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Diffraction and near-zero transmission of flexural phonons at graphene grain boundaries
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Graphene grain boundaries are known to affect phonon transport and thermal conductivity, suggesting that they
may be used to engineer the phononic properties of graphene. Here, the effect of two buckled grain boundaries
on long-wavelength flexural acoustic phonons has been investigated as a function of angle of incidence using
molecular dynamics. The flexural acoustic mode has been chosen due to its importance to thermal transport. It
is found that the transmission through the boundaries is strongly suppressed for incidence angles close to 35◦.
Also, the grain boundaries are found to act as diffraction gratings for the phonons.
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I. INTRODUCTION

Grain boundaries in graphene have been found to affect
the mechanical, electronic, and thermal properties of the
material [1–8]. The grain boundaries commonly consist of
dislocations in the form of pentagon-heptagon defect pairs,
and cause out-of-plane buckling of the graphene sheet [9–16].
Recent experimental studies show that dislocations can be
introduced into pristine graphene using a focused electron
beam [13,14,17–19], suggesting the possibility of adjusting
the properties of the material.

The possibility of manipulating the properties of graphene
could be particularly important in applications related to
phononics and heat management [20,21], where control
of the vibrational properties and thermal conductivity of
graphene is essential. The effect of grain boundaries on the
thermal conductivity of graphene has previously been studied
using both molecular dynamics (MD) and Green’s-function
methods [22–28]. However, out of these studies only Liu
et al. [28], who consider transport along the boundary, mention
the influence of out-of-plane buckling. Also, these studies give
no detailed insight into the scattering processes of specific
phonon modes.

In the present study, we investigate the scattering of
long-wavelength flexural acoustic phonons at grain boundaries
in graphene for several incidence angles using molecular
dynamics. This particular phonon mode was chosen since it
is believed to contribute significantly to the thermal conduc-
tivity [29,30]. Two grain boundaries are considered in this
paper, one with a misorientation angle of 9.4◦ and one with a
misorientation angle of 17.9◦. Both grain boundaries display
substantial out-of-plane buckling, with a periodic variation
in height along the grain boundary due to the distribution of
defects. The boundaries are found to act as diffraction gratings
for the phonons, and strongly suppressed transmission is also
observed for specific angles. In particular, the transmission is
as low as 4% for incidence angles near 35◦ at both boundaries.

A previous investigation limited to phonons normally
incident on the grain boundary showed that the scattering
was due almost entirely to the out-of-plane buckling of the
boundary [31]. Based on this result a continuum mechanical
model was constructed, where the grain boundary was modeled
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as a static out-of-plane displacement. The model showed
good agreement with the MD results. Here, we extend this
continuum mechanical model to the case of non-normal angle
of incidence in order to gain a qualitative understanding of the
scattering mechanism.

II. METHOD

All MD simulations have been performed using the program
package LAMMPS (large-scale atomic/molecular massively
parallel simulator) [32]. The interaction between carbon atoms
has been modeled using the Tersoff potential [33,34] with
the potential parameters given by Lindsay and Broido [35].
This set of parameters has been chosen due to its improved
description of acoustic phonon modes in graphene. The con-
sidered grain boundaries are symmetric tilt grain boundaries
and consist of periodic arrays of pentagon-heptagon defects.
The 9.4◦ grain boundary has a period of 1.5 nm in the y

direction, parallel to the grain boundary (see Fig. 1), while
the 17.9◦ boundary shown in Fig. 2 has a period of 2.4 nm.
The grain boundaries have been constructed using the method
described in Ref. [31]. For the 9.4◦ boundary this results in a
grain boundary buckling 0.6 nm high and 1.7 nm wide. Due to
the defect distribution the buckling height varies periodically
along the grain boundary with an amplitude of 0.06 nm. The
17.9◦ boundary has a buckling height of 1.5 nm and a buckling
width of 5 nm, with a variation of 0.1 nm along the boundary.

