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a fully anisotropic piezoelectric rectangular plate. Using power series expansions results in sets of
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1. Introduction

Piezoelectric materials have been used widely in applications
for sensing and actuation purposes in recent years. As piezoelectric
sensors and actuators usually are thin in comparison to relevant
wavelengths, the analyzes of thin piezoelectric layers, such as
beams, plates and shells, have attained considerable research
interest. Many references to work on higher-order piezoelectric
plate theories prior to 2000 are given in the review article by
Wang and Yang [1]. Further references to laminated piezoelectric
plates are presented in [2] while [3] presents a classification and
comparison among higher-order piezoelectric plate models based
on power series expansions. A more recent review article on three
dimensional approaches for piezoelectric plates is presented by
Wu et al. [4].

Plate theories for various material configurations were developed
in the 50’s by Mindlin, among which piezoelectric plates were
addressed in [5]. This work was later generalized by Tiersten and
Mindlin [6] and Mindlin [7] where two-dimensional equations for
a piezoelectric plate were systematically derived using power series
expansions for the mechanical and electric displacements. Bugdayci
and Bogy [8] and Lee et al. [9,10] used trigonometric series expan-
sions for piezoelectric plates, which provides an alternative
approach for analyzing plate vibrations more suitable for high-
frequency modes. More recently developed plate theories using vari-
ous sorts of series expansions of the displacements and the electric
potential for both single and laminated piezoelectric plates can be
found in [11–24]. These expansions are either using a few power
series terms, or written on a general higher order fashion that may
be used to render solutions that converge to the three dimensional
solutions. Exact three dimensional analyses for single and laminated
piezoelectric plates having mixed (simply supported) boundary
conditions are treated in [25–28]. Numerical methods such as finite
element analysis (FEA) has been adopted on both classical and
higher order series expansion theories [29–34].

Recently Mauritsson et al. [35] have derived plate equations for
a homogenous fully anisotropic elastic plate, using a systematic
power series expansion approach, previously adopted for isotropic
rods, beams, shells and plates [36–40]. The same general approach
has been applied to various piezoelectric layer configurations [41–
43]. In the present paper the work in [35] is extended to cover ani-
sotropic piezoelectric plates. The method aims at systematically
develop a hierarchy of equations for general piezoelectric plates
using power series expansions in the thickness coordinate of the
displacement components and the electric potential. Insertion of
these expansions into the three dimensional equations of motion
leads to recursion relations among the expansion functions, which
can be used to eliminate all but some of the lowest order expansion
functions. Hereby all fields can be expressed in a finite number of
expansions functions without performing any truncations. The
power series expansions are subsequently inserted into the three
dimensional boundary conditions at the upper and the lower sur-
faces of the plate. These boundary conditions represent a set of
eight scalar equations of motion, including eight unknown
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Fig. 1. The geometry.
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expansion functions, which constitute the system of plate equa-
tions. Using variational calculus, the pertinent edge boundary con-
ditions for rectangular plates are obtained in an equally systematic
manner. This hierarchy of piezoelectric plate equations can be
truncated to any order in the thickness where each studied trunca-
tion order is asymptotically correct in line with [35,37,38,44].

The present approach generally differs in several respects from
the cited works using power series expansion on piezoelectric
plates. The main issues concern the derivation of exact recursion
relations where only the lowest order expansion terms need to
be considered. Another object is the procedure when collecting
terms for the truncation process, resulting in variationally consis-
tent equation systems that are asymptotically correct. It should
also be noticed that the present equations are not confined to the
static case. Moreover, the plate configuration may be of arbitrary
anisotropy without any symmetry classes. One advantage with
such a general analysis is that all other cases can be obtained as
special cases. The previously derived plate equations for the fully
anisotropic elastic case [35] can also be obtained as a special case.
As a fully anisotropic, piezoelectric material is described by 21
independent stiffness constants, 18 independent piezoelectric cou-
pling constants and six independent dielectric constants, the expli-
cit expressions for the coefficients in the plate equations become
very complicated. For this reason the plate equations for the most
general case are derived in a very compact form as four matrix
equations, including matrix operators which are recursively
defined using the commercial code Mathematica.2 Hereby it is
straightforward to study all types of anisotropy configurations.

As the material configuration for a fully anisotropic material
results in complicated expressions, it is natural to study simpler
cases of orthotropic plates more in detail. Here the eight plate equa-
tions can be added and subtracted in pairs to obtain two uncoupled
systems of equations, each of them including four equations and
four unknowns. The two uncoupled systems correspond to the
symmetric (in-plane) and antisymmetric (out-of-plane) part of
the motion, respectively. These equations, including the edge
boundary conditions, are explicitly given for the lower truncation
orders. To validate the present plate equations results for dispersion
curves, eigenfrequencies as well as potential, displacement and
stress distribution curves are presented. Both single and laminated
plates are studied and comparisons are made to other approximate
theories as well as the exact three dimensional theory. The results
illustrate both the benchmark property of the higher order trunca-
tions and the efficiency of the lower order engineering equations.

2. Problem formulation

Consider a homogeneous piezoelectric plate of thickness 2h
according to Fig. 1. The material is fully anisotropic with density
q. The basic equations governing the motion in a piezoelectric con-
tinuum are written with abbreviated subscripts [45] as

riJTJ ¼ q@2
t ui; ð2:1Þ

riDi ¼ 0: ð2:2Þ

Here vector subscripts are expressed through lower case letters
i ¼ x; y; z, while abbreviated subscripts are expressed through upper
case letters I ¼ 1;2;3;4;5;6. The mechanical stress, mechanical dis-
placement and electric displacement column matrices are defined
through

½TI� ¼ TxxTyyTzzTyzTxzTxy
� �T

; ½ui� ¼ uxuyuz
� �T

; ½Di� ¼ DxDyDz
� �T

:

ð2:3Þ
2 Registered trademark of Wolfram Research Inc.
The divergence vector ri is defined in the usual way, while the
divergence stress operator riJ is represented in matrix form
through

½riJ� ¼
@x 0 0 0 @z @y

0 @y 0 @z 0 @x

0 0 @z @y @x 0

0
B@

1
CA; ½rIj� ¼ ½riJ �T : ð2:4Þ

Partial derivatives are expressed as @x ¼ @=@x and so on.
For a linear elastic, piezoelectric material the constitutive

equations that express the mechanical stresses and the electric
displacements in terms of the mechanical displacements and the
electric potential, are

TI ¼ cIJrJkuk þ eIjrjU; ð2:5Þ

Di ¼ eiJrJkuk � �ijrjU: ð2:6Þ

Here the quasistatic approximation is applied, i.e. the electric field
is given as the gradient of the electric potential

Ei ¼ �riU: ð2:7Þ

The various material parameters appearing in (2.5) and (2.6) are the
21 independent stiffness constants collected in the symmetric 6� 6
matrix

½cIJ� ¼

c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

0
BBBBBBBB@

1
CCCCCCCCA
; ð2:8Þ

the 6 independent dielectric constants collected in the symmetric
3� 3 matrix

½�ij� ¼
�xx �xy �xz

�xy �yy �yz

�xz �yz �zz

0
B@

1
CA; ð2:9Þ

and the 18 independent piezoelectric coupling constants collected
in the 3� 6 piezoelectric coupling matrix

½eiJ � ¼
ex1 ex2 ex3 ex4 ex5 ex6

ey1 ey2 ey3 ey4 ey5 ey6

ez1 ez2 ez3 ez4 ez5 ez6

0
B@

1
CA; ½eIj� ¼ ½eiJ �T : ð2:10Þ

Insertion of (2.5) and (2.6) into (2.1) and (2.2) gives the governing
equations for the displacements and the electric potential

riJcJKrKlul þriJeJkrkU ¼ q@2
t ui; ð2:11Þ

rieiJrJkuk �ri�ijrjU ¼ 0: ð2:12Þ
3. Power series expansions

To derive plate equations, the displacement components and
the electric potential are expanded in power series in the thickness
coordinate

uiðx; y; z; tÞ ¼
X1
n¼0

znuðnÞi ðx; y; tÞ; ð3:1Þ
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Uðx; y; z; tÞ ¼
X1
n¼0

znUðnÞðx; y; tÞ: ð3:2Þ

Insertion of the series expansions (3.1) and (3.2) into the governing
equations of motion (2.11) and (2.12) gives power series expansion
equations in the thickness coordinate z. By collecting equal powers
of z, the solution of the equation system for each power yields the
recursion formulas

uðnþ2Þ
i ¼ 1

ðnþ 1Þðnþ 2Þ Að0Þij uðnÞj þ ðnþ 1ÞBð0Þij uðnþ1Þ
j

h
þ Fð0Þi UðnÞ þ ðnþ 1ÞGð0Þi Uðnþ1Þ

i
; ð3:3Þ

Uðnþ2Þ ¼ 1
ðnþ 1Þðnþ 2Þ�zz

að0Þi uðnÞi þ ðnþ 1Þbð0Þi uðnþ1Þ
i

h
þ f ð0ÞUðnÞ þ ðnþ 1Þgð0ÞUðnþ1Þ

i
; ð3:4Þ

where n ¼ 0; 1; 2; . . .. The introduced operators are defined as

Að0Þim ¼ Mij djmq@2
t �rjK cKLrLm �

1
�zz

ejrkekLrLm

� �
;

