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Atmospheric corrosion of Mg and MgAl alloys–characterization and mechanisms 

Mehrdad Shahabi-Navid 

Department of Chemistry and Chemical Engineering 

Chalmers University of technology 

Abstract 

The atmospheric corrosion of Mg and MgAl alloys was investigated. Corrosion tests were 

performed in the laboratory under controlled environment. CP Mg, AM50 and AZ91 samples 

were exposed at 95% RH and 22°C in the presence and in the absence of 400 ppm CO2 for 24 

h to 672 h. The passive film was characterized by means of XPS, FTIR, AES and XRD. The 

film consisted of MgO/Mg(OH)2 with carbonate on top in the presence of CO2. In addition, 

Al3+ was present in the film formed on the alloys. The thickening of the surface film was 

described in terms of a hydration mechanism. Also, a dissolution-precipitation mechanism was 

proposed for the break-down of the passive film in humid air. FIB cross-sectioning revealed 

that, in the presence of CO2, dissolution of the passive film increased compared to CO2-free 

exposures.   

The NaCl–induced atmospheric corrosion of Mg and MgAl alloys was studied in the same 

environment. Brucite (Mg(OH)2) was the main corrosion product in the absence of CO2. In the 

case of the alloys, meixnerite (Mg6Al2(OH)18·4.5H2O) was also detected. Magnesium hydroxy 

carbonates were the dominating corrosion products in the presence of CO2. All tested materials 

exhibited higher corrosion rates in the absence of CO2 compared to exposures with CO2. The 

electrochemical corrosion cells were more extensive in the absence of CO2 compared to when 

400 ppm CO2 was present. EDX analysis revealed that η-phase particles were more efficient 

cathodes compared to the β-phase and the interdendritic areas. The FIB and BIB techniques 

combined with SEM-EDX revealed that Cl accumulated at the bottom of the pits. 

The localized corrosion in the presence of NaCl (aq) was investigated in 2D and 3D. Plan view 

characterization was performed by means of SE and BSE imaging in SEM. Interference 

microscopy was employed to study the distribution of the pits after corrosion product removal. 

SEM-3D imaging of pitted regions was performed using a FIB-SEM system. It was shown that 

the β-phase acted as a barrier against corrosion, especially in the case of alloy AZ91. In the 

absence of CO2, the corrosion pits tended to interconnect below the metal surface, forming 

severely pitted regions. In the presence of CO2, the pits were isolated and shallower. The 

beneficial effect of CO2 on corrosion is attributed to its acidity that caused neutralization of the 

catholyte. 

 

Keywords: Atmospheric corrosion, Mg and MgAl alloys, Pitting, NaCl, CO2, Characterization, 

Thin film, SEM, EDX, FIB, BIB, XRD, XPS, FTIR, Interference microscopy, 3D imaging 
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1. Introduction 

1.1. Overview and background 

The limited availability of fossil fuels and the harmful impact of exhaust gases on the 

environment have motivated the automotive industry to look for lighter materials to reduce fuel 

consumption [1]. With a density of 1.74 g/cm3, magnesium (Mg) is the lightest metallic 

structural material, its density is about two-thirds that of aluminum (Al) and one-fourth that of 

iron (Fe). Also, its high specific stiffness as well as the excellent damping properties of Mg 

alloys meet the levels required in the automotive industry [1]. Moreover, the high strength to 

weight ratio of magnesium alloys makes them good candidates for aeronautical and aerospace 

applications [1, 2]. 

Being the eighth most abundant element in the earth’s crust, the beneficial intrinsic 

characteristics of Mg and its alloys such as high electrical and thermal conductivity (e.g. in 

portable laptops) good electromagnetic shielding (e.g. mobile telephone casings), dimensional 

stability, machinability, recyclability, etc. have made these materials good candidates for a wide 

range of applications. This includes household utensils [3, 4] electronic devices [3, 5] and 

biomaterials technology [6]. While commercially pure magnesium is seldom used, Mg alloys 

are widely employed. MgAl alloys are the most popular class of alloys due to their beneficial 

mechanical and casting properties [7].  

The majority of Mg alloy components are produced using the high pressure diecasting (HPDC) 

technique. This is a fast and cost-effective casting method in which the molten metal is injected 

into a mold under high pressure. Thus, components with high dimensional accuracy and thin 

sections can be manufactured using HPDC. However, the high pressure gives rise to a turbulent 

flow which causes surface oxide and gas entrapment in the cavity. The entrapped gas creates 

gas-filled pores in the cast part which impedes conventional heat treatment and reduces 

mechanical properties such as yield strength and ultimate tensile strength (UTS) [8, 9]. One 

way of solving this problem is to use mechanical working such as extrusion [10], rolling [11] 

and equal channel angular pressing (ECAP) ( [12]. Another option to attain less porous material 

in the first place is semi-solid casting (SSC) where the starting material is a slurry (mixture of 

solid and melt) rather a liquid. Hence, less turbulent flow is achieved in SSC which results in 

less porous components compared to HPDC [13]. SCC will be further explained in section 2.4.2 

of this thesis. 

Conventional Mg alloys have poor strength at high temperatures. A major problem at elevated 

temperatures is creep failure. In recent years, new Mg alloys have been developed that provide 

better creep resistance compared to conventional Mg alloys. This has been mainly achieved 

through two mechanisms: grain refinement and the formation of intermetallic precipitates. The 

magnesium rare-earth (Mg-RE) alloys are known to have sufficient creep resistance up to 

250°C [14]. The Mg-Y-Nd alloys (e.g. WE43 and WE54), with a good combination of 

mechanical and corrosion properties, have better creep resistance than most cast Mg alloys [15]. 

Another type of Mg-RE alloy more affordable than the WE series is Mg-Nd-Zn-Zr, referred to 
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as M10 (Russia) or ZM6 (China). Although not as strong as the alloy WE, ML10 or ZM6 has 

good creep resistance [16, 17]. Also, newly developed cast alloys such as the Mg-Zn-Si series 

are reported to have better creep resistance compared to conventional AZ91 [18]. The addition 

of silicon increases the fluidity of the melt and the resulting Mg
2
Si intermetallic, which has low 

density and high hardness, can impede grain boundary sliding at high temperatures [18]. Mg-

Sn-Sr alloy is also a good candidate for high temperature applications. Both Sn and Sr act as 

grain refiners in this alloy. Moreover, a series of intermetallic compounds form that have good 

thermal stability and provide the alloy with good creep resistance[19].  

A major problem with magnesium and its alloys is the relatively poor corrosion resistance [2, 

4] especially in the presence of chloride salts [20]. There are reports on the high susceptibility 

of Mg alloys to general and localized corrosion such as pitting and stress corrosion cracking 

(SCC) [2]. Magnesium alloys are prone to galvanic corrosion. A galvanic cell forms when two 

different metallic materials are connected electrically in the presence of an electrolyte. 

Consequently, one of the two components will be corroded preferentially (the anode). The 

standard electrode potential of Mg/Mg2+ is -2.38 V which is one of the lowest values (Li/Li+: -

3.04 V, Al/Al3+: -1.66 V, Fe/Fe2+: -0.41 V). In fact, magnesium has the lowest corrosion 

potential among engineering metals. The very fact that Mg corrodes easily has directed most of 

its applications in automobiles towards the interior parts such as dashboards, seat frames and 

steering wheels. The corrosion behavior of Mg alloys in corrosive solutions [21-23] and in the 

atmosphere [24-26] has been extensively investigated.  

1.2. Aim 

The aim of this thesis is to elucidate the atmospheric corrosion of Mg and MgAl alloys. The 

surface film that forms on Mg is known to be protective in dry air, however, at a high humidity 

Mg and its alloys corrode. Thus, it is important to understand the transition of the Mg surface 

film from its protective to its non-protective state and to recognize the respective characteristics 

of this film. 

Another goal of this thesis is to investigate the NaCl–induced atmospheric corrosion of Mg and 

MgAl alloys with respect to the effect of CO2 and microstructure. It can be assumed that the 

supply of CO2 is limited in many situations like crevice corrosion. Thus, it is important to 

compare atmospheric corrosion properties in the presence and in the absence of CO2. Although, 

the influence of CO2 on corrosion has been investigated previously, this parameter has not been 

studied much in relation to alloy microstructure. For example, different microstructural 

constituents of the materials can influence the corrosion properties. Hence, particularly in the 

case of MgAl alloys, it is important to investigate the correlation of microstructure and 

corrosion. 
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2. Theory and literature review 

2.1. Corrosion of Mg alloys 

2.1.1. General characteristics 

Magnesium, like most metals, forms a surface oxide in dry air [27]. Thus an MgO film forms 

on the surface that protects the metal from further oxidation. This is called the passive film. In 

the presence of water MgO is converted to Mg(OH)2 . Mg(OH)2 is thermodynamically more 

stable in water, thus less soluble logKs = -11.16 compared to logKs = -6.33 for MgO [27]. 

Experiments have shown that a hydrated MgO film forms on the surface of Mg alloys exposed 

to air [28]. 

Mg and its alloys are reported to corrode electrochemically in aqueous media [29]. The reaction 

includes anodic dissolution of Mg according to: 

𝑀𝑔(𝑠) → 𝑀𝑔2+(𝑎𝑞) + 2𝑒− (1) 

The corresponding cathodic reaction is the evolution of hydrogen [30]: 

2𝐻+(𝑎𝑞) + 2𝑒− → 𝐻2(𝑔) (2) 

In alkaline solutions hydrogen evolution occurs according to: 

2𝐻2𝑂 + 2𝑒− → 𝐻2(𝑔) + 2𝑂𝐻−(𝑎𝑞) (3) 

The electrochemical corrosion of Mg in water corresponds to the sum of the two half-cell 

reactions (1) and (3): 

𝑀𝑔(𝑠) + 2𝐻2𝑂 → 𝑀𝑔(𝑂𝐻)2(𝑠) + 𝐻2(𝑔) (4) 

Pourbaix diagrams show the thermodynamic stability of different phases in aqueous corrosion. 

Figure 1 shows the Pourbaix diagram for the magnesium-water system at 25°C, for logC = -6 

[31]. As can be seen in this figure, the Mg(OH)2 is insoluble in an alkaline environment. In 

contrast, it dissolves in neutral and acidic solutions where Mg2+ is produced. Both MgO and 

Mg(OH)2 are electronically insulating and therefore cannot act as cathodes. It should be noted 

that electrons can pass extremely thin insulating film by tunneling.     
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Fig. 1. Pourbaix diagram for Mg in water at 25°C, logC = -6 [31]. 

According to Song and Atrens, the rate of Mg corrosion depends on the availability of efficient 

cathodes [2]. Electrochemical corrosion of Mg can occur involving an external cathode (e.g. 

another metal connected to the Mg alloy) or an internal cathode (e.g. second or impurity phase) 

[2]. The presence of elements such as Fe, Ni and Cu in Mg alloys is deleterious for corrosion 

since they can form intermetallic compounds which act as cathodes [2]. High purity Mg alloys 

with a low amount of noble inclusions have higher corrosion resistance in chloride-containing 

environments than most commercial Mg alloys [32]. Figure 2 illustrates the electrochemical 

corrosion of Mg alloys with external and internal cathodes, respectively.  

 

 

 

 

 

Fig. 2. Schematic illustration of the electrochemical corrosion of Mg alloys, (a) with external cathode 

(α-Mg is dissolved and hydrogen evolved on the more noble metal), (b) with internal cathode (α-Mg is 

dissolved and hydrogen is evolved on the noble inclusions). 

2.1.2. MgAl alloys 

Over 90% of magnesium alloy components are produced via casting, especially diecasting [33]. 

Major commercial MgAl alloys include the AZ series (MgAlZn), the AM series (MgAlMn) and 
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mechanical properties of Mg. The former corresponds to the higher latent heat of solidification 

in the presence of Al [36], and the latter is mainly due to solid solution strengthening [37].      

There are reports on the beneficial effect of increasing Al content on the corrosion resistance of 

MgAl alloys [2, 32, 38]. The Al-rich Mg17Al12 second phase that forms in MgAl alloys plays a 

role in corrosion [39]. The high aluminum content of Mg17Al12 precipitates (also known as β-

phase) is believed to give rise a more protective passive film compared to that formed on the 

matrix material (i.e. solid solution of Al in α-Mg) [28, 40]. On the other hand, the β-phase is 

cathodic to the matrix [21, 41, 42]. The morphology and distribution of β precipitates has been 

reported to affect the corrosion of MgAl alloys [22-24]. A recent work by Cao et al. [43] noted 

that as-cast high purity Mg has a lower corrosion rate compared to as-cast and solution treated 

MgX alloys (X= Mn, Sn, Ca, Zn, Al, Zr, Si, Sr). It should be noted that high purity Mg and 

MgX alloys did not have the same concentration of impurities. Also, the solubility of the 

impurity elements in Mg may change due to the presence of various alloying elements.    

As mentioned earlier, certain elements such as Fe are very detrimental to the corrosion 

resistance of Mg alloys because they have low solubility in Mg and form intermetallic 

compounds that can serve as efficient cathodes. Therefore, a tolerance limit is defined for such 

elements as shown in Fig. 3. The tolerance limit represents the solubility limit with respect to 

the fabrication conditions (not the thermodynamic solubility). 

     

Fig. 3. Schematic illustration of the tolerance limit. 

As depicted in Fig. 3, the corrosion rate increases drastically when the impurity content exceeds 

the tolerance limit. This value is alloy-specific and changes with respect to the manufacturing 

technique and the presence of other elements [20]. For example, the tolerance limit for iron 

reported for high purity magnesium is 170 wt.ppm [44]. However, it is shown in the literature 

that when 7 wt.% and 10 wt.% of Al is added to Mg, the tolerance limit decreases to 5 wt.ppm 

and to a negligible amount, respectively. This behavior is attributed to the formation of a Fe-Al 

precipitate that is more active as a cathode than iron-magnesium particles [45]. Manganese is 

added to a number of commercial alloys such as AZ91 and AM50 in order to increase corrosion 

performance. It is observed that the tolerance limit for iron in cast Mg alloys depends strongly 

on the Mn content of the alloy. Consequently, the Fe/Mn ratio is used as the measure for the 

tolerance limit instead of the concentration of Fe [46]. In the presence of Al and Mn, Fe 
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dissolves in AlMn particles that are much less detrimental for the corrosion properties than Al-

Fe particles [32].        

2.2. Atmospheric Corrosion 

2.2.1. Atmospheric parameters 

In the atmosphere, the required electrolyte in order for the electrochemical reactions to proceed 

is provided by adsorbed water and liquid water. When exposed to air, most metals form a thin 

oxide layer that protects the metal against further oxidation. This protective layer is called the 

“passive film”. Although the passive film forms very fast, the reaction of the water adsorbed on 

the film with the substrate metal is slow [47]. It should be noted that in the case of noble metals 

such as gold, water is adsorbed directly on the metal surface. The amount of adsorbed water at 

a certain temperature depends on the vapor pressure of water, in other words on the relative 

humidity (RH). The RH is the ratio between the partial pressure of water in air and the saturation 

vapor pressure of water over liquid water at the same temperature: 

𝑅𝐻 =
𝑃𝐻2𝑂(𝑇)

𝑃𝐻2𝑂
𝑜 (𝑇)

 (5) 

The amount of adsorbed water is reported to be about 1 monolayer of water at 20% RH at 25°C 

and about 10 layers of water at 95% RH [47]. A typical adsorption isotherm is shown in Fig. 4. 

