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Abstract

In 1999, Benjamini et. al. published a paper in which they introduced two
definitions, noise sensitivity and noise stability, as measures of how sensitive
Boolean functions are to noise in their parameters. The parameters were as-
sumed to be Boolean strings, and the noise consisted of each input bit changing
their value with a small but positive probability. In the three papers appended
to this thesis, we study generalizations of these definitions to irreducible and
reversible Markov chains.

Keywords noise sensitivity, spectral analysis, Markov chains, exclusion pro-
cesses.





List of appended papers
The following papers are included in this thesis.

A. Noise sensitivity and noise stability for Markov chains. Malin Palö Forsström.
(preprint)

B. A noise sensitivity theorem for Schreier graphs. Malin Palö Forsström.
(preprint)

C. Monotonicity properites of exclusion sensitivity. Malin Palö Forsström.
(submitted)

i





Acknowledgements
First and foremost, I would like to thank my supervisor Jeff Steif, not only for
discussions and suggestions concerning my research, but also for trying to teach
me how to do research and think about mathematics. I am also very grateful to
my co-supervisor Johan Jonasson for our discussions during the last six months,
but also for your dedication and great enthusiasm during this time.

Further, I would like to thank Serik Sagitov, Anders Martinsson and Maria
Roginskaya for, by asking about how my research is going and by giving advise
on what is necessary to perform well, motivating me to try to perform better.

Many thanks also goes to all my colleagues at the department for making
my workplace feel like a home. Especially, thank you Ivar for letting me borrow
your sofa, Claes for letting me disturb you while you are working, Mariana for
discussions about shoes and nailpolish and Roza for making our room such a
nice place to work in.

Finally, I would like to thank Étienne, for your love, patience, encouragement
and constant support.

iii





Contents

1 Introduction 1
1.1 Continuous time Markov chains 2
1.2 Spectral analysis of Markov chains 4
1.3 Examples of continuous time Markov chains 7
1.4 Noise sensitivity and noise stability 8
1.5 The noise sensitivity theorem 10

2 Summary of appended papers 13
2.1 Paper A 13
2.2 Paper B 13
2.3 Paper C 13

3 References 15

A Noise sensitivity and noise stability for Markov chains 17

B A noise sensitivity theorem for Schreier graphs 61

C Monotonicity properites of exclusion sensitivity 87

v





Chapter One

Introduction

A Boolean function is a function which only assumes two values, minus one and
one. Due to this quite restrictive choice of range, Boolean functions might not
seem to be very interesting to study, but in fact, they are quite natural, and this
is arguably one of the most frequently occurring type of function in real life. In
fact, any question whose answer will be either one of two choices, such as yes or
no, true or false, one out of two candidates, etc., can be described by a Boolean
function. We think of the parameters of the functions as the information which
is taken into account when making such a decision.

In any real life setting, a very sensible assumption is that not all available
information is correct, as the information we have can have been misread, mis-
interpreted, or simply wrong. We think of this incorrect information as noise
in our parameters. To minimize the effect of such noise, the function we use to
make a decision should preferably maximize the probability of making the same
decision as with completely correct information. In the very least, we would
like such a function to allow us to make this probability arbitrarily close to one
by taking more and more, possibly errornous, information into account. This
thesis is about the extent to which there exists functions that are good in this
regard for different types of information and noise, and about the properties of
these functions when they exist.

The noise sensitivity of a sequence of Boolean functions was first defined
in [1], although the same quantities in slightly different settings had been studied
earlier. One reason for the interest in the subject that emerged from this paper
was that the authors were able to show that percolation crossings of a triangular
grid was highly sensitive to a small proportion of the edges being rerandomized.
To do this, the authors proved a result which later became known as the noise
sensitivity theorem.

In short, in [1], a sequence of Boolean functions fn : {−1, 1}n → {−1, 1} was
said to be asymptotically noise sensitive if, in the limit, independently chang-
ing the sign of each parameter with a small probability caused all information
about the initial value of the function to be lost. Asymptotic noise stability was
defined to capture an opposite behaviour, namely that in the limit, indepen-
dently resampling each parameter with a small probability ε was very unlikely
to change the value of the function.
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Since 1999, when [1] was published, several papers have been written that
studies the noise sensitivity or noise stability of Boolean functions and related
concepts, e.g. [13, 2], [14, 9, 11] [7, 12], [10] and [6].

