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STATIC SOLUTIONS TO THE EINSTEIN–VLASOV SYSTEM
WITH A NONVANISHING COSMOLOGICAL CONSTANT∗
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Abstract. We construct spherically symmetric static solutions to the Einstein–Vlasov system
with nonvanishing cosmological constant Λ. The results are divided as follows. For small Λ > 0
we show the existence of globally regular solutions which coincide with the Schwarzschild–deSitter
solution in the exterior of the matter regions. For Λ < 0 we show via an energy estimate the
existence of globally regular solutions which coincide with the Schwarzschild–anti-deSitter solution
in the exterior vacuum region. We also construct solutions with a Schwarzschild singularity at the
center regardless of the sign of Λ. For all solutions considered, the energy density and the pressure
components have bounded support. Finally, we point out a straightforward method for obtaining a
large class of global, nonvacuum spacetimes with topologies R×S3 and R×S2 ×R which arise from
our solutions as a result of using the periodicity of the Schwarzschild–deSitter solution. A subclass
of these solutions contains black holes of different masses.
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1. Introduction.

Static solutions with Vlasov matter. In this work we consider matter de-
scribed as a collisionless gas. In astrophysics this model is used to study galaxies and
globular clusters where the stars are the particles of gas and where collisions between
them are sufficiently rare as to be neglected. The particles interact due to the gravi-
tational field which the particle ensemble creates collectively. Within the framework
of general relativity the particle system is described by the Einstein–Vlasov system.
The mathematical investigation of this system was initiated by Rein and Rendall in
1992 [24] in the context of the Cauchy problem and shortly thereafter the same au-
thors provided the first study of static, spherically symmetric solutions to this system
[23]. Since then, the Einstein–Vlasov system has been successfully studied in several
contexts and many global results have been obtained during the past two decades.
We refer to [2] for a review of these results, but let us mention in particular the recent
monumental work on this system concerning the stability of the universe [25].

The purpose of the present work is to extend the class of static solutions of
the Einstein–Vlasov system to the case with nonvanishing cosmological constant Λ.
Several results on static and stationary solutions to this system have been obtained
in the case when Λ = 0. The first result of this kind was provided in [23], where the
authors construct spherically symmetric, isotropic, static solutions with compactly
supported energy density and pressure. The solutions are asymptotically flat and thus
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serve as models for isolated, self-gravitating systems. Several generalizations of this
result have since been obtained; in particular, solutions with nonisotropic pressure,
and with a Schwarzschild singularity at the center, have been established [22, 20]. An
approach by variational methods was developed by Wolansky [27]. The most difficult
aspect of these proofs is showing that the matter has compact support. A neat and
quite general method to treat this problem has recently been obtained by Ramming
and Rein in [19]. However, this method does not apply to the situation we consider
in this work. The cosmological constant changes the structure of the equations and
this implies that inequality (1.23) in [19], on which this method is based, does not
hold when Λ > 0. Hence, we rely on a different method in this work. The results
discussed above all concern the spherically symmetric case. Let us point out that
results beyond spherical symmetry have been established in the case of Λ = 0. The
existence of stationary axially symmetric solutions to the Einstein–Vlasov system
has recently been shown; see [9] and [10] for the nonrotating and the rotating case,
respectively. In this context we also mention a result on static solutions for elastic
matter which has been obtained without any symmetry assumption [1].

Static solutions with a nonvanishing cosmological constant. A specific
class of solutions which concerns the Einstein equations with a nonvanishing cosmolog-
ical constant Λ has not yet been discussed. The model solutions for the vacuum equa-
tions are the Schwarzschild–deSitter and Schwarzschild–anti-deSitter (Schwarzschild–
AdS) solution for Λ > 0 and Λ < 0, respectively. Einstein’s equations with nonvan-
ishing Λ are of significant physical interest, where the case Λ > 0 applies to a universe
with accelerated expansion [25], while the case Λ < 0 is relevant in the context of
AdS-CFT correspondence [17]. Concerning the Einstein–Vlasov system, no existence
results for the static Einstein equations with a nonvanishing cosmological constant are
known. The aim of the present paper is to prove the existence of spherically symmet-
ric static solutions to the Einstein–Vlasov system with a small positive or arbitrary
negative cosmological constant. The solutions we construct are in general anisotropic.
The results provided in this work are as follows.

Globally regular solutions for 0 < Λ � 1. We construct globally regular
static solutions for small Λ > 0.

The contribution of a positive cosmological constant in the main equation (2.24)
drastically changes the behavior of the solution. The fundamental difference in the
case of a vanishing cosmological constant is that for large radii the metric tends to-
wards a cosmological horizon, which is however incompatible with any static ansatz for
the distribution function that has so far been analyzed in the literature. It is unclear
how to control the solution of (2.24) close to the cosmological horizon. To overcome
this difficulty we show the existence of the solution up to a finite radius and then
glue it to a Schwarzschild–deSitter exterior. For this to work, compactly supported
matter quantities are necessary. However, all known methods for establishing this fail
in the case of positive Λ. We construct a perturbation argument using a background
solution with Λ = 0 and the Buchdahl inequality to overcome this problem and to
obtain compactness.

In particular, we show that for small Λ > 0 the solutions we construct are close
to the solutions corresponding to the Λ = 0 case for which the matter quantities
have compact support, and in addition, the latter solutions obey a Buchdahl-type
inequality. These facts imply that the support of the matter quantities can also be
controlled in the case when Λ > 0. This method is introduced in the proof of Theorem
3.8, which is the core theorem of this paper. It yields a large class of globally regular
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solutions which coincide with a Schwarzschild–deSitter solution outside a compact
set. Finally, the methods described above also apply to the case of solutions with
singularities as described below.

Globally regular solutions for Λ < 0. The case of a negative cosmological
constant is a priori simpler since the cosmological term has a good sign which yields a
monotonically decreasing behavior of the lapse function. An energy argument follow-
ing the general idea of [22] is used to establish global-in-r existence, yielding globally
regular solutions for general Λ < 0. The result is given in Theorem 4.2.

Solutions with a Schwarzschild singularity for 0 < Λ � 1. To construct
solutions with singularities in the center, we start with the vacuum equations, which
can be solved explicitly by the Schwarzschild–deSitter solution. This solution is con-
sidered up to a radius which allows us to continue the vacuum solution by a solution
which at the same point satisfies an appropriate ansatz for the distribution function
and eventually merges into a nonvacuum region. It is shown that the support of the
matter quantities is compact and outside the matter region the solution can again be
extended by a vacuum solution with the mass parameter corresponding to the interior
mass of the black hole and matter. As in the nonsingular case these constructions
only work for sufficiently small Λ > 0. The result is given in Theorem 5.5. These
solutions can be interpreted as black holes surrounded by matter shells.

Solutions with a Schwarzschild singularity for Λ < 0. This point is similar
to the case Λ > 0 with Schwarzschild singularities. In addition, a smallness condition
for |Λ| is also needed. The result is given in Theorem 5.9.

Solutions with topologies R×S3 and R×S2 ×R. A significant generaliza-
tion of the results with Λ > 0 is presented in the final section. The periodic structure
of the Schwarzschild–deSitter space [16] allows us to consider solutions with regular
massive centers and solutions with central black holes, and glue them to a periodic
Schwarzschild–deSitter solution with a black hole region followed by another matter
region—forming a spacetime with two nonvacuum ends and a black hole (or several)
in between. The result is given in Theorem 6.1. These solutions with global nontriv-
ial topology which arise only for positive Λ yield large classes of solutions with no
counterpart in the Λ = 0 case.

All solutions constructed in this paper model isolated galaxies or configurations
of isolated galaxies and black holes in an otherwise empty universe.

Outline of the paper. This paper is organized as follows. In section 2 we
introduce the notation and give a short review on the static Einstein–Vlasov system
in spherical symmetry. We discuss the anisotropic ansatz for the distribution function,
variations of which are used in this work. A Buchdahl-type inequality, which applies
to solutions of the Einstein–Vlasov system, is then briefly reviewed as it is used later
in the existence proof for Λ > 0. The Einstein–Vlasov system in spherical symmetry
with a specific ansatz for the distribution function reduces to an integro-differential
equation given in (2.24). This equation lies at the heart of the analysis in the paper.
In section 3 we prove the existence of globally regular solutions for small Λ > 0. The
proof is divided into several steps, beginning with local-in-r existence in section 3.1,
a continuation criterion in section 3.2, the existence up to sufficiently large radii to
be able to reach the vacuum region section 3.3, and finally the proof of the existence
theorem in 3.4. In section 4 the existence of globally regular solutions for arbitrary
Λ < 0 is proven along with a result (see Theorem 4.2) which states the existence of such
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solutions outside a ball, which is eventually used to prove the existence of solutions
with Schwarzschild singularities in the center. Section 5 begins with a generalization
of the Buchdahl-type inequality, mentioned above, for solutions with Schwarzschild
singularities. This result is useful for the construction of solutions of this kind when
Λ > 0. These solutions are obtained in Theorem 5.5. Analogous solutions for the
case of negative Λ are given in Theorem 5.9. Finally, section 6 discusses the globally
nontrivial generalizations of the constructed solutions for Λ > 0.

2. Preliminaries.

2.1. Setup and notations. We consider the Einstein–Vlasov system with the
cosmological constant Λ ∈ R. For background information on this system and def-
inition of coordinates we refer to [2]. Spatial indices are denoted by Latin letters,
running from 1 to 3. For the spherically symmetric static Lorentzian metric g we use
the standard ansatz

(2.1) ds2 = −e2μ(r)dt2 + e2λ(r)dr2 + r2dϑ2 + r2 sin2(ϑ)dϕ2.

In addition, assuming the matter distribution function f to be spherically symmetric
and static one obtains the reduced system of equations

va√
1 + |v|2

∂f

∂xa
−
√
1 + |v|2μ′x

a

r

∂f

∂va
= 0,(2.2)

e−2λ(2rλ′ − 1) + 1− r2Λ = 8πr2�,(2.3)

e−2λ(2rμ′ + 1)− 1 + r2Λ = 8πr2p,(2.4)

where |v| =√δijvivj , vr =
δijv

ixj

r and the matter quantities read

� =

∫
R3

f(x, v)
√

1 + |v|2 dv1dv2dv3,(2.5)

p =

∫
R3

f(x, v)√
1 + |v|2 v

2
r dv1dv2dv3.(2.6)

There is an additional Einstein equation

(2.7) e−2λ

(
μ′′
(
μ+

1

r

)
(μ′ − λ′)

)
= 8πpT ,

where

(2.8) pT =
1

2

∫
R3

∣∣∣∣x× v

r

∣∣∣∣2 f(x, v) dv√
1 + |v|2 .

The quantity � can be understood as energy density, p as radial pressure and pT as
tangential pressure. To ensure a regular center the following boundary condition is
imposed:

(2.9) λ(0) = 0.

This condition will be used in the first part of this work, but when we consider
solutions with a Schwarzschild singularity at the center it will be dropped. A detailed
derivation of the system (2.2)–(2.8) in the Λ = 0 case can be found in [24]. As
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shown in [26] a solution of the reduced system (2.2)–(2.6) also solves the full system.
Considering the characteristic curves of the Vlasov equation (2.2) one can simplify
the system of equations. Along these characteristic curves the quantities E and L,
given by

(2.10) E = eμ(r)
√
1 + |v|2 =: eμ(r)ε and L = |x× v|2,

are conserved (see [23]). Therefore any ansatz for the matter distribution f of the
form

(2.11) f(x, v) = Φ(E,L)

solves the Vlasov equation (2.2), and this equation drops out of the system of equa-
tions.

