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Abstract

An experiment searching for formation of super-deformed shape isomers in odd uranium isotopes following neutron capture is

designed at the GELINA neutron source of IRMM. We focus on neutron energies around the so-called intermediate structure in

the fission cross-section, where the coupling between compound states above the first and the second minimum is largest. The

experimental arrangement is described. The results of a feasibility study on the population of the shape isomer in 235U, using a
234U target, together with the results from first run with a 238U target are presented.

c© 2013 The Authors. Published by Elsevier B.V.

Selection and peer-review under responsibility of Joint Research Centre - Institute for Reference Materials and Measurements.

Keywords: shape isomer; neutron capture; neutron resonances; intermediate structure;

1. Introduction

Introduction of microscopic shell corrections into macroscopic liquid drop model (Strutinski V.M., 1967) led to the

picture of doubly-humped barrier in actinide nuclear binding energy. The concept successfully explained intermediate

structure in sub-threshold fission cross sections as well as the existence of shape isomers.

Many research effort since 1960s resulted in the discovery of various shape isomers and in the characterization of

their fission barriers. A (relatively) recent review lists 35 shape isomers (Singh et al., 2002). However, data for shape

isomers of odd-N uranium isotopes are still lacking. Since the pioneering work on 239U of Oberstedt and Gunsing

(Oberstedt and Gunsing, 1998) and on 235U of Oberstedt et al. (Oberstedt et al., 2007) no new results are published. It

is our intention to study shape isomers of 239U and 235U by means of (n, γ) reaction. We plan to investigate the γ-decay

of the shape isomer back to the normal ground state by γ-spectroscopic methods. In order to study the feasibility of

our concept we conducted two test experiments with the two named uranium isotopes, and the results are presented in

this paper.
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Fig. 1. (a) Detector setup and; (b) data acquisition system.

2. Experimental details

Both the 234U and 238U measurements are performed at the GELINA pulsed white energy neutron source of the

Institute for Reference Materials and Measurements (IRMM) in Geel, Belgium. The host measurement station is at

10 m nominal distance from the neutron production target. Our detector system consists of four n-type coaxial HPGe

detectors of 45% relative efficiency. Two detectors are produced by (Canberra, 2007) and two by (Ortec, 2004). All

detectors are electrically cooled. The energy resolution at Eγ = 1332.5 keV (60Co) ranges from 2.1-2.4 keV, measured

with 2μs shaping time.

The data acquisition system is based on a Delta-T data-acquisition (DAQ) system (Send GmbH, 2000) and the

GENDARC on-/off-line data analysis software, which was developed at IRMM (Figure 1). One output from the

detector preamplifier (PA) is used to determine the amplitude of the signal. After amplification and shaping (Amp)

the signal is digitized (ADC) and fed into the DAQ. The second PA output is used for obtaining the neutron time-of-

flight information. The signal is fed into a timing filter amplifier (TFA) and constant fraction discriminator (CFD)

for accurate timing. During the feasibility study timing problems were enhanced due to noise, appearing with the

frequency of the linac electron beam.

For neutron time-of-flight (TOF) determination we use the signal, t0, which comes from the electron burst just

before impinging on the mercury-cooled uranium target used for neutron production, as start signal. The stop signal

is generated from any HPGe detector which has registered an event. The difference of both signals is the TOF, from

which the neutron energy may be calculated. To avoid the γ-flash triggering the DAQ a 10μs anti-coincidence gate

following the t0 signal is applied.

3. Results

3.1. 234U run

Experimental setup for the 234U run has been described in the previous section and schematically represented on

Fig. 1. The experiment has been performed in the frame of the EUFRAT trans-national access programme at IRMM

(Eufrat, 2011). The 234U target was a 3.0 cm disc made from 2.1285(1) g of 234U (99.077%, 235U: 0.076%, 236U:

0.057%, 238U: 0.79%). The major difficulty in the experiment stems from the high intrinsic activity of the target

(5.8 × 108 Bq). Total count rate in the detector system is 104 cps, even in beam-off condition. With the neutron beam

on the target the experimental spectrum is still dominated by the target activity, arising mainly from the presence of

the isotope 232U with T1/2 = 68 y and, therefore, very high specific activity. Two isotopes from 232U decay chain are
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Table 1. List of observed neutron resonances in the 234U time-of-flight spectrum. The two resonances at 59 and 142.2 eV could not be attributed to

any isotope present in the target or set-up, yet.