Bð0Þim ¼ �Mij LjK cKLrLm þrjK cKLLLm þ
ej

�zz
ðlkekLrLm þrkekLLLmÞ

� �
;

Fð0Þi ¼ Mij
1
�zz

ejrk�klrl �rjK eKlrl

� �
;

Gð0Þi ¼ Mij
ej

�zz
ðlk�klrl þrk�kllkÞ � LjK eKlrl �rjK eKlll

� �
;

að0Þk ¼ eiA
ð0Þ
ik þrieiJrJk;

bð0Þk ¼ eiB
ð0Þ
ik þ lieiJrJk þrieiJLJk;

f ð0Þ ¼ eiF
ð0Þ
i �ri�ijrj;

gð0Þ ¼ eiG
ð0Þ
i � li�ijrj �ri�ijlj;

ð3:5Þ

where dij is the Kronecker delta. Here new material matrices are
introduced as

½ei� ¼ ez5ez4ez3ð Þ;

½Cij� ¼
c55 þ e2

z5=�zz c45 þ ez4ez5=�zz c35 þ ez3ez5=�zz

c45 þ ez4ez5=�zz c44 þ e2
z4=�zz c34 þ ez3ez4=�zz

c35 þ ez3ez5=�zz c34 þ ez3ez4=�zz c33 þ e2
z3=�zz

0
B@

1
CA; ð3:6Þ

where ½Mij� ¼ ½Cij��1. Hence, ½Cij� can be interpreted as a matrix of
stiffened elastic constants. Moreover the introduced ordering matri-
ces are

½li� ¼ 001ð Þ; ½LiJ � ¼
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

0
B@

1
CA; ½LIj� ¼ ½LiJ�T : ð3:7Þ

The operators with an overline (ri;riJ and rIj) are differential
operators in the plate plane obtained through

ri ¼ ri þ @zli; riJ ¼ riJ þ @zLiJ; rIj ¼ rIj þ @zLIj: ð3:8Þ

Consequently riJ and rIj are obtained by putting all derivatives
with respect to z to zero in (2.4).

The recursion relations (3.3) and (3.4) can be used repeatedly to
express all expansion functions in the lowest-order ones with an
upper index n ¼ 0;1. The expansion functions can then be written as

uðnÞi ¼
1
n!

Aðn�2Þ
ij uð0Þj þ Bðn�2Þ

ij uð1Þj þ Fðn�2Þ
i Uð0Þ þ Gðn�2Þ

i Uð1Þ
h i

; ð3:9Þ

UðnÞ ¼ 1
ðn!Þ�zz

aðn�2Þ
i uð0Þi þ bðn�2Þ

i uð1Þi þ f ðn�2ÞUð0Þ þ gðn�2ÞUð1Þ
h i

;

ð3:10Þ
where n ¼ 0; 1; 2; . . ..
Eqs. (3.9) and (3.10) include recursively defined differential

operators, given by (3.5) and the following extensions

AðnÞik ¼ Bð0Þij Aðn�1Þ
jk þ Að0Þij Aðn�2Þ

jk þ 1
�zz
½Gð0Þi aðn�1Þ

k þ Fð0Þi aðn�2Þ
k �;

BðnÞik ¼ Bð0Þij Bðn�1Þ
jk þ Að0Þij Bðn�2Þ

jk þ 1
�zz
½Gð0Þi bðn�1Þ

k þ Fð0Þi bðn�2Þ
k �;

FðnÞi ¼ Bð0Þij Fðn�1Þ
j þ Að0Þij Fðn�2Þ

j þ 1
�zz
½Gð0Þi f ðn�1Þ þ Fð0Þi f ðn�2Þ�;

GðnÞi ¼ Bð0Þij Gðn�1Þ
j þ Að0Þij Gðn�2Þ

j þ 1
�zz
½Gð0Þi gðn�1Þ þ Fð0Þi gðn�2Þ�;

aðnÞj ¼ bð0Þi Aðn�1Þ
ij þ að0Þi Aðn�2Þ

ij þ 1
�zz
½gð0Þaðn�1Þ

j þ f ð0Þaðn�2Þ
j �;

bðnÞj ¼ bð0Þi Bðn�1Þ
ij þ að0Þi Bðn�2Þ

ij þ 1
�zz
½gð0Þbðn�1Þ

j þ f ð0Þbðn�2Þ
j �;

f ðnÞ ¼ bð0Þi Fðn�1Þ
i þ að0Þi Fðn�2Þ

i þ 1
�zz
½gð0Þf ðn�1Þ þ f ð0Þf ðn�2Þ�;

gðnÞ ¼ bð0Þi Gðn�1Þ
i þ að0Þi Gðn�2Þ

i þ 1
�zz
½gð0Þgðn�1Þ þ f ð0Þgðn�2Þ�;

ð3:11Þ

for n ¼ 0; 1; 2; . . ., using the base terms

Að�2Þ
ij ¼ dij; Að�1Þ

ij ¼ 0; Bð�2Þ
ij ¼ 0; Bð�1Þ

ij ¼ dij;

Fð�2Þ
i ¼ 0; Fð�1Þ

i ¼ 0; Gð�2Þ
i ¼ 0; Gð�1Þ

i ¼ 0;

að�2Þ
i ¼ 0; að�1Þ

i ¼ 0; bð�2Þ
i ¼ 0; bð�1Þ

i ¼ 0;

f ð�2Þ ¼ �zz; f ð�1Þ ¼ 0; gð�2Þ ¼ 0; gð�1Þ ¼ �zz:

ð3:12Þ

Note that the recursion formulas (3.9) and (3.10) involve no approx-
imations since they stem from the definition of the series expan-
sions (3.1) and (3.2) and are as such exact. These may be obtained
by using variational calculus as in [38]. Moreover, no truncations
of the displacement terms have so far been performed, which is of
crucial importance for the present method.

Insertion of the power series expansions (3.1) and (3.2) into the
constitutive equations for the stresses (2.5) and for the electric dis-
placements (2.6) gives

TI ¼
X1
n¼0

znTðnÞI ; ð3:13Þ

Di ¼
X1
n¼0

znDðnÞi ; ð3:14Þ

where

TðnÞI ¼ cIJ rJkuðnÞk þ ðnþ 1ÞLJkuðnþ1Þ
k

� �
þ eIj rjU

ðnÞ þ ðnþ 1ÞljU
ðnþ1Þ

� �
; ð3:15Þ

DðnÞi ¼ eiJ rJkuðnÞk þ ðnþ 1ÞLJkuðnþ1Þ
k

� �
� �ij rjU

ðnÞ þ ðnþ 1ÞljU
ðnþ1Þ

� �
: ð3:16Þ

By using the recursion formulas (3.9) and (3.10) these fields may
finally be expressed in the lowest-order terms

TðnÞI ¼
1
n!

cIJ rJkAðn�2Þ
kl þ LJkAðn�1Þ

kl

� �
þ eIj

�zz
rja

ðn�2Þ
l þ lja

ðn�1Þ
l

� �� �
uð0Þl

�

þ cIJ rJkBðn�2Þ
kl þ LJkBðn�1Þ

kl

� �
þ eIj

�zz
rjb

ðn�2Þ
l þ ljb

ðn�1Þ
l

� �� �
uð1Þl

þ cIJ rJkFðn�2Þ
k þ LJkFðn�1Þ

k

� �
þ eIj

�zz
rjf

ðn�2Þ þ ljf
ðn�1Þ

� �� �
Uð0Þ

þ cIJ rJkGðn�2Þ
k þ LJkGðn�1Þ

k

� �
þ eIj

�zz
rjgðn�2Þ þ ljgðn�1Þ� �� �

Uð1Þ
�
;

ð3:17Þ
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DðnÞi ¼
1
n!

eiJ rJkAðn�2Þ
kl þ LJkAðn�1Þ

kl

� �
� �ij

�zz
rja

ðn�2Þ
l þ lja

ðn�1Þ
l

� �� �
uð0Þl

�

þ eiJ rJkBðn�2Þ
kl þ LJkBðn�1Þ

kl

� �
� �ij

�zz
rjb

ðn�2Þ
l þ ljb

ðn�1Þ
l

� �� �
uð1Þl

þ eiJ rJkFðn�2Þ
k þ LJkFðn�1Þ

k

� �
� �ij

�zz
rjf

ðn�2Þ þ ljf
ðn�1Þ

� �� �
Uð0Þ

þ eiJ rJkGðn�2Þ
k þ LJkGðn�1Þ

k

� �
� �ij

�zz
rjgðn�2Þ þ ljgðn�1Þ� �� �

Uð1Þ
�
:

ð3:18Þ

Note that if all electric terms are disregarded in the relations
presented in this section, the simplified expressions are in line with
the work by Mauritsson et al. [35] on anisotropic elastic plates.

4. Plate equations

This section aims at deriving the dynamical plate equations
through the surface boundary conditions at z ¼ �h. From now on
it is understood that the power series sums are to be truncated,
where the truncation level could be chosen to any order. In order
to write the expressions on a compact form using abbreviated sub-
scripts, the prescribed fields for mechanical tractions and electric
surface charges are here expressed in terms of mechanical stresses
and electric displacements.

