄T

2 PEM̄2, (26a)

Q̄T =
1

2
M̄T

2 QT M̄2, P̄T =
1

2
M̄T

2 PT M̄2, (26b)

Q̄T̄ =
1

n
qt̄M2, P̄T̄ =

1

n
pt̄M2. (26c)

are running and terminal penalty weights for SOC and
temperature where M̄2 = In − M2 with M2 = 1

n
1n×n

maps each cell SOC and temperature to their correspond-
ing deviations from mean SOC and temperature (defined
above) of modular battery. Note that the weights γi are

chosen such that
∑4

i γi = 1, to achieve desired trade-off
between temperature and SOC balancing performance.

Unconstrained LQ Control Problem: The optimal coef-
ficient vector ρb(k) for the balancing control ub(k) is
computed at each time step k ∈ {0, · · · , Nd} by solving

the following standard unconstrained LQ problem in a
receding horizon fashion.

minimize J(x(k), ρb(k : k +N ′ − 1))

subject to

x(k + l + 1) = Adx(k + l) + B̄d(k + l)ρb(k + l),

∀l = {0, · · · , N ′ − 1},

(P-II)

with optimization variables x(l) and ρb(l) where l, as
defined above, is the time index for the prediction phase
of MPC, Nd is the driving horizon, and N ′ ≪ Nd as
defined in (22) is the prediction horizon. Note that, by
substituting u(k) with ub(k) = Vn(k)ρb(k) as a control
variable in (10a), we get the system dynamics in terms of
new control variable ρb(k) as shown in (P-II) above where

B̄d(k + l) = Bd(iL(k + l)) · Vn(iL(k + l)).

The problem (P-II) is an unconstrained LQ control prob-
lem. The unconstrained optimal control policy is given by

ρlq(k) = Kρb
(k)x(k), (27)

ub,lq(k) = Kub
(k)x(k), Kub

(k) = Vn(k)Kρb
(k), (28)

ulq(k) = uv(k) + ub,lq(k), (29)

where Kρb
(k) and Kub

(k) are control gain matrices ob-
tained using standard time-varying Riccati equation. Note
that the control policy ub,lq uses feedback about battery
state x as well as feedforward knowledge about iL and
voltage control uv, to achieve balancing objectives.

Constrained Control via Projection on Ub(k): The con-
trol actions ulq(k) based on unconstrained balancing con-
trol policy (28) can violate the constraint U especially in
cases where we have large thermal and SOC deviations
and high load demands. The control u(k) ∈ U respecting
the voltage constraint is guaranteed if ub(k) ∈ Ub(k).
Therefore, we propose to project ub,lq(k) on the polytope
Ub(k) whenever ulq(k) /∈ U . The projection PUb

(ub,lq(k))
is computed by solving the following simple QP problem

minimize ‖ub(k)− ub,lq(k)‖
2

subject to ub(k) ∈ Ub(k)
(P-III)

where the time-varying set Ub(k) is defined in (20). The
proposed control scheme is summarized as Algorithm 1.

Remark 1. Note that simply saturating the total uncon-
strained control signal ulq cannot work as it does not
respect the voltage constraint. The proposed method of
handling constraint via projection of ub,lq on Ub(k) can be
considered as a special way of implementing saturation,
which clips ulq without violating the voltage constraint.

Algorithm 1 For Electrothermal Control of Battery

Data: Load demand (vLd(k), iL(k))
for k = 1 to Nd do

Compute uv(k) using (P-I)
Compute ub,lq(k) using (28)
Compute ulq(k) using (29)
if ulq(k) /∈ U then

Compute ub(k) = PUb
(ub,lq(k)) using (P-III)

else
ub(k) = ub,lq(k)

end if
Compute u(k) = uv(k) + ub(k)
Apply u(k) to the modular battery system

end for



5. SIMULATION RESULTS AND DISCUSSION

The following simulation study is based on numerical solu-
tion of problems (P-I) and (P-III) and the analytical solu-
tion of control problem (P-II). To solve (P-I) and (P-III),
we used CVX, a MATLAB-based package for specifying
and solving convex programs using disciplined convex pro-
gramming ruleset, see Boyd and Vandenberghe (2006) and
Grant and Boyd (2011). The controller has been tuned
using iterative trial and error method to achieve satisfac-
tory balancing performance for various drive cycles with
minimum possible prediction horizon N . The prediction
horizon N = 1 gives satisfactory control performance in
all cases. Note that for case N = 1, Riccati recursion is
not needed and the control gain Kρb