2.2. Relevant results. In the following we discuss the known results for the
Einstein–Vlasov system with vanishing cosmological constant Λ = 0, which are rele-
vant for the work presented in this paper. The existence of a unique solution μ(r),
λ(r) to given initial values μ(0) = μ0 and λ(0) = 0 has been proved using the ansatz

(2.12) f(x, v) = Φ(E)[L − L0]
�
+,

where E > 0, L > 0, L0 ≥ 0, 
 > −1/2, Φ ∈ L∞((0,∞)) for the matter distribution
f [22]. Furthermore, it can be shown that the support of the matter quantities is
contained in an interval [0, R0], 0 < R0 < ∞, if one takes an ansatz of the form

(2.13) f(x, v) = φ

(
1− E

E0

)
L�,

where φ : R → [0,∞) is measurable, φ(η) = 0 for η < 0, and φ > 0 a.e. on some
interval [0, η1] with η1 > 0 and E0 is some prescribed cut-off energy [19]. Moreover,
it is required that there exists γ > −1 such that for every compact set K ⊂ R there
exists a constant C > 0 such that

(2.14) φ(η) ≤ Cηγ , η ∈ K.

In [21] this result is generalized to anisotropic matter distributions of the form

(2.15) f(x, v) = α[E0 − E]k+[L− L0]
�
+,

where k ≥ 0, 
 > −1/2 fulfil the inequality k < 3
+ 7/2 and α,E0 > 0, L0 ≥ 0. It is
shown in [21] that for sufficiently small L0 the support of f is contained in an interval
[Ri, R0] where 0 ≤ Ri < R0 < ∞ and Ri > 0 provided L0 > 0.

By direct calculation one shows that the matter quantities fulfil the generalized
Tolman–Oppenheimer–Volkov (TOV) equation

(2.16) p′(r) = −μ′(r)(p(r) + �(r)) − 2

r
(p(r) − pT (r)).

Another result which is relevant for the proof presented here is a generalized Buchdahl
inequality [4], which is the content of the following lemma.

Lemma 2.1 (Theorem 1 in [4]). Let λ, μ ∈ C1([0,∞)) and let �, p, pT ∈ C0([0,∞))
be functions that satisfy the system of equations (2.3)–(2.7) and the condition (2.9),
and such that p+ 2pT ≤ �. Then

(2.17) sup
r>0

2m(r)

r
≤ 8

9
,
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where

(2.18) m(r) = 4π

∫ r

0

s2�(s)ds.

Remark 2.2. The inequality (2.17) holds for a more general class of functions;
see [4]. Moreover, the inequality is sharp, and the solutions which saturate the in-
equality are infinitely thin shell solutions [4]. In [3] it is shown that there exist regular,
arbitrarily thin shell solutions to the Einstein–Vlasov system such that the quantity
2m/r can be arbitrarily close to 8/9. It should also be mentioned that Buchdahl-type
inequalities have been obtained in the case of the nonvanishing cosmological constant
[6, 7]. These results assume the existence of static solutions to the Einstein matter
equations with a cosmological constant.

To prove the existence of solutions of the static Einstein–Vlasov system with
nonvanishing Λ we make use of the results discussed above. To simplify calculations
we define y := ln(E0)−μ as in [19] so that eμ = E0/e

y. For the distribution function
f we choose the ansatz1

(2.19)
f(x, v) = Φ(E,L) = αφ

(
1− E

E0

)
[L− L0]

�
+ = αφ

(
1− εe−y

)
[L− L0]

�
+,

φ(η) = [η]k+,

where k ≥ 0, 
 ≥ 0 fulfil the inequality k < 3
 + 7/2 and α,E0 > 0, L0 ≥ 0. For
the construction of globally regular solutions L0 has to be sufficiently small to ensure
finite support of the matter quantities [21]. When considering solutions with a black
hole at the center, there are positive lower bounds on L0. The expressions for the
matter quantities � and p take the form

(2.20) �(r) = Gφ(r, y(r)), p(r) = Hφ(r, y(r)),

where

Gφ(r, y) = c�αr
2�

∫ ∞
√

1+L0/r2
φ
(
1− εe−y

)
ε2
(
ε2 −

(
1 +

L0

r2

))�+ 1
2

dε,(2.21)

Hφ(r, y) =
c�α

2
+ 3
r2�
∫ ∞
√

1+L0/r2
φ
(
1− εe−y

)(
ε2 −

(
1 +

L0

r2

))�+ 3
2

dε,(2.22)

given in [22]. The constant c� is given by

(2.23) c� = 2π

∫ 1

0

s�√
1− s

ds.

Lemma 2.3. The functions Gφ(r, y) and Hφ(r, y) defined in (2.21) and (2.22),
respectively, have the following properties.

(i) Gφ(r, y) and Hφ(r, y) are continuously differentiable in r and y.
(ii) The functions Gφ(r, y) and Hφ(r, y) and the partial derivatives ∂yGφ(r, y)

and ∂yHφ(r, y) are increasing both in r and y.

(iii) There is vacuum, i.e., f(r, ·) = p(r) = �(r) = 0 if e−y(r)
√
1 + L0/r2 ≥ 1, in

particular if y(r) ≤ 0.

1To be precise, any φ that is of the kind of φ in (2.13) would meet the assumptions of the following
lemmas and theorems.
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Proof. By performing a change of variables in the integrals in (2.21) and (2.22),
the differentiability follows [22, Lemma 3.1]. The monotonicity can be seen directly
from the structure of Gφ and Hφ. The last statement is obvious since φ(η) = 0 if
η ≤ 0.

2.3. Main equation. From the Einstein equations (2.3) and (2.4) one obtains
the differential equation for y:

y′(r) = − 4π

1− Λr2

3 − 8π
r

∫ r

0
s2Gφ(s, y(s))ds

×
(
rHφ(r, y(r)) − rΛ

12π
+

1

r2

∫ r

0

s2Gφ(s, y(s))ds

)
.(2.24)

A solution to (2.24) yields a solution to the system (2.2)–(2.6). The aim in the
following is to construct solutions to (2.24) which have compactly supported matter
quantities. Outside the support of these quantities the metric should coincide with a
Schwarzschild–deSitter solution. This gives rise to an appropriate boundary condition
at the boundary of the support, R0Λ, which is

(2.25) lim
r↗R0Λ

E0e
−y(r) = lim

r↘R0Λ

(
1− r2Λ

3
− 2M

r

)
,

where M = 4π
∫ R0Λ

0 s2ρ(s)ds. This is understood as a definition of E0. We then
express the function μ by μ(r) = ln(E0) − y(r). Furthermore, it should be men-
tioned that a solution to the system (2.2)–(2.6) provides a solution to all the Einstein
equations. This is shown in [24], Theorem 2.1 in the case when Λ = 0. The proof
is analogous in the case with nonvanishing Λ. The equation (2.24) is analyzed and
solved in the remainder of this work.

3. Static, anisotropic globally regular solutions for Λ > 0. In this section
we prove the existence of globally regular static solutions with small Λ > 0.

3.1. Local existence. The following local existence lemma corresponds to the
first part of the proof of Theorem 2.2 in [23] for the case Λ = 0.

Lemma 3.1. Let Φ : R2 → [0,∞) be of the form (2.19) and let Gφ, Hφ be defined
by (2.21) and (2.22), respectively. Then for every y0 ∈ R and every Λ > 0 there is
a δ > 0 such that there exists a unique solution yΛ ∈ C2([0, δ]) of (2.24) with initial
value yΛ(0) = y0.

Proof. The lemma can be shown using a contraction argument, as done in
[23].

3.2. Continuation criterion. The solution yΛ exists at least as long as the
denominator of the right-hand side of (2.24) is strictly larger than zero. The following
lemma formulates this assertion.

Lemma 3.2. Let y0 ∈ R and let Rc > 0 be the largest radius such that the unique
local C2-solution yΛ of (2.24) with yΛ(0) = y0 exists on the interval [0, Rc). Then
there exists RD ≤ Rc such that

(3.1) lim inf
r→RD

(
1− r2Λ

3
− 8π

r

∫ r

0

s2Gφ(s, yΛ(s))ds

)
= 0.

Remark 3.3. Lemma 3.2 implies that the denominator on the right-hand side
of (2.24) becomes arbitrarily small on [0, Rc), i.e., the numerator has no singular
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behavior that would make the solution collapse as long as the denominator is larger
than zero.

Remark 3.4. It is important to note that in contrast to the case of the vanishing
cosmological constant, the numerator in (2.24) can be negative due to the Λ-term.
This in turn implies that a zero of the denominator does not necessarily make the
right-hand side of (2.24) singular as the numerator might also vanish at this particular
point, possibly regularizing the full term. In this case, RD < Rc.

Proof. Assume

(3.2) 1− r2Λ

3
− 8π

r

∫ r

0

s2Gφ(s, yΛ(s))ds > 0

for all r ∈ [0, Rc). Otherwise RD < Rc (with RD characterized as above) occurs due
to the continuity of yΛ and Gφ and the lemma follows. Assume now that the assertion
of the lemma does not hold, i.e., there is a constant a > 0 such that

(3.3) 1− r2Λ

3
− 8π

r

∫ r

0

s2Gφ(s, yΛ(s))ds ≥ a

for all r ∈ [0, Rc). First we show that this implies the existence of a C > 0 such that
for all r ∈ [0, Rc) we have |y′Λ(r)| ≤ C. Therefore we consider

(3.4) |y′Λ(r)| ≤
4π

a

(
rHφ(r, yΛ(r)) +

rΛ

12π
+

1

r2

∫ r

0

s2Gφ(s, yΛ(s))ds

)
.

Here we have used that Hφ and Gφ are positive. It is obvious that the second term,
rΛ
12π , is bounded on the interval [0, Rc). We show that the right-hand side of (3.4) is
uniformly bounded on this interval. Assume the opposite,

(3.5) lim sup
r→Rc

Hφ(r, yΛ(r)) = ∞ or lim sup
r→Rc

∫ r

0

s2Gφ(s, yΛ(s))ds = ∞.

The second possibility implies lim supr→Rc
Gφ(r, yΛ(r)) = ∞. On the interval [0, Rc)

we have the upper bounds Hφ(r, yΛ(r)) ≤ Hφ(Rc, yΛ(r)) and Gφ(r, yΛ(r)) ≤
Gφ(Rc, yΛ(r)), see (ii) of Lemma 2.3. And since Hφ(r, y) and Gφ(r, y) are increasing
functions in y (see Lemma 2.3) this in turn implies

(3.6) lim sup
r→Rc

yΛ(r) = ∞.