TOF (μs) En(eV) En(eV) TOF (μs) En(eV) En(eV)

(calibrated) (tabulated value) (calibrated) (tabulated value)

144.4 29.5 31.13 61.5 187.8 187.52

116.5 46.4 48.56 58.0 214.0 208.4

106.2 59.0 - 55.8 233.8 237.8

93.2 75.0 77.38 53.2 261.1 258.3

84.9 91.9 94.29 49.9 302.6 307.5

80.2 103.9 106.13 46.1 363.2 359.1

78.5 108.9 111.06 43.6 416.3 412.6

69.8 142.2 - 42.9 431.8 436.3

69.0 144.8 146.25 40.8 485.9 489.0

67.7 151.1 152.16 40.0 511.9 511.0

63.2 176.1 176.18 39.4 529.9 526.2

62.4 181.5 182.49

responsible for the majority of γ-lines in the spectrum: 208Tl and 212Po. Observed γ-lines from these two isotopes are

listed here:

208Tl : 485.95 keV, 510.77 keV, 583.19 keV, 650.10 keV, 763.13 keV, 821.20 keV, 860.56 keV,

927.60 keV, 982.60 keV, 1093.90 keV, 1282.80 keV, 1592.5 keV, 2103.51 keV, 2614.51 keV.
212Po : 727.33 keV, 893.39 keV, 952.12 keV, 1078.63 keV, 1109.7 keV,

1512.8 keV, 1620.74 keV, 1679.45 keV, 1806.0 keV.

In the time-of-flight spectrum resonant structures are observed and attributed to capture resonances in 234U (see

Table 1). In addition to the tabulated 234U resonances, two resonances at energies 59 eV and 142 eV are observed in

the time-of-flight spectrum.

Although resonances are present, spectra produced with cuts on resonant part of TOF curve does not differ signif-

icantly from spectra obtained from the non-resonant part. Prospects for observation of shape isomer population are

not favourable without allowing for longer measurement time and without setup improvement.

3.2. 238U run

A test measurement with 238U target was performed for a live time of 320270 s. The target is a disk of 11.1 cm

radius, made from depleted uranium (0.2% of 235U). Four HPGe detectors are arranged similarly as in the 234U run,

at 40 cm distance from the target. Two detectors are positioned at 90o and the two others at 115o with respect to the

neutron beam. Recorded spectra are highly complex, with more than 200 γ-lines arising from natural background,

radiation from the target, and neutron-induced radiation in the accelerator wall, detectors or other materials present in

the laboratory. A summary of all γ-lines identified in the spectrum together with the corresponding count rate is given

below. Some lines which should be present in the spectra but were not found are indicated as ”below detection limit”

(below DL).

3.2.1. Radiation from the target

234mPa : 258.2 keV (0.44 cps), 742.8 keV (0.84 cps), 766.4 keV (3.12 cps), 921.7 keV (below DL),

1001.03 keV (4.98 cps), 1237.3 keV (0.30 cps), 1737.7 keV (0.11 cps),1831.5 keV (0.07 cps),

1867.7 keV (0.06 cps), 1875.5 keV (0.04 cps).
234Pa : 569.3 keV (below DL), 926.4 keV (0.14 cps).
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3.2.2. Environmental radiation

238U decay chain (other than 234mPa and 234Pa)

214mBi : 609.3 keV(below DL), 665.5 keV(0.04 cps), 806.2 keV(below DL), 1120.3 keV(0.62 cps),

1377.7 keV (below DL), 1408.0 keV (0.15 cps), 1764.5 keV (0.63 cps),1847.4 keV (0.02 cps),

2204.2 keV (0.33 cps), 2447.9 keV (0.1124 cps).
214Pb : 351.9 keV(below DL).

232Th decay chain

228mAc : 338.3 keV(0.60 cps), 726.9 keV(below DL), 755.3 keV (0.10 cps), 795.0 keV (0.21 cps)

911.2 keV (0.91 cps), 969.0 keV(0.54 cps), 1588.2 keV(below DL),1630.6 keV (0.05 cps).
212Pb : 238.6 keV (2.44 cps).
212Bi : 727.2 keV(below DL), 1620.6 keV(below DL).
208Tl : 277.4 keV (0.85 cps), 583.2 keV (1.24 cps), 860.6 keV (0.21 cps), 2614.5 keV (1.01 cps).

40K: 1460.8 keV (6.08 cps)

3.2.3. Neutron induced radiation

In detectors. Many γ-lines arising from neutron capture on Ge isotopes are visible, but not lines from neutron inelas-

tic scattering, indicating absence of fast neutrons in the fly path. Lines from 115In(n, γ) reaction are found in Ortec

detectors only.

