
Chalmers Publication Library

Backward particle message passing

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Proc. IEEE International Workshop on Signal Processing Advances in Wireless

Communications (SPAWC), June 2015

Citation for the published paper:
Wymeersch, H. ; Irukulapati, N. ; Sackey, I. et al. (2015) "Backward particle message
passing". Proc. IEEE International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), June 2015

http://dx.doi.org/10.1109/SPAWC.2015.7227078

Downloaded from: http://publications.lib.chalmers.se/publication/224270

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70614063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/SPAWC.2015.7227078
http://publications.lib.chalmers.se/publication/224270

Backward Particle Message Passing
Henk Wymeersch, Naga V. Irukulapati, Isaac A. Sackey, Pontus Johannisson, and Erik Agrell

Chalmers University of Technology, Gothenburg, Sweden
e-mail: {henkw,vnaga,pontus.johannisson,agrell}@chalmers.se, isaacs@student.chalmers.se

Abstract—Particle methods are an established way to represent
messages and perform message passing in factor graphs. Despite
their common use, there are several cases for which messages
are hard to compute, even in linear models. Building on results
from Gaussian message passing, we demonstrate how backward
particle-based messages can be computed and describe a practical
application in the context of fiber-optical communications.

I. INTRODUCTION

Factor graphs have received considerable attention in the
communications and signal processing community, for their
ability to express problems and algorithms in a systematic and
unified manner [1]. A variety of message passing algorithms
can be executed on a factor graph to solve inference problems.
Among these methods, the sum–product algorithm (belief
propagation) is arguably the most common. However, belief
propagation on factor graphs is plagued by two difficulties: (i)
the presence of cycles; (ii) representation of messages related
to continuous variables. This paper concerns the latter issue.
Representation of messages of continuous variables can

be accomplished in a number of ways, including quantiz-
ing/gridding the message domain, approximation by distri-
butions from a parametric family (e.g., Gaussian), projection
onto a suitable set of basis functions, so that the message
representation are the coordinates along the basis functions,
and, finally, a particle representation of the message by a
sequence of weighted particles. While all methods are widely
used, theoretical results have mainly focused on Gaussian
representations, in particular for linear models. Particles were
considered in [2] for a factor graph-based design of a detector
for nonlinear optical communication. However, [2] relied on a
conventional matched filter to cope with non-invertible linear
transformations, which may not be optimal.
In this paper, in order compare the matched filtering ap-

proach from [2] (which we will term “projection”) with an
approach based on the sum–product algorithm (which we will

XXX

XXX

YYY

Y

YY

ZZ
= + φ

N A

←

µX(x)

→

µX(x)

←

µY (y)

→

µY (y)

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1. Basic building blocks, including (a) 3-way equality; (b) addition
of noise; (c) summation; (d) matrix multiplication; (e) a general nonlinear
function. Inset (f) shows leftward and rightward messages.

term “slicing”), we build on [3], [4] and relate several results
from [1] to particle representations in linear systems in com-
bination with specific non-linearities. We consider different
approaches for the explicit computation of backward messages
for linear models using particles. We apply these techniques
to the problem considered in [2], indicating that the matched
filtering approach from [2] is suboptimal and that slicing leads
to improved performance.

II. PROBLEM FORMULATION
We recall that in a factor graph, a function

f(x1, x2, . . . , xN) ∈ R≥0 with arbitrary variables1 is
represented by a factor vertex (generally labeled by the
function) and N edges, each labeled with one of the variables
(generally in capitals, to distinguish the variable from its
value). Given incoming messages µin

Xi
(xi), the outgoing

message on edge Xj is computed as

µout
Xj

(xj) ∝
ˆ

f(x1, x2, . . . , xN)
∏

i"=j

µin
Xi

(xi)dxi"=j , (1)

where ∝ indicates that the message can be normalized.
Basic building blocks/factors include the following [1]:
(a) 3-way equality:

f(x, y, z) = δ(x− y)δ(x− z). (2)

(b) Addition of noise:
f(x, y) = N (y|x,Σ), (3)

where N (y;x,Σ) denotes a Gaussian distribution in y
with mean x and covariance matrix Σ.

(c) Summation:
f(x, y, z) = δ(z − (x+ y)). (4)

(d) Matrix multiplication:
f(x, y) = δ(y −Ax), (5)

where A is an N ×M matrix.
(e) Nonlinear function2:

f(x, y) = δ(y − φ(x)), (6)

in which we will limit ourselves to functions for which,
for any y, X (y) = {x|φ(x) = y} is either finite or
empty.