Already in [1], the first paper on noise sensitivity, the authors mentioned
that the noise sensitivity and noise stability of a Boolean function might be
interesting also for other types of noise. In fact, the authors included a section
on the noise identical to the noise described above, except that the number of
flipped parameters was fixed instead of random. They also mentioned that it
could be of interest to replace the original noise with some other model from
statistical mechanics. In [2], one such noise was studied, namely an exclusion
process on the complete graph. Apart from giving analogues to many of the
results in [1], the authors also included results relating the noise sensitivity of
a Boolean function with respect this noise to the noise sensitivity of the same
function with respect to the original noise.

Closer in time to the original paper was [13], in which the notions of noise
sensitivity and noise stability as given in [1] was studied for functions whose
domains were more naturally defined as trees than as cubes. In particular, the
authors asked which families of trees could be embedded into the hypercube in
such a way that the notions of noise sensitivity and noise stability made sense in
relation to the structure of the tree and the chosen function. Instead of altering
the source of noise, the authors defined alternative notions of noise sensitivity in
this setting, calling a sequence of functons tree sensitive if it was noise sensitive
given some embedding of its tree domain onto the hypercube, and analogously,
tree stable if it was noise stable for all such embeddings. The generalization
given in this paper is not studied in any of the three appended papers, but
provides an alternative solution of how to extend the definitions in [1], a topic
with which we will be preoccupied through most of this thesis.

We will now briefly describe the mathematical tools and models which will
be most frequently used in the appended papers, as well as give more formal
descriptions of the problems studied witihin this thesis. In what follows, ba-
sic knowledge of mathematical ideas such as linear algebra, graphs, stochastic
processes and discrete time Markov chains will be assumed.

1.1 continuous time markov chains

At the heart of this thesis is the concept of continuous time Markov chains.
A continuous time Markov chain differs from a discrete time Markov chain in
that the time between two consequtive jumps is not constant, but instead a
random variable whose law is an exponential distribution. The parameter of
this exponential distribution might depend on the current state of the Markov
chain. When we think about continuous time Markov chains, we often think
about the exponential law as a set of clocks, with exactly one clock Css′ for
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each pair of distinct states (s, s′) of the Markov chain. Each such clock Css′ has
an associated rate qss′ , and the time between two consequtive ticks of the clock
has law exp qss′ . When Css′ ticks, if the current position of the Markov chain
is s, it jumps to position s′. As the minimum of two exponential distributions
with parameters λ1 and λ2 respectively is again an exponential distribution with
parameter λ1 + λ2, it follows that the time until a Markov chain X moves from
a state s has law exp(

∑
s′ �=s qss′). It also follows that we could equivalently put

a clock Cs on each state s of the Markov chain, whose time between two ticks
is governed by an exponential distribution with rate −qss :=

∑
s′ �=s qss′ , and

let a Markov chain which is at position s when the corresponding clock ticks,
move to state s′ with probability qss′/(−qss). The ratios pss′ := qss′/(−qss) are
called the jump probabilities of the Markov chain.

As an analogue of the transition matrix P = (pss′)s,s′∈S of a discrete time
Markov chain with state space S, we define the generator Q = (qss′)s,s′∈S of
a continuous time Markov chain X. To get something similar to the n-step
transition probabilities for a discrete time Markov chain, we define

Ht(s, s′) := P (Xt = s′ | X0 = s),

where Xt denotes the position of the Markov chain X at time t. Similarly, for
a function f : S → R, we define

Htf(s) := E[f(Xt) | X0 = s].

As for sufficiently small ε > 0,

Ht+ε(s, s′) ≈ Ht(s, s′) · eεqs′s′ +
∑

s′′∈S\{s′}
Ht(s, s′′)(1 − e−εqs′′s′ ),

it follows that
Ht = eQt.