In the investigation of phonon scattering, the phonons
introduced into the system must have a well-defined wave
vector and polarization. Also, the finite size of the simulation
supercell makes it necessary to use localized phonon wave
packets rather than plane waves. To construct phonon wave
packets with the required properties we use the method of
Kimmer et al. [37]. The displacement uj of atom j is then
determined by

uj = Re

[∑
k

ak�εjke
ik·Rj −iω(k)t

]
, (1)

where k = kxx̂ + kyŷ is a wave vector, �εjk is a polarization
vector for the considered phonon branch, Rj is the position
vector of atom j , and ω is the phonon frequency. The
amplitudes ak are calculated according to

ak = Ae−η2(kx−k0x )2
e−ik·R0 , (2)
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FIG. 1. Symmetric tilt grain boundary with misorientation angle
9.4◦, seen from the y direction (top) and z direction (bottom). Figure
made using VMD [36].

where A is an amplitude and η is the width of the wave packet
in the x direction (perpendicular to the grain boundary). The
functional form of the amplitude is chosen so that the resulting
wave packet has a Gaussian shape and is localized in the x

direction, centered around R0 in real space and around a wave
vector k0 = kx0x̂ + kyŷ in reciprocal space. All wave vectors
k are required to be reciprocal lattice vectors of the simulation
supercell. With periodic boundary conditions applied in the
y direction (parallel to the grain boundary) this gives ky =
2πm/Lcell

y , where m is an integer and Lcell
y is the size of the

supercell in the y direction.
The polarization vectors �εjk and dispersion relation ω(k)

have been obtained from the dynamical matrix of the perfect
lattice using the General Utility Lattice Program, GULP [38,39].
The constant A has been set to the rather small value 0.013
nm in order to avoid the nonlinear effects observed for
high-amplitude vibrations in graphene. For the width η a value
of 5 nm has been chosen in order to make the wave packet
fairly broad in real space and narrow in reciprocal space.
This is important as the quadratic dispersion of the flexural
mode would otherwise cause the wave packet to become very
distorted over time.

Since the focus of this study is long-wavelength phonons,

the upper limit for |k0| =
√

k2
x0 + k2

y has been set to 7 nm−1,

which limits the possible values of m and kx0. To extend the
range of possible m values the size of the simulation supercells
in the y direction has been increased relative to the grain
boundary periodicity. For the 9.4◦ boundary it has been tripled,
so that Lcell

y = 4.5 nm, while for the 17.9◦ boundary it has been

doubled, giving Lcell
y = 4.8 nm. The supercells of the 9.4 and

17.9◦ boundaries are 260 and 400 nm long in the x direction,
respectively. Fixed boundary conditions are applied in this
direction and all atoms less than 10 nm from the supercell
edge are held immobile. Note that there is no temperature
in these simulations, and the wave packet therefore does not
interact with any thermally excited phonons, but only with the
static grain boundary buckling.

In our previous study of phonon scattering at graphene
grain boundaries a simple continuum mechanical model of
the system was constructed in order to further confirm the
results and to facilitate future studies of systems too large to
model using MD [31]. The model built on the observation that
the main cause for scattering of long-wavelength phonons at
the grain boundary is the buckling. Here, we have extended
the previously used model from one to two dimensions for the
case of the 9.4◦ boundary, and incorporated the periodic height
variation of the buckling.

The equations of motion for the displacements are

ρü − ∂xσxx − ∂yσxy = 0, (3)

ρv̈ − ∂xσxy − ∂yσyy = 0, (4)

ρẅ + κ
2w − ∂x[σxx∂xw + σxy∂yw]

− ∂y[σxy∂xw + σyy∂yw] = 0, (5)

where u is the displacement in x; v is the displacement in y;
w is the out-of-plane displacement; ρ is the density; κ is the
bending rigidity; and σxx,σxy , and σyy are the components of
the stress tensor. As in the previous study the grain boundary
buckling has been included in the form of a static out-of-plane
displacement.

Finite-difference methods have been used to propagate
wave packets similar to the ones used in MD and to study
scattering against the buckling. Results of these calculations
can be directly compared to the MD simulation results. The
details of the continuum mechanical model can be found in
the Appendix.