Factor graphs of these functions are shown in Fig. 1. Note
that the large black arrows are part of the representation and

1The variables xi could be real, complex, binary, vectors, etc.
2Note that we will designate both f(x, y) and φ(x) as functions. From the

context it should be clear what is meant.

are not indicative of the message flow and that the labels in
the vertices are only intended to convey which factor they
correspond to (e.g., the vertex labeled “A” corresponds to the
function δ(y − Ax)). The small red arrows and the arrows
above the message notation refer to message flow (e.g.,→µX(x)
for a message flowing from left to right) .
For the first four basic building blocks, when incoming

messages (from any direction) are Gaussian, the outgoing
messages are also Gaussian and can be computed in closed
form [1]. For the nonlinear function, this is no longer true. In
the presence of nonlinear functions over continuous variables,
Gaussianity is not preserved and other message representations
are required. In particular, we consider particle representations
where a message, say µX(x), is represented by a list of
K samples x(k) and corresponding weights w(k)

X , in which
∑K

k=1 w
(k)
X = 1. The representation of µX(x) by {w(k)

X , x(k)}
should be understood in the sense that for any integrable
function g(x)

ˆ

g(x)µX(x)dx ≈
K
∑

k=1

w(k)
X g(x(k)). (7)

We can thus express the representation as an approximation
of the form:

µX(x) ≈
K
∑

k=1

w(k)
X δ(x− x(k)). (8)

Our objective is to compute particle representations of out-
going messages (both leftward and rightward), given particle
representations of incoming messages for the functions (2)–
(6).

III. MESSAGE COMPUTATION
A. 3-way equality
In the three-way equality, the incoming messages µX(x)

and µY (y) are given in particle form as in (8).3 Based on (1),
the outgoing message is given by

µZ(z) =

¨

δ(x− z)δ(y − z)µX(x)µY (y)dxdy

= µX(z)µY (z). (9)

The problem now arises that µX(z) and µY (z) are not
available for the same z. The problem can be avoided by
smoothing the particle distribution and attaching a kernel to
each particle [4]:

µ̃X(x) =
K
∑

k=1

w(k)
X hσ(x − x(k)), (10)

in which the kernel function hσ(x) can be a Gaussian

hσ(x) =
1

(2π)N/2σN
exp

(

−
‖x‖2

2σ2

)

= N (x; 0,σ2I), (11)

where I denotes the identity matrix of proper size and σ
is a parameter that should be chosen appropriately. In fact,
optimization of σ is nontrivial and results are only known
for low-dimensional scenarios. For that reason, σ is often set
using Silverman’s rule of thumb [5]. Note that the particle

3Note that the roles of x, y, and z are interchangeable.

representation is recovered when σ → 0. Note that (10) can
be evaluated for any x.
A particle representation of µZ(z) can thus be found as

follows:
(1) Draw samples z(1), . . . , z(K) from a proposal distribu-

tion4 qZ(z)
(2) Compute weights using the smoothened distributions

w(k)
Z ∝

µ̃X(z(k))µ̃Y (z(k))

qZ(z(k))
. (12)

(3) Normalize the weights so they add up to one. The
message µZ(z) can be approximated using weighted
particles {w(k)

Z , z(k)}.

B. Addition of noise
When a particle representation of →µX(x) is available, we

generate an internal particle e(k) ∼ N (e; 0,Σ) for each x(k)

and set y(k) = x(k)+ e(k) to obtain →µY (y). Conversely, when
a particle representation of ←µY (y) is available, we generate
an internal particle e(k) ∼ N (e; 0,Σ) for each y(k) and set
x(k) = y(k) + e(k) to obtain ←µX(x). Note that we have used
the symmetry of the Gaussian distribution and that the particle
weights are unchanged.

C. Summation
Let us first consider the case where the incoming messages

are µX(x) and µZ(z) and are given in particle form. Assume
that x, y, z ∈ RN . The summation factor can be expressed
f(x, y, z) = δ(y−A[zT xT]T), in which A is a 1×2N vector
of N ones followed by N minus ones.5 If instead we consider
µX(x) and µY (y) as incoming messages, the summation
factor can be expressed as f(x, y, z) = δ(z − A[x y]T), in
which A is a vector of 2N ones. In any case, we see that
summation is a special case of a linear function, so we will
defer the message computation until subsections III-D and
III-F.