 
Fig. 4. Schematic adsorption isotherm for a metal exposed to air at 25°C [47]. 

Relative humidity is associated with dew point. The dew point is the temperature below which 

water vapor in the air condenses spontaneously, forming liquid water. For a constant amount of 

moisture in the air, RH decreases if the temperature increases. This is because, while water 

vapor pressure remains constant (constant amount of moisture), the saturation vapor pressure 

of water in air increases with temperature. In the outdoor environment, RH varies during the 

day as the temperature changes.     
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Liquid water can be provided by condensation of water vapor (i.e. RH>100% for a clean 

system) directly on a solid surface, mist (i.e. suspension of water droplets in the air which 

typically occurs in the cold air above a warmer body of water), rain, splashing, etc. However, 

water by itself causes only limited corrosion in an uncontaminated environment [2, 48]. This is 

basically due to the low conductivity of pure water.  

Atmospheric contaminants are deposited on surfaces by wet and dry deposition. In wet 

deposition, the substances are dissolved in an aqueous phase (e.g. rain). Deposition not 

involving water is considered dry deposition (whether the substrate is wet or dry). Atmospheric 

contaminants are produced both naturally and synthetically. Major pollutants include sulfur 

oxides (i.e. SO2). Atmospheric corrosion is usually stimulated in the presence of SO2, 

particularly in the case of steel [48]. In industrialized regions, human activities such as 

combustion of sulfur-bearing fuels are the main source of SO2. Natural sources of SO2 include 

volcanic eruptions, oxidation of hydrogen sulfide (H2S), etc.[49]. 

Nitrogen compounds play a crucial role in the corrosion of materials, particularly by forming 

nitric acid (HNO3). Ammonia (NH3) is also active in corrosion processes. For example, it 

stimulates corrosion in season-cracking (a type of SCC) of brass. Ammonia is naturally formed 

during thunderstorms. According to reports, the increased concentration of the ammonium ion 

in rainfall over Europe corresponds to the increased use of artificial fertilizers [49]. 

Saline particles are also present in the atmosphere and cause corrosion. These particles may be 

divided into two groups. The first group is ammonium sulphate, which accelerates corrosion 

initiation due to its hygroscopic and acidic characteristics. This compound is typically formed 

in industrial areas where significant concentrations of ammonia and H2SO4 aerosol co-exist. 

The second group includes marine salts with sodium chloride as the most important constituent 

[49]. Measurements show considerable concentrations of other ions such as potassium, 

magnesium and calcium in rainfall [50]. In regions where the temperature goes below zero 

during the winter, NaCl is used as an anti-freeze agent on roads. Chlorides are hygroscopic and 

the chloride ion is highly corrosive towards some metals. Deliquescent salts available in the 

environment (e.g. sea-salt and NaCl) and water soluble corrosion products (e.g. MgSO4 in case 

of Mg) reduce the RH required for condensation. NaCl (s), MgCl2 (s) and ZnCl2 (s) form 

aqueous solutions above 75%, 33% and 10% RH, respectively [49, 51]. This extends the 

duration of wetness, thereby increasing the extent of corrosion [48]. Such pollutants also 

increase the conductivity of the aqueous film [2]. Table 1 shows the relative humidities of air 

in equilibrium with saturated salt solution at 20°C. 
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Table 1. Relative humidities of air in equilibrium with some saturated salt solutions at 20°C [49].  

Salt in solution RH (%) Salt in solution RH (%) 

CuSO4·5H2O 98 NaCl 76 

K2SO4 98 CuCl2·2H2O 68 

Na2SO4 93 FeCl2 56 

Na2CO3·10H2O 92 NiCl2 54 

FeSO4·7H2O 92 K2CO3·2H2O 44 

ZnSO4·7H2O 90 MgCl2·6H2O 34 

3CdSO4·8H2O 89 CaCl2·6H2O 32 

KCl 86 ZnCl2·xH2O 10 

(NH4)2·SO4 81 NH4Cl 80 

 

Siliceous particles in the atmosphere are non-absorbent. Hence, they have little effect on 

corrosion. On the other hand, absorbent yet inert particles in the atmosphere, such as charcoal 

and soot, adsorb SO2. Accordingly, by either co-adsorption of water vapor or condensation of 

water these particles facilitate the formation of a corrosive acidic electrolyte solution [49]. 

Charcoal and soot are electronic conductors and are active cathodes when in contact with metals 

[52]. 

 Wetting frequency is also important. Rain, which can leach pollutants, causes less serious 

corrosion than continuous water splashing [48, 53]. If the flow of aqueous solution is fast 

enough to remove the protective layer, higher corrosion rates may result [54].  

Table 2 shows common anions and cations existing in rain, sea-salt and fine tropospheric 

particles (particles in the lowest section of Earth’s atmosphere). 

Table 2. *Examples of composition of rain, sea-salt and fine tropospheric particles. 

a: [55], b: [56], c: [57] 

Ions Rain (mg/l)a Sea-salt (%)b 
Fine tropospheric particlesc 

Urban (%) Rural (%) Marine (%) 

𝐶𝑙− 0.36 55 0.6 2 10 

𝑁𝑂3
− 0.56 <1 6 4 3 

𝑆𝑂4
2− 1.17 8 28 37 22 

𝐶𝑎2+ 0.20 1 2 0.4 3 

𝑀𝑔2+ 0.12 4 n/a n/a n/a 

𝑁𝑎+ 0.23 31 n/a n/a n/a 

𝑁𝐻4
+ 0.56 <1 8 11 7 

𝐾+ 0.12 1 1 1 3 

C(org+elem) n/a n/a 40 29 11 

 *The composition of sea-salt is constant while the composition of rain and tropospheric particles varies 

widely. 

Chloride is generally considered to be a major corrosion accelerator. Atmospheric corrosion of 

the passivating metals in the presence of Cl
-
 is often characterized by pitting. In chloride 

solutions, a critical potential is defined below which no pitting occurs, which is called the pitting 

potential. The pitting potential has often been reported to decrease linearly with log(Cl
-
) 



 
9 

(chloride activity or concentration) at constant pH [58, 59]. Research has shown [60, 61] that 

pit nucleation is set off at potentials below the pitting potential and above the passive potential. 

However, only metastable (or unstable) pits exist below the pitting potential. These grow for a 

brief period and then repassivate [60, 61]. Hence, although stable pits only form above the 

pitting potential, metastable pits form both below and above the pitting potential.  

The process of pitting initiation and propagation in the presence of Cl
-
 is complex and several, 

partly conflicting hypotheses have been proposed to describe how Cl
-
 helps destroy the passive 

film on different metals and alloys. Several researchers argue that adsorbed Cl
-
 causes local 

dissolution of the passive film [62, 63]. Other investigators have proposed that chloride 

penetrates the passive film forming metal chloride at the film/alloy interface [64-66]. 

2.2.2. Corrosion of Mg alloys in an ambient atmosphere 

Atmospheric corrosion environments may be divided into four types based on the level of 

contaminants: rural environments with a low level of anthropogenic pollutants, urban and 

industrial environments with higher levels of contamination and marine environment with a 

large quantity of salt aerosols. It has been reported in the literature [2] that Mg alloys show 

better corrosion resistance than mild steel in severe marine atmospheres. In general, the 

corrosion rate of Mg alloys is lower than for mild steel but greater than that of aluminum. Table 

3 compares corrosion rate values obtained for alloy AZ91 (~9 wt.% Al), AZ51 (~5 wt.% Al), 

Al, Zn and mild steel exposed to different atmospheric environments. According to the table, 

the two MgAl alloys have lower corrosion rates than mild steel in all environments. However, 

in almost all cases, the corrosion resistance of MgAl alloys is poorer than for Al and Zn. Also, 

the lowest corrosion rate value in each environment is that of aluminum. In general, the rate of 

atmospheric corrosion slows with the exposure time. Atmospheric corrosion exposures 

typically run for several years. 
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Table 3. Corrosion rates in different atmospheric environments-comparison of MgAl alloys, Al, Zn and 

mild steel.  

Material Environment 
Corrosion 

rate(µm/year) 
Reference 

AZ91 Rural 2.8 [67] 

AZ91 Marine 6.4 [67] 

AZ91 Urban/industrial 14 [67] 

AZ51 Rural 14 [68] 

AZ51 Marine 14.5 [68] 

AZ51 Urban/industrial 12 [68] 

Al Rural 0-0.1 [69] 

Al Marine 0.4-0.6 [69] 

Al Urban/industrial <1 [69] 

Zn Rural 0.2-3 [69] 

Zn Marine 0.5-8 [69] 

Zn Urban/industrial 2-16 [69] 

Mild steel Rural 5-9 [70] 

Mild steel Marine (mild) 26-60 [70] 

Mild steel Marine (severe) 57-100 [70] 

Mild steel Urban 7-45 [70] 

Mild steel Industrial 45-75 [70] 

 

Atmospheric corrosion can also be studied in a controlled environment in the laboratory. A 

laboratory experiment is often designed to accelerate corrosion compared to real atmospheric 

environments. Thus, investigation of corrosion properties can be carried out much faster in the 

laboratory than in real atmospheric environments. Moreover, the effect of individual parameters 

can be studied in laboratory exposures. This is not possible in a real atmosphere where different 

parameters (e.g. RH, temperature, concentration of corrosive substances, etc.) vary 

continuously. The most common laboratory test is known as “salt spray” where specimens are 

exposed in a chamber where a salt-water solution is sprayed indirectly (onto the specimens). 

This type of experiment was first used for corrosion testing in 1914. In 1939, the neutral salt 

spray test was established as ASTM Method B 117. The traditional B 117 standard specifies 

continuous exposure to a fog of 5% salt solution at 35°C. Two limitations of B 117 are that: (a) 

the 5% salt solution is not necessarily the best representative of the service electrolytes and (b) 

continuous exposure does not meet the real conditions where the specimens experience cyclical 

changes in wetness, temperature, sunlight and corrosive solution concentration. As a result, 

modifications have been made to B 117 in the past years. Various electrolyte mixtures are 

currently being employed for different applications. Many methods have been developed that 

use different combinations of wet/dry cycling, temperature cycling and solution concentration 

cycling [71]. An example is the salt spray test adapted by Volvo Corporation is the STD 
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1027,1375; an accelerated atmospheric corrosion testing particularly designed to simulate road 

environments where sodium chloride constitutes a dominating corrosive component [72].   

Salt spray tests are not the only methods used to investigate the NaCl–induced atmospheric 

corrosion behavior of metals. In the present work NaCl was added to the samples prior to 

exposure by spraying a saturated solution of NaCl in a mixture of ethanol and water. The 

sprayed samples were exposed in individual chambers by means of Nylon filaments and 

exposed to a controlled flow of air at constant RH and temperature. The RH was controlled by 

mixing dry and wet air. Similar controlled laboratory exposures have been performed 

previously [25, 73]. Another way of achieving a certain RH is to use a saturated or unsaturated 

salt solution in a closed container. In fact, any salt solution at a certain concentration and 

constant temperature is in equilibrium with a certain partial pressure of water vapor and 

provides a constant relative humidity [74]. This method has been used for atmospheric 

corrosion investigations [24, 75]. The latter technique was employed in the present work to 

study atmospheric corrosion in the absence of CO2. In this case, KOH solution was used both 

as RH regulator and CO2 getter. More information on the experimental set-up used in this work 

will be presented later in this thesis. Table 4 presents atmospheric corrosion rates measured for 

several materials (AZ91, AM60 (~5 wt.% Al), Al, Zn and carbon steel) using salt spray 

techniques and other controlled laboratory exposures [25, 76-79]. As can be seen, much higher 

corrosion rates were reported for MgAl alloys tested by salt spray techniques compared to 

constant RH laboratory exposures. Also, the corrosion rate for the materials tested in constant 

RH laboratory exposures have the order of Al<Zn<AZ91<AM60<carbon steel.  

Table 4. Corrosion rates in salt spray test and in constant RH controlled laboratory exposures–

comparison of MgAl alloys, Al, Zn and carbon steel.  

Type of experiment Material Details 
Corrosion rate 

(µm/year) 
Reference 

Salt spray 

AZ91 
Standard: GMN9319TP (168h: 1min 

salt spray+119min drying) 
600 [76] 

AM60 
Standard: GMN9319TP (168h: 1min 

salt spray+119min drying) 
3100 [76] 

Controlled 

laboratory exposure 

(constant RH and 

temperature) 

AZ91 
95% RH, 22°C, water vapour+350ppm 

CO2, 70µg/cm2 NaCl 
15 [25] 

AM60 
95% RH, 22°C, water vapour+350ppm 

CO2, 70µg/cm2 NaCl 
37 [25] 

Al 
95% RH, 22°C, water vapour+350ppm 

CO2, 70µg/cm2 NaCl 
1.2 [77] 

Zn 
95% RH, 22°C, water vapour+350ppm 

CO2, 75.5µg/cm2 NaCl 
14.8 [78] 

Carbon steel 
80% RH, 20°C, water vapour+350ppm 

CO2, 140µg/cm2 NaCl 
50.5 [79] 
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A common method to evaluate the corrosion resistance of metals and alloys is immersion testing 

where specimens are suspended in a corrosive aqueous solution [21-23]. The pH and the 

composition of the solution can be monitored online. Immersion testing is generally more 

accelerated than atmospheric corrosion testing, because abundant electrolyte is available 

throughout the experiment. The mass of the corrosion product is not measured in this type of 

experiment because corrosion products may fall off the specimen and dissolve. This is 

aggravated by hydrogen evolution which gives rise to cracking of the corrosion products. Table 

5 shows corrosion rates for AZ91D, AM60, Al, Zn and mild steel in immersion tests. A 

comparison of the corrosion rates assigned to an individual metal or alloy in Tables 3, 4 and 5 

shows that immersion tests tend to be more severe than the other types of corrosion experiments 

discussed in this section.  

Table 5. Corrosion rates in immersion test–comparison of MgAl alloys, Al, Zn and mild steel.  

Material Details Corrosion rate (µm/year) Reference 

AZ91D pH: 5.6, 3.5% NaCl ≤182 [80] 

AM60 (Fe/Mn: 0.0071) pH:~7, 5% NaCl 3407 [81] 

Al pH:~7, 0.01M NaCl,  0.68-1.76 [82] 

Zn Laboratory distilled water 36-77 [83] 

Mild steel pH: 5, 3% NaCl 1050 [84] 

 

2.3. Role of CO2 

The ambient concentration of CO2 is about 400 ppm with slight local variations according to 

the latitude and/or human activity. Notably, depletion of CO2 occurs during corrosion for 

instance in crevices [85] and underneath organic coatings [86]. Lindström et al. [25] have shown 

that the atmospheric corrosion of MgAl alloys is inhibited by CO2. 

pH and corrosion products 

The presence of CO2 changes the corrosion chemistry of the surface due to its acidic properties. 