III. RESULTS

The time evolution of the kinetic energy in both grains for a
wave packet with kx0 = 4 nm and m = 2 interacting with the
9.4◦ boundary can be seen in Fig. 3. Here, grain 1 is defined
as the grain in which the pulse is introduced, and grain 2 is
the other grain. Changes in the kinetic energy of the grains

FIG. 2. Symmetric tilt grain boundary with misorientation angle 17.9◦, seen from the y direction (top) and z direction (bottom). Figure
made using VMD [36].
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FIG. 3. The fraction of the total kinetic energy in grain 1 (top)
and grain 2 (bottom) as a function of time for a wave packet with
kx0 = 4 nm−1 and m = 2 scattering at the 9.4◦ boundary.

can be seen at two points. After 20 ps, the kinetic energy in
grain 1 decreases to 73% of the total kinetic energy while
the kinetic energy of grain 2 increases to 27%, indicating that
the pulse has reached the grain boundary. The second change
occurs at 60 ps, where the energy of grain 1 decreases further
in two steps, first to 60% and then to 44%. Between these two
points the pulse has been reflected against the fixed boundary
conditions, so that the steps at 60 ps mark the return of the
scattered pulses to the grain boundary.

The most surprising feature of Fig. 3 is the stepwise change
in energy beginning at 60 ps, which seems to indicate that
there are two pulses arriving at the grain boundary about 5
ps apart. A closer examination of the scattered pulses shows
that this is indeed the case. Figure 4 shows the intensity of
the scattered pulses, normalized by the total intensity, as a
function of wave vectors kx and ky for t = 40 ps. Four peaks are
seen, two with negative kx , corresponding to reflected pulses,
and two transmitted pulses with positive kx . The reflected
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FIG. 4. (Color online) Normalized intensity I/Itot after scatter-
ing at the 9.4◦ boundary (t = 40 ps) as a function of kx and ky

for a wave packet with kx0 = 4 nm−1 and m = 2. R1 and R2
denote the reflected pulses, while T1 and T2 are the transmitted
pulses. The dotted lines represent the values of ky allowed by the
boundary conditions, and the dashed circle indicates the points with

k0 =
√

k2
x + k2

y equal to that of the incident pulse.
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FIG. 5. (Color online) Normalized intensity I/Itot after scatter-
ing at the 17.9◦ grain boundary as a function of kx and ky for a wave
packet with kx0 = 4 nm−1 and m = 3. R1 to R4 denote the reflected
pulses while T1, T2, and T3 are the transmitted pulses. The dotted
lines represent the values of ky allowed by the boundary conditions,

and the dashed circle indicates the points with k0 =
√

k2
x + k2

y equal

to that of the incident pulse.

pulses are labeled R1 and R2. R1 has kx = −4 nm−1 and
ky = 2.8 nm−1, while R2 occurs at kx = −4.7 nm−1 and
ky = −1.4 nm−1. Similarly, the transmitted pulses T1 and T2
have kx = 4,ky = 2.8 nm−1 and kx = 4.7,ky = −1.4 nm−1,
respectively. T1 has the same wave vector as the incident
pulse. Since the propagation velocity of the pulse depends
on the value of kx , the pulses will propagate with different
velocities and thus give rise to the stepwise change in kinetic
energy seen in Fig. 3.

The same phenomenon is observed at the 17.9◦ grain
boundary. Figure 5 shows the normalized intensity after
scattering for a pulse with kx0 = 4 nm−1 and m = 3. Four
reflected peaks and three transmitted peaks can be seen. For
the reflected peaks, R1 occurs at kx = −4.0,ky = 3.9; R2
occurs at kx = −5.5,ky = 1.3; R3 occurs at kx = −5.5,ky =
−1.3; and R4 occurs at kx = −4.0,ky = −3.9 nm−1, while
the transmitted peaks occur at kx = 4.0,ky = 3.9 (T1); kx =
5.5,ky = 1.3 (T2); and kx = 4.0,ky = −3.9 nm−1 (T3).

