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1 Introduction

Symmetries play a crucial role in quantum field theories. They determine whether a quan-

tum field theory is consistent or not and further determine the physics of the theory. In this

respect, supersymmetry plays an even more penetrating role than ordinary symmetries. It

directly affects the perturbative properties of the theory since bosons and fermions behave

differently in loop diagrams. The SO(8) triality of N = 1 super Yang-Mills theory in ten

dimensions, for example, results in the ultra-violet finiteness of its four-dimensional avatar,

N = 4 Yang-Mills theory leaving it conformally invariant in the quantum regime. The

lack of such manifest beauty in SO(9) appears to doom N = 8 supergravity to a divergent

end. However, the light-cone descriptions of the N = 4 and N = 8 theories [1, 2] are

so similar that they seem to hint at a deep link between them. In addition, there are

the KLT-relations [3–6] which suggest that the finiteness properties of the N = 4 model

could possibly extend to the N = 8 model. Even if this turns out not to be the case, the

perturbative properties of these theories are so remarkable that one might ask if there exist

additional algebraic properties that affect the quantum behavior of these theories.

The question then is how much of the unique quantum behavior of maximally su-

persymmetric theories is due entirely to the maximal supersymmetry. Are there more to

these theories than meets the eye? In this paper, we describe how the Hamiltonians of

both the maximally supersymmetric Yang-Mills theory in four dimensions and its higher-

dimensional parent may be expressed as quadratic forms and we argue that it is only the
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maximally supersymmetric theories, among the supersymmetric ones, that exhibit this

property. We then turn to pure non-supersymmetric Yang-Mills theory where we illustrate

why this feature, of quadratic forms, occurs only in a helicity basis.

Unlike the N = 4 theory which possesses conformal invariance, N = 8 supergravity

has an on-shell non-linear E7(7) symmetry. A key question in this context, is whether this

exceptional symmetry is associated specifically with dimensional reduction or whether it is

simply a reflection of its higher dimensional parent. This question is one of the motivations

for our present line of work and this paper, an intial step in this study. The other motivation

is what was outlined above, to identify new algebraic properties of maximally supersym-

metric quantum field theories that can further constrain these theories perturbatively and

non-perturbatively.

Like the N = 4 theory, the N = 8 Hamiltonian, in light-cone gauge, may be written

as a quadratic form, involving the dynamical supersymmetry generator [7]. If we could

successfully ‘lift’ or ‘oxidize’ this quadratic form structure to eleven dimensions, then the

eleven-dimensional theory would also exhibit E7(7) invariance assuming that the ‘lifting’

process commutes with the exceptional generators. This is work in progress.

In this paper, we explain the idea of the quadratic form structure and our methods, in

the context of the Yang-Mills system. We start with the supersymmetric theories and then

move to pure Yang-Mills. In these considerations we will also highlight the importance of

residual gauge invariance within light-cone gauge.

2 Super Yang-Mills theory

2.1 (N = 4, d = 4) Yang-Mills theory in light-cone superspace

This section serves as a brief review of the results in [1, 8] relevant to this paper. The N = 4

theory involves one complex bosonic field (the gauge field), four complex Grassmann fields

and six scalar fields. The form of the theory that we will use here can be obtained in two

ways. The first method is to choose light-cone gauge, A+ = 1√
2
(A0 + A3) = 0 and then

solve for the unphysical field A− = 1√
2
(A0 − A3). The other approach is to start with

the superfield, introduced below, and span the super Poincaré algebra on it. Since the

representation is non-linear, certain generators will be non-linear, including the generator

P− = 1√
2
(P 0 − P 3) which is the full Hamiltonian. With the metric (−,+,+, . . . ,+), the

light-cone coordinates and derivatives are x± ; ∂± and

x =
1√
2
(x1 + i x2 ) ; ∂̄ =

1√
2
( ∂1 − i ∂2 ) . (2.1)

With the introduction of anticommuting Grassmann variables θm and θ̄m (m,n, p, q, · · · =
1, 2, 3, 4, denote SU(4) spinor indices), all the physical degrees of freedom can be captured

in one superfield

φ (y) =
1

∂+
A (y) +

i√
2
θm θn C̄mn (y) +

1

12
θm θn θp θq ǫmnpq ∂

+ Ā (y)