The pH of water at equilibrium with the atmospheric level of carbon dioxide is 5.6 [27]. The 

slight acidity is due to the reactive dissolution of CO2. When dissolved in water, CO2 forms 

carbonic acid: 

𝐶𝑂2(𝑔) → 𝐶𝑂2(𝑎𝑞) (6) 

𝐶𝑂2(𝑎𝑞) → 𝐻2𝐶𝑂3(𝑎𝑞) (7) 
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Carbonic acid protolyzes to form carbonate and hydroxy carbonate: 

𝐻2𝐶𝑂3(𝑎𝑞) + 𝑂𝐻−(𝑎𝑞) → 𝐻𝐶𝑂3
−(𝑎𝑞) (8) 

𝐻𝐶𝑂3
−(𝑎𝑞) + 𝑂𝐻−(𝑎𝑞) → 𝐶𝑂3

2−(𝑎𝑞) (9) 

Equations 6-9 occur both in liquid water and in adsorbed water films that are thick enough to 

be liquid water-like. Carbonate can react with Mg2+ and form magnesium hydroxy carbonates, 

e.g.: 

5𝑀𝑔2+(𝑎𝑞) + 4𝐶𝑂3
2−(𝑎𝑞) + 2𝑂𝐻−(𝑎𝑞) + 4𝐻2𝑂 → 𝑀𝑔5(𝐶𝑂3)4(𝑂𝐻)2 ∙ 4𝐻2𝑂(𝑠) (10) 

CO2 can also react directly with solids such as Mg(OH)2 (brucite), forming magnesium 

hydroxy carbonate, e.g.: 

5𝑀𝑔(𝑂𝐻)2(𝑠) + 4𝐶𝑂2(𝑎𝑞) → 𝑀𝑔5(𝐶𝑂3)4(𝑂𝐻)2 ∙ 4𝐻2𝑂(𝑠) (11) 

Magnesium hydroxy carbonates are electronically insulating and therefore cannot act as 

cathodes. It has been suggested that magnesium hydroxy carbonates can physically block 

anodic and cathodic sites and decelerate the corrosion process [25, 87]. 

During the corrosion of Mg alloys in the presence of NaCl (aq), there is a local increase in pH 

in the cathodic regions. This is caused by hydrogen evolution (reaction (3)) in combination with 

the migration of Na+ ions to the cathodes. Conversely, the anodic areas are acidified because of 

the generation of MgCl2 (aq). Hence, a pH gradient is established between anode and cathode. 

In an immersion test, the pH gradients generated by the corrosion process are counteracted by 

diffusion of ions into the bulk solution and by convection. However, in atmospheric corrosion 

where the amount of electrolyte is very small, these processes are much less important and 

strong pH gradients are expected to remain. On the other hand, the limited amount of electrolyte 

and the resulting short diffusion paths makes the effect of acidic gases (such as CO2) more 

significant in atmospheric corrosion compared to immersion tests. 

In addition to MgO/Mg(OH)2, the passive film formed on MgAl alloys is expected to also 

contain Al3+. As can be seen in the Al Pourbaix diagram in Fig. 5, aluminum hydroxide is stable 

at neutral and slightly acidic pH. Thus, neutralization of the electrolyte by CO2 is expected to 

slow alumina dissolution [88, 89].  
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Fig. 5. Pourbaix diagram for Al in water at 25°C, logC = -6 [90]. 

A positive effect of CO2 on the corrosion of MgAl alloys has been reported in the literature [25, 

26]. The higher corrosion resistance in the presence of CO2 might be attributed to the 

magnesium hydroxy carbonate film and to the alumina in the passive film. In the absence of 

CO2, the corrosion product has been reported to include Mg(OH)2 and a small amount of 

magnesium hydroxy chloride [25, 26]. In the presence of ambient concentration of CO2, 

corrosion rates decrease significantly compared to exposure in the absence of CO2. Lindström 

et al. have proposed that the NaCl–induced atmospheric corrosion of MgAl alloys in CO2-free 

air, is similar to early stage corrosion of Mg alloys immersed in aqueous NaCl [25]. However, 

the corrosion rates reported for MgAl alloys in immersion tests (e.g. [80, 81]) are significantly 

higher than that in CO2-free air exposures (e.g. [25]). This may correspond to the greater 

availability of NaCl (aq) (i.e. larger volume of electrolyte) in immersion test compared to CO2-

free air exposures. In addition, the convection in the electrolyte prevents a local increase in pH 

at the cathodic area and leads to the dissolution of Mg(OH)2 (see Fig. 1).    

2.4. Role of microstructure 

2.4.1. Different phases and their properties 

MgAl alloys (e.g. the AM and AZ series) basically consist of three microstructural components:  

- α-Mg (solid solution of Al in Mg) 

- β (Mg-Al intermetallic) 

- η (Al-Mn intermetallic) 

According to the Mg-Al binary phase diagram in Fig. 6, the solubility limit of Al in α-Mg is 

12.7 wt.% at the eutectic temperature of 437°C. The eutectic composition contains 32.3 wt.% 

Al. The cast MgAl alloys form a dendritic microstructure in which the β-phase (Mg17Al12) is 

precipitated mainly between the dendrites. Also, there is an interdendritic region (also known 

as segregation band) that is rich in Al compared to the dendrites [91].  
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In the case of alloy AM50 with ~5 wt.% Al, when the melt is cooled below the liquidus line, 

the first solid that forms is α-Mg with significantly less Al than the maximum solubility at the 

eutectic temperature. Assuming an equilibrium solidification (in other words very slow cooling 

with sufficient solid-state diffusion) the final liquid transforms to a uniform solid solution at 

about 550°C. However, during a casting process, the cooling rate is fast and the system is far 

from equilibrium solidification. Hence, solid-state diffusion does not establish the equilibrium 

solid composition at each temperature as the alloy cools and the remaining liquid becomes 

increasingly Al-rich and solidifies at the eutectic temperature (i.e. 437°C) [92]. 

In non-equilibrium solidification, the amount of liquid present during cooling can be greater 

than predicted by the Lever rule. According to the Lever rule, complete mixing in the liquid 

and complete diffusion in the solid at each temperature are assumed to occur during cooling so 

that equilibrium is achieved. Non-equilibrium solidification can be described by the Scheil 

equation. In Scheil calculations, there is complete mixing in the liquid, but no diffusion in the 

solid is allowed [92]. Assuming that the liquidus and solidus curves are close to straight lines, 

the Scheil equation has the following form: 

𝐶𝑠 = 𝐾𝐶𝑜(1 − 𝑓𝑠)
𝐾−1 (12) 

where Cs is the concentration of solutes in the solid phase adjacent to the solid-liquid boundary, 

fs is the fraction of solid phase in the solidifying alloy, Co is the total concentration of solute in 

the alloy and K is the equilibrium partition coefficient. 

 

Fig. 6. Mg-Al phase diagram [93]. 

Measurements show [32, 41, 42] that η-phase is cathodic to both β-phase and α-Mg, and that 

the corrosion potential of β is between that of the other two constituents (being closer to that of 

η). 

According to the literature, from the microstructural point of view, the corrosion resistance of 

the MgAl alloys mainly depends on the Al content of the alloy (and its gradient within the Mg 

matrix) [24], and on the shape and distribution of the β-phase [22]. Other factors, such as the 

chemical composition of Al-Mn intermetallic compounds [32] and the α-Mg grain size [21] 

have also been reported to influence the corrosion behavior of MgAl alloys. 
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By comparing a series of diecast (DC) MgAl alloys investigated in both salt spray and 

immersion tests (5% NaCl solution), Lunder et al. [32] proposed that increasing the Al level up 

to 4 wt.% improves the corrosion resistance drastically, while any further increase up to 9 wt.% 

results in a modest enhancement. In contrast, Pardo et al. observed that alloy AZ31 with 3.1 

wt.% Al only reduced the corrosion susceptibility slightly compared to commercially pure Mg, 

while a huge improvement was achieved for the cast AZ80 and AZ91 alloys with 8.2 wt.% and 

8.8 wt.% Al, respectively. It should be noted that alloy AZ31 was in wrought condition and that 

the materials were examined by immersion testing in 3.5% NaCl solution [22]. Jönsson and 

Persson confirmed that higher Al content reduces corrosion susceptibility, when they compared 

the atmospheric corrosion behavior of cast AM50 (5 wt.% Al) and AZ91D (9 wt.% Al) in the 

presence of NaCl [24]. They also suggested that NaCl–induced atmospheric corrosion of MgAl 

alloys initiated at the center of larger α-Mg grains since they possessed a lower amount of Al 

than that of smaller grains [24, 94]. In the abovementioned investigations, the Fe/Mn ratio of 

the alloys was less than 0.04, thus the effect of Fe-containing impurities on corrosion is 

considered insignificant. 

It has been suggested that the β-phase has a dual role in the corrosion of MgAl alloys, meaning 

that it can serve both as a cathode and a corrosion barrier [21]. A continuous distribution and 

large fraction of β-phase has been shown to contribute significantly to reducing corrosion [21, 

24]. Figure 7 shows how β particles can form a physical corrosion barrier. As can be seen, 

corrosion is initiated on the surface and proceeds through α-Mg until it is stopped at the β 

interface. In this scenario, β-phase is not expected to be protective in the initial stage of 

corrosion, but only after long exposures. On the other hand,  after long exposures β (and in 

general all high Al content constituents of the microstructure) are reportedly affected by 

corrosion [24]. 

 

Fig. 7. Schematic cross-section overview of corroded AZ91D alloy, showing the β-particles 

surrounding the α-grains and acting as corrosion barriers.  [2, 24, 42]. 

Lunder et al. have shown that the presence of Fe in the Al-Mn particles affect their cathodic 

behavior. They reported that if the iron level is higher than a few percent, the intermetallic 

precipitate acts as an efficient cathode [32].  

Song et al. compared the microstructure of cast AZ91 alloys prepared using two different 

cooling rates [21]. They observed that the material manufactured with a slower cooling rate had 

larger α-grains and a lower amount of β-phase than one produced with a faster cooling rate. 

Also, in the case of the alloy with smaller grain size, β intermetallics were more continuously 
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distributed along the grain boundaries compared with agglomerated distribution of β in the case 

of the slowly cooled material. Their measurements showed lower corrosion rates for the rapidly 

cooled sample compared with the slowly cooled material [21]. There was no clear correlations 

between α grain size and the amount of β particles [21]. 

2.4.2. Modification of the microstructure using a SSC technique 

Development of the SSC technique in the 70s led to the production of cast alloys with better 

quality than alloys prepared using conventional casting routes (e.g. diecasting). The major 

principle in SSC is that the starting material is a semi-solid slurry instead of a liquid, which 

gives rise to less shrinkage porosity. Moreover, when a viscous slurry is injected into a mold, 

the flow is non-turbulent; which prevents the entrapment of gas in the mold [13, 95].  

In rheocasting (RC), one of the major SSC routes, the liquid material is mixed continuously 

with a stirrer while cooling down and becoming partially solidified, thus forming the slurry 

charge. The slurry is then injected into the mold cavity. As a result, the starting material is 

subject to a substantial shearing force which is believed to lead to a final microstructure with 

less dendritic structure [95]. Some of the alloys investigated in the present thesis were prepared 

by a modified RC technique. In this case, the melt was mixed continuously by means of a stirrer 

that was equipped with an enthalpy exchange module (EEM) on the head. The EEM consists 

of the same alloy as the melt. The EEM is lowered into the melt when the superheat reaches a 

desired value. The EEM cools the melt through the enthalpy of melting and induces shearing 

by stirring. The resulting slurry is made in typically less than ten seconds. The solid fraction of 

the slurry is adjusted by varying the liquid superheat and/or amount of EEM added. A vertical 

casting machine with a locking force of 50 tons was used in the present work.    

Another SSC route is known as thixocasting (TC), where the ingot is heated until a slurry is 

achieved and the slurry is injected into the mold [13]. In one version the ingot was prepared  

using a stirring and cooling procedure [13]. Thus, the main difference between RC and TC is 

that the slurry is made by cooling a liquid in the former and by heating a solid material in the 

latter case. 

Mathieu et al. compared the corrosion properties of MgAl alloys produced by SSC and HPDC. 

They reported an improved corrosion resistance in the case of the SCC material, because of the 

microstructural modification of the alloy. The major difference in the microstructure of the 

alloys prepared by SSC and HPDC was the formation of pre-existing α-Mg (in addition to the 

primary α) in the case of SCC alloy. The pre-existing α corresponds to the solid part of the 

slurry. When the slurry is injected into the mold the remaining liquid solidifies around the pre-

existing α and forms the so called primary α. The higher corrosion resistance of SSC produced 

alloy was attributed to the aluminum content of the α-Mg (both pre-existing and primary) [23].   
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3. Materials and methods 

3.1. Investigated materials 

The materials investigated in this work include high purity MgAl alloys AM50 and AZ91 

prepared by means of DC, HPDC and RC. In the case of DC and RC, a vertical casting machine 

with a locking force of 50 tons was used which had the capability of casting parts with a 

maximum projected area of 250 cm2 [96]. The HPDC-AM50 alloy was cast in a horizontal 

casting machine with a gate speed about ten times faster than for DC-AZ91. Commercially pure 

(CP) Mg (99.97%) was employed as a reference material. Table 6 shows the chemical 

composition of the materials. 

Table 6. Composition of the investigated CP Mg, AM50 and AZ91 materials. All values are in wt.%.  

Material Al Mn Zn Si Fe Cu Ni Ca Pb Sn 

CP Mg 0.0030 0.0023 0.0050 0.0030 0.0018 0.0003 0.0002 0.0010 0.0010 n.a. 

AM50 5.0 0.25 0.01 0.01 0.0016 0.0010 0.0007 n.a. n.a. n.a. 

AZ91 9.4 0.18 0.75 0.07 0.0074 0.0042 0.0007 0.0005 0.0011 0.0008 

 

3.2. Sample preparation 

The test coupons were machined as rectangular cuboids (approximate dimensions of 15×15×2 

mm3) with geometrical area of about 5.7 cm2. The samples were wet-ground on SiC paper 

followed by two polishing steps with 3 and 1µm diamond paste. A suspension of colloidal silica 

in water (OPS) was used in the finishing step. The cleaned and dried samples were kept in a 

desiccator over a desiccant for 24 h before exposure. NaCl was applied before exposure by 

spraying a saturated solution of NaCl in an 80/20 mixture of ethanol and water. Two levels of 

salt (i.e. 14 and 70 µg/cm2) were used. The salt was evenly distributed on the surface. Samples 

without salt were also exposed as references. Duplicate and triplicate samples were exposed. 

3.3. Exposure set-up 

3.3.1. Exposure in the presence of CO2 

Figure 8 shows the exposure set-up in the presence of CO2. The exposure apparatus is entirely 

made of glass and Teflon. The samples are suspended by Nylon filaments in individual 

exposure chambers. There are eight parallel chambers each with an inner diameter of 55 mm 

and a volume of 0.4 dm3. The chambers are immersed in a water tank held at the exposure 

temperature (i.e. 22.00±0.03°C). The temperature in the lab is kept at 25°C to avoid 

condensation in the parts of the apparatus outside of the water tank. A gas flow of 1000 l/min, 

corresponding to an average net flow velocity of 1 mm/s, passes through individual chambers 

in turn for 15 s. The relative humidity (RH) is regulated by mixing known amounts of dry air 

and air saturated with water vapor at the exposure temperature. The RH was 95.0% with an 
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accuracy of ±0.3%. CO2 is added from a cylinder to give a constant concentration of 400±20 

ppm. 