(k) is simply given by

Kρb
(k) = −[Rρb

(k) + B̄T
d (k)P̄xB̄d(k)]

−1B̄T
d (k)P̄xAd. (30)

where P̄x is a fixed terminal penalty given by (24). The
system has been discretized using Euler approximation
with sampling interval h = 1 sec and the coolant inlet
temperature Tf0 is assumed constant at 25℃.

5.1 Simulation Setup

The modular battery considered for this simulation
study consists of 4 modules, each containing one cell
(3.3V, 2.3Ah, A123 ANR26650M1A). The nominal val-
ues of cell’s electro-thermal parameters have been taken
from Lin et al. (2013b). The cells are assumed to have
capacity, SOC, and resistance variations as shown in Fig-
ure 2. The balancing performance under this parametric
variation has been evaluated for various real world and
certification drive cycles. However, due to space limitation,
we present here results only for Standard ARTEMIS Rural
drive cycle, which is representative of normal to inten-
sive driving behavior. The battery load current data for
ARTEMIS were obtained at 1 Hz by simulation of Toyota
Prius PHEV in full EV mode in Advisor (Wipke et al.
(1999)). The battery current (in c-rate) and its histogram
are shown in Figure 3(b). The load voltage vLd demanded
from battery is assumed as a constant dc-link voltage of a
three-phase two-level inverter. It is chosen as 9.25V 1 for
the case of four cell battery considered in this study.

Before presenting the simulation results, let us introduce

IBai =
1

Nd

Nd
∑

k=1

h · iBi(k), (31)

IBri =

√

√

√

√

1

Nd

Nd
∑

k=1

h · i2Bi(k), (32)

which are average and rms currents of each Celli respec-
tively over a drive cycle of length Nd. These variables are
used for illustrating control behavior in section 5.3.

1 A certain level of surplus voltage (or cell redundancy) needed to
achieve voltage regulation and balancing depends on a drive cycle.
The voltage setting vLd = 9.25V is used in Altaf et al. (2015)
to ensure problem feasibility for three different drive cycles tested
there. Although it is possible to choose higher voltage for ARTEMIS
Rural drive cycle considered in this study, 9.25V is chosen for sake
of compatibility and control comparison with Altaf et al. (2015).

5.2 Control Performance using One-step Prediction

The balancing performance of control Algorithm 1 with
one-step ahead prediction (N = 1) has been thoroughly
investigated. The simulation results are shown in Figure 3.
The voltage regulation (vL(k) = vLd(k)) is achieved de-
spite large load variations as shown in Figure 3(c). In ad-
dition, the controller continuously reduces SOC imbalance
throughout the driving and makes it negligible within 500
seconds as shown in Figure 3(d). The controller is also
able to keep temperature deviations within almost 1℃
limit during whole driving as shown in Figure 3(e), despite
significant deviation among cell resistances and high c-
rate loading. The unconstrained LQ control decisions and
their projections (so-called projected LQ control decisions)
on constraint set Ub(k) ∈ R

4 (whose projection on R
2 is

shown in Figure 3(a) for gridded iL ∈ {−10c : 5c : 10c})
are shown in Figures 3(f) and 3(g) respectively. During
initial period of high SOC imbalance, the unconstrained
control policy demands quite aggressive actions, which
violate the physical limits of the modular battery system,
and are thus practically infeasible. The projected control
actions are relatively mild, but are physically realizable
to achieve promising balancing performance. It is also
interesting to note that after initial aggressive balancing
phase, the unconstrained LQ control actions are mostly
within limits and the projections are needed only during
high load current intervals.