It follows that for all ε > 0 sufficiently small there exists r ∈ (Rc − ε,Rc) such that
y′Λ(r) > 0, which on the other hand implies

(3.7) rHφ(r, yΛ(r)) +
1

r2

∫ r

0

s2Gφ(s, yΛ(s))ds <
rΛ

12π
,

by (2.24) for y′Λ. This contradicts the assumption that either Hφ(r, yΛ(r)) or the
integral

∫ r

0 s2Gφ(s, yΛ(s))ds diverges as the right-hand side of (3.7) is bounded. Thus
|y′Λ(r)| is uniformly bounded on [0, Rc).

In the remainder of this proof it is shown that the solution can be continued
beyond Rc in order to yield the desired contradiction. To achieve this, methods similar
to those in the proof of Lemma 3.1 will be used. Consider a radius r1 ∈ (0, Rc) and
let δ > 0. Define y1 = yΛ(r1) and the interval Iδ by Iδ = [r1, r1 + δ].
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Consider the operator

(T1u)(r) = y1 +

∫ r

r1

4π

1− s2Λ
3 − 8π

s

∫ s

0
σ2Gφ(σ, uy(σ))dσ

(3.8)

×
(
sHφ(s, u(s))− sΛ

12π
+

1

s2

∫ s

0

σ2Gφ(σ, uy(σ))dσ

)
ds,

where

(3.9) uy(r) :=
{

yΛ(r); r ∈ [0, r1]
u(r); r ∈ (r1, r1 + δ]

,

acting on the set

M1 =
{
u : Iδ → R | u(r1) = y1, y1 − 1 ≤ u(r) ≤ y1 + 1,(3.10)

r2Λ

3
+

8π

r

∫ r

0

s2Gφ(s, uy(s))ds ≤ c < 1, r ∈ Iδ

}
.

Using (3.3) and |y′Λ(r)| < C on [0, Rc) for C > 0 one can prove that T1 acts as a
contraction on M1 for δ sufficiently small. In virtue of Banach’s fixed point theorem
the operator T1 has a fixed point w ∈ M1 such that (w)y defined by (3.9) solves (2.24)
on the interval (0, r1 + δ). Note that δ is independent of the choice of r1 due to the
uniform bound on |y′Λ(r)|. Thus by choosing r1 ∈ (0, Rc) sufficiently close to Rc the
solution extends beyond r = Rc. But this contradicts the definition of Rc and the
lemma follows.

3.3. Existence beyond the nonvacuum region.
Proposition 3.5. Let Φ : R2 → [0,∞) be of the form (2.19) and let y be the

unique global C1-solution of (2.24) in the case Λ = 0 where y(0) = y0 > 0 [22].
As proved in [22], f has bounded spatial support [0, R0) where y(R0) = 0 defines R0

uniquely. Let yΛ be the unique C2-solution of (2.24) with Λ > 0 and yΛ(0) = y(0),
that according to Lemma 3.1 exists at least on an interval [0, δ] for a certain δ > 0,
and let fΛ be the distribution function corresponding to yΛ.

Then yΛ exists at least on [0, R0 +ΔR] and the spatial support of fΛ is bounded
by some R0Λ < R0 +ΔR if Λ and ΔR > 0 are chosen such that

(3.11) 0 < Λ < min

{ |y(R0 +ΔR)|
Cy(R0 +ΔR)

,
1
18

Cv(R0 +ΔR)

}
holds. The constants Cy(r) defined in (3.25) and Cv(r) defined in (3.23) are deter-
mined by the background solution y.

Remark 3.6. Note that the upper bound for Λ in (3.11) is strictly larger than
zero since |y(R0 + ΔR)| > 0. This holds because the globally existing background
solution y is strictly monotone and we have y(R0) = 0 by definition of R0.

Before we present the proof of this proposition we state a lemma containing a
crucial but also lengthy estimate.

Lemma 3.7. Let Gφ and Hφ rather be as given by (2.21) and (2.22), respectively.
Furthermore, let R > 0 and let y, yΛ : [0, R] → R be functions solving (2.24) with
vanishing and positive cosmological constant Λ, respectively, common initial value
y0 = y(0) = yΛ(0), and such that the conditions

1− 8π

r

∫ r

0

s2Gφ(s, y(s))ds ≥ 1

9
, 1− r2Λ

3
− 8π

r

∫ r

0

s2Gφ(s, y(s))ds ≥ 1

18
,
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and |yΛ(r)− y(r)| ≤ |y(R)| hold for all r ∈ [0, R]. Then we have the estimate

(3.12) |Gφ(r, yΛ(r)) −Gφ(r, y(r))| + |Hφ(r, yΛ(r)) −H(r, y(r))| ≤ ΛCgh(r)

for an increasing function Cgh(r).
Proof. Since

(3.13) |Gφ(r, yΛ(r)) −Gφ(r, y(r))| + |Hφ(r, yΛ(r)) −Hφ(r, y(r))|

≤
(

sup
u∈[yΛ(r),y(r)]

|∂uGφ(r, u)|+ sup
u∈[yΛ(r),y(r)]

|∂uHφ(r, u)|
)
|yΛ(r) − y(r)|

we calculate

|yΛ(r)− y(r)| ≤
∫ r

0

|y′(s)− y′Λ(s)|ds

≤
∫ r

0

[
4π

1− s2Λ
3 − 2mΛ(s)

s︸ ︷︷ ︸
≤72π

×
(∣∣∣∣− sΛ

12π

∣∣∣∣+ s|Hφ(s, yΛ(s))−Hφ(s, y(s))|

+
1

s2

∫ s

0

σ2|Gφ(σ, yΛ(σ))−Gφ(σ, y(σ))|dσ︸ ︷︷ ︸
I1

)

+

(
sHφ(s, y(s)) +

1

s2

∫ s

0

σ2Gφ(σ, y(σ))dσ

)

×
(

4π

1− s2Λ
3 − 2mΛ(s)

s

− 4π

1− 2m(s)
s

)
︸ ︷︷ ︸

I2

]
ds.

We estimate I1 and I2 separately:

I1 =

∫ r

0

1

s2

∫ s

0

σ2|Gφ(σ, yΛ(σ))−Gφ(σ, y(σ))|dσds

≤
∫ r

0

∫ r

0

|Gφ(σ, yΛ(σ)) −Gφ(σ, y(σ))|dσds

≤ r

∫ r

0

|Gφ(σ, yΛ(σ)) −Gφ(σ, y(σ))|dσ,

I2 =
4π

1− s2Λ
3 − 2mΛ(s)

s

− 4π

1− 2m(s)
s

≤ 4π · 18 · 9 ·
(
s2Λ

3
+

8π

s

∫ s

0

σ2|Gφ(σ, yΛ(σ)) −Gφ(σ, y(σ))|dσ
)

≤ 648π

(
s2Λ

3
+ 8πs

∫ s

0

|Gφ(σ, yΛ(σ)) −Gφ(σ, y(σ))|dσ
)
.
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So, using that y is decreasing we have

|yΛ(r) − y(r)|

≤ Λ

∫ r

0

(
6s+ 216πs3

(
Hφ(r, y0) +

1

3
Gφ(r, y0)

))
ds

+ 72πr

∫ r

0

|Hφ(s, yΛ(s))−Hφ(s, y(s))|ds

+

(
72πr + 5184π2 r

3

3

(
Hφ(r, y0) +

1

3
Gφ(r, y0)

))

×
∫ r

0

|Gφ(s, yΛ(s))−Gφ(s, y(s))|ds

≤ Λ

(
3r2 + 54πr4

(
Hφ(r, y0) +

1

3
Gφ(r, y0)

))

+

(
72πr + 1728π2r3

(
Hφ(r, y0) +

1

3
Gφ(r, y0)

))

×
∫ r

0

(|Hφ(s, yΛ(s))−Hφ(s, y(s))| + |Gφ(s, yΛ(s)) −Gφ(s, y(s))|)ds

≤ ΛC1(r) + C2(r)

∫ r

0

(|Hφ(s, yΛ(s))−Hφ(s, y(s))| + |Gφ(s, yΛ(s)) −Gφ(s, y(s))|)ds.

The derivatives with respect to y of Gφ(r, y) and Hφ(r, y) are strictly increasing both
in r and y (see Lemma 2.3). And since |yΛ(r) − y(r)| ≤ |y(R)| we can write(

sup
u∈[yΛ(r),y(r)]

|∂uGφ(r, u)|+ sup
u∈[yΛ(r),y(r)]

|∂uHφ(r, u)|
)

≤ ∣∣∂uGφ(r̃
∗, u)|y0+|y(R)|

∣∣+ ∣∣∂uHφ(r̃
∗, u)|y0+|y(R)|

∣∣ =: C3.

So we have obtained that (3.13) is of the form

|Hφ(s, yΛ(s)) −Hφ(s, y(s))|+ |Gφ(s, yΛ(s))−Gφ(s, y(s))|(3.14)

≤ C4(r)Λ + C5(r)

∫ r

0

(|Hφ(s, yΛ(s))−Hφ(s, y(s))|
+ |Gφ(s, yΛ(s)) −Gφ(s, y(s))|)ds

Note that C4(r) is strictly increasing. Grönwall’s inequality yields

(|Gφ(s, yΛ(s))−Gφ(s, y(s))|+ |Hφ(s, yΛ(s))−Hφ(s, y(s))|)
≤ C4(r)e

∫ r
0
C5(r)ds = C4(r)Λe

rC5(r) =: Cgh(r)Λ.(3.15)

Note that Cgh(r) is increasing when r is increasing. This ends the proof of the
lemma.

With this lemma at hand we now turn to the proof of Proposition 3.5.
Proof. We define

m(r) = 4π

∫ r

0

s2�(s)ds, mΛ(r) = 4π

∫ r

0

s2�Λ(s)ds,(3.16)

v(r) = 1− 2m(r)

r
, vΛ(r) = 1− r2Λ

3
− 2mΛ(r)

r
.(3.17)
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Consider the continuous function vΛ. Note that vΛ(0) = 1. We define

(3.18) r∗ := inf{r ∈ [0, Rc) | vΛ(r) = 1/18},
i.e., r∗ is the smallest radius where vΛ(r) =

1
18 . Lemma 3.2 assures that r∗ < Rc, if

Rc is finite, otherwise r∗ is clearly finite due to the form of vΛ, i.e., r
∗ is well defined.