 

Fig. 8. The exposure set-up in the presence of CO2. (1) dried purified air; (2) flow control; (3) 

humidifier; (4) water tank at constant temperature; (5) CO2 inlet; (6) gas mixer; (7) eight exposure 

chambers with one sample in each; (8) solenoid valves; (9) wash bottles used for flow inspection. 

3.3.2. Exposure in the absence of CO2 

The experimental set-up in the CO2-free case is depicted in Fig. 9. The set-up includes a 

hermetically sealed desiccator (with a volume of 3 dm3), immersed in a water tank kept at the 

experiment temperature (i.e. 22.00±0.03°C). The desiccator contained about 500 ml KOH (aq) 

solution which both retrieved CO2 and regulated humidity to attain 95.0% RH. Specimens were 

hung on a holder inside the desiccator using Nylon filaments.  

 

Fig. 9. The experimental set-up in the absence of CO2. (1) water tank at constant temperature; (2) 

hermetically sealed desiccator; (3) platform for the desiccator; (4) specimens hung on the holder; (5) 

KOH (aq) solution. 
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3.4. Analytical methods 

3.4.1. Gravimetric analysis 

The samples were removed from the exposure environment for weighing at regular intervals 

using a six decimal balance. To avoid disturbing the corrosion process, specimens were 

weighed immediately. Hence, much of the water contained in the NaCl electrolyte remained 

during weighing and the corresponding values are accordingly termed wet mass gains. After 

discontinuing the corrosion experiment, the samples were stored in a desiccator over a desiccant 

for 24 h at room temperature so that the loosely bound water was removed. The specimens were 

weighed again and the corresponding values are termed dry mass gains. 

Metal loss measurements were performed by leaching and pickling under sonication at ambient 

temperature. Leaching was carried out by immersing the samples in Milli-Q (ultrapure) water 

for 30 and 60 s. Soluble corrosion products and unreacted salt were removed at this stage. 

Afterwards, the samples were pickled at room temperature in a solution of 20% chromium 

trioxide (CrO3) for 15 s following by several periods of 30 s. The samples were cleaned by pure 

water and acetone and finally dried by a stream of cold air. The metal loss and the mass of 

corrosion products were obtained by weighing the samples after pickling. Quantitative 

information on corrosion product stoichiometry can be achieved by calculating the corrosion 

product ratio according to: 

Corrosion product ratio = Mass of corrosion product / Metal loss (13) 

where: 

Mass of corrosion product = Dry mass gain + Metal loss (14) 

3.4.2. Optical microscopy 

The macroscopic and microscopic evaluations of each specimen were carried out using a Leica 

and an Axio Vert.A1 metallurgical optical microscopy (OM) systems. The OM was employed 

to study the as-received microstructure of the materials as well as the corrosion product 

morphology. 

A standard OM system consists of a light source which emits light on the specimen by means 

of a plain glass reflector installed in the microscope tube. An objective lens is located between 

the sample and the reflector which determines the image quality. Another set of lenses is placed 

near the eye as an eyepiece that can magnify the image (typically up to ×10).  

3.4.3. Interference microscopy 

After removal of the corrosion products in the pickling stage, 3D topography of the sample 

surface was obtained by interference microscopy using a RST Plus WYKO optical profiling 

system. The measurements were carried out in the vertical scanning interferometry (VSI) mode, 

where the vertical range was 0.5 mm with a resolution better than 10 nm. A 10× objective was 

used which produced a 457×610 µm² field of view. Also, line profiles were performed over 

typical corrosion pits. 
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An interference microscope is basically an advance optical microscope system plus an 

interferometer. Figure 10 depicts the schematic of an optical interference microscopy system. 

The principle of the technique is based on the destructive interference of coherent beams of 

light that are out of phase by half of a wavelength [97]. Interference microscopy technique uses 

fringe patterns to interpret the sample surface roughness. Fringes (interferograms) are the same 

as contour maps and allow a more accurate quantitative analysis of surface in comparison to 

similar methods (e.g. phase contrast). 

 

Fig. 10. Schematic illustration of optical interference microscopy system. 

3.4.4.  Infrared spectroscopy 

The infrared (IR) spectroscopy was carried out to identify the functional groups in the corrosion 

products. The spectrometer used was a Nicolet 6700 from Thermo Scientific with insert cells 

for diamond attenuated total reflection (ATR) (DurasamplIR II from SensIR Technologies) and 

diffuse reflection fourier transform infrared (FTIR) (Collector II from Thermo Scientific). The 

spectrometer was equipped with a deuterated triglycine sulfate (DTGS) detector. The 

measurement range lies between 550 and 4050 cm-1 with a nominal resolution of 2.0 cm-1. The 

sample is scanned 64 times and the data presented is an average value. 

Figure 11 shows a schematic illustration of an IR system. The principle of the IR spectroscopy 

is the light absorption. When infrared light hits the specimen, some of it passes through 

(transmitted) the substance and the rest gets absorbed. The peaks at the resulting spectrum 

correspond to the frequencies of vibrations between the bonds of the atoms. Hence, the 
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measured infrared spectrum is a fingerprint of a certain compound. The FTIR system is the 

preferred type of IR spectroscopy. The original IR systems were of the dispersive type where 

energy frequencies were analyzed individually. The main advantage of a FTIR instrument over 

the dispersive type is that the former employs an interferometer which makes it possible to 

analyze all infrared frequencies simultaneously. The signals resulting from the interferometer 

(interferograms) are interpreted to intensities by means of Fourier transformation [98]. 

 

Fig. 11. Schematic illustration of the FTIR system. 

3.4.5. X-ray powder diffraction 

Crystalline compounds were identified using a Siemens D5000 X-ray powder diffraction 

(XRD) system and a Bruker AXS D8 advanced XRD system with Göbel mirror, using CuKα 

radiation (λ = 1.5418 Å) and CrKα radiation (λ = 2.29Å), respectively. Data were acquired 

typically in the range of 2θ: 5–80° in 0.05° increments using grazing incidence (GI-XRD) 

arrangement at 3° and 0.5°. 

The principle of XRD is diffraction of the incoming X-ray. Figure 12 shows the illustration of 

XRD technique with respect to Bragg’s law (15). In this way, constructive interference of X-

ray occurs when the path length difference between two waves is equal to an integer (n) multiple 

of the wavelength (λ). On the other hand, the path difference between two waves is stated as 

2dsin(θ) (see Fig. 12) where d is the interplanar distance between the atomic planes of the solid 

crystal, 2θ is the angle of diffraction and n represents the order of diffraction. 

nλ = 2dsin(θ) (15) 
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Fig. 12. Schematic showing the constructive interference meeting Bragg’s law. 

The GI-XRD arrangement at low angle of incidence was chosen in the present thesis due to the 

thin corrosion product that formed on the tested specimens. This was especially important in 

the case of brief exposures and exposures in the absence of salt. In GI-XRD, the incoming X-

ray is radiated at the sample with a constant incidence angle. Also, a moving detector collects 

the diffracted X-ray photons at different angles. With the known X-ray wavelength (λ) and the 

measured θ, the d value is calculated (automatically by the software), which can be useful for 

identification of compounds. 

3.4.6. X-ray photoelectron spectroscopy 

A PHI 5500 X-ray photoelectron spectroscopy (XPS) system with an AlKα X-ray source 

(1486.6 eV) was employed. The acquisition conditions for the survey spectra were 93.9 eV pass 

energy, 45o takeoff angle and 0.4 eV/step. The acquisition conditions for the region spectra 

were 23.5 eV pass energy, 45o takeoff angle and 0.1 eV/step. Depth profiling was performed 

by successive XPS analysis and argon ion etching (4 kV) at an etch rate of 20.3 Å/min 

(calibrated by using Ta2O5 with known thickness under the same test conditions). 

The XPS is a surface sensitive analysis that works at very high vacuum (<10-8 millibar). It is 

capable of determining the composition of the surface layer and the element distribution in 

depth as well as the chemical state of an element. Although the depth resolution of the technique 

is generally smaller than 10 nm, the lateral resolution of a traditional XPS (e.g. the system that 

was employed in the present thesis) is ~1 mm. However, the modern XPS can reach lateral 

resolutions of ~10 µm. Figure 13 demonstrates the generation of a photo electron by X-ray 

emission. As shown in this figure, X-ray radiation ejects an electron which transfers to the 

vacuum carrying chemical information about the material. 
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Fig. 13. Schematic illustration of an X-ray photo electron generation. 

3.4.7. Auger electron spectroscopy 

The Auger electron spectroscopy (AES) was carried out by means of a PHI 700 Xi scanning 

Auger nanoprobe with an accelerating voltage of 10 kV and beam current of 10 nA. Depth 

profiling was performed with 1 kV Ar+ ion sputtering. The sputter rate at the sample position 

in the instrument was determined to be 5 nm/min for Ta2O5. The computer software PHI Matlab 

and the linear least squares (LLS) routine were used to separate the metal and metal 

oxide/hydroxide components in the depth profiles. 

Just like the XPS technique, AES is a surface sensitive method. It is used to probe the 

composition of the surface layer and the element distribution in depth. It can also provide some 

chemical state information, but not as well as XPS. However, AES possesses high lateral 

resolution in the range of several tens of nm. An electron beam is normally employed as the 

source of energy in an AES instrument. As illustrated in Fig. 14, the electron beam may kick 

an electron off its position in an inner shell. Thus, the atom becomes energetically unstable. 

Relaxation occurs rapidly via an electron falling from a higher level to fill the core hole. The 

energy released in this process aids in the emission of the third electron. This is called the Auger 

electron, which contains characteristic information about the material. It should be noted that 

the atom may compensate the energy instability in a second way that will be explained in section 

3.4.8. (Energy dispersive X-ray spectroscopy (EDX)) of this thesis. Furthermore, Auger 

electrons may be produced by X-ray radiations as well. In fact, Auger electrons are always 

collected in the XPS technique, however they are normally ignored. The kinetic energy of the 

Auger electron can be calculated as follows: 

𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 = 𝐸𝐴 − 𝐸𝐵 − 𝐸𝐶 − ∅ (16) 

where EA-EB is the energy gained by core-hole annihilation, EC is the energy needed to 

overcome the binding energy of the Auger electron to the work and ϕ refers to function.      
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Fig. 14. Schematic illustration of an Auger electron generation. 

3.4.8. Energy dispersive X-ray spectroscopy 

In the present work EDX was carried in two scanning electron microscopes (SEMs)1. An Oxford 

Inca EDX detector was employed in both SEMs, which allowed the analysis of the local 

chemical composition and the elemental mapping. An electron beam with accelerating voltage 

of 15-20 kV was employed where the specimen was mounted at the working distance of 9-12 

mm. Aperture size was adjusted to obtain an optimum signal count. 

Figure 15 illustrates the characteristic X-ray generation as a result of electron beam radiation. 

When the beam kicks an electron off its location, another electron from outer shell migrates to 

the inner shell to fill the vacancy. As mentioned in section 3.4.7. (AES) of this thesis, in this 

case an Auger electron may be emitted. Instead X-ray may be generated as depicted in Fig. 15. 

This radiation is called the characteristic X-ray which contains unique information about the 

respective atom. The energy of the characteristic X-ray can be calculated as follows: 

ℎ𝑣 = 𝐸𝐴 − 𝐸𝐵 (17) 

where h is the Plank’s constant, ν is the frequency of the radiation and as mentioned earlier EA-

EB is the energy gained by core-hole annihilation. 

As the atomic number increases the probability of characteristic X-ray emission also increases 

while that of AES decreases. 

 

                                                           
1 See section 3.4.9. (SEM) for the specifications of the microscopes. 
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Fig. 15. Schematic illustration of characteristic X-ray generation. 

3.4.9. Scanning electron microscopy 

The microstructure of the as-cast material and the morphology of the corroded surfaces were 

investigated using an FEI Quanta 200 environmental scanning electron microscope (ESEM) 

and an Ultra 55 FEG SEM. Carl Zeiss AxioVision image analysis software was also employed 

to measure the area fraction of Mg-Al intermetallic particles (β-phase). A 1% nithal etchant was 

used to reveal alloy microstructure.  

The SEM employs a narrow beam of electrons that is focused on the sample surface. Hence, 

atoms emit photons and electrons due to the impact of the incoming beam. As mentioned earlier, 

the analysis of a photon produced in this way is called EDX. The generated electrons are used 

for imaging. SEM imaging has two main modes based on the type of generated electrons: (a) 

secondary electron (SE) imaging and (b) backscattered electron (BSE) imaging. Figure 16 

illustrates the process of SE and BSE generation. Thus, if the incoming electron escapes from 

the substance matter and returns towards the electron source, it is called BSE. BSEs may have 

precisely the same amount of energy as the incoming beam (elastic scattering) or they may have 

lost part of the original energy (inelastic scattering). On the other hand, the incident beam may 

hit and dislocate an electron from the substance atom that is called the SE. In this case the 

incoming beam scatters inelastically. 
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Fig. 16. Schematic illustration of (a) BSE and (b) SE generation. 

The interaction volume of the incident beam and the substance matter determines the depth 

from which the electrons (particularly BSEs) and photons are emitted. The interaction volume 

has a pear-like shape and is dependent on the accelerating voltage and density of the sample. 

The illustration in Fig. 17 suggests a typical interaction volume for metals under 20 kV 

accelerating voltage. As can be seen, while BSEs are emitted from sections near the surface to 

the sections as deep as about 1 µm, the SEs are generated only at a thin subsurface region (1-

50 nm deep). Figure 17 also shows that AES is a surface sensitive technique (Auger electron 

being generated 0.5-3 nm from top surface). Please note that the thickness at which Auger 

electrons are generated is analogous to that of X-ray photo electrons. 

 
Fig. 17. Schematic of the interaction volume excited by a primary electron beam with 20 kV energy. 



 
29 

Since SEs are produced at a shallow thickness beneath the surface, the SE imaging mode gains 

better topography information than normal BSE imaging2. Hence, edges and sharp corners emit 

more SEs and will therefore be brighter in SE micrographs than horizontal surfaces. Figure 18 

shows SE emission from a steep surface versus a horizontal surface. A greater fraction of 

excited volume lies along the sample surface of the steep surface compared to the smooth 

surface. Hence, more SEs can escape at the steep surface. On the other hand, BSE emission is 

sensitive to the local sample density and produces a chemical composition contrast. In general, 

the aforementioned contrast is referred to as Z-contrast3. In this way, a heavier (denser) 

substance is expected to emit more BSEs than a lighter (less dense) one. 

 

Fig. 18. Edge effect on the SE topographical imaging. 

3.4.10. Focused ion beam milling 

Focused ion beam (FIB) milling is a powerful method to produce cross-sections and thin foils. 

The thin foils are mainly used in transmission electron microscopy (TEM) analysis. Also, the 

foils can be used in the transmission electron backscatter diffraction (t-EBSD) technique. The 

cross-sections made by FIB are normally used for SEM imaging and SEM-EDX. 

The incident beam in the FIB consists of Ga ions rather than electrons as in the SEM. Thus, it 

can be more destructive to the surface. In fact, this is the principle of milling, where material is 

removed when the ion beam scans the surface. 