Examination of the scattered pulses at both grain boundaries
reveals that the difference between the ky value for the incident
pulse, kin

y , and the ky value for the scattered pulses, ksc
y , can be

expressed as

ksc
y − kin

y = 2πn

Ly

, (6)

where n is an integer and Ly is the grain boundary period. The
kx value of the scattered pulses, ksc

x , is given by momentum
conservation:

ksc
x =

√(
kin

0

)2 − (
ksc
y

)2
. (7)

This indicates that the buckled, periodic grain boundaries act
as diffraction gratings for long-wavelength flexural acoustic
phonons.

It should be mentioned that for the 9.4◦ grain boundary a
larger simulation supercell has been used to verify that the
above result is not a consequence of the periodic boundary
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conditions or limited supercell size. The larger supercell had
a size of 6 nm in the y direction, corresponding to four
grain boundary periods. If the periodic boundary conditions
had been the cause of the diffraction, this larger supercell
would be expected to produce a different result compared
to the smaller supercell. In particular, diffraction due to the
periodic boundary conditions should have created pulses with
ksc
y determined by

ksc
y − kin

y = 2πn

Lcell
y

, (8)

where Lcell
y is the supercell width in the y direction. Since

Lcell
y = 4Ly for the larger supercell, this would produce a

change in the y component of the wave vector that is four
times smaller than the one given by Eq. (6). This change
should be observable for all values of m and kx0. Instead, the
larger supercell yields the same results as the smaller supercell
with regard to both total transmission and diffraction, and the
difference in ky between the incoming and scattered pulses is
found to depend on the inherent grain boundary periodicity as
in Eq. (6). This shows that it is the inherent grain boundary
period Ly , and not the supercell size Lcell

y , that plays a part
in the diffraction. Grain boundaries functioning as diffraction
gratings for phonons have previously been used to model the
behavior of the thermal conductivity in ionic materials [40].

Unlike the previously described case where m = 0 [31],
scattering into in-plane vibrational modes is negligible for
all cases with m = 1 and 2, while some movement in the
y direction is seen at the 9.4◦ boundary for m = 3. This
difference is due to the restrictions on ky imposed by the
periodic boundary conditions. The in-plane vibrations excited
at the grain boundary will have the same frequency as the
incoming flexural vibrations, but due to the differences in the
dispersion relation this corresponds to a much smaller wave
vector, and thus a longer wavelength, for the in-plane modes.
If there is a substantial y component in the wave vector, the
in-plane vibration will thus not fit into the simulation supercell.
In practice, this means that only in-plane modes with ky = 0
can propagate in the present simulation setup. Thus, vibrations
in the longitudinal mode can be engendered by normally
incident pulses as previously reported [31], and transverse
vibrations may be excited at high incidence angles as seen in
the present study. If it had been possible to include in-plane
vibrations with nonzero ky the obtained results would most
likely be qualitatively equivalent to the results presented here,
although some quantitative differences could be expected.

The transmission coefficient T is defined as

T =
〈
E

grain2
k

〉
Etot

k

, (9)

where E
grain2
k is the kinetic energy in grain 2, Etot

k is the total
kinetic energy, and the brackets represent a time average over
times between the first scattering at the grain boundary and
the time when the first wave packets reaches the edge of the
supercell. This is the total transmission coefficient, including
contributions from both in-plane and flexural modes. Values
of T for the 9.4◦ grain boundary for several values of kx0 at
m = 1,2, and 3 can be seen in Fig. 6. For all values of m,
the transmission increases with increasing kx0. The increase
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FIG. 6. (Color online) Transmission at the 9.4◦ boundary as a
function of kx0 for m = 1 (top), m = 2 (middle), and m = 3 (bottom).
The angle of incidence is indicated beside each data point. Open
symbols and dashed lines represent results from the continuum
mechanical model.

is monotonic for m = 3, while for m = 2 there is a small dip
around kx0 = 4 nm−1 and for m = 1 there is a pronounced
trough around kx0 = 2 nm−1. Remarkably, the transmission
for m = 1 and kx0 = 2 nm−1 nearly reaches zero, so that no
part of the incident pulse is transmitted through the boundary.
It can be noted that the dips in the curve for m = 2 and the
trough for m = 1 occur at the same angle 35◦, but for different
values of k0.