At each point on the surfaces z ¼ �h, either the mechanical
stress or the mechanical displacement is to be prescribed in each
coordinate direction. These given fields are denoted by fTþI ;uþi g
and fT�I ;u�i g at the upper and lower surfaces, respectively, where
I ¼ 5;4;3 and i ¼ x; y; z. Hence, one of the fields for each of the
six pairs fT�xz;u

�
x g; fT

�
yz; u

�
y g; fT

�
zz;u

�
z g is to be given, resulting in

three mechanical boundary conditions at each point on the upper
and lower surfaces, respectively. Similarly, either the normal
electric displacement component or the electric potential is to be
prescribed at each point on the surfaces z ¼ �h. These are
expressed as fDþz ;U

þg and fD�z ;U
�g at the upper and lower sur-

faces, respectively, and result in one electric boundary conditions
at each point on the surfaces. All in all four boundary conditions
are thus to be stated at each surface point. Using (3.1), (3.2) and
(3.13), (3.14) these are written

XN

n¼0

hnPðnÞðx;y;tÞ¼Pþðx;y;tÞ;
XN

n¼0

ð�hÞnPðnÞðx;y;tÞ¼ P�ðx;y;tÞ; ð4:1Þ

XNþ1

n¼0

hnpðnÞðx;y;tÞ¼pþðx;y;tÞ;
XNþ1

n¼0

ð�hÞnpðnÞðx;y;tÞ¼ p�ðx;y;tÞ; ð4:2Þ

where P ¼ fTI;Dzg and p ¼ fui;Ug for I ¼ 5;4;3 and i ¼ x; y; z. The
difference in number of terms used for these equations is due to
the differences in the differential orders. Since the mechanical

stress terms TðnÞI in (3.15) and the electric displacement terms DðnÞi

in (3.16) include spatial derivatives of one order higher than the

mechanical displacements uðnÞi and the electric potentials UðnÞ, an
extra term is to be included in the latter sums to obtain a consistent
set of plate equations.

These surface boundary conditions obtained from combinations
of (4.1) and (4.2) constitute the sought hyperbolic set of eight
scalar equations of motion for a piezoelectric plate. By using the
expansions (3.9), (3.10) and (3.17), (3.18) a hierarchy of piezoelec-
tric plate equations are expressed in terms of the lowest order

fields fuð0Þx ;uð0Þy ; uð0Þz ;/ð0Þ;uð1Þx ;uð1Þy ;uð1Þz ;/ð1Þg. This system may be
truncated to any order where the higher order sets can be used
for obtaining high accuracy solutions, while the lower order sets
may be used as engineering plate equations. Note that the resulting
governing set of differential equations are in the general case
fundamentally different for various parts of the plate, depending
on the sort of mechanical boundary conditions (stresses or
displacements) and the sort of electric boundary conditions
(potentials or displacements) prescribed on a specific surface
region. However, the surface boundary conditions are in all cases
fulfilled exactly for the expansion order in question.

Each of the eight surface boundary conditions (4.1) and (4.2)

involves spatial derivatives of order N þ 1 on uð0Þi and Uð0Þ (except
when N ¼ 0 for prescribed mechanical displacements and electric

potentials) and spatial derivatives of order N on uð1Þi and Uð1Þ.
However, the resulting system of eight plate equations turns out
to be of differential order 2ð4N � 1Þ in the xy coordinates due to
cancelation effects. This is readily seen by eliminating all but one
of the fields, say w0, resulting in one equation of spatial order
2ð4N � 1Þ. From this single equation, it is also seen that the num-
ber N should preferably be an odd integer. By choosing N odd, this
equation includes space and time derivatives on w0 up to dif-
ferential order N þ 1 which render asymptotically correct results
[35]. For N even, the equation is only asymptotically correct up
to differential order N. Furthermore, to account for the bending
stiffness in the plate the smallest truncation order is N ¼ 3, as this
truncation yields fourth order derivatives with respect to the time
and space coordinates on w0 in the one single equation.

4.1. Comparisons to exact theory

The hierarchy of approximate plate equations may be compared
analytically to the exact equations of motion by studying the
corresponding frequency equations. Consider here the standard
case of an infinite plate where the surface boundaries are stress
free with zero potential. For the present approximate theory, sepa-
rate frequency equations for antisymmetric and symmetric
motions are obtained as polynomial expressions in terms of the
wave numbers and the frequency. These results are to be compared
to the exact antisymmetric and symmetric transcendental fre-
quency equations, where the expressions in terms of wave num-
bers and frequency are expanded in Maclaurin series. Although
comparisons could be performed to any order, only the case with
truncation order N ¼ 5 has been studied due to the complicated
expressions. Hereby, each polynomial term up to and including
order N ¼ 5 in the approximate theories (antisymmetric and
symmetric) is identical to the corresponding term in the
Maclaurin series using exact theory. This illustrates that the pre-
sent approach is asymptotically correct for these low order terms,
and thus probably also to arbitrary order. Similar results are
reported for longitudinal displacements in rods [37], beams [38]
and for flexural elastic plates [40,44] when using a series expan-
sion approach. Hence, the subsequent plate equations presented
in Section 6 are thus asymptotically correct to order N ¼ 3
(antisymmetric) and N ¼ 1 (symmetric), respectively.
5. Edge boundary conditions

This section aims at developing the 4N � 1 boundary conditions
on each edge for a rectangular plate. This is performed in a system-
atic manner based on variational calculus.

Consider a rectangular plate where �a 6 x 6 a and �b 6 y 6 b.
As for the surfaces z ¼ �h, either the mechanical stress or the
mechanical displacement is to be prescribed in each coordinate
direction over the entire thickness interval �h 6 z 6 h. At x ¼ �a
these fields are denoted fT�a

I ; u�a
i g where I ¼ 1;6;5 and i ¼ x; y; z.

Similarly, either the normal electric displacement component or
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the electric potential is to be prescribed, which at x ¼ �a are
denoted fD�a

x ;U�ag. The edges y ¼ �b are treated analogously.
The edge boundary conditions may be obtained by adopting a

generalized Hamilton’s principle where mechanical stresses and
mechanical displacements as well as the electric displacements
and electric potentials are varied simultaneously and indepen-
dently. Following the results from variational calculus presented
in [37,38], the edge boundary conditions are obtained in a system-
atic manner. Since all boundary fields hereby are derived in the
same manner, the procedure is here presented for a given normal
stress at x ¼ a. Assuming a prescribed stress Tþa

xx ðy; z; tÞ, the varia-
tionally consistent boundary condition is expressed as [35]

Z h

�h
Tþa

xx ðy; z; tÞ �
XM

n¼0

znTðnÞxx ða; y; tÞ
 !

zkdz ¼ 0; k ¼ 0;1; . . . ;M;

ð5:1Þ

adopting (3.13) to order M. It is thus straightforward to derive the
M þ 1 unknowns TðnÞxx from the system of M þ 1 equations obtained
from the performed integrals. The hereby obtained representation
of the boundary stress function Txx in power series is identical to
the expansion of the given function Tþa

xx in terms of Legendre
polynomials Pn z=hð Þ of order M. Consequently

Tþa
xx ðy; z; tÞ �

XM

n¼0

anðy; tÞPn z=hð Þ ¼
XM

n¼0

znTþa
xx;nðy; tÞ; ð5:2Þ

and hereby T ðnÞxx ða; y; tÞ ¼ Tþa
xx;nðy; tÞ. Note that the standard case

Tþa
xx ¼ 0 results in TðnÞxx ¼ 0 for all n.

In line with the anisotropic elastic plate, the total number of
4N � 1 edge conditions on x ¼ �a are distributed as N boundary
conditions ðM ¼ N � 1Þ on each of the three in plane pairs
fTðnÞxx ;ung; fT ðnÞxy ;vng; fDðnÞx ;UðnÞg while N � 1 boundary conditions

ðM ¼ N � 2Þ on the out of plane pair fT ðnÞxz ;wng. Corresponding
results are obtained at y ¼ �b. The orders, k ¼ 0; 1; . . ., are chosen
in a manner to obtain the correct distribution of boundary condi-
tions between the symmetric and antisymmetric parts.