That is, the matrix Q completely characterizes the evolution of the correspond-
ing Markov chain.

Throughout this thesis, almost all our Markov chains will be irreducible,
meaning that for all s, s′ ∈ S,

P (Xt = s′ | Xt = s) > 0

for all t > 0. From this it follows that there is always a unique stationary
measure π with respect to X (see e.g. [8]). If not otherwise stated, we will
choose X0 according to this distribution.
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1.2 spectral analysis of markov chains

A very useful tool for analyzing continuous time Markov chain, which is not
always mentioned in a first course on Markov chains, is the eigenvectors and
eigenvalues of the generator Q, or analogously, of the transition matrix P in a
discrete time setting. The purpose of this section is to briefly introduce these
tools and derive basic equalities as examples of how they can be used. For more
on the spectral analysis of Markov chains, we refer the reader to [3].

In what follows, let Q be the generator of a reversible and irreducible con-
tinuous time Markov chain X, i.e. an irreducible continuous time Markov chain
whose generatorQ satisfies

π(s)qss′ = π(s′)qs′s

for all states s and s′ in the state space S of X. Then the matrix

(−π(s)1/2qss′π(s′)−1/2)ss′∈S

is symmetric, and consequently has an orthonormal basis of eigenvectors

χ1, χ2, . . . , χ|S|

with corresponding real eigenvalues

λ1 ≤ λ2 ≤ . . . , ≤ λ|S|

with respect to any inner product on R
S = {f : S → R}. In this thesis, for

functions f, g : S → R, we will almost exclusively use the inner product given
by

〈f, g〉 := E[f(X)g(X)] =
∑
s∈S

π(s)f(s)g(s). (1.1)

Note that irreducibility is necessary to get a unique stationary distribution π
with full support, and reversibility is necessary to get the symmetry needed to
get an orthogonal basis of eigenvectors.

If we define
ψi(S) := π−1/2(s)χi(s)

for s ∈ S, then ψi is an eigenvector of −Q with corresponding eigenvalue λi.
As Ht = eQt, it follows that Htψi = e−λitψi, that is ψi is an eigenvector to Ht

with corresponding eigenvalue e−λit for each i ∈ {1, 2, . . . , |S|}.
Another way of characterizing the eigenvalues λ1, . . . , λ|S| is given by noting

that
λi =

〈ψi, −Qψi〉
〈ψi, ψi〉 = inf

f : S→R,
f⊥{ψ1,...,ψi−1},

f �≡0

〈f, −Qf〉
〈f, f〉 . (1.2)
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The quotient in the last expression in (1.2) is called the Rayleigh quotient of Q.
As

〈f, −Qf〉 =
∑
s∈S

π(s)f(s)
∑
s′∈S

−qss′f(s′)

=
∑
s∈S

π(s)f(s)
∑

s′∈S\{s}
qss′ (f(s) − f(s′))

=
∑
s∈S

π(s)
∑

s′∈S\{s}
qss′f(s) (f(s) − f(s′))

=
1
2
∑
s∈S

π(s)
∑

s′∈S\{s}
qss′ (f(s) − f(s′))2

(1.3)

we can directly deduce that

(i) λi ≥ 0 for all i ∈ {1, 2, . . . , |S|}.

Using (1.2) and (1.3) for a {−1, 1}-valued function, we get that

(ii) λi ≤ 2
∑

s∈S π(s) · (−qss) for all i ∈ {1, 2, . . . , |S|}.

As the all ones vector is an eigenvector of −Q with corresponding eigenvector
0, it follows from (i) that we can assume that

(iii) ψ1 ≡ 1 and λ1 = 0.

Further, it follows from (1.3) that given that X is irreducible, we must have
that

(iv) λ2 > 0.

As the eigenvectors ψ1, . . . , ψ|S| constitute an orthonormal basis with respect
to the inner product given by (1.1), any function f : S → R can be written as

f =
|S|∑
i=1

〈f, ψi〉
〈ψi, ψi〉 ψi.

Assuming that 〈ψi, ψi〉 = 1, i.e. that the eigenvectors are normalized, this
simplifies to

f =
|S|∑
i=1

〈f, ψi〉 ψi.