An FEI Versa 3D DualBeam FIB equipped with a Ga ion source was used to prepare cross-

sections. The DualBeam system can use both electron and ion beams, where the ion beam is 

used mainly for the milling and Pt deposition processes and the electron beam is used for 

imaging and gentle Pt deposition. 

 

                                                           
2 A specific BSE imaging mode can also be set to exclusively obtain topographical micrographs.  
3 “Z” represents the atomic number of elements. 
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3.4.10.1. Preparation of single cross-section using FIB 

In the present thesis, FIB was employed for preparing cross-sections of corroded specimens. 

To achieve a smooth surface, several milling steps were performed where the ion beam current 

decreased gradually from the first (rough cutting) to the last (final polishing) step. Ion beam 

current was set at a range of 44 nA-2.7 nA at a 30 kV accelerating voltage. The sample was 

tilted 7° while milling, thus a 45° cross-section was obtained. The post-preparation analysis 

(e.g. EDX) was performed using a regular SEM system where the milled sample was mounted 

on a 45° pre-tilted holder. Hence, the milled cross-section was perpendicular to the electron 

beam and there was no obstacle between the cross-sectional surface and the beam source, 

neither between the cross-section and the detectors. Figure 19 shows the schematic of the 

milling and post-preparation analysis set-up.  

3.4.10.2. 3D imaging using FIB 

The FIB system was also used to prepare a stack of cross-sectional images after removing the 

corrosion products to prepare a 3D image. In this case, a constant ion beam current of 28 nA at 

30 kV voltage was employed. Also, the thickness of each slice was approximately 500 nm. SE 

in-situ imaging was performed at the end of each milling pass at an accelerating voltage of 5.00 

kV and a working distance of 10.0 mm. Figure 19 shows the schematic of slice and imaging 

and 3D reconstruction. The stack of slices prepared using FIB was compiled, aligned and 

processed by FIJI software (a distribution of open-source software ImageJ) [99] and a 3D 

illustration was created. 
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Fig. 19. Illustration of FIB milling showing the “slice and image”, “3D reconstruction” and “post-

preparation analysis” set-ups. 

3.4.11. Broad ion beam milling  

The FIB is not the most efficient tool for making wide cross-sections. In such cases, broad ion 

beam (BIB) milling, also known as “slope cutting”, is often recommended. It is a surface 

preparation technique that utilizes a large (~1 mm) ion beam. A solid sputter-resistant shield 

blocks half of the beam and protects the top surface while stripping away a thin section of the 

sample.   

In the present work, the corrosion layer and corrosion pits were studied using wide cross-

sections (~500 µm) prepared by means of a Leica EM TIC 3X BIB equipped with three Ar ion 

sources. Figure 20 shows a schematic illustration of the BIB system set-up. As can be seen in 

this figure, a mask is implemented in the vacuum system in order to protect the sample surface 

from ion exposures. In the present work, an additional protection was employed by adding a Ni 

or Au coating on the top surface. The mask, which was in contact with the sample, was 

continuously cooled during milling to avoid thermally activated compositional changes in the 

corrosion products. 
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Fig. 20. Schematic illustration of BIB milling system. 
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4. Results and discussion 

4.1. Investigation of the oxide film 

4.1.1. Characterization 

The surface film formed on CP Mg and on MgAl alloys in humid air and in the absence of NaCl 

was investigated by XPS. Using Ar+ sputtering, depth profiles were obtained for polished 

specimens exposed for 96 h in the absence and in the presence of 400 ppm CO2, at 22.00°C and 

95% RH. To obtain the contribution corresponding to the different chemical states of the 

elements, the recorded XPS C 1s, Mg 2p and Al 2s photoelectron peaks were curve-fitted using 

the PHI Multipak software. The C 1s component representing adventitious hydrocarbon 

contamination was excluded from the depth profiles. Figure 21 (a) and (b) depict the depth 

profiles of CP Mg in the presence and absence of CO2, respectively. In both cases, O and Mg2+ 

(Mg compound) were detected on the surface. In the presence of CO2, carbonate that was 

confined to a very thin surface layer was also available. . As the analysis probed deeper strata 

of the film, the Mg2+ signal increased, reaching a maximum of 40-45%, at about the depth where 

the Mg metal peak appeared. The metallic Mg did not show up until after several minutes of 

ion etching. The CO2 free exposure required an etching time five times longer than one with 

400 ppm CO2 before the Mg metal appeared. This indicates that the film was thicker in a CO2 

free environment. 
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Fig. 21. XPS depth profiles for CP Mg exposed at 95% RH and 22°C for 96 h (a) in the presence and 

(b) in the absence of CO2 (Adventitious carbon at the surface has been removed). O/Mg2+ ratios for CP 

Mg (c) in the presence of CO2 and (d) in the absence of CO2. 

In Fig. 21, (c) and (d) show O/Mg2+ atomic ratios for the film formed on CP Mg in the presence 

and in the absence of CO2, respectively, calculated from the XPS data. The O/Mg2+ ratio at the 

top of the surface film, formed on CP Mg in the absence and presence of CO2, was about 2 and 

3, respectively. The variations in the ratios are attributed to the presence of different compounds 

on the film in each case.  

Figure 22 shows the C 1s, Mg 2p and Al 2s XPS spectra for alloy AM50 after 96 h exposure at 

95% RH and 22°C, in the presence of 400 ppm CO2 and in the absence of NaCl. As can be seen 

in Fig. 22 (c), Al
3+

 was detected after 4 minutes of sputtering. At this stage the metallic Al peak 

had lower intensity compared to Al
3+

. In the presence of CO2, Mg2+ and carbonate were both 

detected on top of the surface film. The two peaks were attributed to MgO/Mg(OH)2 and 

magnesium hydroxy carbonates, respectively. While the Mg2+ peak was detected even after 

long sputtering, the carbonate peak disappeared after 9 minutes of Ar+ etching. Similar 

compositional variation was observed in the absence of CO2, except that no carbonate was 

detected in this case. The XPS results for alloy AM50 concerning the MgO/Mg(OH)2 and 

hydroxy carbonate compounds are in good agreement with the aforementioned characterization 

of the CP Mg surface film. 
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Fig. 22. XPS spectra: (a) C 1s, (b) Mg 2p, (c) Al 2s; for HPDC AM50 exposed in the 95% RH and 

22°C, in the presence of 400 ppm CO2 and in the absence of salt for 96 h. 

Figure 23 shows FTIR curves for CP Mg exposed in the presence and in the absence of CO2. 

Pure MgO, brucite Mg(OH)2 and dypingite Mg5(CO3)4(OH)2·5H2O were used as reference 

materials. In line with the XRD results (not presented here), CP Mg exposed in the absence of 

CO2 exhibited a sharp peak at 3702 cm-1 that was attributed to brucite. CP Mg exposed in the 

presence of CO2 exhibited a peak at the same position but at a lower intensity. The broad 

absorption peak in the range 3600-3000 cm-1 is attributed to OH stretching vibrations in water 

and hydroxide. The relatively weak peak at about 1650 cm-1 is attributed to OH bending 

vibrations in water. The peaks centered at around 1500 cm-1 are attributed to C-O stretching 

vibrations in carbonate. A comparison with the IR spectra of dypingite and hydromagnesite (the 

latter from [88]) showed indications for magnesium hydroxy carbonate in all cases. Thus,  the 

peaks at about 580 cm-1, 860, 1490 and 1550 cm-1 are tentatively attributed to 

Mg5(CO3)4(OH)2·5H2O. The observation of carbonate peaks on the sample exposed in the 

absence of CO2 is attributed to uptake of CO2 during measurement. 
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Using XRD and FTIR, brucite was not detected on the MgAl alloys after 96 h exposure in the 

absence of CO2. The lack of evidence for brucite in this case is attributed to the presence of 

aluminum in the corrosion product film (see Fig. 22). In fact, partial substitution of Al3+ for 

Mg2+ in the layered brucite structure results in the formation of MgAl layered double hydroxides 

(LDHs) with anions intercalated between the positively charged brucite-like layers [100]. 

Substitution of small amounts of Mg2+ by Al3+ reportedly results in a broadening of the brucite 

XRD peak [101] making identification more difficult. Also, Al3+ substitution results in 

hydrogen bonding of the hydroxide ions, explaining the lack of evidence for brucite by FTIR. 

 

Fig. 23. FTIR curves acquired from CP Mg exposed at 95% RH and 22.00°C for 96 h (a) – in the 

presence of CO2, (b) – in the absence of CO2. 

Brucite is known to be a dominant corrosion product on Mg in the absence of CO2[25]. 

Magnesium hydroxy carbonates have been reported to be the dominant corrosion products in 

the presence of CO2 [88]. However, other corrosion products have been also reported. Table 7 

includes a list of compounds reported as corrosion products on Mg and MgAl alloys when 

exposed in high humidity. Table 7 also presents the respective O/(Mg2++Al3+) atomic ratio for 

each compound. 
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Table 7. Atmospheric corrosion products reported in the literature for Mg and MgAl alloys with their 

respective O/(Mg+Al) ratios.  

Reported corrosion product  O/(Mg2++Al3+) Reference 

MgO  1 [28, 102, 103] 

Mg(OH)2  2 [94, 104-106] 

Mg6Al2(OH)18.4.5H2O  2.8 [104] 

Mg5(CO3)4(OH)2.4H2O  3.6 [94, 104, 106] 

Mg5(CO3)4(OH)2.5H2O  3.8 [29, 104] 

Mg5(CO3)4(OH)2.8H2O  4.4 [104] 

MgCO3  3 [29, 94] 

MgCO3.3H2O  6 [94] 

MgAl2(OH)8  2.6 [29] 

Mg2(OH)2CO3.3H2O  4 [105] 

Based on observations in the present work and reports in the literature, a schematic 

generalization is proposed for the compositional variation within the surface film that forms on 

Mg and MgAl alloys in a high humidity atmosphere in the absence of salts and other pollutants. 

The schematic is presented in Fig. 24. When exposed to ambient concentrations of CO2, a 

magnesium hydroxy carbonate is expected to form on the outermost part of the film. Since 

hydromagnesite is a thermodynamically stable magnesium hydroxy carbonate [107], an 

O/(Mg2++Al3+) value of 3.6 may be expected on the top surface. It is suggested that brucite is 

not completely converted to hydromagnesite, at least initially. Accordingly, as shown in region 

1 in Fig. 24 (the blue dashed ellipse), there should be a transition from hydromagnesite (3.6) to 

brucite (2). As mentioned earlier, MgO that forms on the fresh sample is not expected to 

completely convert to Mg(OH)2. Hence, there will be a second transition from Mg(OH)2 to 

magnesium oxide (region 2 in Fig. 24 (the red dashed ellipse)). A plateau region is proposed to 

come immediately after the second transition (i.e. region 2). Ideally, the plateau would have a 

O/(Mg2++Al3+) value of 1 corresponding to MgO. However, as mentioned earlier, MgO may be 

hydrated resulting in a slightly higher O/(Mg2++Al3+) value. The XPS results of the present 

work for the alloys suggest the presence of Al, especially in the bottom of the film. It has been 

reported that in the case of MgAl alloys an Al-rich layer is present at the oxide-metal interface 

[108]. Assuming an enrichment of Al at the interface, a rise at the end of the curve in Fig. 24 is 

expected (see region 3 in Fig. 24 (the green dashed ellipse)). In addition, Nordlien et al. reported 

that extended exposure of Mg to humid air causes a hydrated region to form between the initially 

formed dense MgO layer and the metal [103]. Such a hydrated region might also be reflected 

in a rise of the curve in Fig. 24 after the plateau region.  
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Fig. 24. Schematic proposal for the compositional variation within the surface film formed on Mg and 

MgAl alloys after exposure in a high humidity atmosphere. 

4.1.2. Formation and growth 

When exposed to dry air or oxygen, metals form an oxide film. The film formation was 

described using the Cabrera-Mott field-assisted cation transport mechanism and the growth of 

the film was fitted to a logarithmic relation [109]. Do et al. [110] showed that a Cabrera-Mott 

type MgO film forms on Mg in the presence of water vapor or humid air. For both Mg [110] 

and MgAl alloys [111], a three-stage process was proposed describing the formation and 

growth of the oxide film. Stage one included dissociative water adsorption at low exposures 

(up to ~0.7 L4). Stage two included fast oxide island nucleation and growth, up to ~5 L 

exposure. Eventually, in the third stage, the bulk oxide film grew in very high exposures. Stage 

three was described by inverse logarithmic kinetics. It should be noted that the first two stages 

of film formation and growth at low exposures was carried out by AES and XPS analysis (film 

thickness about 1 nm). Also, the third stage (bulk oxide thickening) was performed in 

laboratory air at 294 K and 50-65% RH (film thickness about 4 nm). 

The formation of the MgO film is not the focus of the present work. However, the growth of 

the film was studied to some extent. The XPS results showed that the surface film formed in 

the absence of CO2 consisted of a hydrated MgO bulk and magnesium hydroxide top layer with 

a total thickness of approximately 10 nm implying that the original Cabrera-Mott film present 

before exposure has grown. It should be noted that in the presence of CO2 the total thickness 

of the film was in about 2 nm (paper IV). 

4.1.2.1. MgO film growth by chemical reaction between Mg and Mg(OH)2 

Figure 25 illustrates the hydration of the MgO film. As shown in Fig. 25, a MgO film is present 

in dry air. When exposed to water vapor, the MgO surface chemisorbs water as presented in 

                                                           
4 The langmuir (L) is a unit of surface exposure used in ultra-high vacuum studies (1 L = 1.33 × 10-4 Pa·s). 
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reactions (18)–(21). Refson et al. showed that water chemisorption is favored on MgO (111) 

surface rather than on a (001) surface [112]. Adsorbed water is subjected to autoprotolysis and 

OH
-
 and H

+
 form (reaction (19)). Surface hydroxylation of MgO occurs transporting it to 

Mg(OH)2. One OH
-
 group comes from autoprotolysis reaction and the other OH

-
 group is 

resulted from the reaction of H
+
 from autoprotolysis and O

2-
 from MgO (reaction (20)). 

 

Fig. 25. Schematic illustration of the hydroxylation of the MgO (111) surface. 

Figure 26 illustrates the thickening of the oxide film through a hydration mechanism. Also, in 

Fig. 26 the dissolution-precipitation mechanism is illustrated (see the following section). As 

mentioned above, the surface is already hydroxylated when exposed to the high humidity 
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environment. It is proposed that H2O reacts with MgO, not only at the surface but also at grain 

boundaries (gb)s in the MgO film. In this way hydroxide decorates the MgO (gb) all the way to 

the metal-film interface.  At the metal-film interface, Mg(OH)2 (gb) reacts with the metal 

forming MgO and H at the interface (see reaction (22)). Hence, the film grows by a chemical 

reaction. The H produced can dissolve in the metal (see reaction (23)) or result in the generation 

of H2 gas (see reaction (24)). The H2 gas generated might crack the film on its way out (see Fig. 

27 (a)). Using secondary ion mass spectroscopy (SIMS) technique, Unocic et al. [113] revealed 

that H penetrated the surface film to the underlying metal for MgAl alloy AZ31B (~3 wt.% Al 

and ~1 wt.% Zn) exposed for 24 h in de-ionized water at room temperature.  