In the case of connected homogeneous rectangular plates with
different properties (geometrical, material, surface boundary con-
ditions) the 2ð4N � 1Þ coupling conditions at a common edge are
deduced in a similar way as the edge boundary conditions see [35].
5.1. Calculation of fields

From the solution of the piezoelectric plate equations of motion
(4.1) and (4.2) adopting the 4N � 1 boundary conditions on each
edge, the plate fields are to be calculated by truncating the power
series expansions (3.1), (3.2) and (3.13), (3.14). Since a lower trun-
cation order is used for the edge boundary conditions than for the
surface boundary conditions as described above, one has to make a
choice regarding the adopted number of terms. Based on experi-
ence from [35,37], the same truncation procedure is used as for
the governing plate Eqs. (4.1) and (4.2); N þ 2 terms for the
mechanical displacements and the electric potential in (3.1) and
(3.2), while N þ 1 terms are adopted for the mechanical stresses
and the electric displacements (3.13) and (3.14). Hereby the sur-
face boundary conditions are exactly fulfilled while the edge
boundary conditions are corrupted. However, close to or even at
the edge boundaries, the discrepancies due to extra terms in the
chosen approach are either negligible or small among the cases
studied.
6. Orthotropic piezoelectric plate poled in the x direction

The preceding set of piezoelectric plate equations with perti-
nent boundary conditions are expressed in a general form that
are applicable to all sorts of anisotropic configurations. By choosing
the truncation order, plate equations of various differential order
are obtained in a very systematic manner. However, in many appli-
cations the structure properties involve symmetry planes such as
for orthotropic materials. Therefore consider the special case of a
material of class 2mm poled in the x direction, i.e. the polarization
axis lies in the same plane as the plate. Such a plate configuration
has been studied by Tiersten [25] which calls for comparisons
between theories. This turns the recursion formulas and the plate
equations to a considerably more tractable form, where it is possi-
ble to study standard boundary problems separately for antisym-
metric and symmetric motions. It is straightforward to truncate
the equations to arbitrary order resulting in equations of high
accuracy that can be used as benchmark solutions. By taking lower
order truncation, engineering piezoelectric plate equations are
obtained that may be compared to other approximate theories
for orthotropic piezoelectric plates.

For the material configuration in question there are now 9
independent stiffness constants

½cIJ� ¼

c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

0
BBBBBBBB@

1
CCCCCCCCA
; ð6:1Þ

3 independent dielectric constants

½�ij� ¼
�xx 0 0
0 �yy 0
0 0 �zz

0
B@

1
CA: ð6:2Þ

and 5 independent piezoelectric coupling constants

½eiJ � ¼
ex1 ex2 ex3 0 0 0
0 0 0 0 0 ey6

0 0 0 0 ez5 0

0
B@

1
CA: ð6:3Þ

The recursion formulas (3.3) and (3.4) are explicitly written

unþ2 ¼
1

ðnþ 1Þðnþ 2Þg55
½�zzq@2

t un � g11@
2
x un � g66@

2
yun

� g126@x@yvn � ðnþ 1Þg135@xwnþ1 � h15@
2
xUn � h65@

2
yUn�;

vnþ2 ¼
1

ðnþ 1Þðnþ 2Þc44
½q@2

t vn � c66@
2
x vn � c22@

2
yvn � c126@x@yun

� ðnþ 1Þc234@ywnþ1 � e26@x@yUn�;

wnþ2 ¼
1

ðnþ 1Þðnþ 2Þc33
½q@2

t wn � c55@
2
x wn � c44@

2
y wn

� ðnþ 1Þc135@xunþ1 � ðnþ 1Þc234@yvnþ1 � ðnþ 1Þe35@xUnþ1�;

Unþ2 ¼
1

ðnþ 1Þðnþ 2Þg55
½ez5q@2

t un � f 11@
2
x un � f 66@

2
y un

� f 126@x@yvn � ðnþ 1Þf 13@xwnþ1 � g51@
2
xUn � g56@

2
yUn�;

ð6:4Þ

where n ¼ 0; 1; 2; . . ., and the fields are denoted uðnÞx ¼ un;

uðnÞy ¼ vn;u
ðnÞ
z ¼ wn, and UðnÞ ¼ Un for convenience. In line with

(3.9) and (3.10) these higher order fields may be expressed in the
lowest order fields, not pursued here.

Several new constants are here introduced:
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c126 ¼ c12 þ c66; c135 ¼ c13 þ c55; c234 ¼ c23 þ c44;

e26 ¼ ex2 þ ey6; e35 ¼ ex3 þ ez5;

f 11 ¼ c11ez5 � c55ex1; f 13 ¼ c13ez5 � c55ex3; f 66 ¼ c66ez5 � c55ey6;

f 126 ¼ c126ez5 � c55e26;

g11 ¼ c11�zz þ ez5ex1; g66 ¼ c66�zz þ ez5ey6;

g51 ¼ c55�xx þ ez5ex1; g56 ¼ c55�yy þ ez5ey6; g55 ¼ c55�zz þ e2
z5;

g126 ¼ c126�zz þ ez5e26; g135 ¼ c135�zz þ ez5e35;

h15 ¼ ex1�zz � ez5�xx; h65 ¼ ey6�zz � ez5�yy:

ð6:5Þ

The mechanical stress expansion functions TðnÞij are obtained from
(3.15) and these become

TðnÞxx ¼ c11@xun þ c12@yvn þ ðnþ 1Þc13wnþ1 þ ex1@xUn;

TðnÞyy ¼ c12@xun þ c22@yvn þ ðnþ 1Þc23wnþ1 þ ex2@xUn;

TðnÞzz ¼ c13@xun þ c23@yvn þ ðnþ 1Þc33wnþ1 þ ex3@xUn;

TðnÞxz ¼ c55½ðnþ 1Þunþ1 þ @xwn� þ ðnþ 1Þez5Unþ1;

TðnÞyz ¼ c44½ðnþ 1Þvnþ1 þ @ywn�;
TðnÞxy ¼ c66ð@yun þ @xvnÞ þ ey6@yUn:

ð6:6Þ

Similarly, the electric displacements functions DðnÞi are obtained
from (3.16)

DðnÞx ¼ ex1@xun þ ex2@yvn þ ðnþ 1Þex3wnþ1 � �xx@xUn;

DðnÞy ¼ ey6ð@yun þ @xvnÞ � �yy@yUn;

DðnÞz ¼ ez5@xwn þ ðnþ 1Þez5unþ1 � ðnþ 1Þ�zzUnþ1:

ð6:7Þ

The fields in (6.6) and (6.7) may be written in terms of the lowest
order fields as in (3.17) and (3.18) using (6.4).

As noted before various combinations of the boundary condi-
tions stated in (4.1) and (4.2) may be used. Consider for simplicity
the case when either the mechanical stress or the mechanical dis-
placement is prescribed on both the upper and lower surfaces for a
specific direction. Similarly, assume that either the electric poten-
tial or the electric displacement is prescribed on both the upper
and lower surfaces. By adding and subtracting the boundary condi-
tions in (4.1) and (4.2), equations containing only even or odd
expansions in h are obtained according to

XbN=2c

n¼0

h2nPð2nÞ ¼ 1
2
ðPþ þ P�Þ;

XbðN�1Þ=2c

n¼0

h2nþ1Pð2nþ1Þ ¼ 1
2
ðPþ � P�Þ; ð6:8Þ

XbðNþ1Þ=2c

n¼0

h2npð2nÞ ¼ 1
2
ðpþ þ p�Þ;

XbN=2c

n¼0

h2nþ1pð2nþ1Þ ¼ 1
2
ðpþ � p�Þ; ð6:9Þ

where as before P ¼ fTxz; Tyz; Tzz;Dzg and p ¼ fu;v ;w;Ug. Here bnc
denotes the floor of n, i.e. the nearest lower integer to n. These equa-
tions constitute decoupled sets corresponding to symmetrical and
antisymmetrical motions. The symmetric part uses the first relation
in (6.8) for Tzz and the second relation in (6.8) for fTxz; Tyz;Dzg, and
the first relation in (6.9) for fu;v ;Ug and the second relation in (6.9)
for w. Hence, all possible combinations of these symmetric parts of
the boundary conditions involve only the fields fu0; v0;w1;U0g.
Naturally the complementary combinations correspond to antisym-
metrical sets involving fu1;v1;w0;U1g.

For the sake of clarity, the plate equations of order N ¼ 3 are
presented explicitly below for antisymmetric motions while equa-
tions of order N ¼ 1 are presented for symmetric motions. Hereby
the antisymmetric motions correctly account for the flexural

effects through the h3 terms. For the mechanical surface boundary
conditions, only the traditional case for prescribed stresses T�I are
presented. The mechanical displacement boundary conditions are
easily treated using (6.9) together with the recursion relations
(6.4). As for the electrical surface boundary conditions, both types
are given since potential boundary conditions U� are usually stated
for actuator problems while electric displacement boundary condi-
tions D�z are usually stated for sensor problems. Concerning the
edge boundary conditions, all combinations of mechanical and
electrical fields are presented.