D. Forward message for (non)linear functions
For a general function y = φ(x), when the incoming

messages →µX(x) is given, the outgoing message →µY (y) is
of the form [6]

→
µY (y) =

∑

x∈X (y)

→
µX(x)

|φ′(x)|
, (13)

in which X (y) = {x|φ(x) = y} and |φ′(x)| denotes the
absolute value determinant of the Jacobian. In particle repre-
sentations, the outgoing message →µY (y) is found by pushing
the particles through the function [3], so that

→
µY (y) =

ˆ

δ(y − φ(x))
→
µX(x)dx

≈
K
∑

k=1

w(k)
X δ(y − φ(x(k))). (14)

4By choosing the proposal distribution as either µX (x) or µY (y), the
computation of the weights can be simplified. The choice of proposal
distribution is often application-specific.
5Note that, for 1 an N × 1 all-ones vector, [1T −1T][zT xT]T = z− x,

so that δ(y − A[zT xT]T) = δ(y − (z − x)) = δ(z − (x+ y)).

In other words, {w(k)
Y = w(k)

X , y(k) = φ(x(k))} forms a
particle representation of →µY (y). This result is of course valid
for functions of the form φ(x) = Ax, including the summation
operation from Section III-C.

E. Backward message for (non)linear functions
For the backward messages (both here and in Section

III-F), we will make an additional assumption: the underlying
message ←µY (y) from which the particles are obtained is such
that ←µY (y) > 0, for all y.
For a function of the form y = φ(x), given a particle

representation {w(k)
Y , y(k)} of the incoming message ←µY (y),

the outgoing message, ←µX(x), is given by

←
µX(x) =

ˆ

δ(y − φ(x))
←
µY (y)dy

≈
K
∑

k=1

w(k)
Y δ(y(k) − φ(x)). (15)

We see that ←µX(x) only has mass for x ∈ X (y(k)).
Denoting the cardinality of the set X (y(k)) by

∣

∣X (y(k))
∣

∣,
we can construct the following particle representations of
←
µX(x): for each y(k) we have

∣

∣X (y(k))
∣

∣ particles (say
x(k,1), . . . , x(k,|X (y(k))|)), all with weight w(k)

Y , leading to a
representation with

∑K
k=1

∣

∣X (y(k))
∣

∣ particles.
For general functions φ(x), determining the sets X (y(k))

may be computationally hard. More problematically, in some
cases X (y(k)) may be empty, possibly for all k, precluding
the use of the above method (this happens when φ(x) is an
injection).
There are two special cases: (i) when φ(x) is an invertible

function,
∣

∣X (y(k))
∣

∣ = 1, so the particle representation is of
the form {w(k)

Y ,φ−1(y(k))}; (ii) when φ(x) = Ax, which is
detailed in the next section.

F. Backward message for linear functions
1) Gaussian message passing: We have seen that, in gen-

eral, computing backward messages is hard. However, for the
case of Gaussian messages and linear functions (y = Ax),
backward messages can be evaluated in closed form. We
consider the case where A is an N × M matrix. From [1],
[7], we recall that when ←µY (y) = N (y;mY ,ΣY) then

←
µX(x) =

ˆ

δ(y −Ax)N (y;mY ,ΣY)dy

= N (Ax;mY ,ΣY) ∝ N (x;mX ,ΣX), (16)

in which [7, Table 3]

mX =
(

ATΣ−1Y A
)#

ATΣ−1Y mY (17)
Σ−1X = ATΣ−1Y A, (18)

where (·)# denotes the Moore–Penrose pseudo-inverse. The
expression (16) thus reveals that ←µX(x) is obtained by evalu-
ating ←µY (y) along the subspace y = Ax. For injective A, we
can interpret this as slicing ←µY (y) along this subspace.