Note that vΛ(r) is the quantity in Lemma 3.2. In addition, we define

(3.19) r̃ := inf{r ∈ [0, Rc] | |yΛ(r) − y(r)| > |y(R0 +ΔR)|}.
The right-hand side of this inequality is given by the background solution y, which
exists globally. Note that |y(R0 +ΔR)| > 0 since y is strictly monotone, and y(0) =
yΛ(0) = y0, so 0 < r̃ by continuity of y and yΛ. Let

(3.20) r̃∗ := min{r∗, r̃}.
Choosing Λ s.t. (3.11) holds, we will show that r̃∗ > R0 + ΔR. We assume the
opposite, r̃∗ ≤ R0 +ΔR, and consider the sum |�Λ(r) − �(r)| + |pΛ(r) − p(r)| on the
interval [0, r̃∗]. By the mean value theorem we have

|�Λ(r) − �(r)| + |pΛ(r) − p(r)|(3.21)

=
(∣∣∣∂yGφ(r, y)

∣∣
u1

∣∣∣+ ∣∣∣∂yHφ(r, y)
∣∣
u2

∣∣∣) |yΛ(r)− y(r)|

where u1, u2 ∈ [y(r), yΛ(r)] are chosen appropriately. For r ≤ r̃∗ the assumptions of
Lemma 3.7 are clearly satisfied. So for r ≤ r̃∗ we have the estimate

(3.22) |�Λ(r) − �(r)| + |pΛ(r) − p(r)| ≤ ΛCgh(r̃
∗),

where Cgh is defined in (3.15). Note that Cgh(r) is increasing in r. Still on [0, r̃∗] we
compute

(3.23)

|v(r) − vΛ(r)| ≤ r2Λ

3
+

2

r
|mΛ(r) −m(r)| = r2Λ

3
+

8π

r

∫ r

0

s2|�Λ(s)− �(s)|ds

≤
(
(r̃∗)2

3
+

8π

3
(r̃∗)2Cgh(r̃

∗)
)
Λ =: Cv(r̃

∗)Λ

Since we have v(r) ≥ 1
9 (Buchdahl inequality, see Lemma 2.1) and Λ < 1/18

Cv(R0+ΔR) by

the choice of Λ we can conclude

(3.24) vΛ(r) ≥ v(r) − ΛCv(r̃
∗) >

1

9
− 1/18

Cv(R0 +ΔR)
Cv(r̃

∗) ≥ 1

18

on [0, r̃∗] since Cv(r̃
∗) < Cv(R0+ΔR) because Cv(r) is increasing and r̃∗ ≤ R0+ΔR

by assumption.
We also consider the distance between y and yΛ on [0, r̃∗]. Following the procedure

depicted in the proof of Lemma 3.7 one obtains

(3.25)

|yΛ(r) − y(r)| ≤ Λ

(
3r2 + 29πr4

(
Hφ(r, y0) +

1

3
Gφ(r, y0)

))

+ 72π

(
r + 24πr2

(
Hφ(r, y0) +

1

3
Gφ(r, y0)

))

×
∫ r

0

Cgh(s)Λds

=: Cy(r)Λ ≤ Cy(r̃
∗)Λ.
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Since Cy(r̃
∗) ≤ Cy(R0 + ΔR) and Λ < |y(R0+ΔR)|

Cy(R0+ΔR) on [0, r̃∗] by assumption, the

relation

(3.26) |yΛ(r) − y(r)| < |y(R0 +ΔR)|
already holds. Equations (3.24) and (3.26) state that vΛ(r̃

∗) > 1
18 and |yΛ(r̃∗) −

y(r̃∗)| < |y(R0 +ΔR)|, respectively, on the interval [0, r̃∗], which is a contradiction of
the definition of r̃∗. Thus we have r̃∗ > R0 +ΔR as desired.

Note that due to the assumption (3.11) Cy(r) is uniformly bounded on the interval
[0, R0+ΔR], so the inequality (3.26) in fact holds for all r ≤ min{r̃∗, R0+ΔR}. Since
r̃∗ > R0 +ΔR we can conclude the following. We have shown that yΛ exists at least
on [0, R0 + ΔR] as the continuation criterion applies and from (3.26) we already
know that yΛ(R0 + ΔR) < 0. Since yΛ is continuous it has at least one zero in the
interval (R0, R0 +ΔR). In particular there exists an interval (R0Λ, R0 +ΔR) where
yΛ is strictly smaller than zero. R0Λ is the largest zero of yΛ in (R0, R0 +ΔR). So,
the spatial support of fΛ is contained in the interval [0, R0Λ) and this implies the
assertion.

3.4. Global regular solutions for Λ > 0. In the last two sections we have
seen that for suitably chosen Λ there exists a unique solution yΛ to (2.24) on the
interval [0, R0 + ΔR] for some ΔR > 0. This solution uniquely induces a solution
μΛ, λΛ of (2.3), (2.4) on [0, R0 + ΔR] whose distribution function fΛ is of bounded
support in space. By gluing a Schwarzschild–deSitter metric to this solution one
can construct a global static solution to the Einstein–Vlasov system in the following
sense. The solutions possess a cosmological horizon rC > R0+ΔR determined by the

constant Λ and the total mass of the matter M , being the largest zero of 1− r2Λ
3 − 2M

r .
Different coordinates are used for the regions {r < rC} and {r > rC}. μΛ and λΛ

will be shown to extend to the region {r < rC}. In section 6 we will discuss in more
detail how these solutions can be extended beyond the comsological horizon, yielding
global solutions.

Theorem 3.8. Let Φ : R2 → [0,∞) be of the form (2.19) and let Gφ and Hφ

be given by (2.21) and (2.22), respectively. Then, for every initial value μ0 < 0 there
exists a constant C = C(μ0, φ) > 0 such that for every 0 < Λ < C there exists
a unique global solution μΛ, λΛ ∈ C2([0, rC)) of the static, spherically symmetric
Einstein–Vlasov system (2.2)–(2.6) with μΛ(0) = μ0, and λΛ(0) = 0 such that the
spatial support of the distribution function is bounded. This solution coincides with
the Schwarzschild–deSitter metric in the vacuum region.

Proof. According to Lemma 3.1 there exists a C2-solution yΛ of (2.24) on a small
interval [0, δ]. In the proof of Proposition 3.5 we saw that this solution can be extended
at least up to r = R0 +ΔR for any ΔR if one chooses Λ small enough. Beyond the
support of �Λ and pΛ, i.e., for r ∈ [R0Λ, R0 +ΔR], (2.24) takes the form

(3.27) y′Λ(r) = −1

2

d

dr
ln

(
1− r2Λ

3
− 2M

r

)
whereM = mΛ(R0,Λ). This equation is solved by the (shifted) Schwarzschild–deSitter
metric, whose corresponding y-coefficient yS is given by

(3.28) yS(r) = −1

2
ln

(
1− r2Λ

3
− 2M

r

)
− ln

(
e−λ(R0Λ)

)
for r ∈ [R0Λ, rC), where rC is defined as the largest zero of 1 − r2Λ

3 − 2M
r . The shift

has been chosen such that yΛ can be extended by yS as a C2-solution of (2.24) on
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[0, rC), fulfilling the boundary condition (2.25), using a modified ansatz for the matter
distribution fΛ. Namely, for r > R0 +ΔR we drop the original ansatz Φ for fΛ and
continue fΛ by the constant zero function, i.e.,

(3.29) fΛ(x, v) =
{

α [1− εe−y]
k
+ [L− L0]

�
+, r ∈ [0, R0 +ΔR]

0, r ∈ (R0 +ΔR, rC)
.

Note, that fΛ is not losing any regularity due to the gluing procedure. Via μΛ =
ln(E0)− yΛ and

(3.30) e−2λΛ = 1− r2Λ

3
− 8π

r

∫ r

0

s2Gφ(s, yΛ(s))ds

one can construct a local solution μΛ, λΛ ∈ C2([0, Rc)) of (2.3), (2.4), where Rc >
R0+ΔR. This solution fulfils the boundary conditions λΛ(0) = 0, μΛ(0) = ln(E0)−y0,
λ′
Λ(0) = μ′

Λ(0) = 0. We now see that E0 = eμ(R0Λ) and continue μΛ and λΛ with the
Schwarzschild–deSitter coefficients μS , λS given by

(3.31) e2μS = e−2λS = 1− r2Λ

3
− 2M

r

in a continuous way beyond R0 + ΔR. From (3.27) we deduce that the derivatives
of μΛ and μS can also be glued together in a continuous way. The functions μΛ, λΛ,
and fΛ solve the Einstein–Vlasov system (2.2)–(2.4) globally.

Remark 3.9. In the isotropic case, i.e., L0 = 
 = 0 in the ansatz (2.19) for the
distribution function f , the matter quantities � and p are monotonically decreasing.
This implies that their support in space is a ball. In the anisotropic case, however,
so-called shell solutions occur [8]. The support of such matter shells is in general not
connected.

4. Static, anisotropic, globally regular solutions for Λ < 0.

4.1. Local existence. In this section an existence lemma for Λ < 0 is stated
for small radii. This lemma corresponds to the first part of the proof of Theorem 2.2
in [23] for the case Λ = 0.

Lemma 4.1. Let Φ : R2 → [0,∞) be of the form (2.19) and let Gφ, Hφ be defined
by (2.21) and (2.22), respectively. Then for every y0 ∈ R and every Λ < 0 there exists
a δ > 0 such that there exists a unique solution yΛ ∈ C2([0, δ]) of (2.24) with initial
value yΛ(0) = y0.

Proof. The proof works in an exact analogous way as in the case Λ > 0.

4.2. Globally regular solutions for Λ < 0. For negative cosmological con-
stants the global existence of solutions can be proved in an analogous way as done
in [22] for the case Λ = 0. After establishing the local existence of solutions analo-
gous to the Λ > 0 case, we show that the metric components stay bounded for all
r ∈ R+ with an energy estimate. This will yield the global existence of solutions of
the Einstein–Vlasov system with a negative cosmological constant. In the next step
we show, by virtue of a suitable choice of ansatz for the matter distribution f , that
the matter quantities � and p are of bounded support.

In the following theorem the existence on spatial intervals of the form R+ \ [0, r0)
for r0 > 0 is included for the purpose of applying the same theorem to the construction
of static spacetimes with Schwarzschild singularities in the center (see section 5.2).
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The solutions of interest here are those in which the radius variable takes values in
all of R+.

Theorem 4.2. Let Λ < 0 and let Φ : R2 → [0,∞) be of the form (2.19) and let
Gφ and Hφ be defined by (2.21) and (2.22). Then for every r0 ≥ 0 and μ0, λ0 ∈ R

there exists a unique solution λΛ, μΛ ∈ C1([r0,∞)) of the Einstein–Vlasov system
(2.2)–(2.6) with μΛ(r0) = μ0 and λΛ(r0) = λ0. One has λ0 = 0 if r0 = 0.

Proof. We use an energy argument similar to [22]. Let yΛ ∈ C2([r0, r0+δ]) be the
local solution of (2.24) with yΛ(r0) = ln(E0)e

−μ0 . If r0 = 0 the existence of this local
solution is established by Lemma 4.1 and in the case r0 > 0 the existence of a local
solution follows directly from the regularity of the right-hand sides of (2.3) and (2.4).
Let [r0, Rc) be the maximal interval of existence of this solution. By μΛ = ln(E0)−yΛ
and

(4.1) e−2λΛ = 1− Λ

3

(
r2 − r30

r

)
− 2

r

(
r0
2

(
1− e−2λ0

)
+ 4π

∫ r

r0

s2Gφ(s, yΛ(s))ds

)

one constructs a local solution μΛ, λΛ ∈ C2([r0, Rc]) of (2.3) and (2.4). We define

(4.2) wΛ(r) = − Λ

12π
+

1

r3

(
−r30Λ

24π
+

r0
8π

(
1− e−2λ0

)
+

∫ r

r0

s2�Λ(s)ds

)
.

The Einstein equation (2.3) implies

(4.3) μ′
Λ(r) = 4πre2λΛ(r) (pΛ(r) + wΛ(r)) .

By adding (2.3) and (2.4) we have

(4.4) (μ′
Λ(r) + λ′

Λ(r)) = 4πre2λΛ(r)(pΛ(r) + �Λ(r)).