While the conversion of crystalline MgO to Mg(OH)2 is thermodynamically favored under 

ambient conditions [114], the reaction is reported to be slow. Thus, Birchal et al. [115] reported 

that while the conversion of MgO (powder and single crystal) to Mg(OH)2 in contact with liquid 

water and water vapor is initially rapid, it slows down quickly , resulting in incomplete 

conversion to Mg(OH)2 even after long exposure times. However, the presence of MgO even 

after long exposures is not necessarily due to the slow conversion of MgO to Mg(OH)2. Instead 

fresh MgO is formed at the metal-film interface by reaction between Mg(OH)2 (gb)and Mg 

(reaction 22).  

The thickening of the film by reaction between Mg(OH)2 (gb)and Mg (reaction 22) may depend 

on the exposure temperature and the grain size of the film. Thus, higher temperature and smaller 

grain size (higher fraction of grain boundaries) are expected to increase the rate of reaction. 
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Fig. 26. Schematic illustration of the hydration mechanism and dissolution-precipitation mechanism.  

4.1.2.2. Dissolution-precipitation 

As noted above the air formed MgO/Mg(OH)2 film grows continuously. As the film becomes 

thicker, the diffusion of water through the film in the form of Mg(OH)2 (gb) slows. The plan-

view and cross-sectional SEM images (see Fig. 27) showed localized corrosion features on the 

Mg surface in the form of nodules and filaments that were typically couple of microns thick. 

This localized corrosion suggests that another corrosion mechanism has been active in addition 

to the chemical reaction described above. 
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Fig. 27. Plan-view (tilted surface) and cross-sectional SE micrographs demonstrating corrosion 

features in the form of nodules and filaments, (a) & (b) in the presence of 400 ppm CO2 and (c) & (d) 

in the absence of CO2. 
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It is proposed that localized corrosion is caused by a dissolution-precipitation mechanism 

resulting in film thinning. As discussed above (see section 2.2.1.), at 95% RH there is be about 

10 layers of water (~3 nm thick) adsorbed on the sample surface on top of the Cabrera-Mott 

oxide film (2-4 nm [110]). The adsorbed water layer is assumed to be liquid-like. Accordingly, 

MgO can dissolve in it, generating Mg2+ ions (see reaction (25)). However, due to the small 

volume of water, it can only dissolve a very small amount of MgO. Where the film is thin 

enough water can react directly with the bulk metal (see reaction (27)), releasing more Mg2+ in 

the solution. It may be noted that MgO is significantly more soluble than brucite. Thus, Ksp 

MgO = 1×10-6.33 while Ksp Mg(OH)2 (brucite) = 1×10-11.16.  In addition, the hydrated solid MgO 

(i.e. Mg(OH)2) is not identical to brucite [102]. Thus, according to Grauer [116], the magnesium 

hydroxide surface layer resulting from the hydration of solid MgO is significantly more soluble 

than brucite with Ksp = 1×10-9.2. This implies that an aqueous solution that is saturated with 

respect to the MgO/Mg(OH)2 film is super-saturated with respect to brucite. As a result, brucite 

crystallites can nucleate from the solution (see reaction (26)).  

The MgO dissolution is favored around the brucite nuclei. In the other words, a correlation 

between the source and the sink sites is expected. Also, reports indicate [117-119] that MgO is 

attacked preferentially by water at the sites of low coordination (i.e. <5-fold).  

When exposed to ambient levels of CO2, film dissolution is assisted by the acidity of this gas. 

As a result reaction (25) and (27) are favored. 

𝐶𝑂2(𝑎𝑞) + 𝑂𝐻−(𝑎𝑞) → 𝐻𝐶𝑂3
−(𝑎𝑞) (28) 

𝐻𝐶𝑂3
−(𝑎𝑞) + 𝑂𝐻−(𝑎𝑞) → 𝐶𝑂3

2−(𝑎𝑞) + 𝐻2𝑂 (29) 

Consequently, the protective MgO/Mg(OH)2 layer is thinned. The thinner surface film in the 

presence of 400 ppm CO2 can also be explained in a different way. As described earlier, in 

order for the film to grow, water needs to reach the MgO on the surface and the grain 

boundaries. Hence, film growth may slow since other species compete with water for adsorption 

on MgO. In fact, Allen et al.  reported a competition between the reactive dissociative 

adsorption of H2O and the chemisorption of CO2 for some MgO surfaces [120]. This is in line 

with the presence of higher fraction of localized corrosion product features in the presence of 

CO2 compared to the CO2-free exposures as can be seen in the micrographs of Fig. 27. However, 

the formation of a magnesium hydroxy carbonate surface layer appears to slow corrosion after 

longer exposure times [105]. The inhibitive role of CO2 in long-term corrosion of Mg has been 

attributed to the formation of hydromagnesite (or similar magnesium hydroxy carbonates) on 

top of the hydrated MgO (Mg(OH)2) film (see reaction (11)). 

4.2. NaCl-induced atmospheric corrosion 

4.2.1. Influence of NaCl on the corrosion of Mg 

As mentioned above, the MgO/Mg(OH)2 surface film protects Mg and MgAl materials against 

corrosion. Hence, corrosion occurs when this film is partially (pitting corrosion) or totally 

(general corrosion) removed. MgO is soluble in water. Aqueous solution in contact with metal 
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Mg results in electrochemical corrosion of the metal (section 2.1.1.). Hence, the conductivity 

of the electrolyte plays a significant role in the rate of corrosion. 

As mentioned above, saturated salt solutions are in equilibrium with air with a certain RH. In 

the presence of NaCl, water condensation is expected at RH>76%. Accordingly, at e.g. 95% 

RH there is a significantly greater volume of water in the presence of salt compared to the thin 

layer of adsorbed water forming on a clean metal surface. When dissolved in water, NaCl forms 

Na
+
 and Cl

-
 ions that increase the conductivity of the solution due to the larger amount of water. 

Thinning of the passive film accelerates and corrosion occurs with anodic dissolution of Mg 

and hydrogen evolution. 

Figure 28 shows the average metal loss for the NaCl induced corrosion of CP Mg in the presence 

and in the absence of 400 ppm CO2, at 95% RH and 22 °C for 24, 168 and 672 h. The figure 

also presents the metal loss of CP Mg exposed in the absence of NaCl. As expected, corrosion 

rate increased as the NaCl amount increased. 

 

Fig. 28. Average corrosion of CP Mg exposed in the presence and in the absence of CO2, in the 

presence of 14 and 70 µg/cm² NaCl and in the absence of salt for 24, 168 and 672 h at 95% RH and 

22°C. 

4.2.2. Influence of CO2 on the NaCl-induced corrosion of Mg 

As can be seen in Fig. 28, NaCl induced corrosion was more severe in the absence of CO2 in 

comparison to when CO2 was present. In addition, CP Mg samples exposed for 672 h without 

NaCl showed similar behavior. This contradicts the observation that CO2 accelerates pitting 

corrosion in the initial stage of corrosion. However, as argued at the end of section 4.1., a 
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hydroxy carbonate film forms that covers and protects the metal surface. Complete coverage 

of the surface with carbonate film (i.e. conversion of Mg(OH)2 to hydromagnesite) is not 

expected to occur in the early stages of corrosion since reaction (11) (5𝑀𝑔(𝑂𝐻)2(𝑠) +

4𝐶𝑂2(𝑎𝑞) → 𝑀𝑔5(𝐶𝑂)3(𝑂𝐻)2 ∙ 4𝐻2𝑂(𝑠)) is known to be relatively slow [121]. Nevertheless, in 

prolonged exposures in the absence of salt, CO2 inhibits corrosion. The protective properties 

of the hydromagnesite film have been attributed to its lower solubility compared to MgO and 

Mg(OH)2 [105, 122]. 

During aqueous corrosion of Mg, hydrogen evolution is the dominating cathodic reaction. 

According to reaction (3) (2𝐻2𝑂 + 2𝑒− → 𝐻2(𝑔) + 2𝑂𝐻−(𝑎𝑞)), pH increases at the cathodic 

sites, resulting in a pH gradient on the surface. Such pH gradient favors the localization of 

corrosion and development of corrosion cells. Hence, brucite is insoluble close to cathodic 

regions. The XRD results showed that brucite and hydromagnesite were the dominating 

corrosion products in the absence and in the presence of CO2, respectively. In the latter case, 

brucite was also identified. This can be attributed to a relatively slow conversion of brucite to 

hydromagnesite. In the presence of CO2, the cathodic alkalinity is neutralized by carbonic acid 

(see reaction (7)), and the corrosion cells become smaller compared to CO2-free exposures. 

Thus, in the presence of CO2, the corrosion products tend to cover the whole surface. Also, as 

mentioned before, in the presence of 400 ppm CO2 at 95% RH and 22°C, hydromagnesite is 

less soluble than brucite, which mean the surface layer in the presence of CO2 is more stable 

compared to the one that formed in the absence of CO2. 

4.2.3. Corrosion of MgAl alloys 

4.2.3.1. MgAl alloys versus CP Mg 

The atmospheric corrosion of MgAl alloys was investigated and compared to that of CP Mg. 

Alloys HPDC AM50 and DC AZ91 with 5 wt.% and 9.4 wt.% of Al (see Table 6) were 

investigated.  The choice of casting route does not affect the comparison of alloy AM50 with 

alloy AZ91 in this section. In fact, the difference in the Al concentration was large enough to 

result in quite different microstructures, especially regarding the β-phase distribution (the 

microstructure of the two alloys will be discussed below). Hence, the microstructure of DC 

AZ91 that was investigated in the present thesis is similar to the microstructure of the HPDC 

AZ91 reported in the literature [38, 123]. In this section, the NaCl-induced corrosion will be 

discussed only for samples exposed in the presence of 70 µg/cm² NaCl for 672 h. For a more 

comprehensive comparison with of different NaCl concentrations and with different exposure 

times, please see paper II in this thesis.   

Figure 29 shows the BSE micrographs presenting the polished surfaces of alloys AM50 and 

AZ91. As expected, the alloys consisted of α-Mg grains and Mg17Al12 (β-phase) and Al8Mn5 

(η-phase) intermetallic particles. In the case of alloy AZ91, SEM-EDX showed that Zn was 

accumulated in the β-phase. As can be seen in Fig. 29 (b), β particles formed a semi-continuous 

network in the case of alloy AZ91 while they were more dispersed and had a lower area fraction 

in alloy AM50. 
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Fig. 29. BSE micrographs of polished surfaces of (a) alloy HPDC AM50 and (b) alloy DC AZ91. 

Table 8 shows gravimetry results for CP Mg, alloy AM50 and alloy AZ91 after 672 h exposure 

at 95% RH and 22°C in the presence and in the absence of CO2, with 70 µg/cm² NaCl. The 

average dry mass gain decreased in the order CP Mg > HPDC AM50 > DC AZ91 both in the 

presence and in the absence of CO2. The corrosion rate of CP Mg was ~7 times greater 

compared to HPDC AM50 and ~18 times greater than that of DC AZ91 when exposed in the 

absence of CO2. In the presence of CO2, the corrosion rate of CP Mg was ~4 times greater than 

that of HPDC AM50 and ~13 times greater than that of DC AZ91.  

Table. 8. Comparison of gravimetry results for CP Mg, HPDC AM50 and DC AZ91 after exposure in 

the presence of 70 µg/cm² NaCl for 672 h.  

CO2 (ppm) 

Average dry mass gain 

(mg/cm²) 

Average metal loss 

(mg/cm²) 
Corrosion rate (µm/year) 

CP Mg 
HPDC 

AM50 

DC 

AZ91 
CP Mg 

HPDC 

AM50 

DC 

AZ91 
CP Mg 

HPDC 

AM50 

DC 

AZ91 

400 6.80 2.41 0.88 3.37 0.96 0.28* 252 70 20* 

0 17.45 2.76 1.06 11.63 1.62 0.665 871 119 48 

* In the case of alloy DC AZ91, the average metal loss was calculated using the corrosion product 

composition of HPDC AM50 in the same study.   

The higher corrosion resistance of AM50 and AZ91 alloys compared to CP Mg is explained by 

the presence of Mn and Al in the alloys. As mentioned in section 2.1.2., elements such as Fe 

dissolve in the η-phase. This prevents them from forming cathodically active intermetallics 

such as FeAl3 [45]. In fact, Fe was occasionally detected in η particles by means of SEM-EDX. 

The alloys investigated in the present thesis were of high purity and the impurity level was 

below the respective “tolerance limit”. The β-phase has been argued to have a protective role 

in corrosion (see section 2.4.1.). Such protection is expected to be efficient when a semi-

continuous network of β intermetallics is present. Finally, the presence of Al in α solid-solution 

grains is expected to result in the presence of alumina in the surface film, which can provide a 

more protective passive layer. 
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The corrosion morphology of CP Mg and the alloys, in the presence and in the absence of CO2, 

was investigated using SEM. Figure 30 (a) and (b) shows that the whole surface of CP Mg was 

covered by corrosion products both in the presence and in the absence of CO2. In the case of 

the alloys, the corrosion attack was less severe. It can be seen in Fig.s 30 (c)-(d) that the 

corrosion cells were significantly larger in the absence of CO2 compared to 400 ppm CO2 

exposures.  

 

Fig. 30. SE micrographs showing the corrosion morphology of materials exposed at 95% RH and 

22°C, in the presence of 70 µg/cm² NaCl for 4 weeks; (i) in the presence of CO2: (a) CP Mg, (c) 

HPDC AM50, (e) DC AZ91 and (ii) in the absence of CO2: (b) CP Mg, (d) HPDC AM50, (f) DC 

AZ91. The inserts show selected regions at a higher magnification. 
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Similar to CP Mg, for alloys, brucite was detected by XRD as the dominating corrosion product 

in the absence of CO2. However, meixnerite Mg6Al2(OH)18·4.5H2O (also reported as 

Mg6Al2(OH)18·4H2O [101]) was also detected in the alloys. Meixnerite belongs to the class of 

LDHs. Meixnerite formation is attributed to the high pH developed at the cathodic sites. This 

formation initiates the dissolution of alumina in the passive layer and formation of aluminate. 

𝐴𝑙(𝑂𝐻)3(𝑠) + 𝑂𝐻− → 𝐴𝑙(𝑂𝐻)4
−(𝑎𝑞) (30) 

Aluminate reacts with brucite, forming meixnerite: 

2𝐴𝑙(𝑂𝐻)4
−(𝑎𝑞) + 𝑀𝑔2+(𝑎𝑞) + 5𝑀𝑔(𝑂𝐻)2(𝑠) + 4.5𝐻2𝑂 → 𝑀𝑔6𝐴𝑙2(𝑂𝐻)18 ∙ 4.5𝐻2𝑂(𝑠) (31) 

On the other hand, in the presence of 400 ppm CO2, magnesium hydroxy carbonates were the 

dominating corrosion products. The conversion of magnesium hydroxide to hydroxy carbonate 

is described by reaction (11). The absence of meixnerite in the presence of CO2 is due to the 

neutralization of the surface electrolyte by CO2. 

As described earlier, the passive layer formed on the alloys consisted of Mg(OH)2/MgO and a 

small amount of Al3+. Mg(OH)2/MgO passive films are stable in high pH while alumina passive 

films are stable in neutral pH. See the Pourbaix diagrams in Figs. 1 and 5.  In the absence of 

CO2, pH increases dramatically in the cathodic regions, leading to dissolution of alumina. 