When ←µY (y) is a mixture of Gaussians, we can apply the
above procedure to each mixture component, since integration
is a linear operation. Thus, when

←
µY (y) =

K̃
∑

k=1

w(k)
Y N (y,m(k)

Y ,Σ(k)
Y), (19)

then
←
µX(x) =

K̃
∑

k=1

w(k)
Y N (Ax,m(k)

Y ,Σ(k)
Y)

=
K̃
∑

k=1

w(k)
Y s(k)N (x,m(k)

X ,Σ(k)
X), (20)

where each Gaussian mixture component is scaled by6

s(k) = exp

(

−
1

2

(

(

m(k)
Y

)T (

Σ(k)
Y

)−1
m(k)

Y

))

× exp

(

1

2

(

(

m(k)
X

)T (

Σ(k)
X

)−1
m(k)

X

))

, (21)

and m(k)
X and Σ(k)

X are computed from (17)–(18) by sub-
stituting mY by m(k)

Y and ΣY by Σ(k)
Y . The weights can

be normalized such that ←µX(x) can be interpreted as a
distribution, i.e.,

w(k)
X =

w(k)
Y s(k)

∑

k′ w
(k′)
Y s(k′)

. (22)

2) Particle message passing: We now specialize the above
expressions to the particular case when Σ(k)

Y = σ2I , m(k)
Y =

y(k), and K̃ = K , so that
m(k)

X =
(

ATA
)#

ATy(k) (23)

Σ−1X =
1

σ2
ATA = Qdiag

[

λ1

σ2
. . .

λL

σ2
0 . . . 0

]

QT, (24)

in whichQ is an orthogonal matrix, λ1, . . . ,λL are the L ≤ M
strictly positive eigenvalues of ATA, and diag [·] generates a
diagonal matrix from its vector argument. In other words, the
last M − L columns of Q span the null-space of ATA.
We can express the relation (19) as
←
µY (y) =

K
∑

k=1

w(k)
Y N (y, y(k),σ2I) →

K
∑

k=1

w(k)
Y δ(y − y(k)),

as σ → 0, which is exactly the form of a particle representa-
tion. The outgoing message can be expressed as

←
µX(x) =

K
∑

k=1

w(k)
Y s(k)N (x,

(

ATA
)#

ATy(k),Σ(k)
X), (25)

in which we tacitly assumed
∑K

k=1 w
(k)
Y s(k) = 1, wherein

(due to Σ(k)
Y = σ2I)

s(k) = exp
(

−
1

2σ2
(‖m(k)

Y ‖2 − ‖Am(k)
X ‖2)

)

. (26)

6When expressing N (Ax;mY ,ΣY) asN (x;mX ,ΣX), there is a scaling
factor. This scaling can be absorbed in the normalization when there is
only one mixture component (as was implicitly done in (16)), but must be
accounted for explicitly when there are multiple Gaussian mixture components
with different scaling.

Letting σ → 0 does not necessarily recover a meaningful
particle representation of ←µX(x). To understand this, we
consider three cases, depending on whether A is bijective,
injective, or surjective.

A is bijective: Since m(k)
Y = Am(k)

X , it follows that
s(k) = 1, ∀k. Hence, letting σ → 0 in (25) yields

←
µX(x) →

K
∑

k=1

w(k)
Y δ(x−

(

ATA
)#

ATy(k)), (27)

so x(k) =
(

ATA
)#

ATy(k). Note that
(

ATA
)#

AT = A−1.
This is merely a special case of an invertible function, dis-
cussed in Section III-E. We thus find that each particle y(k) is
transformed to x(k) = A−1y(k).

A is surjective: This happens, e.g., for fat matrices. In
this case, the null-space of ATA is not empty, so that L < M
(see (24)). Furthermore, s(k) = 1, ∀k. The message ←µX(x)
can still be expressed in the form (27), though now each
particle x(k) =

(

ATA
)#

ATy(k) represents an (M − L)-
dimensional space of the form

x = x(k) +
M
∑

l=L+1

αlql, (28)

in which αl are arbitrary scalars and {ql}Ml=L+1 is a basis
for the null-space of ATA. Hence, the concept of a par-
ticle must be extended to account for any point given by
(28). We can denote the particle representation of ←µX(x) by
{w(k)

X , x(k), {qL+1, . . . , qM}}, in which w(k)
X = w(k)

Y .
A is injective: This happens, e.g., for tall matrices. In

this case s(k) is of the general form (26). We introduce
d(k) = ||m(k)

Y ||2 − ||Am(k)
X ||2 ≥ 0. We further introduce

k∗ = argmink d(k). Letting σ → 0 will lead to
←
µX(x) → δ(x−

(

ATA
)#

ATy(k
∗)), (29)

so that only the particle y(k) closest to the space y = Ax is rel-
evant, and is projected onto the space x =

(

ATA
)#

ATy. This
is clearly not a meaningful particle representation, moreover
it is not consistent with the Gaussian case from Section III-F1
(i.e., when the particles y(k) are drawn from a Gaussian, we
would expect the particle representation of ←µX(x) correspond
to particles from a Gaussian). The situation can be improved
by increasing σ. However, as we have seen in Section III-A, an
optimal choice of σ is not obvious. An alternative approach is
to approximate the particles with a Gaussian distribution and
apply the message passing rules (i.e., slicing) from Section
III-F1.