We assume Rc < ∞ and consider the quantity eμΛ+λΛ (pΛ + wΛ) on the interval[
Rc

2 , Rc

)
. On this interval, in particular away from the origin, a differential inequality

will be established that will allow us to deduce that both μΛ and λΛ are bounded on[
Rc

2 , Rc

)
. Using the TOV equation (2.16) we obtain for r ∈ [Rc

2 , Rc

)

(4.5)

d

dr

(
eμΛ+λΛ (pΛ + wΛ)

)
= eμΛ+λΛ

(
−2pΛ

r
− 3wΛ

r
− Λ

4πr
+

2pTΛ

r
+

�Λ
r

)

≤ C1e
μΛ+λΛ =

C1

pΛ + wΛ︸ ︷︷ ︸
=:C2

(pΛ + wΛ) e
μΛ+λΛ .

In the course of this estimate we have used that Λ
4πr , pTΛ(r)/r and �Λ(r)/r stay

bounded for r ∈ [Rc

2 , Rc

)
. The constant C2 is bounded since wΛ(r) > 0 for negative

Λ. It follows

(4.6)
d

dr
ln
(
eμΛ+λΛ (pΛ + wΛ)

) ≤ C2 ⇒ λΛ + μΛ < ∞.

Equation (4.3) implies that μ′
Λ(r) ≥ 0 and therefore μΛ(r) ≥ μ0. We also have

(4.7) e−2λΛ ≤ 1 +
r2|Λ|
3

≤ 3 +R2
c |Λ|

3
< ∞.
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This in turn implies λΛ > −∞ and we deduce from (4.6) that both μΛ and λΛ are
bounded on

[
Rc

2 , Rc

)
. This allows us to continue μΛ and λΛ as C2-solutions of the

Einstein equations beyond Rc, which contradicts its definition. So Rc = ∞.

We prove in the following theorem that the distribution function in the previous
theorem is compactly supported.

Theorem 4.3. Let Φ : R2 → [0,∞) be of the form (2.19), let μ0 ∈ R and r0 ≥ 0,
and let λΛ, μΛ ∈ C1([r0,∞)), f(x, v) = Φ(E,L) be the unique global-in-r solution of
the Einstein–Vlasov system (2.2)–(2.6) with a negative cosmological constant, where
μΛ(0) = μ0 such that y0 = ln(E0)e

−μ0 > 0. Then there exists R0 ∈ (r0,∞) such that
the spatial support of fΛ is contained in the interval [r0, R0).

Proof. Due to part (iii) of Lemma 2.3, we have vacuum if yΛ(r) ≤ 0. By assump-
tion we have yΛ(0) > 0. In the following we show that limr→∞ yΛ(r) < 0. Since yΛ is
continuous and monotonically decreasing, this implies that yΛ possesses a single zero
R0 and the support of the matter quantities �Λ and pΛ is contained in [0, R0).

We define yvac,Λ by

(4.8) yvac,Λ = y0 − 1

2
ln

(
1− r2Λ

3

)
.

So we have

(4.9) y′vac,Λ(r) = − 4π

1− Λr2

3

(
− rΛ

12π

)

and yvac,Λ(0) = yΛ(0) = y0. Furthermore, since y′Λ(r) < y′vac,Λ(r) which can be seen
immediately by means of (2.24), we have

(4.10) yΛ(r) ≤ yvac,Λ(r) = y0 − 1

2
ln

(
1 +

r2|Λ|
3

)
r→∞−→ −∞ < 0

and the theorem follows.
Remark 4.4. The solution coincides with the Schwarzschild–AdS solution for

r ≥ R0 if the continuity condition

(4.11) μΛ(R0) = ln(E0)− yΛ(R0) =
1

2
ln

(
1− R2

0Λ

3
− 2M

R0

)

is fulfilled, where M = 4π
∫ R0

0 s2�Λ(s)ds. So, if y0 is given, the corresponding value
of E0 in the ansatz Φ for the matter distribution f can be read off.

5. Solutions with a Schwarzschild singularity at the center. In this sec-
tion we construct spherically symmetric, static solutions of the Einstein–Vlasov sys-
tem with a nonvanishing cosmological constant that contain a Schwarzschild singular-
ity at the center. We consider both cases with a positive and a negative cosmological
constant. The construction for the case Λ > 0 makes use of the corresponding solu-
tions with vanishing Λ. In the following we will call this solution, where Λ = 0, a
background solution. The global existence of the background solution is proved in [22].
The matter quantities belonging to this background solution are of finite support.

5.1. Matter shells immersed in Schwarzschild–deSitter spacetime. The
construction of the solution with Λ > 0 can be outlined as follows. In the vacuum
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case, i.e., when the right-hand sides of the Einstein equations (2.3) and (2.4) are zero,
the solutions are given by

(5.1) e2μ(r) = 1− r2Λ

3
− 2M0

r
, e2λ(r) =

(
1− r2Λ

3
− 2M0

r

)−1

, r > rBΛ

where rBΛ is defined to be the black hole event horizon, i.e., the smallest positive zero
of 1−r2Λ/3−2M0/r. If one chooses L0 and M0 appropriately and Λ sufficiently small
the following configuration is at hand. For small r > rBΛ one sets f(x, v) ≡ 0 and the
metric is given by the Schwarzschild-deSitter solution. Thus one has the coefficients
(5.1). Increasing the radius r one reaches an interval [r−Λ, r+Λ] where also an ansatz
f(x, v) = Φ(E,L) of the form (2.19) yields vacuum, i.e., Gφ(r, y(r)) = Hφ(r, y(r)) = 0.
In this interval it is possible to glue the Schwarzschild–deSitter solution (5.1) to a
nonvacuum solution, solving the Einstein–Vlasov system. It will be shown that the
matter quantities �Λ and pΛ of this solution have finite support. Beyond the support
of the matter quantities the solution will be continued again by the Schwarzschild-
deSitter solution.

For the negative cosmological constant, globally defined solutions can also be
constructed. As for the case above, the black hole is surrounded by a vacuum shell
which is itself surrounded by a shell containing matter. In the outer region, we again
have vacuum.

Before we consider the system with Λ �= 0 we establish a generalized Buchdahl-
type inequality for solutions of the Einstein equations with a Schwarzschild singularity
at the center. This inequality is relevant for the proof of the existence of solutions of
the Einstein–Vlasov system with Λ > 0.

Lemma 5.1. Let λ, μ ∈ C1([0,∞)) and let �, p, pT ∈ C0([0,∞)) be functions that
satisfy the system of equations (2.3)–(2.7) with a Schwarzschild singularity with mass
parameter M0 > 0 at the center, and such that p+ 2pT ≤ �. Then the inequality

(5.2)
2(M0 +m(r))

r
≤ 8

9

holds for all r ∈ [94M0,∞
)
where m(r) is given by

(5.3) m(r) = 4π

∫ r

2M0

s2�(s)ds.

Proof. For the proof of the lemma we apply techniques that are already used in [18]
to prove the Buchdahl inequality for globally regular solutions without a Schwarzschild
singularity. Only the steps that differ from the proof of [18], Theorem 4.1, or [5,
Theorem 1] for the charged case, will be described in detail.

By integrating the Einstein equation (2.3) over the interval
(
9M0

4 , r
)
we obtain

(5.4) e−2λ = 1− 9M0

4r

(
1− e−2λ0

)− 8π

r

∫ r

9M0
4

s2�(s)ds,

where λ0 = λ
(
9M0

4

)
. Since we have vacuum on

(
2M0,

9M0

4

)
on this interval the metric

is given by the Schwarzschild metric and one can compute λ0 explicitly. One finds
that

(5.5) e−2λ = 1− 2(M0 +m(r))

r
.
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2674 H. ANDRÉASSON, D. FAJMAN, AND M. THALLER

We plug this into the other Einstein equation (2.4) and obtain the differential equation

(5.6) μ′(r) =
1

1− 2(M0+m(r))
r

(
4πrp+

M0 +m(r)

r2

)
.

We now introduce the variables

(5.7) x =
2(M0 +m(r))

r
, y = 8πr2p(r).

Note that x < 1 and y ≥ 0. The first inequality must hold true since otherwise the
metric function λ will not stay bounded. Next we let β = 2 ln(r) and consider the
curve

(
x
(
eβ/2

)
, y
(
eβ/2

))
parameterized by β in [0, 1) × [0,∞). In the following a

dot denotes the derivative with respect to β. Using the Einstein equations and the
generalized TOV equation (2.16) one checks that x and y satisfy the equations

8πr2� = 2ẋ+ x,(5.8)

8πr2p = y,(5.9)

8πr2pT =
x+ y

2(1− x)
ẋ+ ẏ +

(x+ y)2

4(1− x)
.(5.10)

By virtue of these equations (5.8)–(5.10) the condition p+2pT ≤ � can be written in
the form

(5.11) (3x− 2 + y)ẋ+ 2(1− x)ẏ ≤ −α(x, y)

2
, α = 3x2 − 2x+ y2 + 2y.

From now on the proof is analogous to the proof of [5], Theorem 1 for the charged
case. One defines the quantity

(5.12) w(x, y) =
(3(1− x) + 1 + y)2

1− x

and shows that since 0 ≤ x < 1 and y ≤ 0 this quantity is bounded by 16 along
the curve (x, y) with an optimization procedure. The inequality w ≤ 16 is already
equivalent to

(5.13)
2(M0 +m(r))

r
≤ 8

9

for all r ∈ [9M0

4 ,∞) and the proof is complete.
Remark 5.2. In the case when M0 = 0 it is known that the inequality is sharp;

see [4] and [18]. For the purpose of this work the bound (5.2) is sufficient and we have
not tried to show sharpness.

In the course of the proof of Theorem 5.5 we will need a continuation criterion
for the solution of the Einstein equations, namely the following statement.

Lemma 5.3. Let Λ > 0, μ0 ∈ R and M0, r0 > 0. Let Gφ and Hφ be defined by
(2.21) and (2.22). Then the equation

(5.14)

μ′
Λ =

1

1− Λ
3

(
r2 − r30

r

)
− 2

r

(
M0 + 4π

∫ r

r0
s2Gφ(s, μΛ(s))ds

)
×
(
4πrHφ(s, μΛ(s))− Λ

(
r

3
+

r30
6r2

)

+
1

r2

(
M0 + 4π

∫ r

r0

s2Gφ(s, μΛ(s))ds

))
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has a unique local C2-solution μΛ with μ(r0) = μ0, with maximal interval of existence
[r0, Rc), Rc > 0. Moreover, there exists RD ≤ Rc such that

(5.15) lim inf
r→RD

(
1− Λ

3

(
r2 − r30

r

)
− 2

r

(
M0 + 4π

∫ r

r0

s2Gφ(s, μΛ(s))ds

))
= 0.

Proof. The local existence of a C2-solution of (5.14) follows from the regularity
of the right-hand side. Basically, one has the situation of Lemma 3.2, i.e., the case
with a regular center and Λ > 0, except for the fact that there are additional terms
containing r0 and M0. On a finite interval [r0, Rc), however, these terms are bounded
and well behaved, i.e., the proof can be carried out in an analogous way.

Remark 5.4. Lemma 5.3 implies that if the denominator of the right-hand side
of (5.14) is strictly larger than zero on an interval [r0, r), then μΛ can be extended
beyond r as a solution of (5.14).