6.1. Antisymmetric motion N = 3

The plate equations for prescribed surface stresses are
expressed in line with (6.8) using (6.6) and (6.4) as

c55ðu1 þ @xw0Þ þ ez5U1 þ
h2

2c33
c33q@2

t u1 � ðc11c33 � c13c135Þ@2
x u1

�
� c33c66@

2
y u1 � ðc33c126 � c13c234Þ@x@yv1 � c13q@2

t @xw0

þ c13c55@
3
x w0 þ c13c44@x@

2
yw0 � ðc33ex1 � c13e35Þ@2

xU1

� c33ey6@
2
yU1

i
¼ 1

2
ðTþxz þ T�xzÞ; ð6:10Þ

c44ðv1þ@yw0Þþ
h2

2c33
c33q@2

t v1�ðc22c33�c23c234Þ@2
yv1�c33c66@

2
xv1

h
�ðc33c126�c23c135Þ@x@yu1�c23q@2

t @yw0þc23c44@
3
y w0

þ c23c55@
2
x@yw0�ðc33e26�c23e35Þ@x@yU1

	
¼1

2
ðTþyzþT�yzÞ;

ð6:11Þ

h½q@2
t w0�c55ð@xu1þ@2

x w0Þ�c44ð@yv1þ@2
yw0Þ�ez5@xU1�

þ h3

6c33
q2@4

t w0�c13c55@
4
x w0�c23c44@

4
y w0�ðc13c44þc23c55Þ@2

x@
2
yw0

h
� ðc55�c13Þq@2

t @
2
x w0�ðc44�c23Þq@2

t @
2
y w0�ðc33þc135Þq@2

t @xu1

þ ðc11c33�c13c135Þ@3
x u1þ½c33ðc126þc66Þ�c23c135�@x@

2
y u1

� ðc33þc234Þq@2
t @yv1þðc22c33�c23c234Þ@3

yv1þ½c33ðc126þc66Þ

� c13c234�@2
x@yv1�e35q@x@

2
t U1þðc33ex1�c13e35Þ@3

xU1

þ ½c33ðe26þey6Þ�c23e35�@x@
2
yU1

i
¼1

2
ðTþzz�T�zzÞ: ð6:12Þ

For prescribed electric potential or electric displacement, the
corresponding equations read

hU1 þ
h3

6c33g55
½c33ez5q@2

t u1 � ðc33f 11 � c135f 13Þ@2
x u1 � c33f 66@

2
y u1

� ðc33f 126 � c234f 13Þ@x@yv1 � f 13q@x@
2
t w0 þ c55f 13@

3
x w0

þ c44f 13@x@
2
yw0 � ðc33g51 � e35f 13Þ@2

xU1 � c33g56@
2
yU1�

¼ 1
2
ðUþ �U�Þ; ð6:13Þ

ez5ðu1 þ @xw0Þ � �zzU1 þ
h2

2c33
�ðc33ex1 � c135ex3Þ@2

x u1 � c33ey6@
2
yu1

h
� ðc33ez6 � c234ex3Þ@x@yv1 � ex3q@2

t @xw0 þ c55ex3@
3
x w0

þ c44ex3@x@
2
y w0 þ ðex3e35 þ c33�xxÞ@2

xU1 þ c33�yy@
2
yU1

i
¼ 1

2
ðDþz þ D�z Þ: ð6:14Þ

In order to solve for fu1;v1;w0;U1g from the set of four plate equa-
tions, (6.10)–(6.12) together with (6.13) or (6.14), the pertinent set
of four boundary conditions at each edge is to be stated as described
in Section 5. Consider the edge x ¼ a, the boundary conditions for
prescribed displacements and potential become

uþa
1 ðy; tÞ ¼ u1; vþa

1 ðy; tÞ ¼ v1; wþa
0 ðy; tÞ ¼ w0; Uþa

1 ðy; tÞ ¼ U1;

ð6:15Þ
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following the notation indicated in (5.2) using Legendre polynomial
expansions of fuþaðy; z; tÞ;vþaðy; z; tÞ;wþaðy; z; tÞ;Uþaðy; z; tÞg. As for
prescribed stresses and electric displacement, these boundary con-
ditions become

Tþa
xx;1ðy;tÞ¼ ðc11�b13c135Þ@xu1þðc12�b13c234Þ@yv1þb13q@

2
t w0

�b13c55@
2
x w0�b13c44@

2
yw0þðex1�b13e35Þ@xU1;

Tþa
xy;1ðy;tÞ¼ c66ð@yu1þ@xv1Þþey6@yU1;

Tþa
xz;0ðy;tÞ¼ c55ðu1þ@xw0Þþez5U1;

Dþa
xx;1ðy;tÞ¼ ðex1�b135ex3Þ@xu1þðex2�b234ex3Þ@yv1þaq@2

t w0

�b55ex3@
2
x w0�b44ex3@

2
yw0�ð�xxþae35Þ@xU1; ð6:16Þ

where (6.6) and (6.7), the recursion relations (6.4) and the Legendre
expansion (5.2) have been used. Naturally similar results are
obtained for x ¼ �a. For the edge y ¼ b, the boundary conditions
for prescribed displacements and potential become like in (6.15),
while for prescribed stresses and electric displacement one has

Tþb
yy;1ðx; tÞ ¼ ðc12 � b23c135Þ@xu1 þ ðc22 � b23c234Þ@yv1 þ b23q@

2
t w0

� b23c55@
2
x w0 � b23c44@

2
yw0 þ ðex2 � b23e35Þ@xU1;

Tþb
xy;1ðx; tÞ ¼ c66ð@yu1 þ @xv1Þ þ ey6@yU1;

Tþb
yz;0ðx; tÞ ¼ c44ðv1 þ @yw0Þ;

Dþb
yy;1ðx; tÞ ¼ ey6ð@yu1 þ @xv1Þ � �yy@yU1:

ð6:17Þ

In (6.16) and (6.17) the following new constants are introduced

a ¼ ex3=c33; bij ¼ cij=c33; bijk ¼ cijk=c33: ð6:18Þ
6.2. Symmetric motion N = 1

The plate equations for prescribed surface stresses become from
(6.8)

h½q@2
t u0 � c11@

2
x u0 � c66@

2
y u0 � c126@x@yv0 � c13@xw1

� ex1@
2
xU0 � ey6@

2
yU0� ¼

1
2
ðTþxz � T�xzÞ; ð6:19Þ

h½q@2
t v0 � c22@

2
yv0 � c66@

2
x v0 � c126@x@yu0 � c23@yw1 � e26@x@yU0�

¼ 1
2
ðTþyz � T�yzÞ; ð6:20Þ

c33w1 þ c13@xu0 þ c23@yv0 þ ex3@xU0 ¼
1
2
ðTþzz þ T�zzÞ: ð6:21Þ

For prescribed electric potential or electric displacement, these
equations are

U0 þ
h2

2g55
ez5q@2

t u0 � f 11@
2
x u0 � f 66@

2
y u0 � ðc126ez5 � c55e26Þ@x@yv0

h

�g51@
2
xU0 � g56@

2
yU0 � f 13@xw1

i
¼ 1

2
ðUþ þU�Þ: ð6:22Þ

h �ex1@
2
x u0 � ey6@

2
y u0 � ez6@x@yv0 � ex3@xw1 þ �xx@

2
xU0 þ �yy@

2
yU0

h i
¼ 1

2
ðDþz � D�z Þ:

ð6:23Þ

There are three boundary conditions needed at each edge to solve
for fu0;v0;w1;U0g. Consider the edge x ¼ a, the boundary condi-
tions for prescribed displacements and potential become

uþa
0 ðy; tÞ ¼ u0; vþa

0 ðy; tÞ ¼ v0; Uþa
0 ðy; tÞ ¼ U0; ð6:24Þ

while the stress and electric displacement boundary conditions are
Tþa
xx;0ðy; tÞ ¼ c11@xu0 þ c12@yv0 þ c13w1 þ ex1@xU0;

Tþa
xy;0ðy; tÞ ¼ c66ð@yu0 þ @xv0Þ þ ey6@yU0;

Dþa
xx;0ðy; tÞ ¼ ex1@xu0 þ ex2@yv0 þ ex3w1 � �xx@xU0:

ð6:25Þ

At the edge y ¼ b, displacement and potential boundary conditions
become like in (6.24), while for prescribed stresses and electric dis-
placement one has

Tþb
yy;0ðx; tÞ ¼ c12@xu0 þ c22@yv0 þ c23w1 þ ex2@xU0;

Tþb
xy;0ðx; tÞ ¼ c66ð@yu0 þ @xv0Þ þ ey6@yU0;

Dþb
yy;0ðx; tÞ ¼ ey6ð@yu0 þ @xv0Þ � �yy@yU0:

ð6:26Þ

Note that all the results in this section are identical to the elastic
orthotropic case in [35] if the electric coupling is disregarded.

These plate equations may be compared to other theories such
as those of Kirchhoff and Mindlin type [25]. For the Kirchhoff theory
only a few terms are similar to the present theory, while the
Mindlin equations (involving two different correction factors)
resemble the asymptotic plate equations in many respects. The
low order derivative terms are similar in most cases, while the pre-
sent theory involves higher order derivative terms that are not part
of the Mindlin theory. However, similar higher order derivative
terms are found in higher order theories as given analytically in
[12,13,46], albeit the coefficients of these terms differ in most cases.

7. Numerical results

To investigate the accuracy of the present plate equations for
both lower order engineering theories and the higher order sets,
several numerical results are presented. The branches from the fre-
quency equations (dispersion relations) for waves in an infinite
plate poled in the x direction are illustrated, where distribution
plots are presented for the displacements, stresses and electric
potential for the lowest antisymmetric modes. Antisymmetric
and symmetric eigenfrequencies are calculated for finite square
simply supported plates poled in either the x or z directions.
Moreover, eigenfrequencies for simply supported laminated piezo-
electric plates are presented. The comparisons are made with exact
three dimensional theory and other approximate theories pre-
sented in the literature.