The terms f̂(i) := 〈f, ψi〉, i = 1, 2, . . . , |S|, are called the Fourier coefficients of
f with respect to the basis ψ1, . . . , ψ|S|, and are useful for expressing several
probabilistic quantities which will be of interest of us. One of the simplest such
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quantities is the expected value of f(X0) for function f : S → R. Using that
ψ1 ≡ 1, this can be expressed as

E[f(X0)] = E[f(X0) · 1] = 〈f, 1〉 = 〈f, ψ1〉 = f̂(1).

Although a little bit more complicated, we also get that

E[f(X0)f(Xt)] = E[f(X0)Htf(X0)] = 〈f, Htf〉 =
〈 |S|∑

i=1
f̂(i)ψi, Ht

|S|∑
i=1

f̂(j)ψj

〉

=
〈 |S|∑

i=1
f̂(i)ψi,

|S|∑
i=1

f̂(j)Htψj

〉
=
〈 |S|∑

i=1
f̂(i)ψi,

|S|∑
i=1

f̂(j)e−λjtψj

〉

=
|S|∑
i=1

|S|∑
j=1

f̂(i)f̂(j)e−λjt〈ψi, ψj〉 =
|S|∑
i=1

e−λitf̂(i)2

and consequently,

Cov(f(X0), f(Xt)) =
|S|∑
i=2

e−λitf̂(i)2.

From the expression for the covariance it directly follows that

Var(f(X0)) = lim
t→0

Cov(f(X0), f(Xt)) =
|S|∑
i=2

f̂(i)2, (1.4)

but more interestingly, it also follows that

Cov(f(X0), f(Xt)) ≤ e−λ2t Var(f(X0)). (1.5)

This suggests that if one want to study the decorrelations of a function f of a
continuous time Markov chain, one should pick t = O(1/λ2). For this reason,
1/λ2 is called the relaxation time of the Markov chain and is denoted by trel.
One thing which is important to keep in mind when talking about the relaxation
time of a continuous time Markov chain is that its value heavily depends on the
time scaling of the Markov chain. This is especially true when the Markov chain
is a random walk on a connected graph, where it is not obvious how the rates
rates −qii should be chosen. Given a Markov chain X with generator Q, for any
α > 0 the matrix Q′ = αQ defines a Markov chain X ′ which essentially is the
same Markov chain as X, but for which time runs faster or slower depending
on whether α is larger or smaller than one. It is easy to see that the eigenvalues
of −Q′ will be given by αλ1, . . . , αλ|S| and consequently, the relaxation time
of X ′ is given by 1/(αλ2).
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1.3 examples of continuous time markov chains

A rich source of examples of continuous time Markov chains is so called contin-
uous time random walks. To define what we mean by a continuous time random
walk, let G be any connected graph. We say that a continuous time Markov
chain with state space S = V (G) is a continuous time random walk on G if for
any to distict states s, s′ ∈ S,

1. qss′ = 0 whenever (s, s′) 
∈ E(G) and

2. there is α > 0, such that either

a) qss′ = α/ deg(s) for all (s, s′) ∈ E(G) or
b) qss′ = α for all (s, s′) ∈ E(G).

The only difference between a continuous time random walk and a discrete
time random walk is thus that the time between two steps in the random walk
is random with an exponential distribution, whose rate is either the same for
all vertices in the graph (condition 2a) or the same for all edges in the graph
(condition 2b). For regular graphs, conditions 2a and 2b coincide, but for
general graphs they result in different Markov chains.

We now give three specific examples of continuous time Markov chains walks
which will appear in the appended papers.
Example 1.3.1. Fix n ∈ N and let S = {−1, 1}n. Pick a clock Cj for each
coordinate j ∈ {1, 2, . . . , n} and assume that all the clocks have the same rate.
When a clock Cj ticks, change the sign of the jth coordinate of the current
state. This defines a Markov chain, which can also be thought of as describing
a continuous time random walk on a n-dimensional Hamming cube.