Figure 7 shows the dependence of T on kx0 with m = 1,
2, and 3 for the 17.9◦ boundary. As for the 9.4◦ boundary,
the transmission increases with increasing kx0. Extremely low
transmission is also observed at m = 1 and kx0 = 2 nm−1,
corresponding to an incidence angle of 33◦. It is not clear
whether there is a minimum at the same angle of incidence
for m = 2, as in the 9.4◦ case, as the transmission is quite low
also at slightly larger incidence angles.

Figure 6 also contains transmission coefficients Tc ob-
tained from the continuum mechanical model. The qualitative
agreement between the continuum mechanical model and
the MD results is very good, as the continuum mechanical
model clearly reproduces the general trend in the MD data of
increasing transmission with increasing kx0. The two models
agree particularly well for m = 3, although the continuum
mechanical model overestimates the transmission at kx0 =
5 nm−1. For m = 2, the dip around kx0 = 4 nm−1 is reproduced
but is wider than in the MD data, extending to kx0 = 3 nm−1.
The continuum mechanical model also overestimates the trans-
mission at kx0 = 5 nm−1. Finally, for m = 1 the transmission
obtained with the continuum mechanical model is higher than
that obtained with MD over almost the entire interval. It also
does not reproduce the trough at kx0 = 2 nm−1, but does reach
near-zero values for kx0 = 1 nm−1.
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FIG. 7. (Color online) Transmission at the 17.9◦ boundary as a
function of kx0 for m = 1 (top), m = 2 (middle), and m = 3 (bottom).
The angle of incidence is indicated beside each data point.

The lack of quantitative agreement that is seen especially
for m = 1 is most likely due to differences between the
buckling obtained in MD simulations and that used in the
continuum mechanical model. As can be seen in the Appendix,
the buckling in the continuum mechanical model is described
using a minimum model with only four adjustable parameters.
This description has the great advantage of being simple,
but it is not able to correctly reproduce every feature of
the buckling obtained from MD simulations. Hence, some
quantitative disagreement between MD and the continuum
mechanical model is to be expected. That the discrepancy is
especially large for smaller values of m may be a consequence
of the fact that wave packets with different values of m interact
with different features of the boundary. The features important
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FIG. 8. (Color online) Normalized intensity after scattering as a
function of kx and ky for a wave packet with kx0 = 4 nm−1 and m = 2,
from the continuum mechanical model. The dotted lines represent the
values of ky allowed by the boundary conditions, and the dashed circle
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√
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x + k2
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pulse.

for scattering of wave packets with m = 1 and 2 are thus not
necessarily as accurately described by the present model as
those affecting wave packets with m = 3.

In addition to the transmission coefficient, the continuum
mechanical model should reproduce the diffraction seen in
MD. Figure 8 shows the intensity obtained from the continuum
mechanical model after scattering as a function of kx and
ky for kx0 = 4 nm−1 and m = 2, corresponding to the MD
results presented in Fig. 4. It is clear that the same peaks
appear, showing that diffraction occurs also in the continuum
mechanical model. Compared to the MD results T1 appears
to be underestimated and T2 appears to be overestimated,
possibly because the model of the boundary buckling used in
the continuum mechanical model does not reproduce the actual
curvature of the grain boundary buckling in sufficient detail.