7.1. Piezoelectric plate poled in the x direction

The piezoelectric plate is taken to be PZT-2 (Lead Zirconate
Titanate) with x as the polarization axis. This is a 6mm material (a
special case of 2mm) and elastically yz is a plane of isotropy. The
material constants are (Auld [45]) c11 ¼ 113 GPa, c12 ¼ c13 ¼
68:1 GPa, c22 ¼ c33¼135 GPa, c23¼67:0 GPa, c55¼ c66¼22:2 GPa,
ex1¼9:0 C/m2, ex2¼ ex3¼�1:9 C=m2, ey6¼ ez5¼9:8 C=m2, �xx¼
260�0, and �yy¼ �zz¼504�0. Here �0¼8:854 �10�12 C/Vm is the
dielectric permittivity of free space. With yz as the plane of isotropy
c44¼ 1

2ðc22�c23Þ. With this choice of material parameters the correc-
tion factors used in the Mindlin theory become j2

4¼p2=12 and
j2

5¼0:904 [25]. The conditions are time harmonic with the time fac-
tor e�ixt and the dimensionless variable X¼xh

ffiffiffiffiffiffiffiffiffiffiffiffi
q=c33

p
is used to

measure the frequency. Consider free waves propagating in a
direction 45� to the x axis. The piezoelectric layer is taken to be
short-circuited (DV ¼0) and the electric potential in the middle of
the plate is put to zero. The wave number in the direction of prop-
agation is k.

In Fig. 2 the three first antisymmetric dispersion curves are
plotted as dimensionless frequency X versus dimensionless wave
number kh. The results from the asymptotic plate Eqs. (6.10)–
(6.13) for N ¼ 3 are compared with the exact theory, the Mindlin
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Fig. 2. Dispersion curves: — Exact, ––– N ¼ 3, � � � Mindlin, – �– Kirchhoff.
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theory and the Kirchhoff theory [25]. The first curve corresponds to
the first bending mode with an almost parabolic behavior at low
frequencies. All three plate theories approximate this curve quite
well for low wave numbers, but for higher wave numbers the
Kirchhoff theory is not that accurate as expected. The Mindlin the-
ory approximates the first mode slightly better than the asymp-
totic plate theory. The other two modes, not modeled by the
Kirchhoff theory, correspond to coupled P/SV (pressure/transverse
shear) and the SH (horizontal shear) modes [45].

The second set of curves correspond to a pseudo-SH mode
where the Mindlin and the present N ¼ 3 theories give accurate
approximations, although the Mindlin theory is better and predicts
the cut-off frequency exactly. The third set of curves correspond to
the second bending mode. Also this mode is approximated better
by the Mindlin theory, at least for lower frequencies where the
cut-off frequency is exactly predicted. From the dispersion curves
it seems like the Mindlin theory generally gives more accurate
results than the asymptotic plate theory of order N ¼ 3.
However, it should be noticed that the correction factors used in
the Mindlin theory are chosen to obtain accurate approximations
of the dispersion curves at low frequencies. This does not necessar-
ily mean that the displacements and stresses are accurately pre-
dicted, which will be seen below. Furthermore, the asymptotic
plate theory converges very quickly towards the exact solution if
terms of higher order are taken into account. By choosing N ¼ 5
in the asymptotic plate theory the approximate dispersion curves
are considerably more accurate, being very close to the exact
curves (not illustrated here). For N ¼ 7 the approximate dispersion
curves become indistinguishable from the exact ones for the fre-
quencies and wave numbers shown in Fig. 2. This feature also
holds for the remaining plots Figs. 3–10.

Now consider a specific frequency X ¼ 0:5. According to the dis-
persion curves in Fig. 2 there is only one real solution to the wave
number for this frequency (kh � 1:44 according to exact theory)
and this solution corresponds to the first bending mode. The dis-
placements, the electric potential and the stresses for the different
theories are plotted as functions of the dimensionless thickness
coordinate z=h in Figs. 3–6. The figures show that the electric
potential, the displacements and the stresses are not very well
approximated by the Kirchhoff theory, except for the vertical nor-
mal stress Tzz, which is quite well approximated. The Mindlin the-
ory gives more accurate results for many of the fields, but actually
poorer results for the vertical normal stress. The asymptotic plate
theory renders much more accurate results for all fields, especially
for the electric potential U, the vertical displacement w and the
shear stresses Txz. Here, the error in sign for U using Kirchhoff
and Mindlin theories is of particular interest. However, similar
behavior is also reported for the asymptotic theory in the case of
piezoelectric layer on an elastic plate [42]. Note that both the
Kirchhoff and the Mindlin theories assume constant vertical dis-
placements, lying on top of the horizontal axis in Fig. 4(b). It should
also be noticed that the boundary conditions for the vertical nor-
mal stress and the electric potential at the upper surface of the
plate are not fulfilled by the Mindlin or the Kirchhoff theory, but
are exactly fulfilled by the asymptotic plate theory. As the results
for fv ; Tyy; Tyzg resemble fu; Txx; Txzg the former fields are not
illustrated.

Note that for the Mindlin and the Kirchhoff theory the stresses
Txx; Tyy and Txy are determined from the constitutive Eq. (2.5) (the
direct method), while the stresses in the vertical direction Tzz; Tyz

and Txz are obtained using the indirect method. This is accom-
plished by inserting the stresses and displacements from the direct
method into the equations of motion (2.1) and integrating with
respect to z. The integration constants are determined by requiring
that the shear stresses, Tyz and Txz, are zero at the plate surfaces
(z ¼ �h) and that the normal stress, Tzz, is zero in the middle of
the plate (z ¼ 0) due to antisymmetry. This indirect way of
calculating the stresses, also used by Reddy [47], gives more accu-
rate results compared to calculating all stress components from the
constitutive equations, which only yields constant or linear varia-
tions in the thickness coordinate. If the indirect method is used
for the stresses using the asymptotic plate theory, the same results
are obtained after truncation as with the direct method. Either the
real or the imaginary part of each quantity is shown in the figures
as only one of them differs from zero. Moreover, due to symmetry/
antisymmetry, only the upper half of the plate (0 6 z 6 h) is
shown. The fields are normalized so that the vertical displacement
in the middle of the plate equals unity, wðz ¼ 0Þ ¼ 1. The electric
potential is measured with the dimensionless variable
/ ¼ �zz=ðhez5ÞU and the stresses are normalized with the stiffness
constant c33.

Consider also the frequency X ¼ 1. According to the dispersion
curves, there are three real solutions to the wave number for this
frequency. In addition to the first bending mode solution there is
also one solution for the pseudo-SH mode (kh � 1:50) and one
for the second bending mode (kh � 0:79). Some of the fields for
the latter two of these modes are plotted in Figs. 7–10, showing
the electric potential, the dominating horizontal displacement,
the vertical normal stress and the dominating shear stress for the
two cases. The fields are normalized so that the imaginary part
of the dominating horizontal displacement (u and v, respectively)
equals unity at the upper surface of the plate. Also here, the asymp-
totic plate theory gives more accurate results than the Mindlin the-
ory, which is not accurate at all for the electric potential or any of
the stresses shown in the figures. However, it should be mentioned
that the way of normalizing may affect the impression of how well
different fields are approximated by different theories. In addition,
if the truncation order is increased a few levels, the asymptotic
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Fig. 4. Horizontal displacements for the first bending mode, X ¼ 0:5: — Exact, ––– N ¼ 3, � � � Mindlin, – �– Kirchhoff.
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Fig. 6. Stresses for the first bending mode, X ¼ 0:5: — Exact, ––– N ¼ 3, � � � Mindlin, – �– Kirchhoff.
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Fig. 9. Electric potential and displacement for the second bending mode, X ¼ 1: — Exact, ––– N ¼ 3, � � � Mindlin.
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plate theory curves become indistinguishable from the exact ones
for all the displayed plots.

In order to further illustrate the present theory, the eigenfre-
quencies for simply supported quadratic plates are calculated.
For exact and series expansion theories, this corresponds to mixed
boundary conditions at the edges where normal stresses as well as
vertical and tangential displacements are zero. Due to the polariza-
tion in the x direction, the electric field is such that the normal
electric field displacement is zero at x ¼ �a while the potential is
zero at y ¼ �b. The Tables 1–4 illustrate the three lowest eigenfre-
quencies Xi for short-circuited antisymmetric and symmetric
motions, respectively. Here three different plate thicknesses a=h
are studied for two different mode cases, where m and n refer to
the mode numbers in the x and y directions, respectively.

Consider first the antisymmetric cases presented in Tables 1
and 2. It is clear that the series expansion results converge to the
exact results as the power series orders are increased. The conver-
gence is quite rapid considering the thick plates studied. The
accuracies are higher for lower frequencies as expected, while
the plate thickness itself does not much influence the rate of con-
vergence. The Kirchhoff theory models the first eigenfrequency,
where the accuracy highly depends on the plate thickness. The
Mindlin theory is astonishingly accurate, at least for the lower fre-
quencies. As noted before for the dispersion curves, the Mindlin
theory involves the shear correction factors that are chosen so as
to give good correlations in the low frequency interval. When
compared to the N ¼ 3 theory, the Mindlin results are generally
superior for the case m ¼ 1 and n ¼ 1; especially at lower frequen-
cies. For m ¼ 1 and n ¼ 2 the accuracy pattern is less apparent
among the two theories.