IV. NUMERICAL EXAMPLES
A. Illustrating example
In this section we will demonstrate the ideas for backward

message passing for an injective transformation of the form
y = Ax with A = [1 2]T. As before, we assume ←µY (y) > 0
for all y and is represented by a large number of particles
{w(k)

Y , y(k)}. Now, ATA = 5 and
(

ATA
)#

AT = [1 2]/5.
An example of the ←µY (y) and

←
µX(x) is shown in Fig. 2,

according to two approaches, both of which are based on
first approximating the particles {y(k)} with a Gaussian
N (y,mY ,ΣY). The red

←
µX(x) is obtained by applying the

slicing operation (17)–(18), so that mX =
(

ATA
)#

ATmY

and Σ−1X = ATΣ−1Y A, which for this specific case yields the
correct result when the number of particles is large. The blue
←
µX(x) is obtained by projecting the individual particles to
the space y = Ax. Clearly, this second approach leads to an
incorrect distribution, in terms of both the mean and variance.
Note, however, that when ←µY (y) is a Gaussian with ΣY a
scaled identity matrix, slicing and projection give the same
result.

B. Coherent optical receiver
An application of practical importance is the design of

a digital communication receiver, in particular for situations
where the optimal receiver may not be known in closed form,
e.g., in fiber-optical communication systems [2]. We consider
the setup based on [8, Fig. 1], where a single polarization
16-QAM sequence x is modulated using a root raised cosine
pulse with roll-off of 25%, leading to a signal y, and fed into
a fiber-optical channel with 60 spans, each span comprising
80 km standard single mode fiber, an amplifier, and dispersion
compensating fiber. The channel introduces dispersion, nonlin-
earity due to the Kerr effect, and noise due to the amplifiers.
The fiber and system parameters can be found in [8, Table 1].
The received signal is denoted by r. The goal of the receiver
is to recover x from r, by computing p(x|r) using a factor
graph.
The received signal is processed with stochastic digital

backpropagation (SDBP) [2], which performs message passing
on a factor graph model of the channel, starting with the
received signal r. In particular, each fiber is modeled using
the split step Fourier method, where the fiber is split into
many small segments and each segment consists of linear
and nonlinear blocks as in Fig. 1 (d) and Fig. 1 (e). The
amplifier can be modeled similar to Fig. 1 (c). The variables
in the factor graph are the waveforms before and after each
segment, before and after each amplifier, as well as x and
y. The messages are represented using particles. After the
particles are passed backward through each of the blocks of
the system, we obtain K particles {y(k)} representing ←µY (y),
describing the uncertainty regarding y. The relation between
x and y can be modeled as y = Ax as in Fig. 1 (d),
where A represents the pulse shape including up-sampling.
To obtain ←µX(x), we consider two approaches, which start
with a Gaussian approximation7 of {y(k)} with mean mY and
covariance ΣY . We then apply the slicing approach (leading
to mX =

(

ATΣ−1Y A
)#

ATΣ−1Y mY and Σ−1X = ATΣ−1Y A) as
well as a projection-style approach in which we project the
mean mX =

(

ATA
)#

ATmY , but keep Σ−1X = ATΣ−1Y A,
both followed by symbol-by-symbol decisions. Note that in
our application, the number of particles K is much smaller

7We separate real and imaginary parts of y(k) to capture correlations
between them.