+
i

∂+
θm χ̄m(y) +

√
2

6
θm θn θp ǫmnpq χ

q(y) . (2.2)
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where A and Ā represent the gauge field and the six scalar fields, written as antisymmetric

SU(4) bi-spinors, satisfy

C̄mn =
1

2
ǫmnpq C

pq . (2.3)

The fermion fields are denoted by χm and χ̄m. All fields carry adjoint indices (not shown

here), and are local in the coordinates

y =

(

x, x̄, x+, y− ≡ x− − i√
2
θm θ̄m

)

. (2.4)

The chiral derivatives

dm = −∂m − i√
2
θm ∂+ ; d̄n = ∂̄n +

i√
2
θ̄n ∂

+ , (2.5)

satisfy

{ dm , d̄n } = −i
√
2 δmn ∂+ . (2.6)

The superfield φ and its complex conjugate φ̄ satisfy

dm φ = 0 ; d̄m φ̄ = 0 , (2.7)

and the “inside-out” constraints

d̄m d̄n φ =
1

2
ǫmnpq d

p dq φ̄ ,

dm dn φ̄ =
1

2
ǫmnpq d̄p d̄q φ . (2.8)

In terms of this superfield, the (N = 4, d = 4) action is

∫

d4x

∫

d4θ d4θ̄ L , (2.9)

where

L = −φ̄
✷

∂+2
φ +

4g

3
fabc

( 1

∂+
φ̄a φb ∂̄ φc + complex conjugate

)

−g2fabc fade
( 1

∂+
(φb ∂+φc)

1

∂+
(φ̄d ∂+ φ̄e) +

1

2
φbφ̄c φd φ̄e

)

. (2.10)

Grassmann integration is normalized so that
∫

d4θ θ1θ2θ3θ4 = 1, and fabc are the structure

functions of the Lie algebra.

The supersymmetry generators are of two varieties: kinematical and dynamical. The

kinematical (spectrum generating) supersymmetries

qm
+ = −∂m +

i√
2
θm ∂+ ; q̄+n = ∂̄n − i√

2
θ̄n ∂

+ , (2.11)

satisfy

{ qm
+ , q̄+n } = i

√
2 δmn ∂

+ , (2.12)
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while the dynamical supersymmetries are obtained by boosting the kinematical ones

qm− ≡ i [ j̄− , qm
+ ] =

∂

∂+
qm
+ , q̄−m ≡ i [ j− , q̄+m ] =

∂̄

∂+
q̄+m , (2.13)

and satisfy the free N = 4 supersymmetry algebra

{ qm− , q̄−n } = i
√
2 δm

n

∂∂̄

∂+
. (2.14)

In the free (linear) theory the generators act directly on the superfield.

δO = Oφ. (2.15)

For the dynamical (non-linear) generators, we have to find non-linear terms such that the

algebra closes. For the dynamical supersymmetry, the result is

δq̄
−m

φa =
1

∂+

{

(∂̄ δab − gfabc∂+ φc ) δq̄+m

φc
}

. (2.16)

Consider now the Hamiltonian that we get from (2.9)

H =

∫

d3x d4θ d4θ̄

{

φ̄a 2∂∂̄

∂+2
φa − 4

3
g fabc

( 1

∂+
φ̄a φb ∂̄ φc +

1

∂+
φa φ̄b ∂ φ̄c

)

+ g2fabc fade
( 1

∂+
(φb ∂+φc)

1

∂+
(φ̄d ∂+ φ̄e) +

1

2
φbφ̄c φd φ̄e

)

}

. (2.17)

Using the form in (2.16), it can be written as [9]

H =
i√
2

∫

d3x d4θ d4θ̄ δqm φ̄
a 1

∂+
δq̄mφ

a. (2.18)

This is the remarkable quadratic form alluded to above. The key ingredient in proving this

is the use of the “inside-out constraint” (2.8). This point is important since it implies that

other supersymmetric Yang-Mills theories cannot be expressed as simple quadratic forms

since those theories have no such constraint on the superfield.