If we let each clock have rate 1, then the relaxation of this Markov chain is
of order one (see eg. [5]). Moreover, if we pick a one-to-one mapping i �→ Si ⊂
{1, 2, . . . , n} such that |Si| < |Sj | whenever i < j, then it is well known (see
e.g. [5]) that we can pick the eigenvectors {ψi}i such that λi = |Si| and

ψi(s) =
∏
i∈Si

(−1)s(i).

If we think of this Markov chain as a continuous time random walk on the
Hamming cube, it might be more natural to let the Markov chain jump with
rate one. This would give each clock rate 1/n, trel = n and λi = |S|/n.
Example 1.3.2. Fix n ∈ N and let S = Zn. For all i, j ∈ Zn, let

qij =

⎧⎪⎨
⎪⎩

1/2 if |i − j| = 1 mod n

−1 if i = j

0 else.
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This defines a continuous time Markov chain X which can be though of as a
random walk on a circle. The eigenvectors of the generator fo this Markov chain
are known to be given by

ψi(j) = cos
(

2πij

n

)

with corresponding eigenvalues λi = 1 − cos
( 2πi

n

)
, implying that the relaxation

time is given by (1 − cos(2π/n))−1 (see e.g. [8]).

Example 1.3.3. Let G be any connected graph on n vertices, and let � ∈
{1, 2, . . . , n − 1}. Imagine a bag containing exactly � black marbles and n − �
white marbles. Pick X0 by randomly placing one marble from the bag on each
vertex of the graph. Now for each e ∈ E(G), put a clock Ce on e with rate
1/ maxv∈V (G) deg v. When a clock Ce ticks, we interchange the marbles on the
endpoints of the edge e. Then X is said to be a (simple symmetric) exclusion
process on G. The relaxation time for this Markov chains clearly depends on the
choice of graph G, and in general neither the eigenvectors nor the eigenvalues
are known. However, when G is e.g. the complete graph on n vertices, both the
eigenvectors and eigenvalues can be calculated (see e.g. [4] and Paper C). Also,
when � = 1, we recover a random walk on the graph G, where explicit formulas
for both eigenvalues and eigenvectors are known for e.g. Hamming cubes and
circles.

1.4 noise sensitivity and noise stability

The terms noise sensitivity and noise stability were first mentioned in [1], where
the authors gave the following definitions.

Definition 1.4.1. For each n ≥ 1, let X(n) be the continuous time Markov
chain given by Example 1.3.1. A sequence (fn)n≥1, fn : {−1, 1}n → {−1, 1} of
Boolean functions is said to be noise sensitive if for every ε > 0,

lim
n→∞ Cov(fn(X(n)

0 ), fn(X(n)
ε )) = 0. (1.6)

Definition 1.4.2. For each n ≥ 1, let X(n) be the continuous time Markov
chain with state space {−1, 1}n given by Example 1.3.1. A sequence (fn)n≥1,
fn : {−1, 1}n → {−1, 1} of Boolean functions is said to be noise stable if

lim
ε→0

sup
n

P (fn(X(n)
0 ) 
= fn(X(n)

ε )) = 0. (1.7)

The two definitions above are meant to capture two opposite behaviours of
sequences of Boolean functions with domain {−1, 1}n, when their domains are
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exposed to the noise described in Example 1.3.1. Common examples of Boolean
functions that are noise stable is the Dictator function;

Dictn(s) = s(1)

and the Majority function;

Majn(s) =

{
1 if

∑n
i=1 s(i) > n/2

−1 else.

As an example of a noise sensitive function, a common examples is the Parity
function

Parityn(s) =
n∏

i=1
s(i).

A noise sensitive function which might be more interesting, defined for n = 3m

and m ∈ N, is called Iterated-3-Majority;

I3Maj3m(s) = Maj3(s) if n = 3
{

Maj3(I3Maj3m−1((s(1), . . . s(3m−1)))
+ I3Maj3m−1((s(3m−1 + 1), . . . s(2 ∗ 3m−1)))
+ I3Maj3m−1((s(2 ∗ 3m−1 + 1), . . . , s(3 ∗ 3m−1)))) else.

In all papers appended to this thesis, we are studying questions related to
the following two definitions, which generalize Definitions 1.4.1 and 1.4.2.