The following theorem states the existence of solutions for Λ > 0 with a Schwarz
schild singularity at the center.

Theorem 5.5. Let Φ : R
2 → [0,∞) be of the form (2.19) with E0 = 1, let

L0,M0 ≥ 0 such that L0 > 16M2
0 , and let Gφ and Hφ be given by (2.21) and

(2.22), respectively. Then there exists a unique solution μΛ, λΛ ∈ C2((rBΛ, rC)) of
the Einstein–Vlasov system (2.2)–(2.6) for Λ > 0 sufficiently small. The spatial sup-
port of the distribution function fΛ is contained in a shell {r+Λ < r < R0Λ}. In
the complement of this shell the solution of the Einstein equations is given by the
Schwarzschild–deSitter metric.

Remark 5.6. In the course of the proof one will come across the fact that in
one of the vacuum regions, either r ≤ r+Λ or r ≥ R0Λ, the component μvac given

by e2μvac = 1 − r2Λ
3 − 2M

r of the Schwarzschild–deSitter metric will be shifted by a
constant. But this shift is just a reparameterization of the time t [22]. Thus the shell
of Vlasov matter causes a redshift.

Proof. In the first part of the proof we consider the black hole region and show that
the chosen parameters lead to the configuration depicted in Figure 1. We, then make
use of the existence of a background solution and construct the desired solution μΛ.

Fig. 1. Qualitative sketch of a black hole configuration surrounded by a shell of matter.
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We define the functions

a(r) =

√
1− 2M0

r

√
1 +

L0

r2
,(5.16)

aΛ(r) =

√
1− r2Λ

3
− 2M0

r

√
1 +

L0

r2
.(5.17)

Moreover, we define r− and r+ to be the first and second radii where a(r) = 1,
respectively, and rB := 2M0 to be the event horizon of the black hole. Since L0 >
16M2

0 we have rB < r− < r+ [22]. Note also that r+ > 4M0 > 18
5 M0.

Since 9M2
0Λ < 1 by assumption (Λ is chosen to be small), there exists a black

hole horizon rBΛ of the Schwarzschild–deSitter metric with parameters M0 and Λ. It
can be calculated explicitly by

(5.18) rBΛ = − 2√
Λ
cos

(
1

3
arccos

(
−3M0

√
Λ
)
+

π

3

)
.

Note that rB < rBΛ. We construct an upper bound to rBΛ. Set v(r) = 1− 2M0

r .

(5.19)

v(rBΛ) =

∫ rBΛ

rB

v′(s)ds+ v(rB)︸ ︷︷ ︸
=0

≥
∫ rBΛ

rB

(
inf

s∈[rB ,rBΛ]
v′(s)

)
ds = (rBΛ − rB)v

′(rBΛ)

⇒ rBΛ ≤ rB +
v(rBΛ)

v′(rBΛ)
.

A short calculation yields v(rBΛ) =
r2BΛΛ

3 and v′(rBΛ) = 2M0

r2BΛ
. One also checks by

explicit calculation that drBΛ

dΛ > 0. So the distance

(5.20) rBΛ − rB ≤ r4BΛΛ

6M0

between the two horizons can be made arbitrarily small if Λ is chosen to be sufficiently
small. In particular we need Λ to be small enough to assure that rBΛ < r−.

Next we define r−Λ and r+Λ to be the first and second radii where aΛ(r) = 1.
Note that a(r) > aΛ(r) for all r ∈ (rBΛ, rC), where rC is the cosmological horizon of
the vacuum solution, and therefore the second positive zero of 1 − r2Λ/3 − 2M0/r.
Between r− and r+ the function a(r) has a unique maximum at r = r̂, given by

(5.21) r̂ =
L0 −

√
L2
0 − 12M2

0L0

2M0
.

We consider the distance between a2(r) and a2Λ(r) at this radius r̂:

(5.22) |a2(r̂)− a2Λ(r̂)| = Λ
r̂2 + L0

3
.

Choosing Λ sufficiently small one can attain |a2(r̂)− a2Λ(r̂)| < a2(r̂)− 1. This implies
that aΛ(r) − 1 has exactly two zeros in the interval (r−, r+). This in turn yields the
desired configuration

(5.23) 2M0 = rB < rBΛ < r− < r−Λ < r̂ < r+Λ < r+.
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In the vacuum region [r−Λ, r+Λ] the function aΛ(r) coincides with the expression

e−yΛ(r)
√
1 + L0

r2 . Part (iii) of Lemma 2.3 therefore implies that for r ∈ [r−Λ, r+Λ]

the ansatz Φ for the distribution function f also yields �Λ(r) = Gφ(r, yΛ(r)) = 0
and pΛ(r) = Hφ(r, yΛ(r)) = 0. So at r = r+Λ one can continue f by the ansatz Φ
in a continuous way and for r ≥ r+Λ the Einstein equations lead to the differential
equation

(5.24)

μ′
Λ =

1

1− Λ
3

(
r2 − r3+Λ

r

)
− 2

r

(
r+Λ

2 (1− e−2λ0) + 4π
∫ r

r+Λ
s2�Λ(s)ds

)
×
(
4πrpΛ − Λ

(
r

3
+

r3+Λ

6r2

)
+

r+Λ

2r2
(
1− e−2λ0

)

+
4π

r2

∫ r

r+Λ

s2�Λ(s)ds

)

where λ0 = λ(r+Λ).
There exists a background solution μ ∈ C2((2M0,∞)) to the Einstein equations

with Λ = 0 [22]. For r ∈ (2M0, r+Λ] this solution is given by the Schwarzschild metric
and for r > r+Λ as a solution of (5.24) with Λ = 0. The background solution is
continuous at r+Λ if

(5.25)
r+Λ

2

(
1− e−2λ0

)
= M0.

Furthermore, the background solution μ has the property that there exists R0 > 0
such that μ(R0) = 0, which implies that the support of matter quantities � and p is
contained in the interval (r+, R0) [22]. In the remainder of the proof we show that
using properties of this background solution μ one obtains a global solution μΛ of
(5.24). We set

μ0Λ =
1

2
ln

(
1− r2+ΛΛ

3
− 2M0

r+Λ

)
,(5.26)

μ0 = μ(r+Λ) =
1

2
ln

(
1− 2M0

r+Λ

)
.(5.27)

In the following we seek a solution μΛ of (5.24) on an interval beginning at r = r+Λ

with the initial value μ0Λ as given in (5.26) that we can glue to the vacuum solution on
(rBΛ, r+Λ]. Note that μ0Λ < 0. Since there are no issues with an irregular center the
local existence of μΛ on an interval (r+Λ, r+Λ + δ], δ > 0 follows from the regularity
of the right-hand side of (5.24). So let (2M0, Rc) be the maximum interval of the
existence of μΛ. We define

vM0(r) = 1− 2

r

(
M0 + 4π

∫ r

r+Λ

s2�(s)ds

)
,(5.28)

vM0Λ(r) = 1− Λ

3

(
r2 − r3+Λ

r

)
− 2

r

(
M0 + 4π

∫ r

r+Λ

s2�Λ(s)ds

)
(5.29)

as the denominator of the right-hand side of (5.24). We set

(5.30) Δv0 :=
1

18
vM0Λ(r+Λ) =

1− 2M0

r+Λ

18
≤ 1

18
,
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define the radii

(5.31)
r∗ = inf {r ∈ (r+Λ, Rc) | vM0Λ(r) = Δv0 } ,
r̃ = sup{r ∈ (r+Λ, Rc) | |μΛ(r) − μ(r)| ≤ μ(R0 +ΔR)},

and set r̃∗ := min{r̃, r∗}. Note that μ(R0 + ΔR) > 0 since μ(R0) = 0 and μ is
strictly increasing. We assume that r ≤ r̃∗ and calculate |μ(r)− μΛ(r)|. To make the
calculations more convenient, we extend � and p on [0, 2M0] as constant zero such
that integrals of � and p over (r+, r) can be replaced by integrals over (0, r). First we
calculate

(5.32) |μ0 − μ0Λ| = 1

2
ln

[
1 +

r2+ΛΛ

3

(
1− r2+ΛΛ

3
− 2M0

r+Λ

)−1
]
=: C0Λ(r).

We write
(5.33)

|μ(r)− μΛ(r)| ≤
∫ r

r+Λ

1

vM0Λ(s)

[
4πs|pΛ(s)− p(s)| − Λ

(
s

3
+

r3+Λ

s2

)

+
4π

s2

∫ s

0

σ2|�Λ(σ) − �(σ)|dσ
]
ds

+

∫ r

r+Λ

(
4πsp(s) +

4π

s2

∫ s

0

σ2�(σ)dσ

) ∣∣∣∣ 1

vM0Λ(s)
− 1

vM0(s)

∣∣∣∣ds
+ C0Λ(r)

We would like to apply the generalized Buchdahl inequality (Lemma 5.1) to the back-
ground solution μ on the interval [r+Λ,∞). We have that r+Λ > r̂ ≥ 3M0 > 9/4M0.
The crucial condition is the existence of a vacuum region on

(
2M0,

9
4M0

]
. However,

this is ensured by virtue of the assumption L0 > 16M2
0 which implies r+ > 4M0. So

the difference |μ(r) − μΛ(r)| can be further simplified and estimated. Using similar
estimates as in the proof of Lemma 3.7 we obtain an inequality of the form

(5.34) |μ(r) − μΛ(r)| ≤ CΛ(r) + C(r)

∫ r

0

(|p(s)− pΛ(s)|+ |�(s)− �Λ(s)|) ds

where C(r) is increasing in r, CΛ(r) is increasing both in Λ and r and we have
CΛ(r) = 0 if Λ = 0. Note that the constants are fully determined by M0, L0, φ and μ.

By virtue of the mean value theorem, the sum |pΛ−p|+|�Λ−�| can be estimated as

(5.35) |pΛ(r) − p(r)| + |�Λ(r) − �(r)| ≤ C · |μΛ(r) − μ(r)|,
where the constant C is determined by the derivatives of Gφ and Hφ. A Grönwall
argument yields |μΛ(r)−μ(r)| ≤ CμΛ(r) implying |�Λ(r)−�(r)| ≤ CgΛ(r) with certain
constants CgΛ and CμΛ.

One can choose Λ small enough such that for all r ∈ (r+Λ, R0 +ΔR] we have

(5.36) |μΛ(r) − μ(r)| < μ(R0 +ΔR).

Moreover, we consider the difference

(5.37) |vM0(r) − vM0Λ(r)| ≤
Λ

3

∣∣∣∣r2 − r3+Λ

r

∣∣∣∣+ 8πr2

3
CgΛ(r).
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Lemma 5.1 implies vM0(r) ≥ 1
9 for all r ∈ (r+Λ,∞). Choosing Λ sufficiently small,

such that for all r ∈ (r+Λ, R0 + ΔR] we have |vM0 (r)− vM0Λ(r)| ≤ 1
18 , one obtains

vM0Λ ≥ 1
18 on (r+Λ, R0 +ΔR].

In all, we have deduced that r̃∗ ≥ R0 + ΔR if Λ is chosen sufficiently small.
This implies that μΛ exists at least on [0, R0 + ΔR] by Lemma 5.3 and also that
μΛ(R0 + ΔR) > 0. From the latter property one deduces that there exists a radius
R0Λ > R0 such that for all r ∈ [R0Λ, R0 + ΔR] we have �Λ(r) = pΛ(r) = 0. On this
interval, we can glue an appropriately shifted Schwarzschild-deSitter metric to μΛ.
This yields the desired solution defined on (rBΛ, rC).