However, alumina remains in the passive film at the anodic sites, which slows down the anodic 

reaction (reaction (1)) and improves the corrosion of the alloys in the absence of CO2 compared 

to the corrosion of CP Mg.  

4.2.3.2. Influence of the casting route 

The effect of SSC on the atmospheric corrosion of MgAl alloys AM50 and AZ91 was studied 

by comparing RC AM50 and RC AZ91 with HPDC AM50 and DC AZ91, respectively. Table 

9 shows the gravimetry data for the RC materials after exposure at 95% RH and 22°C, in the 

presence of 70 µg/cm² NaCl and in the presence and absence of CO2 for 672 h. The results of 

Table 9 can be compared to those in Table 8. For alloy AM50, the corrosion rate was lower 

when the material was prepared using RC rather than by conventional HPDC. The improved 

corrosion behavior was especially pronounced in the presence of CO2.  

Table 9. Comparison of gravimetry results for RC AM50 and RC AZ91 after exposure in the presence 

of 70 µg/cm² NaCl for 672 h.  

CO2 (ppm) 

Average dry mass gain 

(mg/cm²) 

Average metal loss 

(mg/cm²) 

Corrosion rate 

(µm/year) 

RC AM50 RC AZ91 RC AM50 RC AZ91 RC AM50 RC AZ91 

400 1.59 0.83 0.57 0.28 42 20 

0 2.53 1.26 1.58 0.789 115 57 

Figure 31 shows BSE micrographs of polished surfaces of RC AM50 and RC AZ91. The 

general microstructure of both AM50 and AZ91 materials was similar in the RC and HPDC/DC 

states. However, since the composition of the two alloys is the same, the microstructure should 
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be responsible for the differences in corrosion resistance. As discussed earlier, the Al content 

of the matrix and the β-phase distribution probably affect the corrosion of MgAl alloys. Thus, 

a more detailed investigation was performed where the Al concentration of the α-grains 

(measured at the center of the grains) and the fraction of β-phase was compared for both alloys 

prepared by different casting techniques. The measurements were averaged over 10 regions, 

on each material. Each region had a surface area of 0.026 mm2. The results are presented in 

Table 10. The materials with higher fraction of β are accompanied with α-grains with lower Al 

concentration. The fraction of β-phase is considerably higher in alloy AZ91 than that of alloy 

AM50. However, no significant difference is observed in the Al concentration of α-grains in 

alloy AZ91 compared to alloy AM50.  

 

Fig. 31. BSE micrographs of polished surfaces of (a) alloy RC AM50 and (b) alloy RC AZ91. 

Table 10. Area fraction of β-phase and Al content of α-Mg.  

Alloy 
Al content 

(wt.%) 

Avg. β area 

fraction % 

Standard 

error % 
Avg. Al in α-Mg 

(wt.%) 

Standard error 

(wt.%) 

DC-AZ91 
9.4 

7.6* 0.8 2.9 0.1 

RC-AZ91 7.2* 0.5 3.1 0.1 

HPDC-AM50 
5.0 

1.3* 0.2 2.6 0.1 

RC-AM50 2.1* 0.3 1.9 0.1 

* The measurements were performed on 10 regions on each material, each region having a surface area 

of 0.026 mm2. 

Figure 32 shows BSE cross-sectional micrographs acquired from alloy RC AZ91 after exposure 

in the presence of 70 µg/cm² NaCl, in the presence and in the absence of CO2. Both images (i.e. 

Fig. 32 (a) and (b)) illustrate the presence of β- and η-phase in the vicinity of the pits. Moreover, 

the progression of the corrosion pits ceased as they reached the particles, particularly β. Similar 

observations were reported for the corrosion of alloy AZ91 in bulk water [91]. It may be worth 

mentioning that between the two alloys RC AZ91 and DC AZ91; after exposure in the absence 

of CO2, a slightly lower corrosion rate was measured for the one with a higher fraction of β 

(and lower Al in the α-grain). 
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Fig. 32. BSE cross-sectional micrographs for alloy AZ91 after removal of the corrosion products. The 

samples had been exposed in the presence of 70 µg/cm² NaCl (a) in the presence and (b) in the 

absence of CO2. 

The role of β-phase as a physical barrier against corrosion was more pronounced for alloy AZ91 

than for alloy AM50. However, after exposure in the presence and in the absence of CO2, a 

lower corrosion rate was measured for RC AM50 with a higher fraction of β (and lower Al in 

the α-grain) compared to HPDC AM50 exhibiting lower fraction of β (and higher Al in the α-

grain). This is analogous to the observations of alloys RC AZ91 and DC AZ91 in the absence 

of CO2. Thus, it is proposed that at least in the aforementioned cases; the positive influence of 

the increase in the fraction of β-phase outweighed the negative influence of the decrease in the 

Al content of the α-grains.  

Considering the micrographs in Fig. 32 and knowing that the β-phase forms in the interdendritic 

region, it might be concluded that an α-grain is protected more efficiently by elongated rather 

by rounded β-phase particles. In other words, a higher aspect ratio of an individual β particle is 

preferred. This might be more important in the case of alloy AM50, where no network of β-

phase is expected. In order to measure the aspect ratio, individual β-particles, formed in alloy 

AM50, were inscribed in ellipses and the ratio of the major (transverse) diameter of an ellipse 

to its minor (conjugate) diameter was calculated. Figure 33 shows the distribution graph of the 

average aspect ratio of β-particles in the RC and HPDC alloys. In both RC and HPDC materials, 

the frequency of the β-particles decreased as the corresponding aspect ratio increased (see the 

frequency bar chart in purple, Fig. 33).  
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The size of a β-phase particle was approximated by the major diameter of the ellipse in which 

the particle was inscribed. It is important to measure the average size of the β-phase, since larger 

particles can protect a larger area of an α grain. Hence, in addition to the distribution of the 

aspect ratio, Fig. 33 includes the distribution of the average size of β particles. Figure 34 shows 

a schematic comparison between a β particle with the aspect ratio of 3.5 and size of 4 µm and 

another β particle with the aspect ratio of 2.5 and a size of 10 µm. For the same grain size of α-

Mg (e.g. 10 µm), the small particle with a larger aspect ratio (i.e. 3.5) is less protective than the 

large particle with lower aspect ratio (i.e. 2.5).  

The β-phase intermetallics can be divided into two groups: with low aspect ratio (1-2) and with 

high aspect ratio (>2), respectively. Figure 33 shows that the fraction of β particles with high 

aspect ratio was slightly lower in the case of HPDC AM50 (~30%) compared to RC AM50 

(~37%). Furthermore, in the case of alloy HPDC AM50, the β particles with low aspect ratio 

had an average size of 3 µm and the β particles with high aspect ratio had an average size of 7.5 

µm. On the other hand, for alloy RC AM50, the β particles with low and high aspect ratios had 

an average size of 6 µm and 10.5 µm, respectively. Hence, there is a higher fraction of large 

elongated β-phase intermetallics in RC AM50 than in HPDC AM50, which is considered 

beneficial by forming a barrier against the corrosion of the alloy. 
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Fig. 34. Schematic cross-section overview of corroded AM50 alloy. (a) α grain is protected by a large 

β particle. (b) α grain is not protected by a small β particle. 

The different cooling regimes during casting affect grain size, β-phase fraction and the 

interdendritic fraction in the alloy. In addition, different sections of cast components are 

expected to exhibit variations in microstructure due to different cooling rates [124]. Accurate 

measurement of the area fraction of the interdendritic region is a challenge, since it is partly 

mixed with the β particles and because there is no clear boundary between the primary α-Mg 

and the interdendritic region. 

Table 11 summarizes the distribution of different phases in alloy RC AM50 and alloy HPDC 

AM50 that were investigated in a previous paper [125].  

Table 11. *Distribution of different phases in the RC AM50 and HPDC AM50 [125].  

RC AM50 HPDC AM50 

Higher area fraction of α-Mg (~80%) Lower area fraction of α-Mg (~68%) 

Slightly lower average Al concentration at the center 

of α-Mg (1.8 ± 0.15 wt.%) 

Slightly higher average Al concentration at the center 

of α-Mg (1.9 ± 0.25 wt.%) 

Higher area fraction of β-phase (~6%) Lower area fraction of β-phase (~2%) 

Lower number density of β-phase Higher number density of β-phase 

Lower area fraction of interdendritic region (~12%) Higher area fraction of interdendritic region (~26%) 

Higher average concentration of Al in the 

interdendritic region 

Lower average concentration of of Al in the 

interdendritic region 

Slightly lower area fraction of η-phase (0.35%) Slightly higher area fraction of η-phase (0.40%) 

*Please note that the HPDC AM50 that was used in [125] was produced using different casting 

parameters to the HPDC AM50 discussed e.g. in Fig. 33.  

The difference in the area fraction of β-phase and Al concentration of the α-Mg grain in Table 

10 and Table 11 derives from the HPDC AM50 material being obtained from two different 

foundries. Also, in the case of RC AM50, the difference in the area fraction of β-phase shown 

in Table 10 and Table 11 corresponds to the different sections of the cast where samples were 

machined. Nevertheless, the dependence of corrosion on the microstructure is comparable. 

10μm 

Interdendritic area 

α 

β 

Aspect ratio: 2.5 

Major diameter: 10 μm 

Corrosion 

product 
α 

(a) 

10μm 

α 

Interdendritic area 

α 

Corrosion 

product 

β 

Aspect ratio: 3.5 

Major diameter: 4 μm 

(b) 



 53 

The results in Table 11 led us to conclude in our previous article [125] that the lower corrosion 

resistance of HPDC AM50 was due to the dispersion of greater number of β-phase particles in 

this alloy compared to RC AM50. It was argued that β acts as a cathode, activating more anodic 

sites in HPDC AM50 than in RC AM50. Area fraction measurements of the η-phase on different 

samples resulted in same value of 0.40% for both RC AM50 and HPDC AM50 (see paper I). 

If the interdendritic region surrounds the α-Mg grains, the lower area fraction of the 

interdendritic region in the case of RC AM50 (as can be seen in Table 11) implies that the 

dendritic region is thinner in the case of RC AM50 compared to HPDC AM50. In addition, a 

higher average concentration of Al in the interdendritic region was reported for RC AM50 

compared to HPDC AM50. Hence, it can be concluded that the α-Mg grains in the RC AM50 

were surrounded by interdendritic regions with higher Al concentration compared to HPDC 

AM50. Sachdeva reported [126] that the Al-rich interdendritic region (including β-phase) acted 

as a barrier against corrosion of HPDC AM50 in aerated 1.6 wt.% NaCl solution. This may also 

be a reason for the better corrosion resistance of RC AM50 compared to HPDC AM50. 

The results suggest that the area fraction of Al-rich regions (i.e. interdendritic area + β-phase) 

is more crucial in the corrosion of MgAl alloys than the concentration of Al in the solid solution 

α grains.      

4.2.3.3. 2D and 3D characterization of localized corrosion 

4.2.3.3.1. Corrosion product morphology in the presence and absence of CO2  

Inspection of corroded samples in SEM showed that the casting technique had little influence 

on the corrosion product morphology. Thus, the SE micrographs of Fig. 30 showing corroded 

surfaces of HPDC AM50 and DC AZ91 after 672 h exposure in the presence of 70 µg/cm² 

NaCl, also represent the corrosion product morphology of the RC counterparts of the two 

alloys5. As expected, a more pronounced corrosion attack can be observed in alloy AM50 

compared to alloy AZ91, both in the presence and absence of CO2. Also, an inspection of Fig. 

30 indicates that both alloys exhibited a greater tendency for localized corrosion in the absence 

of CO2. Hence, in the presence of CO2, corrosion products covered most of the surface, while 

in the absence of CO2, parts of the surface were only slightly affected or not affected at all by 

corrosion. This is in connection with the rest of the surface that was covered by relatively thick 

corrosion products (compare Fig. 30 (c) and (e) in the presence of CO2 with Fig. 30 (d) and (f) 

in the absence of CO2). The heavily corroded areas formed in the absence of CO2 tended to 

interconnect, forming channel-like connections illustrated in Fig. 30 (f) for alloy AZ91. The 

connections are indicated by red dashed lines in Fig. 30 (f). Regions 4, 5 and 6 in Fig. 30 (f) 

exemplify unconnected corroded regions. Also, in the case of AM50 alloy exposed in the 

absence of CO2, significantly larger channels-like connections formed, compared to those 

formed on alloy AZ91 (compare Fig. 30 (d) and (f)). After exposure in the presence of CO2, 

both alloys exhibited spherical agglomerations of corrosion products, indicated by green arrows 

in Fig. 30 (c) and (e). The different morphology of the corrosion products is discussed in the 

following section. 

                                                           
5 The corrosion product morphology of RC AM50 and RC AZ91 are described in paper III and paper V. 
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4.2.3.3.2. Development of cathodic and anodic sites (an EDX analysis) 

As mentioned earlier, corrosion of MgAl alloys in the presence of an aqueous solution is an 

electrochemical process that involves cathodic and anodic regions. When dissolved in water 

NaCl dissociates and forms Na+ and Cl
-
. Accordingly, Na+ migrates to the cathodic regions 

where OH
-
 is accumulated and Cl

-
 migrates towards the anodic regions where Mg2+ is produced. 

In the case of pitting corrosion, the bottom of the pit is anodic. Thus, chloride ions are expected 

to concentrate in the bottom of the pits. We have previously shown the accumulation of chloride 

ions in the bottom of the pits for corrosion of HPDC AM50 by preparing BIB milling cross-

sections (see paper II). Detection of Cl
-
 in the pits is extremely difficult on plan-view EDX 

characterization because of the corrosion products that form on top of the pits. If Cl
-
 is identified 

on the surface being separated from Na+, it can be concluded that certain anodic sites have been 

active during the last stage of corrosion, just before the exposure was interrupted. Thus, all the 

potential anodic sites are not active simultaneously.  

Figure 35 shows EDX elemental maps of the corroded surface of alloy RC AM50 after 672 h 

exposure in the presence of 400 ppm CO2 and 70 µg/cm² NaCl, at 95% RH and 22°C. The 

overlap of the Na and Cl maps shows the presence of NaCl on the sample surface, indicating 

that the NaCl was not consumed completely in this case. The elemental maps in the vicinity of 

the salt particle show chlorine but no Na. EDX point analysis at the Cl-enriched area (indicated 

by a cross in Fig. 35) revealed that it was dominated by O, Mg, C, and Cl, implying that Cl was 

associated with magnesium. No Mn was detected in the mapping area, thus the Al rich areas 

correspond to β-phase particles (and the interdendritic region). No significant amount of Na 

was detected in the Al-rich areas. Na was only detected in the NaCl particle that was likely 

recrystallized when the exposure was interrupted. This suggests that no efficient cathode was 

available in the mapped area. In the presence of CO2 there will be less pH gradient in the 

electrolyte due to neutralization of the electrolyte by CO2.  
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Point analysis. 

Element O  C Mg Cl Na Al 

Atomic % 45  23 21 12 <1 - 

Fig. 35. EDX map and point analysis for alloy RC AM50 exposed in the presence of 400 ppm CO2 

and 70 µg/cm² NaCl for 672 h at 95% RH and 22°C.  