2.2 Ten dimensions

The key result in [8] is that the action for the ten-dimensional N = 1 super Yang-Mills

theory can be obtained by simply ‘oxidizing’ (2.9). This is achieved in three steps. First,

the introduction of the six extra coordinates and their derivatives, again as antisymmetric

bi-spinors

xm 4 =
1√
2
(xm+3 + i xm+6 ) , ∂m 4 =

1√
2
( ∂m+3 + i ∂m+6 ) , (2.19)

for m 6= 4 and their complex conjugates

x̄pq =
1

2
ǫpqmn x

mn ; ∂̄pq =
1

2
ǫpqmn ∂

mn . (2.20)
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Second, making all fields dependent on the extra coordinates. The kinematical supersym-

metries qn+ and q̄+n, are now assembled into one SO(8) spinor. The dynamical supersym-

metries are obtained by boosting

i [ J̄− , qm+ ] ≡ Qm , i [ J− , q̄+m ] ≡ Q̄m , (2.21)

where the linear part of the dynamical boosts are

J− = i x
∂∂̄ + 1

4 ∂̄pq ∂
pq

∂+
− i x− ∂ + i

∂

∂+

{

θm ∂̄m +
i

4
√
2 ∂+

(dp d̄p − d̄p d
p)
}

−

− 1

2

∂̄pq

∂+

{

∂+√
2
θp θq −

√
2

∂+
∂p ∂q +

1√
2∂+

dp dq
}

, (2.22)

and its conjugate [8]. These yield the linear parts of the dynamical supersymmetry gene-

rators.

Qm =
∂̄

∂+
q+

m +
∂mn

∂+
q̄+n ,

Q̄m =
∂

∂+
q̄+m +

∂̄mn

∂+
q n
+ , (2.23)

which satisfy

{Qm , Q̄n } = i
√
2

1

∂+

(

δmn ∂ ∂̄ + ∂̄mp ∂
np

)

. (2.24)

Third, the introduction of a ‘generalized’ derivative

∇̄ ≡ ∂̄ +
i

4
√
2 ∂+

d̄p d̄q ∂
pq , (2.25)

and its conjugate.

The kinetic term is trivially made SO(8)-invariant by including the six extra transverse

derivatives in the d’Alembertian. The quartic interactions are obviously invariant since

they do not contain any transverse derivative operators. Hence we need only consider the

cubic vertex.

The essence of [8] was that covariance in ten dimensions is achieved by simply replacing

transverse derivatives ∂ and ∂̄ by ∇ and ∇̄, respectively. This leads to the following cubic

interaction term in ten dimensions [8]

∫

d10x

∫

d4θ d4θ̄L10 , (2.26)

where

L10 = −φ̄
✷10

∂+2
φ +

4g

3
fabc

( 1

∂+
φ̄a φb ∇̄φc + complex conjugate

)

−g2fabc fade
( 1

∂+
(φb ∂+φc)

1

∂+
(φ̄d ∂+ φ̄e) +

1

2
φbφ̄c φd φ̄e

)

. (2.27)
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3 New results

We have seen that the (N = 4, d = 4) Hamiltonian is a quadratic form (2.18). In the

following, we will prove that the Hamiltonian for the ten-dimensional theory described

by (2.26) is also a quadratic form.

3.1 The kinetic term

Starting from the free dynamical supersymmetry generators in (2.23) and adding the non-

linear term in (18) we find the full non-linear dynamical supersymmetry generators to be.

δq
−

m φ̄a = Qm φ̄a − gfabc 1

∂+
(qm+ φ̄b∂+φ̄c) ,

δq̄
−m

φa = Q̄m φa − gfabc 1

∂+
(q̄+m φb∂+φc) , (3.1)

where we remind the reader that fields within this superfield now depend on all ten coor-

dinates.

Our claim is that the ten-dimensional Hamiltonian of N = 1 Yang-Mills is simply

H =
i√
2

∫

d9x d4θ d4θ̄ δqm φ̄
a 1

∂+
δq̄mφ

a. (3.2)

We start by verifying this claim, at the free level

δqm φ̄
a 1

∂+
δq̄mφ

a =

{(

∂̄

∂+
qm+ +

∂mn

∂+
q̄+n

)

φ̄a 1

∂+

(

∂

∂+
q̄+m +

∂̄mp

∂+
q
p
+

)