IV. CONCLUSION

In summary, the effects of the angle of incidence on the
scattering of long-wavelength flexural phonons against grain
boundaries in graphene have been studied using molecular
dynamics. The considered grain boundaries, two buckled
symmetric tilt grain boundaries with misorientation angles
9.4 and 17.9◦, have been found to act as diffraction gratings
for long-wavelength flexural phonons. In addition, near-zero
transmission has been observed for angles near 35◦ and small
wave-vector magnitudes. A continuum mechanical model of
the system containing the 9.4◦ boundary has been constructed
and shown to qualitatively agree with the MD results, giving
insights into the scattering mechanism and providing a
starting point for studies of systems too large to be modeled
atomistically. The presented results improve our understanding
of how phonons interact with grain boundaries in graphene
and suggest that such defects could indeed be useful in
manipulating the vibrational properties of the material.
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APPENDIX: CONTINUUM MECHANICAL MODELING

In the continuum mechanical model the graphene sheet is
described as a thin plate. The equations of motion for the
displacements are

ρü − ∂xσxx − ∂yσxy = 0, (A1)

ρv̈ − ∂xσxy − ∂yσyy = 0, (A2)

ρẅ + κ
2w − ∂x[σxx∂xw + σxy∂yw]

− ∂y[σxy∂xw + σyy∂yw] = 0, (A3)

where u is the displacement in x (perpendicular to
the boundary); v is the displacement in y (parallel to
the boundary); w is the out-of-plane displacement; κ is the
bending rigidity; ρ is the density; and σxx,σxy , and σyy are
the elements of the two-dimensional stress tensor. To model the
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grain boundary buckling, a static out-of-plane displacement
w0(x,y) is introduced. The introduction of this out-of-plane
displacement gives rise to static displacements in the in-plane
directions, so that the total displacements must be written

u(x,y,t) = u0(x,y) + u1(x,y,t), (A4)

v(x,y,t) = v0(x,y) + v1(x,y,t), (A5)

w(x,y,t) = w0(x,y) + w1(x,y,t), (A6)

where u1(x,y,t),v1(x,y,t) and w1(x,y,t) are the time-
dependent displacements. However, the displacements deter-
mine the stress tensor components through the relations

σxx = (λ + 2μ)

[
∂xu + (∂xw)2

2

]
+ λ

[
∂yv + (∂yw)2

2

]
,

σyy = λ

[
∂xu + (∂xw)2

2

]
+ (λ + 2μ)

[
∂yv + (∂yw)2

2

]
, (A7)

σxy = μ[∂xv + ∂yu + ∂xw∂yw],

where λ and μ are Lamé parameters. Thus, the stress tensor
elements can also be divided into a time-dependent term
σ 1

ij (i,j = x,y) and a time-independent term σ 0
ij . The two-

dimensional stress tensor components σ 0
xx , σ 0

yy , and σ 0
xy are

related through the Airy stress function [41] χ , such that

σ 0
xx = ∂2χ

∂y2
, σ 0

yy = ∂2χ

∂x2
, σ 0

xy = − ∂2χ

∂x∂y
. (A8)

It follows that the time-independent terms of the stress tensor
will vanish in Eqs. (A1) and (A2), but not in Eq. (A3). The
equations of motion for the time-dependent displacements thus
become

ρü1 − ∂xσ
1
xx − ∂yσ

1
xy = 0, (A9)

ρv̈1 − ∂xσ
1
xy − ∂yσ

1
yy = 0, (A10)

ρẅ + κ
2(w0 + w1)

− ∂x

[(
σ 0

xx + σ 1
xx

)
∂x(w0 + w1) + (

σ 0
xy + σ 1

xy

)
∂y(w0 + w1)

]
− ∂y

[(
σ 0

xy + σ 1
xy

)
∂x(w0 + w1) + (

σ 0
yy + σ 1

yy

)
∂y(w0 + w1)

]
= 0. (A11)

When solving these equations, any terms that are not linear in
the derivatives of u1(x,t), v1(x,t), or w1(x,t) can be ignored
due to small vibrational amplitudes.