Figure 36 demonstrates EDX elemental mapping of alloy AM50 exposed in the absence of CO2 

and in the presence of 70 µg/cm² NaCl for 672 h at 95% RH and 22°C. In this case, there was 

no indication of NaCl, the Cl and Na maps showing little overlap. Thus, Na was concentrated 

on the relatively uncorroded metal surface between the corrosion product accumulations, where 

there was little evidence for Cl. At the regions with highest Na count, Al particles were present 

according to the respective elemental map. Also, in contrast to the area selected in Fig. 35, Mn 

was detected in the area selected in Fig. 36, where Na was present. The presence of Mn is 

attributed to η-phase particles. In the absence of CO2, strong pH gradients are expected to 

develop between anodic and cathodic sites. Thus, NaOH (aq) is expected to accumulate in the 

cathodic regions. Mg(OH)2 is insoluble at high pH and is expected to dominate in the cathodic 
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sites. Chlorine was mainly detected on the periphery of the large corrosion product 

accumulations and in relatively small corrosion product features. 

An EDX point analysis of a small Cl-rich surface feature (indicated by a cross in Fig. 36) 

showed that it consisted of O, Mg, Cl and C, being similar to the point analysis in Fig. 35 and 

indicating the presence of magnesium chloride. The carbon detected in Fig. 36 is suggested to 

be contamination due to handling in laboratory air. 

 

Point analysis. 

Element O Mg Cl C Al Mn Na 

Atomic % 48 24 15 10 1 <1 - 

Fig. 36. EDX map and point analysis for the RC AM50 alloy exposed in the absence of CO2 and in the 

presence of 70 µg/cm² NaCl for 672 h at 22°C and 95% RH. 

Fig. 37 shows an EDX map of another area of alloy RC AM50 after exposure in the absence of 

CO2. The main difference between the maps in Fig 36 and Fig. 37 is a higher frequency of 

intermetallics (i.e. β and η) as shown by the Mn and Al maps. Figure 37 shows a strong tendency 
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for Na to be associated to the Mn-containing intermetallic particles, i.e. η-phase. The absence 

of Cl in the selected area, suggests that no anodic sites were present.  

 

Point analysis. 

Element O Mg C Na Mn Al Cl 

Atomic % 46 26 13 8 5 2 - 

Fig. 37. EDX map and point analysis of alloy RC AM50 exposed in the absence of CO2 (70 µg/cm² 

NaCl, 672 h, 22°C, 95% RH). 

Jönsson  et al. [41] reported that η particles has a high corrosion potential (V)  compared to both 

β and α-Mg. Their in-situ Volta potential measurements by means of scanning Kelvin probe 

force microscopy (SKPFM) revealed the following sequence for the relative Volta potentials of 

the microstructural constituents in DC AZ91: η > β ~ interdendritic > α-Mg. Thus, η-phase, β-

phase and the interdendrtitic region were all cathodic towards the α-Mg grains. Nevertheless, 

Jönsson  et al. suggested [127] that the η-phase did not involve in the initiation of corrosion 

since it was embedded in the β-phase (and in the interdendritic region), and thus located away 

from the α-phase. On the other hand, Arrabal et al. [91] have shown that corrosion of MgAl 
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alloys occurred at the interface of the β-/η- and α-phase. Hence, it can be inferred that both β 

and η may act as cathodes in MgAl alloys, developing micro-galvanic cells. Actually, the EDX 

elemental maps of Fig. 35, 36 and 37 suggest that η-phase was the most efficient cathode in the 

present investigations, provided that it formed independently on the α-grain. The greater 

cathodic activity of η-phase compared to that of β-phase in the absence of CO2, is due to the 

electronic conductivity of the surface film that forms in each of the particles. In the absence of 

CO2, , alumina dissolves in the passive film due to the high pH increase at the cathodic areas 

and β-phase will likely be covered by insulating MgO/Mg(OH)2 film. In the same environment, 

η-phase is expected to be covered by MnxOy/Mn(OH)2 oxide(s)/hydroxide where MnO, Mn3O4 

and MnOOH are semi-conductors. This is in good agreement with a recent publication by 

Danaei et al. [128] that reported that after 96 h exposure in 1.6 wt.% NaCl solution, Mn3O4 

formed on the η-phase due to high local alkalinity and preferential dissolution of Al. On the 

other hand, in the presence of 400 ppm CO2, alumina is more stable at the cathodic areas (due 

to neutralization) and the surface film on both β- and η-phase is dominated by alumina.  

The difference in the corrosion morphologies observed in the presence and in the absence of 

CO2 may be related to pH development on the sample surface. The contrast between the small 

galvanic cells formed in the presence of CO2 and large galvanic cells formed in the absence of 

CO2, is seen in Fig. 5 (c), (e) and Fig. 5 (d), (f); respectively. Investigating the NaCl-induced 

atmospheric corrosion of Cu, Chen et al. reported [129] that NaCl (aq) droplets formed at 80% 

RH in air on the sample, tended to spread over the metal surface when the concentration of CO2 

was <5 ppm. In contrast, there was little spreading of the droplets at ambient levels of CO2. The 

effect was explained by the cathodic reaction causing high pH in the periphery of the droplet in 

the absence of CO2. The high pH resulted in a negative surface charge on the surface of the 

corrosion product film, decreasing the surface tension of the oxide-electrolyte interface and 

favoring droplet spreading. Figure 5 (c) and (e) show an accumulation of closely spaced 

spherical corrosion products on the surface of the RC AM50 and RC AZ91 alloys, in the 

presence of 400 ppm CO2. This might be attributed to the absence of NaCl (aq) droplet 

coalescence. On the other hand, after the CO2-free exposures for both of the alloys, extensive 

localized corrosion was observed that corresponds to the coalescence of most NaCl (aq) 

droplets in this case. In addition, the channel-like connection between the extensive corrosion 

cells in the absence of CO2, suggests a moving-anode phenomenon in this case (see Fig. 5 (d) 

and (f)). 

4.2.3.3.3. Corrosion pits–formation and connectivity  

The characterization of corrosion pits will be discussed based on the results from alloy RC 

AM50. At the end of this section, the findings for other materials will also be mentioned for 

comparison.6  

Following corrosion product removal by pickling, 3D topographical profiles were obtained. 

They are presented in Fig. 38 as well as 2D profiles (see the lines parallel to the X and Y 

direction on each sample). On each sample, a region of interest (ROI) is indicated showing a 

                                                           
6 For the corresponding analysis of RC AZ91, see paper V. 
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typical pitted area. On the 2D profile the ROI is situated between the red and the blue line (see 

Fig. 38).  

While corrosion was relatively evenly distributed over the whole surface after exposure in the 

presence of CO2, severe corrosion affected only a small part of the surface in the absence of 

CO2, large areas  being seemingly uncorroded  after exposure (see Fig. 38). These observations 

were corroborated by 3D imaging after corrosion product removal. Thus, Fig. 38 (a) shows that 

relatively evenly distributed pits on the surface after corrosion in the presence of CO2. In 

contrast, two different distributions of pits were identified after corrosion in the absence of CO2 

(see Fig. 38 (b) and (c)). Hence, the sample that was exposed in the presence of 400 ppm CO2 

exhibited circular pits that were typically ~40 µm deep. In contrast, the sample that was exposed 

in the absence of CO2 showed relatively deep connected pits (~80 µm) with a channel-like 

morphology as well as shallow circular pits (~5 µm). The two features were located at a distance 

from each other and were not connected. The shallow pits formed in the absence of CO2 are 

analogous to the anodic sites observed in regions 4, 5 and 6 of Fig. 30 (f). The size of the initial 

NaCl (aq) droplets as well as the availability of the electrolyte might have influenced the 

connectivity of the anodic sites. 

 

X profile Y profile 

ROI ROI 
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Fig. 38. 3D and 2D depth profiles of the pits for the alloy RC AM50 exposed at 95% RH and 22°C 

and in the presence of 70 µg/cm² NaCl for 672 h, (a) in the presence of 400 ppm CO2 and (c)-(d) in the 

absence of CO2. 

X profile Y profile 

ROI ROI 

X profile Y profile 

ROI ROI 
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The pits have irregular shapes. Also, as the 2D line profiles in Fig. 38 show, the pits have 

different depths. To complement the results from the optical profilometry, random regions with 

pits were chosen and studied by consecutive steps of FIB cross-sectional milling-SE imaging. 

This procedure allowed us to study the connectivity of pits with 500 nm increments (i.e. the 

thickness of each slice) in the selected area. A stack of images was compiled corresponding to 

the investigated volume.  

Figure 39 shows selected cross-sections that were cropped from the compiled volumes. Figure 

39, also includes the plan view micrograph of the same volume and shows the selected area. 

Figure 39 (a) displays circular pits formed in the presence of 400 ppm CO2 while Fig. 39 (b) 

shows the deep channel formed in the absence of CO2. Note that the channel is formed from 

individual pits connecting to neighboring pits. It is not clear at this stage whether the individual 

pits formed and grew simultaneously, or if the channel-like connection formed through a 

moving-anode phenomenon. In contrast, only circular pits formed in the presence of CO2. This 

suggests that neutralization by CO2, which leads to less pH gradients, resulted in formation of 

smaller corrosion cells. Thus, smaller anodic sites were surrounded by smaller cathodic areas, 

reducing the probability of a moving anode phenomenon.  

 

 

Fig. 39. 3D imaging of corrosion pits formed on alloy RC AM50 exposed at 95% RH and 22°C in the 

presence of 70 µg/cm² NaCl for 672 h, (a) in the presence of 400 ppm CO2 and (b) in the absence of 

CO2.  

50 µm 

50 

µm 
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5. Concluding remarks 

The atmospheric corrosion of Mg and MgAl alloys AM50 and AZ91 was investigated. The 

passive film was characterized and a mechanism was proposed for film growth. In addition, the 

NaCl–induced atmospheric corrosion of Mg and MgAl alloys was studied. The effects of CO2 

and microstructure on the morphology of corrosion were analyzed. In the case of the alloys, 

comparisons were made between materials prepared by rheocasting and by conventional casting 

(i.e. DC and HPDC). The major findings of the present thesis are summarized below. 

- Exposure of Mg and two MgAl alloys to air with 95% RH resulted in the growth of a 

Mg(OH)2/MgO surface film and some localized corrosion. 

 

- In the absence of CO2, the film surface consisted of Mg(OH)2 while the bulk of the film 

was made up of MgO containing some hydroxide. The film was covered by a thin layer of 

carbonate in the presence of CO2. 

 

- The films formed on the two MgAl alloys were similar to the films formed on Mg except 

that they contained a few percent of alumina. The aluminum concentration increased 

towards the film/alloy interface. 

 

- The presence of Al3+ in the film caused brucite to be replaced by a layered double hydroxide 

(LDH). 

 

- The film is suggested to grow by the reaction of Mg(OH)2 with the metal. Mg(OH)2 forms 

by dissociative chemisorption of H2O in the grain boundaries of the MgO film. Film growth 

is slower in the presence of CO2. 

 

- Localized corrosion of Mg and MgAl alloys is suggested to be initiated by film thinning 

through a dissolution-precipitation mechanism where the more soluble MgO is dissolved 

into the liquid-like surface water layer, to be precipitated as brucite Mg(OH)2 or LDH. That 

dissolution was accelerated at the vicinity of the first precipitation, leading to pit formation. 

MgO is always expected at the bottom of the film and the pits. 

 

- Localized corrosion was more frequent in the presence of CO2. This is attributed to the 

acidity of CO2 that speeds up film dissolution and to the observation that CO2 causes the 

films to be thinner. 

 

- Atmospheric corrosion of Mg and MgAl alloys was significantly more severe in the 

presence of NaCl (aq) due to the increased conductivity of the electrolyte. Brucite was the 

main corrosion product in the absence of CO2. In the case of the alloys, the LDH compound 

meixnerite was also detected. In the presence of 400 ppm CO2, magnesium hydroxy 

carbonates were the dominating corrosion products. Meixnerite and 
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Mg5(CO3)4(OH)2·8H2O were identified and reported as corrosion products for the first 

time.  

 

- It was shown that CO2 inhibited corrosion, particularly in longer stages of corrosion. That 

was suggested to be attributed to the formation of a magnesium hydroxy carbonate film 

which has less solubility than Mg(OH)2 and MgO. For MgAl alloys, the neutralization by 

CO2 also stabilized alumina in the passive film together with Mg(OH)2. 

 

- Lower corrosion rate was measured for MgAl alloys compared to CP Mg in the presence 

and in the absence of CO2. This effect was attributed to the presence of A13+ (in the passive 

film) and to the presence of β-phase. Also, the semi-continuous distribution of β 

intermetallics increased the corrosion resistance of alloy AZ91 compared to alloy AM50 

in which β particles were individually distributed. 

 

- It was shown that rheocasting improved the corrosion resistance of alloy AM50 compared 

to HPDC material. This was due to the high fraction of β particles in the RC material 

compared to HPDC one. Also, it was shown that in general, the β intermetallics formed in 

the RC case had a higher aspect ratio and larger size than those formed in the HPDC 

material. 

 

- In the absence of CO2 the η-phase (Al-Mn) precipitates were cathodically more active than 

the β-phase particles. This is explained by the high pH electrolyte which dissolves alumina, 

leaving behind a MnxOy/Mn(OH)2 surface film on the η-phase particles which is more 

conductive electronically in contrast to the alumina–dominated film present at lower pH 

(in the presence of CO2). 

 

- The clustering of pits in the absence of CO2 is attributed to the growth of the corrosion 

cells, encompassing a growing number of cathodic sites. Due to the resulting increased 

anodic polarization of the area in the vicinity of the original pit, new pits tend to initiate. 
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6. Future work 

In the present thesis, the surface film was characterized by means of surface sensitve techniques 

such as XPS, FTIR, GI-XRD, and AES. Also, a chemical reaction mechanism was proposed 

that explained the thickening of this film at high humidity. The XPS results (calibrated for 

Ta2O5) suggest that the film was ~2 nm and ~10 nm thick in the presence and in the absence of 

CO2, respectively. It will be interesting to investigate the surafce film using TEM and to check 

its thickness. In addition, electron diffractionmay reveal the composition of the film which 

complements the findings of this thesis. 

Regarding presented chemical reaction mechanism, this thesis proposed that H is produced at 

the interface of film and metal. However, the presence of H in the substrate could not be shown 

by means of the instruments employed in the present thesis. Hence, SIMS analysis might also 

complement our results. 

In the case of the NaCl–induced corrosion, 3D imaging by means of FIB milling was employed 

which contributed to the understanding of pit connectivity. However, the in-situ slice and image 

technique can also be used before corrosion product removal. One challenge against cross-

sectional milling in this case is the massive curtaining effect due to the uneven corrosion 

products. Thus, it requires a high degree of caution and protection while milling. What might 

be really interesting in this case is to run 3D EDX mapping to study the distribution of Na and 

Cl in the vicinity of pits. In addition, 3D EBSD phase mapping can be performed, which can 

complement the XRD results of the present thesis. 

Also, EBSD orentation mapping can be performed to investigate the probable influence of 

orientation of grains on the corrosion of Mg and MgAl alloys. Few people have been published 

in this area and those that were published do not cover alloys with different microstrcutures 

[130-132]. Caution should be taken in to account while performing this experiment to ensure 

that electrolyte covers the entire surface homogenously. 
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