φa

}

=

{

∂̄

∂+
qm+ φ̄a ∂

∂+2 q̄+m φa +
∂mn

∂+
q̄+nφ̄

a ∂

∂+2 q̄+mφa

+
∂̄

∂+
qm+ φ̄a ∂̄mp

∂+2 q
p
+ φa +

∂mn

∂+
q̄+n φ̄

a ∂̄mp

∂+2 q
p
+ φa

}

= {A+ B + C +D}. (3.3)

We focus first on term B which after integration by parts and use of the ‘inside-out’

constraint in (2.8) yields

B = − 1

2
φ̄a ∂mn∂

∂+3 {q̄+n, q̄+m}φa = 0 . (3.4)

The term C vanishes in an identical manner. The non-vanishing contributions come from

terms A and D. Term A after similar simplification becomes

A = − 1

2
φ̄a ∂∂̄

∂+3 {qm+ , q̄+m} φa = −i2
√
2 φ̄a ∂∂̄

∂+2 φa , (3.5)

while D reads

D = − i√
2
φ̄a ∂mn∂̄mn

∂+2 φa . (3.6)

Thus the free ten-dimensional Hamiltonian reads

H = 2 φ̄a ∂∂̄

∂+2 φa +
1

2
φ̄a ∂mn∂̄mn

∂+2 φa , (3.7)

as expected, given the Lagrangian in (2.26).
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3.2 The cubic interaction vertex

Having shown that the free Hamiltonian is a quadratic form, we now move to examining

the cubic interaction vertex. The relevant piece from (3.2) is

δqm φ̄
a 1

∂+
δq̄mφ

a|g = − fabc 1

∂+
(qm+ φ̄b∂+φ̄c)

1

∂+
Q̄m φa . (3.8)

We only need to focus on the term that involves the new transverse derivatives. This may

be written as

fabc

∫

∂̄mn

∂+2
qn+φ

a 1

∂+
(qm+ φ̄b∂+φ̄c)

=
1

3
fabc

∫
(

1

∂+
φaφ̄bd

mdn∂̄mn

∂+
φ̄c − 1

2
φaφ̄bd

mdn∂̄mn

∂+2
φ̄c

)

. (3.9)

We briefly review the derivation of the above result. We start with the explicit form of q+
and write the L.H.S. of (3.9) as

− i
√
2fabc

∫

∂̄mn

∂+2
φaθm∂nφ̄b∂+φ̄c . (3.10)

Partial integration with respect to ∂n (fabc and the integral sign are suppressed) gives

i
√
2 θm∂n ∂̄mn

∂+2
φaφ̄b∂+φ̄c + i

√
2
∂̄mn

∂+2
φaφ̄b∂+θm∂nφ̄c ≡ I + II . (3.11)

Using the ‘inside out’ constraint and partially integrating the chiral derivatives, the first

term of (3.11) is

I =
i
√
2

2 · 4!(ǫ
ijkld̄id̄j d̄kd̄l)θ

m∂n ∂̄mn

∂+2
φaφ̄b 1

∂+
φc

= −1

2

dmdn∂̄mn

∂+
φ̄aφ̄b 1

∂+
φc + i

√
2 θm∂n∂̄mnφ̄

aφ̄b 1

∂+
φc . (3.12)

Similar manipulation of the second term in (3.11) yields

II = −i
√
2
∂̄mn

∂+
φaφ̄bθm∂nφ̄c − i

√
2
∂̄mn

∂+2
φa∂+φ̄bθm∂nφ̄c . (3.13)

Integration by parts with respect to ∂̄mn in the first term of (3.13) gives

i
√
2

1

∂+
φa∂̄mnφ̄bθm∂nφ̄c + i

√
2

1

∂+
φaφ̄b∂̄mnθ

m∂nφ̄c , (3.14)

with the second term cancelling against the second term of (3.12). Using ‘inside out’

constraints on φ̄b, the first term of (3.14) becomes

i
√
2 ∂+φ̄a ∂̄mn

∂+2
φbθm∂nφ̄c +

1

2
φaφ̄c ∂̄mn

∂+2
dmdnφ̄b − 1

2

1

∂+
φaφ̄c ∂̄mn

∂+
dmdnφ̄b . (3.15)

So

I + II = i2
√
2
∂̄mn

∂+2
φaθm∂nφ̄b∂+φ̄c

+
1

∂+
φaφ̄bd

mdn∂̄mn

∂+
φ̄c − 1

2
φaφ̄bd

mdn∂̄mn

∂+2
φ̄c . (3.16)
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The R.H.S. above is clearly equal to (3.10) (from which we started) and this leads

to (3.9).