Remark 5.7. To see that the solutions constructed in Theorem 5.5 are nonvacuum,
one checks that for r ≥ r+Λ one has

(5.38)
d

dr
aΛ(r) < 0 and

d2

dr2
aΛ(r) ≤ 0.

Since aΛ(r) corresponds to e−yΛ(r), this implies that for some r > r+Λ the quan-

tity e−yΛ(r)
√
1 + L0

r2 < 1 which in turn implies by part (iii) of Lemma 2.3 that

�Λ(r), pΛ(r) > 0 for some r > r+Λ.

Remark 5.8. In contrast to the metric without a singularity at the center,
the metric with a Schwarzschild singularity does not coincide with the nonshifted
Schwarzschild–deSitter solution for r > R0Λ. This can be seen as follows. We have

(5.39) μ′
Λ(r) ≥

1

2

d

dr
ln

(
1− r2Λ

3
− 2M0

r

)
.

Certainly, the mass parameter M of the vacuum solution, which is glued on in the
outer region, is larger than M0. This implies

(5.40) 1− r2Λ

3
− 2M0

r
> 1− r2Λ

3
− 2M

r

for all r ∈ (rBΛ, rC). So there is no ansatz Φ for the matter distribution that yields
a metric component μΛ that connects the two vacuum solutions without any shift.
By suitable choice of Φ and E0, however, one can determine whether the inner or
the outer Schwarzschild–deSitter metric is shifted. For the maximal C2-extension of
the metric constructed in Theorem 5.5 we will need the solution to coincide with the
nonshifted Schwarzschild–deSitter metric for r > R0Λ.

5.2. Matter shells immersed in Schwarzschild–AdS spacetimes. We con-
struct solutions of the Einstein–Vlasov system with a Schwarzschild singularity at the
center for the case Λ < 0. The result is given in the following theorem.

Theorem 5.9. Let Φ : R2 → [0,∞) be of the form (2.19), let L0,M0 ≥ 0 such
that L0 < 16M2

0 , and let Gφ and Hφ be given by (2.21) and (2.22), respectively. Then
there exists a unique solution μΛ, λΛ ∈ C2((rBΛ,∞)) of the Einstein–Vlasov system
(2.2)–(2.6) for Λ < 0 and |Λ| sufficiently small. The spatial support of the distribution
function fΛ is contained in a shell, {r+Λ < r < R0Λ}. In the complement of this shell,
the solution of the Einstein equations is given by the Schwarzschild–AdS metric.

Proof. The theorem can be proved by applying the same ideas as in the proof of
Theorem 5.5.
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6. Solutions on R × S3 and R × S2 × R. In sections 3.4 and 5.1 we con-
structed spherically symmetric static solutions of the Einstein–Vlasov system with
small positive cosmological constant Λ. For small radii the Λ-term plays only a minor
role. This was crucial for the method of the proof. However, the global structure of
the constructed spacetime is substantially different when Λ > 0 and shows interesting
properties. In particular, it allows for solutions with different global topologies.

The following theorem gives a class of new solutions to the nonvacuum field
equations with nontrivial global topology. These solutions are constructed from pieces
consisting of the solutions constructed in Theorems 3.8 and 5.5.

Theorem 6.1. Let Λ > 0 be sufficiently small and let M1 = R× S3 and M2 =
R× S2 ×R. The following types of static metrics solving the Einstein–Vlasov system
exist on these topologies.

(i) There is a class of static metrics on M1, which is characterized in Figure 2.
In regions I and IV a metric in this class coincides with two a priori different
solutions of the type constructed in Theorem 3.8 with identical total mass,
but with possibly different matter distributions and radii of the support of the
matter quantities R1 and R2 and regular centers. The metric in regions II
and III is vacuum.

(ii) There is a class of static metrics on M1, which is characterized in Figure
3. A metric in this class consists of two regular centers with finitely extended
matter distribution around each of the centers of equal mass, but with possibly
different matter distributions and radii R1, R2 of the type constructed in
Theorem 3.8. These two regions are connected by a chain of black holes of
identical masses (the diagram shows the minimal configuration with one black
hole).

(iii) There is a class of metrics on M2, which is characterized in Figure 4. The
spacetime consists of an infinite sequence of black holes, each surrounded by
matter shells of possibly different radii and positions. In regions IV, VII,
X, and XIII these solutions coincide with those constructed in Theorem 5.5.
The necessary conditions on the masses are MA1

	 = MA2
	 , MB1

	 = MB2
	 and

MA
0 +MA2

	 = MB1
	 +MB

0 , where M i
0, i = A,B, denote the mass parameter

of the black holes and M
ij
	 , i = A,B, j = 1, 2 denote the quasilocal mass of

the matter shells defined in (6.11).

Fig. 2. Penrose diagram of the maximal C2-extension of a metric constructed as a spherically
symmetric solution of the Einstein–Vlasov system. Region I corresponds to the region 0 < r < rC .
The metric is extended in an analogous way to the standard extension of the deSitter metric. The
gray lines are surfaces of constant r.
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Fig. 3. Penrose diagram of the maximal C2-extension of a metric constructed as a spherically
symmetric solution of the Einstein–Vlasov system. Region I corresponds to the region 0 < r < rC .
In this region matter (represented by the shaded area) is present and the metric is regular. This
metric is extended with the Schwarzschild–deSitter metric that leads to a periodic solution. The
periodic course stops when a matter region appears again preventing the metric from being singular
at r = 0. The gray lines are surfaces of constant r.

Fig. 4. Penrose diagram of the maximal C2-extension of a metric constructed as a spherically
symmetric solution of the Einstein–Vlasov system. The solution coincides with the Schwarzschild–
deSitter spacetime in the vacuum regions and the black holes are surrounded by shells of Vlasov
matter (gray shaded domains). Notably, the black holes do not necessarily have the same mass. The
gray lines are surfaces of constant r.

Remark 6.2.

(a) The black hole masses in the third class of solutions in the previous theorem
can be pairwise different. Only the total mass of the black hole and matter
shell have to agree pairwise; see the condition in (iii) above.

(b) Combinations of the classes (ii) and (iii) yield similar metrics on M3 = R×R
3

with a regular center followed by an infinite sequence of black holes.
(c) The second class of solutions could also be generalized by adding matter shells

around the black holes. The mass parameters then have to be adjusted.
(d) When crossing the cosmological horizon or the event horizon of a black or

white hole the Killing vector ∂t changes from being timelike to spacelike.
This means that the maximally extended spacetime contains both static and
dynamic regions that are alternating. This holds for all constructed classes.

Proof. We outline now the construction of the spacetimes given in the previous
theorem. For the first two classes of spacetimes we consider solutions of the Einstein–
Vlasov system with a regular center. Let (μΛ, λΛ, fΛ) be a static solution of the
spherically symmetric Einstein–Vlasov system with positive cosmological constant Λ
defined for r ∈ [0, rC) such that the support of the matter quantities is bounded by a
radius 0 < R0Λ < rC . The radius rC denotes the cosmological horizon. On [R0Λ, rC)
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there is vacuum and the metric is given by the Schwarzschild-deSitter metric (6.4)
with mass M as the mass parameter. The mass M is then given by

(6.1) M = 4π

∫ R0Λ

0

s2�Λ(s)ds.

If 9M2Λ < 1, the polynomial r3 − 3
Λr +

6M
Λ has one negative zero and two positive

ones. The largest zero of this polynomial is defined to be the cosmological horizon
rC . Moreover, rn is the negative zero and rBΛ the smaller positive one. In terms of
the mass M and the cosmological constant Λ these zeros can be calculated explicitly.
Note that the Buchdahl inequality for solutions with Λ �= 0 [6] implies rBΛ < R0Λ.

Case (i). Consider Figure 2. This spacetime can be obtained in an analogous way
to the standard procedure to compactify the deSitter space as described, for example,
in [16]. In the following, this procedure is carried out in detail. The metric is given
as a nonvacuum solution of the Einstein–Vlasov system for r ∈ [0, rC), corresponding
to region I in Figure 2, as discussed in Theorem 3.8. In this region we have

(6.2) ds2 = −e2μ(r)dt2 + e2λ(r)dr2 + r2dϑ2 + r2 sin2(ϑ)dϕ2.

In the first step we introduce coordinates UI, VI, which transform the region R ×
[0, rC) × S2 into the left triangle (region I) in Figure 2. The coordinates usually
used to compactify the vacuum deSitter metric, as for example described in [16], will
suffice. They are given by

(6.3) UI =

√
rC − r

rC + r
e
− t

rC , VI = −
√

rC − r

rC + r
e

t
rC

and can be compactified via the transformations pI = arctan(UI), qI = arctan(VI).
The left part of Figure 5 shows the transformed region R × [0, rC) in the pI, qI
coordinates.

Fig. 5. Construction of the spacetime shown in Figure 2. We use three coordinate charts to
compactify the spacetime. Regions that are shaded in the same direction are covered by two of the
coordinate charts simultaneously, thus their coordinates can be changed. The gray areas are matter
regions and the dashed lines correspond to r = rBΛ. We distinguish between r and r̃ to emphasize
that there are different spacetime regions that cannot be covered by a single chart (t, r, ϑ, ϕ). All
coordinates p and q take values in

[−π
2
, π
2

]
.

The support of the matter (i.e., the matter distribution f) ends at a radius R0Λ.
For r ≥ R0Λ the metric is merely given by the Schwarzschild–deSitter metric

(6.4) ds2 = −
(
1− r2Λ

3
− 2M

r

)
dt2 +

dr2

1− r2Λ
3 − 2M

r

+ r2dΩ2,
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where R0Λ ≤ r < rC . At r = rC there is a coordinate singularity of the metric that
we want to pass. For this purpose we express the metric in other coordinates that
do not have a singularity at r = rC being defined on the region where r ∈ [R0Λ, rc)
(region I in the middle part of Figure 5). These coordinates are given by

(6.5)

UC =

√
(rC − r)(r − rn)γ−1

(r − rBΛ)γ
e
− t

2δC > 0,

VC = −
√

(rC − r)(r − rn)γ−1

(r − rBΛ)γ
e

t
2δC < 0,

where δC = rC
Λr2C−1

> 0 and γ = rBΛ

(1−Λr2BΛ)δC
, 0 < γ < 1.2 They are used in the stan-

dard compactification procedure of the Schwarzschild–deSitter metric. For details,
see [12] or [13]. In the new coordinates the line element of the Schwarzschild–deSitter
metric (6.4) reads

(6.6) ds2 = −4Λδ2C
3r

(r − rn)
2−γ(r − rBΛ)

1+γdUCdVC + r2dϑ2 + r2 sin2(ϑ)dϕ2,

where r ≥ R0Λ. Note that here r is seen as a function of UC and VC . The coordinates
only take values in {(u, v) ∈ R

2 |u > 0, v < 0}. We extend them to R
2. This extension

goes beyond rC . Again, the spacetime region covered by the coordinates UC and VC

can be compactified using the transformation pC = arctan(UC), qC = arctan(VC).
The middle part of Figure 5 shows the region covered by UC and VC , each taking
values in R, in the pC , qC coordinates. The line element (6.6) can be extended to the
whole area covered by UC and VC in an analytic way. In the region where r ∈ [R0Λ, rC)
the coordinate charts (6.3) and (6.5) overlap and one can change coordinates (the
shaded areas in the left and middle parts of Figure 5). The transformation law is
given by

(6.7)

UC(UI) =

√
(rC + r)(r − rn)γ−1

(r − rBΛ)γ
e

3−2Λr2C
rC UI ,

VC(VI) =

√
(rC + r)(r − rn)γ−1

(r − rBΛ)γ
e
− 3−2Λr2C

rC VI .