Definition 1.4.3. For each n ≥ 1, let X(n) be a continuous time Markov chain
with corresponding state space Sn, and let (tn)n≥1 be a sequence of positive real
numbers. A sequence (fn)n≥1, fn : {−1, 1}n → {−1, 1} of Boolean functions is
said to be noise sensitive with respect to (X(n), tn)n≥1 if for every ε > 0,

lim
n→∞ Cov(fn(X(n)

0 ), fn(X(n)
εtn

)) = 0. (1.8)

Definition 1.4.4. For each n ≥ 1, let X(n) be a continuous time Markov chain
with corresponding state space Sn, and let (tn)n≥1 be a sequence of positive real
numbers. A sequence (fn)n≥1, fn : {−1, 1}n → {−1, 1} of Boolean functions is
said to be noise stable with respect to (X(n), tn)n≥1 if

lim
ε→0

sup
n

P (fn(X(n)
0 ) 
= fn(X(n)

εtn
)) = 0. (1.9)

In both Definition 1.4.1 and Definition 1.4.2 we look at the position of the
Markov chain at time ε which, given the definition of this Markov chain, is a
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fraction ε of the corresponding relaxation time. At this time, the probability
that the value of the first coordinate is not the same as at time zero is the same
as the probability that the clock C1 has ticked an odd number of times. As
the times between two ticks are exponentially distributed, this has probability
(1 − e−ε)/2. As the clocks are independent, we obtain the following alternative
interpretation of Xε, namely that we can generate Xε from X0 by changing the
value at each coordinate of X0 with probability (1 − e−ε)/2.

The discussion in the previous paragraph suggests two possible ways to gen-
eralize the definitions of noise sensitivity and noise stability to general sequences
of Markov chains; either we compare fn(X(n)

0 ) with fn(X(n)
εtrel

), or we compare
fn(X(n)

0 ) with fn(X(n)
εt ) with some choice of t which is more relevant given some

description of the Markov chain X(n). However, as it follows directly from (1.5)
that all functions will be noise sensitive when tn = ω(trel), the relaxation time
is the latest possibly interesting time to study. Also, as both the property of
being noise sensitive and being noise stable is monotone in (t(n))n≥1, if one are
interested in noise stable functions, this is a natural time to consider.

1.5 the noise sensitivity theorem

In [1], where noise sensitivity was first defined, the authors proved a result which
connected noise sensitivity to the structure of the sets {s ∈ {0, 1}n : fn(s) = 1}.
Such a result is sometimes very useful when proving that a given sequence of
functions in noise sensitive, as it removes what is often a major complication,
namely understanding the diffusive behaviour of the Markov chain. The result,
which is often called the noise sensitivity theorem, is formulated below. Before
stating the theorem, we will need to introduce some additional notation, which
will provide us with a measure of the size of the boundary of the sets {s ∈
{−1, 1}n : fn(s) = 1}.

Given s ∈ {−1, 1}n and i ∈ {1, 2, . . . , n}, let s⊕ei be the element in {−1, 1}n

which is obtained by changing the sign of the ith coordinate in s. As an example,
when n = 3, this means that we can summarize the action of s �→ s ⊕ ei by the
following table.

s s ⊕ e1 s ⊕ e2 s ⊕ e3

000 100 010 001
001 101 011 000
010 110 000 011
011 111 001 010
100 000 110 101
101 001 111 100
110 010 100 111
111 011 101 110
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For i ∈ {1, 2, . . . , n}, we define the influence of the ith variable on a function
f : {−1, 1}n → {−1, 1} to be

Ii(f) := P (f(X0) 
= f(X0 ⊕ ei)) ,

where we assume that X0 is chosen according to the stationary distribution of
X and X is the continuous time Markov chain defined in Example 1.3.1.

Theorem 1.5.1 (The noise sensitivity theorem). Let X(n) be the continuous
time Markov chain defined in Example 1.3.1 and let (fn)n≥1 be a sequence of
Boolean functions with fn : {−1, 1}n → {−1, 1}. If

lim
n→∞

n∑
i=1

Ii(fn)2 = 0

then (fn)n≥1 is noise sensitive with respect to (X(n), 1)n≥1.