Following the same procedure, we obtain the conjugate of (3.9)

fabc

∫

∂mn

∂+
q̄+nφ̄

a 1

∂+2
(q̄+mφb∂+φc)

=
1

3
fabc

∫
(

1

∂+
φ̄aφb d̄md̄n∂

mn

∂+
φc − 1

2
φ̄aφb d̄md̄n∂

mn

∂+2
φc

)

. (3.17)

Using the inside-out constraint on φc in the second term of (3.17) we find

fabcφ̄aφb d̄md̄n∂
mn

∂+2
φc = − fabcφaφ̄bd

mdn∂̄mn

∂+2
φ̄c . (3.18)

Thus, the sum of (3.9) and (3.17) is

fabc

∫
{

∂̄mn

∂+2
qn+φ

a 1

∂+
(qm+ φ̄b∂+φ̄c) +

∂mn

∂+
q̄+nφ̄

a 1

∂+2
(q̄+mφb∂+φc)

}

=
1

3
fabc

∫
(

1

∂+
φaφ̄bd

mdn∂̄mn

∂+
φ̄c +

1

∂+
φ̄aφb d̄md̄n∂

mn

∂+
φc

)

, (3.19)

which is an exact match to what is expected from (2.26). The repeated use of the inside-

out constraints in all these computations clearly suggests that maximal supersymmetry is

essential to many of the simplifications presented here.

3.3 The quartic interaction vertex

We do not need to check the quartic interaction vertex since it does not involve any trans-

verse derivatives. This means that the results in [9] for the quartic vertex carry over to

our case with the two standard modifications used in this section: the fields now depend

on all ten directions and the space-time integration is over all ten coordinates.

4 Pure Yang-Mills

Having established that both the (N = 4, d = 4) and (N = 1, d = 10) theories may be

written as quadratic forms, we now turn to the case of pure Yang-Mills theory. We ask the

same question in this case, whether the Hamiltonians describing the interacting theories

can be written as quadratic forms.

4.1 d=4

The Lagrangian for pure Yang-Mills theory may be read of from our earlier results (2.9)

L = Āa
✷Aa − 2 g fabc

(

∂̄

∂+
Aa∂+ĀbAc +

∂

∂+
Āa ∂+Ab Āc

)

− 2 g2 fabc fade 1

∂+

(

∂+Ab Āc
) 1

∂+
(∂+ ĀdAe) , (4.1)

– 8 –
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with the corresponding Hamiltonian

H = Āa ∂̄∂ Aa + g fabc

(

∂̄

∂+
Aa∂+ĀbAc +

∂

∂+
Āa ∂+Ab Āc

)

− g2 fabc fade 1

∂+

(

∂+Ab Āc
) 1

∂+
(∂+ ĀdAe) . (4.2)

We introduce the following derivative structure

D̄Aa ≡ ∂̄Aa − g fabc 1

∂+
(Āb∂+Ac) , (4.3)

which allows us to recast the Hamiltonian as

H = −
∫

d3xDĀa D̄Aa , (4.4)

yielding a quadratic form.

4.2 A note on gauge invariance

We know that when we fix a gauge in Yang-Mills theory, there is residual gauge invariance.

One could then ask if the form of (4.4) is governed by some such residual gauge symmetry.

This fact was discussed recently [10] for gravity but the situation is similar here. Choosing

the gauge A+ = 0 implies some remaining gauge invariance, with a gauge parameter that

satisfies ∂+Λ = 0. However when we solve for the unphysical degree of freedom A− we fix

an integration parameter and it is often said that the gauge has been completely chosen. It

is true that there is no infinitesimal symmetry that can be integrated to a finite symmetry.

There is however still an infinitesimal one satisfying ∂+Λ = 0 as well as ∂̄∂Λ = 0. This is

sufficient to determine that (4.4) is of the form

D̄Aa ≡ ∂̄Aa − g fabc 1

∂+n
(Āb∂+nAc) . (4.5)

To determine the value n = 1, we need to check Poincaré invariance. In fact we can now

truly regard the operator D̄ as a covariant derivative and we find that the expression for

the Hamiltonian is indeed invariant under the remaining gauge invariance.