−15 −10 −5 0 5 10 15

−4

−2

0

2

4

6

8

−3 −2 −1 0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

x

y1

y 2
es
tim
at
ed
← µ

X
(x
)

slicing of Gaussian approx.
projection of particles

Figure 2. Example: y = [x 2x]T. We set ←

µY (y) as
N (y; [0 2]T, [2 1.9; 1.9 2]) and generate K = 106 samples, a scatter
plot of which is shown in the top figure, along with the dash-dotted line
y = [x 2x]T. The bottom figure shows the (scaled) message ←µX(x),
obtained by approximating ←µY (y) by a Gaussian and applying the slicing
operation (red) or projecting the particles onto the space y = [x 2x]T (blue).

than the dimension of y. To avoid singular estimates of ΣY ,
we taper ΣY around its main diagonal, i.e., we replace [ΣY]ij
with [ΣY]ij × exp(−|i − j|/t), for a tapering factor t > 0
[9]. We compare with the reference approach from [2], where
each y(k) is projected onto y = Ax, leading to particles
x(k) =

(

ATA
)#

ATy(k), corresponding to matched filtering
followed by symbol rate sampling of each y(k). For each
symbol, the corresponding particles are approximated with a
bivariate Gaussian distribution based on which a symbol-by-
symbol decision is made.
In Fig. 3, we compare all these approaches in terms of

the symbol error rate (SER). We observe that projection of
the particles, as proposed in [2], leads to approximately the
same performance as projection of the Gaussian approxima-
tion of the particles, for large enough t. Moreover, slicing
the Gaussian approximation of the particles, as dictated by
the sum–product algorithm, leads to superior performance.
This indicates that matched filtering followed by symbol rate
sampling is in general suboptimal and that the sub-optimality
is due to an incorrect computation of the mean, not the
covariance.

V. CONCLUSIONS
We have considered the problem of backward message

passing in factor graphs using particles for certain linear and
non-linear factors. We show that the problem is hard, even for
factors that describe linear transformation. To address this, we
have proposed a Gaussian approximation of the particles, and
utilize a slicing and projection operation for message com-
putation. The slicing operation follows from the sum–product
algorithm, while the projection operation is an approximation.
We have applied these to the problem of receiver design for

0 5 10 15 20 25

10−2

10−1

t

sy
m
bo
le
rro
r
ra
te

mean projection of Gaussian approximation
slicing of Gaussian approximation
projection of particles from [2]

Figure 3. Symbol error rate as a function of the taper size t for a fiber
optical communication receiver using SDBP [2]. We considered 16-QAM
transmission over 60 spans of 80 km fiber at an input power of -3 dBm.

coherent optical communication over a channel that includes
dispersion, nonlinearities, and noise. We found that the slicing
operation outperforms the benchmark method, though further
analysis is needed to quantify these gains in a variety of
scenarios.

ACKNOWLEDGMENT
We would like to thank Hans-Andrea Loeliger and Vincent

Tan for discussions that helped to shape this research. This
research was supported by the Swedish Research Council (VR)
under grants 2010–4236 and 2013–5642, and the European
Research Council, under Grant No. 258418 (COOPNET).

REFERENCES
[1] H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R. Kschischang,

“The factor graph approach to model-based signal processing,” Proc.
IEEE, vol. 95, no. 6, pp. 1295–1322, 2007.

[2] N. V. Irukulapati, H. Wymeersch, P. Johannisson, and E. Agrell, “Stochas-
tic digital backpropagation,” IEEE Trans. Commun., vol. 62, no. 11,
pp. 3956–3968, 2014.

[3] J. Dauwels, S. Korl, and H.-A. Loeliger, “Particle methods as message
passing,” in IEEE International Symposium on Information Theory,
pp. 2052–2056, IEEE, 2006.

[4] E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky, “Nonpara-
metric belief propagation,” in IEEE Conference on Computer Vision &
Pattern Recognition, pp. 605–612, 2003.

[5] S. J. Sheather et al., “Density estimation,” Statistical Science, vol. 19,
no. 4, pp. 588–597, 2004.

[6] C. Au and J. Tam, “Transforming variables using the Dirac generalized
function,” The American Statistician, vol. 53, no. 3, pp. 270–272, 1999.

[7] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal Process.
Mag., vol. 21, no. 1, pp. 28–41, 2004.

[8] N. V. Irukulapati, D. Marsella, P. Johannison, M. Secondini, H. Wymeer-
sch, E. Agrell, and E. Forestieri, “On maximum likelihood sequence de-
tection for single-channel coherent optical communications,” in European
Conference on Optical Communication (ECOC), 2014.

[9] P. J. Bickel and E. Levina, “Regularized estimation of large covariance
matrices,” The Annals of Statistics, pp. 199–227, 2008.