Finite-difference methods have been used to solve
Eqs. (A1)–(A3). As in our previous paper [31], the equa-
tions have been discretized using standard discretization
schemes [42] with step sizes 
x = 
y = 0.05 nm and 
t =
0.4

√
dx4/4κ = 0.8 fs. The Lamé parameters, bending rigidity,

and density have been set to the values given by the modified
Tersoff potential, i.e., μ = 167 N m−1, λ = 23 N m−1, κ =
2.8 × 10−19 J, and ρ = 7.42 × 10−7 kg m−2. Fixed boundary
conditions are applied in the x direction and periodic boundary
conditions are applied in the y direction. The initial conditions

are

w1(x,y,t = 0) = Re

[∑
k

ake
i(k·R−ω(k0)t)

]
,

(A12)

∂tw1(x,y,t = 0) = Re

[
−iω(k0)

∑
k

ake
i(k·R−iω(k0)t)

]
,

with

ak = Ae−η2(kx−k0x )2
e−ik·R0 . (A13)

As in the MD simulations, k = kxx̂ + kyŷ is a wave vector
allowed by the boundary conditions, R = xx̂ + yŷ is a
position, A = 0.01 nm is an amplitude, and η = 2 nm is the
width of the wave packet. The wave packet is centered around
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FIG. 9. (Color online) The stress tensor component σ 0
xx close to

the grain boundary (a) as obtained from MD and (b) as approximated
according to Eq. (A15). Note that the grain boundary is located at
x = 129 nm in the MD simulations and at x = 0 in the continuum
mechanical model.
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FIG. 10. (Color online) The stress tensor component σ 0
yy (a) as

obtained from MD and (b) as approximated according to Eq. (A16).

R0 in real space and k0 = kx0x̂ + kyŷ in reciprocal space, and
ω(k0) is the frequency of out-of-plane vibrations with wave
vector k0.

The static out-of-plane displacement is set to

w0(x,y) = Abe
−x2/2ξ 2

[
1 + a sin

(
2πmy

Ly

)]
, (A14)

where Ly is the system size in the y direction. Fitting to the
shape of the buckling of the 9.4◦ boundary produced by MD
simulations gives Ab = 0.55 nm, ξ = 0.72 nm, and a = 0.01.
As in the MD simulations, Ly = 4.5 nm, so m must be set to
3 to obtain the correct periodicity in y. The system length in
the x direction, Lx , is set to 100 nm.

In addition to the static out-of-plane displacement, the
time-independent terms in the stress tensor components are
also needed. These have been obtained by fitting to the
(approximate) stress tensor components obtained from MD.
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FIG. 11. (Color online) The stress tensor component σ 0
xy (a) as

obtained from MD and (b) as approximated according to Eq. (A17).

Starting with σ 0
xx , it is seen that if we set

σ 0
xx = e−2x2/ξ 2

sin

(
2πmy

Ly

)
(A15)

we obtain a good qualitative correspondence to the MD data
(see Fig. 9).

To satisfy the relations between the stress tensor compo-
nents given by Eq. (A8), we must then set

σ 0
yy = −

(
Ly

2πm

)2(
− 4

ξ 2
+ 16x2

ξ 4

)
e−2x2/ξ 2

sin

(
2πmy

Ly

)
,

(A16)

σ 0
xy = −

(
Ly

2πm

)
4x

ξ 2
e−2x2/ξ 2

cos

(
2πmy

Ly

)
. (A17)

As can be seen in Figs. 10 and 11, this functional form of the
stress tensor components does reproduce the MD result in a
qualitative manner.
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In order to compare the results of the continuum mechanical model to those obtained from MD, the transmission coefficient
Tc is calculated as

Tc =
〈


y
xρ
∑

xi>0

∑Lsc
y

yj =0

(
ω2

xu
2
1(xi,yj ,tn) + ω2

yv
2
1(xi,yj ,tn) + ω2

zw
2
1(xi,yj ,tn)

)
2Etot

〉
, (A18)

where ωx , ωy , and ωz are the frequencies of vibrations in the x, y, and z directions; xi = i
x and yj = j
y indicate a point
on the discretization grid; and tn = n
t is the time step. The time average is taken over times after scattering against the static
out-of-plane displacement, and the total energy Etot is given by

Etot(tn) = 
y
xρ

2

Lx/2∑
xi=−Lx/2

Lsc
y∑

yj =0

[
ω2

xu
2
1(xi,yj ,tn) + ω2

yv
2
1(xi,yj ,tn) + ω2

zw
2
1(xi,yj ,tn)

]
. (A19)
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