One might ask how the expression (2.16) can be covariant under the remaining gauge

invariance when the superfield φa involves both Aa and Āa. The answer is that the su-

perfield δq̄+m

φa cleverly only involves Āa and expression (2.16) may be regarded as the

covariant derivative of the superfield.

4.2.1 Non-helicity basis

All our work in this paper, thus far, has been in a helicity basis. We could however, have

chosen to work in a non-helicity basis as was done in [11]. To reach their Lagrangian

from (4.1) we simply use

Aa =
1√
2
(Aa

1 + i Aa
2) ; Āa =

1√
2
(Aa

1 − i Aa
2) , (4.6)
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and the Lagrangian is then

L =
1

2
Aa

i✷A
a
i − 2 g fabc 1

∂+
Aa

i ∂iA
b
j ∂

+Ac
j −

1

4
g2 fabc fadeAb

i A
c
j A

d
i A

e
j

− 1

2
g2 fabc fade 1

∂+
(Ab

i ∂
+Ac

i )
1

∂+
(Ad

j ∂
+Ae

j) . (4.7)

There are obviously two gauge covariant forms that we can write under the remaining

gauge invariance. One is the expression (4.5) and the other is

Fij
a = ∂iAj

a − ∂jAi
a − gfabc 1

∂+n (Ai
b∂+n

Aj
c) + gfabc 1

∂+n (Aj
b∂+n

Ai
c) . (4.8)

We compare them and find

D̄Aa =
1

2

(

∂iAi
a − gfabc 1

∂+
(Ai

b∂+Ai
c)

)

+
i

4
ǫijFij

a . (4.9)

It is obvious that the Hamiltonian cannot be written in terms of F a
ij . Hence it is only in a

helicity base that the Hamiltonian can be written as a quadratic form.

4.3 d=10

There is no helicity basis in ten dimensions. The Lagrangian (and hence the Hamiltonian)

for d = 10 Yang-Mills has the same structure as the d = 4 case in (4.7) (with i, j = 1 . . . 8).

By the same arguments presented here, the pure Yang-Mills Hamiltonian in d = 10 cannot

be expressed as a quadratic form.

5 Conclusions

We have found that the Hamiltonian of N = 4 Yang-Mills theory in the light-cone gauge

formulation, its ‘oxidized’ parent theory in d = 10 as well as the d = 4 pure Yang-Mills

theory all take particularly simple forms when formulated in terms of helicity. This is

not totally unexpected, given that amplitude analyses in terms of helicity have proven

extremely useful [12, 13]. Here we see evidence of this at a fundamental level.

Can these facts teach us more about these field theories? The form can be used in the

algebraic formulation where the generators of the non-linear super Poincaré algebra are

constructed [2]. However, these are well-known and worked through in the original papers

and nothing new will be learnt here. The original formulation [1] was also essential in the

proof of perturbative finiteness of the N = 4 theory [14]. We do not see any advantage

here of using the new formulation since the proof was performed by studying detailed

properties of general Feynman diagrams. There should be an advantage though to using

this formalism in more general studies of scattering amplitudes but we have not done so yet.

Could this formalism tell us about further unknown symmetries? In the light-cone

formulation of the N = 8 supergravity theory, the quadratic form was important in un-

derstanding the E7(7) invariance as a non-linear σ-type symmetry [15]. For the N = 4

case, with a dimensionless coupling constant there is no possiblilty of a σ-type symme-

try. Instead it highlights the importance of residual gauge invariance. For vector particle
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scattering, there must be derivatives acting on the external lines making the amplitudes

behave even more convergently [16] than predicted by pure power counting. Because of

supersymmetry that must also be the case for all scattering amplitudes. This situation is

analogous to Delbrück scattering.

We have completed our study of quadratic forms in both the supersymmetric and pure

Yang-Mills systems. It would be interesting to see what happens to these quadratic forms

when we attempt a systematic truncation of supersymmetry in these theories [17]. Perhaps

similar quadratic form structures also appear in four-dimensional higher spin theories in

light-cone gauge [18–20]. As stated in the introduction, one major follow-up would be to

carry over this study to the gravity-supergravity system and see what this can teach us

about the symmetries that abound there and N = 8 supergravity in particular.
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