5.3 Control Behavior

The projected duty cycles (control actions) of cells are
shown in Figure 3(g). The imbalance among cell duties
and the difference in control behavior for each cell is
quite visible. In particular, the control behavior for cells
1 and 2 is much different from that for cells 3 and 4.
The difference is necessary to achieve cell balancing in
the presence of capacity and resistance variations. For
example, cells 1 and 2, which have lower dischargeable
capacities than cells 3 and 4, are used less relative to
cells 3 and 4 during initial heavy SOC balancing phase.
However, to avoid overheating of cells 3 and 4 during each
time interval of high load current demand, the controller
decreases the duties of cells 3 and 4, which have relatively
higher resistances, and increases the duties of cells 1 and 2.
Note the resemblance between duties of cells 1 and 2 and
also between duties of cells 3 and 4 due to closely matched
characteristics of two cells in each of these pairs.
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Fig. 2. Figure shows capacity and resistance distribution
of cells. Figure 2(a) shows variation in actual and
dischargeable capacities, Ced,i(k) = ξi(k)Cei, along
with rated capacity Cr of cells.
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Fig. 3. Simulation results of control Algorithm 1 using only one-step ahead prediction (one-step MPC). The figures
show electro-thermal control performance under ARTEMIS Rural drive cycle.

To further understand the overall controller behavior, the
distributions of average and rms currents among cells,
under control trajectory {u(k)}Nd

k=1 over whole drive cycle,
are shown in Figures 3(h) and 3(i) respectively. It is
interesting to note that the controller achieves thermal and
SOC balancing by redistributing load among cells in such
a way that their average current distribution resembles
their dischargeable capacity distribution and their rms
current distribution is the mirror image of their resistance
distribution, compare Figure 3(h) with Figure 2(a) and
Figure 3(i) with Figure 2(b). Because cells are not uniform
in parameters, the uniform time-usage (so-called uniform
duty cycle operation) of cells is not optimal. For example,
if all cells in a string, with variations in dischargeable
capacities, are equally loaded (same average current) then
the cell with lower dischargeable capacity will be empty
prior to other cells. Similarly, if all cells, with resistance
variations, are equally loaded (same rms current) during

whole drive cycle then a cell with higher resistance will
naturally generate more heat, which will lead to higher
temperature. See Altaf et al. (2013) and Altaf (2014) for
performance comparison with uniform usage of cells.

6. SUMMARY AND CONCLUSIONS

The aim of this paper was to devise a simple predictive
control scheme (i.e. based on several simpler subproblems
instead of solving a single large problem) for thermal and
SOC balancing as well as voltage regulation of a modular
battery using limited future load information. For this pur-
pose, we proposed a simple control algorithm based on LQ
MPC scheme with orthogonal decomposition of controller
into two components, one for voltage control (minimum
norm problem) and the other for balancing control. The
balancing controller is implemented in two stages. The
first stage issues a balancing control policy by solving a



standard time-varying unconstrained LQ problem. The
second stage generates feasible control actions (ui ∈ [0, 1])
by projecting unconstrained LQ control signals on a time-
varying control constraint polytope. The novel way of
decomposing balancing task into two separate subtasks
(i.e. first generating a control policy and then handling
control constraint separately via projections) is one of the
major contribution of this paper. This control algorithm,
compared with control constrained LQ problem of Altaf
et al. (2015), is not only easy to implement, but also easy
to understand and interpret as it reveals more structure
and properties of controller.

The performance of the proposed control algorithm has
been thoroughly evaluated using one-step ahead prediction
to assess its balancing potential for most realistic cases
where no future load information is accessible. The results
confirm the effectiveness of this simple scheme for benign
to normal driving situations with short driving pulses as
in ARTEMIS Rural drive cycle. The results revealed that
only slight adjustments in cell duty cycles are needed to
achieve promising balancing performance. Moreover, the
unconstrained LQ controller is mostly sufficient (i.e. pro-
jections are rarely required) if the SOC imbalance and/or
the load demand is not too high. The performance is
quite encouraging for real-time control implementation in
large battery packs. The proposed control scheme has spe-
cial underlaying structure, which may also provide deeper
insight into structural and functional properties of the
balancer to implement even simpler controller in our future
studies. We will also compare projected LQ problem of this
paper with control-constrained LQ problem of Altaf et al.
(2015) in our future work, where we will particularly try
to establish equivalence between two control problems.
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