The symmetric cases are given in Tables 3 and 4. As for the
antisymmetric cases, the series expansion results converge quite



Table 1
The antisymmetric eigenfrequencies for zero surface potential when m ¼ 1 and n ¼ 1 using exact, Kirchhoff (K), Mindlin (M) and the series expansion theories of orders
N ¼ 3;5;7;9.

a=h X Exact K M N ¼ 3 N ¼ 5 N ¼ 7 N ¼ 9

10 X1 0.02177 0.02254 0.02176 0.02168 0.02177 0.02177 0.02177
X2 0.6837 – 0.6833 0.6437 0.6862 0.6836 0.6837
X3 0.8051 – 0.8063 0.7270 0.8163 0.8046 0.8051

4 X1 0.1179 0.1412 0.1176 0.1157 0.1178 0.1179 0.1179
X2 0.7436 – 0.7406 0.7038 0.7465 0.7435 0.7436
X3 0.8962 – 0.9045 0.8213 0.9092 0.8956 0.8962

1 X1 0.8609 2.3325 0.8501 0.7904 0.8530 0.8603 0.8609
X2 1.262 – 1.253 1.253 1.266 1.262 1.262
X3 1.786 – 2.004 1.610 1.854 1.774 1.787

Table 2
The antisymmetric eigenfrequencies for zero surface potential when m ¼ 1 and n ¼ 2 using exact, Kirchhoff (K), Mindlin (M) and the series expansion theories of orders
N ¼ 3;5;7;9.

a=h X Exact K M N ¼ 3 N ¼ 5 N ¼ 7 N ¼ 9

10 X1 0.05470 0.05929 0.05454 0.05417 0.05469 0.05470 0.05470
X2 0.6925 – 0.6905 0.6545 0.6949 0.6924 0.6925
X3 0.8448 – 0.8492 0.7663 0.8572 0.8443 0.8448

4 X1 0.2617 0.3716 0.2589 0.2528 0.2615 0.2617 0.2617
X2 0.7912 – 0.7813 0.7661 0.7929 0.7912 0.7912
X3 1.082 – 1.109 0.9949 1.105 1.080 1.082

1 X1 1.533 6.115 1.487 1.264 1.486 1.526 1.532
X2 1.805 – 1.830 1.902 1.840 1.813 1.806
X3 2.328 – 3.143 2.067 2.374 2.305 2.330

Table 3
The symmetric eigenfrequencies for zero surface potential when m ¼ 1 and n ¼ 1
using exact, Mindlin (M) and the series expansion theories of orders N ¼ 1;3;5;7;9.

a=h X Exact M N ¼ 1 N ¼ 3 N ¼ 5 N ¼ 7 N ¼ 9

10 X1 0.1001 0.1001 0.1001 0.1001 0.1001 0.1001 0.1001
X2 0.1761 0.1765 0.1766 0.1761 0.1761 0.1761 0.1761
X3 1.524 – – 1.218 1.607 1.506 1.525

4 X1 0.2512 0.2512 0.2518 0.2512 0.2512 0.2512 0.2512
X2 0.4374 0.4334 0.4448 0.4372 0.4374 0.4374 0.4374
X3 1.463 – – 1.182 1.725 1.446 1.463

1 X1 1.035 1.029 1.049 1.038 1.036 1.035 1.035
X2 1.271 1.838 1.904 1.222 1.280 1.271 1.271
X3 1.903 – – 1.681 1.959 1.892 1.903

Table 4
The symmetric eigenfrequencies for zero surface potential when m ¼ 1 and n ¼ 2
using exact, Mindlin (M) and the series expansion theories of orders N ¼ 1;3;5;7;9.

a=h X Exact M N ¼ 1 N ¼ 3 N ¼ 5 N ¼ 7 N ¼ 9

10 X1 0.1523 0.1523 0.1523 0.1523 0.1523 0.1523 0.1523
X2 0.2923 0.2938 0.2940 0.2922 0.2923 0.2923 0.2923
X3 1.486 – – 1.194 1.642 1.468 1.488

4 X1 0.3899 0.3893 0.3956 0.3902 0.3899 0.3899 0.3899
X2 0.7095 0.7379 0.7405 0.7053 0.7097 0.7095 0.7095
X3 1.431 – – 1.175 1.572 1.416 1.431

1 X1 1.708 1.667 1.796 1.748 1.719 1.710 1.708
X2 1.715 3.002 3.083 1.778 1.740 1.719 1.715
X3 2.390 – – 2.277 2.305 2.386 2.390
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rapidly to the exact results as the power series orders are
increased. The N ¼ 1 results are of the same accuracy order as
Mindlin’s, albeit the latter are marginally better in most cases.
7.2. Piezoelectric plate poled in the z direction

Consider next a PZT-4 plate poled in the z direction. The material
constants are [27] E1¼ E2¼81:3 GPa, E3¼64:5 GPa, G12¼30:6 GPa,
G13¼G23¼25:6 GPa, m12¼0:329, m13¼ m23¼0:432, ex5¼ ey4¼
12:72 C=m2, ez1¼ ez2¼�5:2 C=m2, ez3¼15:08 C=m2, �xx¼ �yy¼
1475�0, and �zz¼1300�0 where �0¼8:85 �10�12 C/Vm. Here
c66¼ðc12�c22Þ=2 is only approximately fulfilled using these mate-
rial constants. Adopting the general anisotropic plate equations
derived in Section 4, sets of antisymmetric and symmetric plate
equations are obtained in a straightforward manner. These plate
equations are different to the ones poled in the x direction presented
in Section 6, although both poled directions involve terms of the
same differential orders. Note that the plate equations poled in
the z direction are also asymptotically correct to the studied order
N¼5.

Consider simply supported quadratic plates, where the elastic
boundary conditions are as in Section 7.1 while the potential is
zero at all edges. Tables 5–8 illustrate the three lowest eigenfre-
quencies ~xi ¼ xi=100 when m ¼ n ¼ 1 for both antisymmetric
and symmetric motions, using three different plate thicknesses
a=h. Adopting this frequency normalization, the plate geometry is
to be stated which here is set to 2h ¼ 0:01. Comparisons are made
to Benjeddou and Deü [48] and Robaldo et al. [20] for some cases
studied therein. The theory in [48] is based on Mindlin assump-
tions without shear correction factors and thus should preferably
be compared to the present theory of order N ¼ 3 in the antisym-
metric case and N ¼ 1 in the symmetric case. The plate theory in
[20] considers a series expansion theory of exponential order 4
solved using FEM, and thus may well be compared to the present
theory for N ¼ 4. The presented lists of eigenfrequencies involve
quite a few significant digits considering the approximate nature
of the given material and physical constants. The reason for this



Table 5
The antisymmetric eigenfrequencies for zero surface potential using exact, Benjeddou and Deü (BD), Robaldo et al. (RCB) and the series expansion theories of orders N ¼ 3;5;7;9.

a=h ~x Exact BD RCB N ¼ 3 N ¼ 5 N ¼ 7 N ¼ 9

50 ~x1 746.752 746.837 746.834 746.581 746.730 746.752 746.752
~x2 502,895 452,815 509,821 502,610 502,903
~x3 503,469 453,359 510,418 503,182 503,477

10 ~x1 18013.4 18071.1 17919.6 18012.6 18013.4 18013.4
~x2 508,625 459,171 515,474 508,343 508,633
~x3 522,320 472,052 529,764 522,000 522,329

4 ~x1 96929.9 98246.6 97321.4 94718.4 96892.0 96929.6 96929.9
~x2 538,885 492,479 545,354 538,619 538,892
~x3 609,186 556,144 619,754 608,653 609,205

Table 6
The symmetric eigenfrequencies for zero surface potential using exact, Benjeddou and Deü (BD), Robaldo et al. (RCB) and the series expansion theories of orders N ¼ 1;3;5;7;9.

a=h ~x Exact BD RCB N ¼ 1 N ¼ 3 N ¼ 5 N ¼ 7 N ¼ 9

50 ~x1 15540.4 15540.4 15542.0 15540.4 15540.4 15540.4 15540.4 15540.4
~x2 26828.0 26831.7 26828.2 26832.6 26828.0 26828.0 26828.0 26828.0
~x3 1,004,344 – 783,502 1,094,561 984,390 1,006,587

10 ~x1 77702.1 77702.1 77702.1 77702.1 77702.1 77702.1 77702.1
~x2 133,695 134,158 134,273 133,691 133,695 133,695 133,695
~x3 988,021 – 776,834 1,114,956 970,449 989,934

4 ~x1 194,255 194,255 194,264 194,255 194,255 194,255 194,255 194,255
~x2 327,663 335,396 327,670 337,105 327,245 327,674 327,663 327,663
~x3 958,922 – 766,465 1,018,717 944,340 960,404

Table 7
The antisymmetric eigenfrequencies for zero normal surface electric displacement using exact, Benjeddou and Deü (BD) and the series expansion theories of orders N ¼ 3;5;7;9.

a=h ~x Exact BD N ¼ 3 N ¼ 5 N ¼ 7 N ¼ 9

50 ~x1 746.873 746.957 746.702 746.873 746.873 746.873
~x2 502,895 452,815 509,821 502,610 502,903
~x3 586,240 512,371 603,332 585,385 586,227

10 ~x1 18077.8 18136.1 17982.9 18077.5 18077.8 18077.8
~x2 508,625 459,171 515,474 508,343 508,633
~x3 604,752 530,530 623,173 603,805 604,736

4 ~x1 98231.7 99634.9 95938.1 98195.5 98231.4 98231.7
~x2 538,885 492,479 545,354 538,619 538,892
~x3 690,767 612,873 717,862 689,262 690,735

Table 8
The symmetric eigenfrequencies for zero normal surface electric displacement using exact, Benjeddou and Deü (BD) and the series expansion theories of orders N ¼ 1;3;5;7;9.

a=h ~x Exact BD N ¼ 1 N ¼ 3 N ¼ 5 N ¼ 7 N ¼ 9

50 ~x1 15540.4 15540.4 15540.4 15540.4 15540.4 15540.4 15540.4
~x2 29153.3 29155.6 29157.8 29153.3 29153.3 29153.3 29153.3
~x3 1,004,612 – 783,507 1,035,593 984,552 1,006,872

10 ~x1 77702.1 77702.1 77702.1 77702.1 77702.1 77702.1 77702.1
~x2 145,221 145,610 145,789 145,215 145,221 145,221 145,221
~x3 990,953 – 776,867 1,030,751 972,401 993,008

4 ~x1 194,255 194,255 194,255 194,255 194,255 194,255 194,255
~x2 355,110 361,926 364,473 354,338 355,133 355,109 355,110
~x3 960,103 – 766,832 1,013,234 945,063 961,646
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is to make comparisons more transparent since such lists are pre-
sented in [20,48].