Region IV in Figure 2 corresponds to a second universe that also can be equipped
with Schwarzschild coordinates (t̃, r̃). We distinguish between r and r̃ to emphasize
that the charts (t, r) and (t̃, r̃) cover different regions of the spacetime. Geometrically
appear these regions appear equal. This will be different for the second class of
spacetimes (6.1). In the region r̃ ∈ [R0Λ, rC) (region IV in the middle part of Figure
5), in terms of the t̃, r̃ coordinates UC and VC are given by

(6.8)

UC = −
√

(rC − r̃)(r̃ − r−)γ−1

(r̃ − rBΛ)γ
e
− t̃

2δC < 0,

VC =

√
(rC − r̃)(r̃ − r−)γ−1

(r̃ − rBΛ)γ
e

t̃
2δC > 0.

2The signs of these expressions can be checked with the equality 1− r2CΛ

3
− 2M

rC
= 0.
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To get a compactification of the whole region IV, including r̃ < rB , we introduce
coordinates similar to (6.3), namely

(6.9) UIV = −
√

rC − r̃

rC + r̃
e
− t̃

rC , VIV =

√
rC − r̃

rC + r̃
e

t̃
rC

covering the region characterized by r̃ ∈ [0, rC). This region can again be compactified
via p = arctan(U), q = arctan(V ). This yields the right part of Figure 5. For
r̃ ∈ [R0Λ, rC) the coordinates can be changed using a law which is analogous to
(6.8). On the spacetime region represented by the middle part of Figure 5 the line
element can be expressed by (6.6). Since in both regions I and IV the metric can be
brought into the form (6.2) via coordinate transformations, the energy densities are
also identical in these regions. This of course implies that in both regions the mass
parameter is equal.

Case (ii). Now we come to the spacetimes characterized by Figure 3. For the
construction of a C2-extension of the metric (6.2) at least five coordinate charts are
necessary. Figure 6 illustrates this construction.

Fig. 6. Construction of the spacetime shown in Figure 3. On regions that are shaded in the
same direction two coordinates are defined and one can change between them. All coordinates p, q
take values in

[−π
2
, π
2

]
.

Again we begin with the region r ∈ [0, rC) where the metric is given by (6.2). In
the same way as described above one, expresses the line element in other coordinates
pC , qC that avoid the singularity at r = rC and cover the region r0Λ < r < rC .
The line element as given by (6.6) can be analytically3 extended onto Regions I–IV in
Figure 6. From now on the procedure differs from the one above. Regions I and IV are
not supposed to be geometrically identical but region IV will be a vacuum region, so
the metric will be given by the Schwarzschild-deSitter solution everywhere. Certainly,
the line element (6.6) of the Schwarzschild–deSitter metric being given in terms of the
coordinates UC , VC now shows a singularity at r = rBΛ.

4 This coordinate singularity
can be overcome by virtue of the coordinates

(6.10) UB =

√
(r − rBΛ)(r − rn)β−1

(rC − r)β
e

t
2δB , VB = −

√
(r − rBΛ)(r − rn)β−1

(rC − r)β
e
− t

2δB ,

where δB = rBΛ

1−Λr2BΛ
> 0 and β = rC

(Λr2C−1)δB
> 1. The coordinates are defined on

the middle part of Figure 6. This is part of the standard compactification procedure
of the Schwarzschild–deSitter metric; see [12] or [13]. By alternating the coordinate

3In matter regions the regularity of the metric is C2 as provided by Theorem 3.8; in vacuum
regions the metric is analytic.

4By abuse of notation we use r for the radius coordinate in every region of the spacetime M1.
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charts (UC , VC) and (UB, VB) this procedure can be continued an arbitrary amount
of times, extending the spacetime to additional black hole and cosmological regions.
This periodic extension stops if for r < rC the metric is not given by a vacuum
solution of the Einstein equations but again by the solution (6.2) of the Einstein–
Vlasov system. There is no coordinate singularity at r = rBΛ and there is a regular
center at r = 0. So a regular expression of the line element by the coordinates (6.3)
is again possible, leading to region X in Figure 3. This region is now geometrically
identical to region I in Figure 3 (and also in Figure 6). In the extension procedure
described above the expressions for the coordinates (6.8) and (6.10) used to pass the
coordinate singularities at r = rBΛ and r = rC in the vacuum regions of the spacetime
M1 depend on Λ and M . So the identification of corresponding regions in the different
coordinate charts, e.g., I or IV in Figure 6, is only possible if the parameters Λ and
M are equal in all regions of M1. In terms of the notation of Figure 3 this implies
M1 = M2.

Case (iii). A maximal extension of a solution to the Einstein–Vlasov system on
the manifold M2 as characterized by Figure 4, i.e., spacetimes in class (6.1), can be ob-
tained in a similar way. The starting point is the region rBΛ < r < rC . On this interval
the existence of a unique solution to a given ansatz for f is established by Theorem
5.5. The solution on hand can be understood as a Schwarzschild–deSitter spacetime
with an immersed shell of Vlasov matter supported on an interval (r+Λ, R0Λ). Two
mass quantities are important. On the one hand one has the mass parameter M0 of
the black hole at the center; on the other hand there is M that is defined to be

(6.11) M = M0 +M	, M	 = 4π

∫ R0Λ

r+Λ

s2�Λ(s)ds.

This quantity represents the sum of the mass of the black hole and the shell of Vlasov
matter. As constructed in Theorem 5.5, for rBΛ < r ≤ r+Λ the metric is given by a
shifted Schwarschild–deSitter metric

(6.12) ds2 = −C

(
1− r2Λ

3
− 2M0

r

)
dt2 +

dr2

C
(
1− r2Λ

3 − 2M0

r

) + r2dΩ2,

where rBΛ < r ≤ r+Λ with the mass M0 of the black hole as the mass parameter and
the shift C > 0. For R0Λ ≤ r < rC the metric is given by the Schwarzschild–deSitter
metric (6.4) with mass parameter M .

The two critical horizons, rBΛ and rC , can be given explicitly as zeros of the

expression 1 − r2Λ
3 − 2m(r)

r . But it is important to note that the mass parameter
m(r) does not stay constant throughout the whole interval (rBΛ, R0Λ). The black
hole horizon rBΛ is characterized by M0 and the cosmological horizon rC by M . This
has to be kept in mind when choosing coordinates to construct an extension of the
metric on M2, as illustrated in Figure 7.

We distinguish between the zeros of 1− r2Λ
3 − 2m(r)

r when m(r) ≡ M0 and m(r) ≡
M and call them rB0, rC0 or rB, rC , respectively. Note that rB0 = rBΛ. Consider the
metric on the region rB0 < r < rC , being part of region VII in Figure 4 or the middle
part of Figure 7. The metric shall be extended to the left (regions IV, VB, VIW) and
to the right (regions VIIIC, IXC, X) as a vacuum solution until the next matter shell
appears. So the coordinate transformations have to be chosen with respect to the
radii rB and rC belonging to the current mass parameter in the respective spacetime
region. Three coordinate charts are needed to extend the metric beyond the black hole
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Fig. 7. Construction of the spacetime shown in Figure 4. The middle part shows a
Schwarzschild–deSitter spacetime with an immersed matter shell for rBΛ = rB0 < r < rC . The
left and right parts show the adjacent vacuum region containing several coordinate singularities.
On regions that are shaded in the same direction two coordinates are defined and one can change
between them. All coordinates p, q take values in

[−π
2
, π
2

]
.

and the cosmological horizon. First we compactify the region rBΛ = rB0 < r < rC
using the coordinates

(6.13)

UB =

√
(r − rB0)(r − rn)β−1

(rC − r)β
e

t
2δB0 ,

VB = −
√

(r − rB0)(r − rn)β−1

(rC − r)β
e
− t

2δB0 ,

where δB0 = rB0

1−Λr2B0
> 0 and β = rC

(Λr2C−1)δB0
> 1. These coordinates give rise to

pB = arctan(UB) and qB = arctan(VB). This region is depicted in the middle part
of Figure 7. The spacetimes characterized by Figure 4 show two types of connected
vacuum regions. The first type is characterized by r ≤ r+Λ (inside the matter shell)
and the second by r ≥ R0Λ (beyond the matter shell). To extend the metric to the
region inside the matter shell (and the black hole) one uses the coordinates

(6.14)

UB0 =

√
(r − rB0)(r − rn)β0−1

(rC0 − r)β0
e

t
2δB0 ,

VB0 = −
√

(r − rB0)(r − rn)β0−1

(rC0 − r)β0
e
− t

2δB0 ,

where δB0 = rB0

1−Λr2B0
> 0 and β0 = rC0

(Λr2C0−1)δB0
> 1, and the corresponding com-

pactification pB0 = arctan(UB0), qB0 = arctan(VB0). These coordinates are valid for
0 < r < r+Λ. The black hole horizon can be crossed using the usual arguments of the
extension of the Schwarzschild–deSitter metric, as done for example in [16, 12, 13].
This is illustrated in the left part of Figure 7. The region beyond the matter shell
(and the cosmological horizon) can be reached via the coordinates

(6.15)

UC = −
√

(rC − r)(r − rn)γ−1

(r − rB)γ
e
− t

2δC ,

VC =

√
(rC − r)(r − rn)γ−1

(r − rB)γ
e
− t

2δC ,

where δC = rC
Λr2C−1

> 0 and γ = rB
(1−Λr2B)δC

, 0 < γ < 1. These coordinates extend the

metric to the area R0Λ < r < ∞, shown in the right part of Figure 7.
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On the connected vacuum regions the metric is given by only one expression, even
though the vacuum extends to several regions of M2, e.g., Regions VII, VIIIC, IXC

and X. This implies that the coordinates UB0, VB0 or UC , VC have to be given by the
same expressions (6.14) or (6.15), respectively, (modulo sign; see [16, 12, 13]), which in
turn implies that the mass parameter has to stay the same on these connected vacuum
regions. For the vacuum region with r ≥ R0Λ this implies MA

0 +MA2
	 = MB

0 +MB1
	

(notation of Figure 4). On the region characterized by r ≤ r+Λ this is always granted
because the mass is entirely given by the black hole mass M0. Finally the shift
constants C > 0 of the vacuum metric have to coincide in this region (IV and VII in
Figure 4). They are determined by the matter shells surrounding the black hole and
are equal if these shells have the same shape which implies MA1

	 = MA2
	 .
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[7] H. Andréasson, C.G. Böhmer, and A. Mussa, Bounds on M/R for charged objects with

positive cosmological constant, Class. Quantum Grav., 29 (2012), 095012.
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