Apart from being a valuable tool when trying to show that more compli-
cated sequences of functions are noise sensitivite, the noise sensitivity theo-
rem is interesting in itself in that it at a first glace seems counter-intuitive.
Given that the right hand side is very small, the boundary between the set
{s ∈ {0, 1}n : f(s) = 1} and its complement is in some sense small, why one
could guess that the probability that a random walker will cross it should be
small as well, rendering the function to be noise stable. This is however not the
case, as concluded by the theorem.

The main objective of Paper B is to try to give an analogue of the noise
sensitivity theorem in a more general setting. However, it should be noted that
we cannot expect such a generalization to be valid for all Markov chains, as
any such generalization requires that there is something in the definition of the
Markov chain which can serve as an analogue of the coordinates of a Hamming
cube to yield an analogue of the influences in the original statement of the
theorem.
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Chapter Two

Summary of appended papers

2.1 paper a – noise sensitivity and noise stability for markov chains.

The main objective of this paper is to study the extensions of noise sensitivity
and noise stability given by Definitions 1.4.3 and 1.4.4. In particular, this paper
contains several results providing conditions on the sequence of Markov chains
(X(n))n≥1 for which such an extension makes sense, in that both noise stable
and noise sensitive sequences of Boolean functions exist at the relaxation time.
The same questions for tn ≤ t

(n)
rel are also discussed briefly.

Apart from its relevance for noise sensitivity and noise stability, many of the
questions asked within the paper concerns just as much the definition of the
relaxation time and its relation to the geometry of the corresponding Markov
chain.

2.2 paper b – a noise sensitivity theorem for schreier graphs.

In this paper, we extend the noise sensitivity theorem from the setting of Defi-
nition 1.4.1 to the setting of Definition 1.4.3 in the special case when X(n) is a
random walk on a Schreier graph. We then use this result to give an alternative
proof of an extension of the noise sensitivity theorem to exclusion processes
which was given in [2]. One reason that this might be interesting, is that it
relates this version of the noise sensitivity theorem to the corresponding result
in the original setting by giving a similar proof, which sheds some light on the
differences and similarities of the two versions.

The proof of the noise sensitivity theorem for Schreier graphs closely fol-
lows the proof of the noise sensitivity theorem as given in [5], although new
complications arise due to the more general setting.

2.3 paper c – monotonicity properites of exclusion sensitivity.

When studying noise sensitivity and noise stability for exclusion processes, a
natural question is whether a sequence of functions (fn)n≥1 which is noise sensi-
tive with respect to exclusion processes on graphs (Gn)n≥1 will be noise sensitive
for any sequence of graphs (G′

n)n≥1 with V (Gn) = V (G′
n) and E(Gn) ⊂ E(G′

n)
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for all n. One reason to suspect that this would be true is that adding more
edges to a graph intuitively should make the Markov chain more diffusive. In [2],
the authors asked if this would be true if G′

n is the complete graph on the vertex
set of Gn, and also if any sequence of Boolean functions (fn)n≥1 which is noise
stable with respect to an exclusion process on a sequence of complete graphs
will be noise stable on any sequence of graphs with the same number of vertices
but possible fewer edges.

Naturally, the answer to these questions depends on for how long the exclu-
sion process is run for each n, given the time scaling. In [2], the authors gave
each clock a rate which was at most 1/ maxv∈V (Gn) deg v and let tn = 1. Using
these choices of parameters in the model, we prove that both questions can be
answered yes when G′

n is the complete graph. Conversely, we show that if G′
n is

allowed to be any graph satisfying V (Gn) = V (G′
n) and E(Gn) ⊂ E(G′

n) for all
n, the answer is no. We also show that this holds even if stronger conditions,
such as vertex transitivity, is imposed on the graphs Gn and G′

n. The proof of
the positive result uses spectral analysis of continuous time Markov chains as
well as a number results about the eigenvectors and eigenvalues of an exclusion
process on a complete graph, whose proofs are also included in the paper.
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