Tables 5 and 6 illustrate the three lowest eigenfrequencies for
short-circuited antisymmetric and symmetric motions, respec-
tively. The accuracies using the present series method are of the
same order as for the plates poled in the x direction presented in
Section 7.1. The series results converge to the exact results in all
cases studied, where a few more terms are needed for the higher
frequencies (up to N ¼ 13). As for the other theories, the
Benjeddou and Deü theory is slightly more accurate for the eigen-
frequencies than the present theory for N ¼ 3 (antisymmetric) and
N ¼ 1 (symmetric), respectively. By increasing the series order one
step to N ¼ 5 (antisymmetric) and N ¼ 3 (symmetric), the present
results are improved considerably. As for the results due to



Table 9
Eigenfrequencies for laminated plate with zero normal surface potential using exact, Benjeddou and Deü (BD) and the series expansion theories of orders N ¼ 3;5;7;9.

a=h ~x Exact BD N ¼ 3 N ¼ 5 N ¼ 7 N ¼ 9

50 ~x1 633.417 633.666 633.192 633.393 633.415 633.417
~x2 16431.1 16432.5 16430.7 16431.1 16431.1 16431.1
~x3 28535.2 28537.6 28534.0 28535.2 28535.2 28535.2
~x4 268,118 292,032 238,030 271,728 267,900 268,138

4 ~x1 72174.4 73969.5 70474.3 72122.2 72171.9 72174.3
~x2 194,760 197,165 193,744 194,770 194,760 194,760
~x3 306,209 329,399 302,768 306,159 306,205 306,209
~x4 337,107 345,027 301,741 340,906 336,821 337,134

Table 10
Eigenfrequencies for laminated plate with zero normal surface electric displacement using exact, Benjeddou and Deü (BD) and the series expansion theories of orders
N ¼ 3;5;7;9.

a=h ~x Exact BD N ¼ 3 N ¼ 5 N ¼ 7 N ¼ 9

50 ~x1 633.487 633.735 633.280 633.469 633.486 633.487
~x2 16440.9 16442.2 16440.6 16440.9 16440.9 16440.9
~x3 28555.3 28557.7 28554.2 28555.3 28555.3 28555.3
~x4 271,222 295,866 240,684 274,472 271,007 271,245

4 ~x1 72191.5 74,006 70483.8 72141.7 72187.8 72191.3
~x2 194,881 197,280 194,072 194,889 194,881 194,881
~x3 306,539 329,862 302,839 306,501 306,534 306,539
~x4 337,196 345,226 301,923 340,508 336,930 337,223
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Robaldo et al., these show accuracies similar to N ¼ 3 for thin
plates and closer to N ¼ 5 for thick plates. Eigenfrequencies for
open-circuited plates are presented in Tables 7 and 8. The results
show a similar pattern as for the short-circuited case.

It should be noted that the calculated exact eigenfrequencies
presented in Tables 5–8 are identical to the results due to
Heyliger and Saravanos [27].

7.3. Piezoelectric laminate

In order to further illustrate the present expansion method,
eigenfrequencies for laminated piezoelectric plates are calculated.
There are much work on various laminated plate structures with
piezoelectric layers bonded to the plate faces [19–21,24,27,32,
33,46,48]. Among these, Heyliger and Saravanos [27] present exact
3D results for three and five layered simply supported plates. Here
three-layer piezoelectric plates are considered, where comparisons
are made to the exact theory [27] and the approximate Mindlin
theory due to Benjeddou and Deü [48]. Consider a plate with total
thickness 2h that consists of a PZT-4 core of thickness h (material
constants as in Section 7.2) surrounded symmetrically by orthotro-
pic PVDF layers with material constants [27] E1 ¼ 237;0 GPa,
E2 ¼ 23:2 GPa, E3 ¼ 10:5 GPa, G12 ¼ 6:43 GPa, G13 ¼ 4:4 GPa, G23 ¼
2:15 GPa, m12 ¼ 0:154, m13 ¼ 0:178; m23 ¼ 0:177, ex5 ¼ ey4 ¼
�0:01 C=m2, ez1 ¼ �0:13 C=m2, ez2 ¼ �0:14 C=m2, ez3 ¼
�0:28 C=m2, �xx ¼ 12:5�0; �yy ¼ 11:98�0, and �zz ¼ 11:98�0 where

�0 ¼ 8:85 � 10�12 C/Vm.
The derivation process for the present series expansion tech-

niques follows from Mauritsson et al. [42] applied to plates with
piezoelectric core material. By splitting the solution process in
symmetric and antisymmetric parts, eigenfrequencies are obtained
for different truncation orders. The procedure is more involved
than for a single plate layer, as separate series expansion systems
are introduced for the layers. The coupling conditions at the layer
interfaces are modeled at each point, and the free surface condi-
tions are fulfilled at z ¼ �h just as for the single plate layer.

The four lowest eigenfrequencies ~xi ¼ xi=100 when m ¼ n ¼ 1
and 2h ¼ 0:01 are presented in Tables 9 and 10 for short-circuited
and open-circuited laminated plates, respectively. Both cases show
similar results regarding eigenfrequencies and accuracies for the
different approximative theories. In each case, the first and fourth
eigenfrequencies correspond to antisymmetric motion while the
middle frequencies are for symmetric motion. The series expansion
approximations show similar behavior as for the single layer cases
in Tables 5–8, albeit the rates of convergence are slightly lower in
the laminated cases. This effect is most notable for the first sym-
metric mode ~x2 for the thicker plate. Hence, the results indicate
that the present method converges to the exact results for all the
cases studied, although higher order truncations N > 9 have not
been studied. Similar to the single plate layer, the results due to
the Benjeddou and Deü theory are slightly more accurate for
antisymmetric motion when compared to the present theory of
order N ¼ 3. The opposite holds for symmetric motions.
8. Concluding remarks

Plate equations and corresponding edge boundary conditions
for a fully anisotropic piezoelectric rectangular plate are derived
to arbitrary order using a systematic power series expansion
approach. The plate equations are given on a compact form using
recursively defined matrix differential operators, where the set of
equations are variationally consistent and asymptotically correct
to all studied orders. These equations are simplified for an ortho-
tropic 2mm material poled in an in-plane direction, where the plate
equations and edge boundary conditions are given explicitly.
Numerical comparisons for dispersion curves and the cross
sectional fields (potential, displacements, stresses) are made
between the asymptotic plate theory, the Kirchhoff theory, the
Mindlin theory and exact theory. Eigenfrequencies are presented
for simply supported plates poled either in the plate plane or nor-
mal to the plate plane. Both single and laminated plates are studied
for different plate thicknesses using various plate theories. The
results illustrate the accuracies using different series truncations
for the various eigenmodes where the rate of convergence is high
in most cases, including the more complicated laminated plate
structures.
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The derived system of plate equations may either be used to
low truncation order as engineering plate equations, or to higher
order acting as three dimensional benchmark results. A possible
application for the former case is to develop piezoelectric plate
element for finite element codes. Hereby one benefits from the
accurate results using one of the present lower order theories,
and at the same time the number of elements can be heavily
reduced compared to using three dimensional elements. As for
the latter case using higher order truncations, this calls for an
alternative way of obtaining solutions to the three dimensional
equations [49]. This is especially of interest for more complicated
anisotropic configurations.

Future work is to develop higher order theories for more com-
plicated material configurations, such as involving functionally
graded, porous or micro materials. For such configurations, several
different plate theories have appeared, and the present systematic
approach would render equations that are variationally consistent
and directly based on the three dimensional theories. Related work
based on power series expansion and recursion relations have pre-
viously been carried out on isotropic materials such as porous [50]
and functionally graded [49] plates, and is currently directed
towards micro plates. Another area of interest is to further study
laminates involving multiple elastic plates embedded in piezoelec-
tric layers [33]. This may be accomplished by adopting the present
piezoelectric plate equations and the corresponding equations for
anisotropic plates [35], using generalizations of the methodology
presented in [42,43].
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