73Ge(n, γ) : 492.9 keV (1.01 cps), 595.9 keV(8.10 cps), 608.4 keV (below DL), 638.8 keV (0.03 cps),

701.5 keV (0.31 cps), 867.9 keV (2.50 cps), 961.05 keV(below DL), 1033.1 keV (0.02 cps),

1131.4 keV (0.16 cps), 1204.2 keV (1.41 cps), 1267.7 keV (0.04 cps), 1471.6 keV (0.16 cps),

1489.3 keV (0.11 cps), 1942.0 keV (below DL), 2073.7 keV (0.12 cps), 2368.2 keV (0.02 cps).

70Ge(n, γ) : 283.3 keV (0.16 cps), 391.4 keV (0.24 cps), 500.0 keV (4.22 cps), 708.1 keV (1.95 cps),

747.1 keV (0.51 cps), 808.1 keV (below DL), 831.3 keV (1.07 cps), 1026.4 keV (0.09 cps),

1095.5 keV(below DL), 1096.1 keV(below DL), 1139.2 keV (0.70 cps), 1298.6 keV (0.89 cps),

1378.7 keV(below DL), 1416.0 keV (0.07 cps), 1598.5 keV (0.31 cps), 1743.4 keV (0.07 cps),

1965.0 keV (0.29 cps), 2032.7 keV (0.09 cps), 2351.0 keV (0.14 cps), 2534.4 keV (0.12 cps),

2675.8 keV (0.06 cps).

72Ge(n, γ) : 297.2 keV (2.83 cps), 1250.1 keV (0.05 cps).

74Ge(n, γ) : 253.0 keV (2.34 cps), 575.0 keV (0.66 cps), 632.4 keV (0.32 cps), 2138.7 keV (0.01 cps).

115In(n, γ) : 272.9 keV (0.47 cps), 385.1 keV (0.13 cps), 416.9 keV (1.42 cps), 818.6 keV (0.27 cps),

1293.4 keV (1.81 cps), 2112.1 keV (0.44 cps), 2390.1 keV (0.20 cps), 2801.0 keV (0.04 cps).

In concrete walls. Typical concrete contains oxygen, silicon, hydrogen, calcium, aluminium, magnesium, iron etc. In

accelerator walls, neutron shielding materials, such as boron are also present. Some of the most intense γ-lines in the

spectrum are generated in neutron interactions with wall material.

28Si(n, γ) : 1273.3 keV(below DL), 1867.3 keV(below DL), 2092.9 keV(below DL), 2425.5 keV (0.04 cps).
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1H(n, γ)d : 1711.9 keV (0.81 cps), 2223.1 keV (10.39 cps).

40Ca(n, γ) : 1942.6 keV(below DL), 2001.6 keV (0.11 cps), 2009.8 keV (0.09 cps).

27Al(n, γ) : 983.0 keV (0.16 cps), 1013.7 keV (0.09 cps), 1526.1 keV (0.06 cps), 1778.6 keV (4.61 cps),

2271.6 keV (0.05 cps), 2282.7 keV (0.10 cps), 2577.7 keV (0.06 cps), 2590.0 keV (0.09 cps),

2821.9 keV(0.0858cps).

56Fe(n, γ) : 352.4 keV(below DL), 366.7 keV (0.26 cps), 569.9 keV (below DL), 692.0 keV (0.80 cps),

884.7 keV (0.32 cps), 898.3 keV (0.37 cps), 920.8 keV (below DL), 1019.0 keV (0.32 cps),

1197.3 keV (below DL), 1358.7 keV (0.09 cps), 1612.8 keV (0.57 cps), 1674.6 keV (0.02 cps),

1810.5 keV (0.25 cps), 2066.2 keV (0.17 cps), 2091.8 keV(below DL), 2129.5 keV (below DL),

2721.2 keV (0.10 cps).

10B(n, α)7Li 477.7 keV (52.62 cps)

In other lab material. Among other materials found in the laboratory, noticeable contribution to spectrum comes

from cadmium, used as overlap filter, and chlorine, since certain amounts of PVC are always present.

113Cd(n, γ) : 558.4 keV (2.85 cps), 1364.3 keV (0.13 cps),1660.4 keV (0.09 cps), 2660.1 keV (0.04 cps).

35Cl(n, γ) : 786.3 keV(below DL), 788.4 keV (below DL), 1164.8 keV (0.86 cps), 1951.1 keV(below DL),

1959.3 keV(below DL), 2863.8 keV (0.12 cps).

3.3. Coincidences

A time-to-amplitude converter was operated between detectors 3 and 4 (cf. Figure 1). Lines present in summed

spectrum with a cut on the peak in TAC curve are listed in Tab. 2.

The majority of coincident γ-lines occurs as consequence of interactions of neutrons, backscattered from the target,

with the detectors.

3.4. Neutron resonances

The integral time-of-flight spectrum is presented in the left part of Fig. 2. In there three characteristic regions are

indicated, (I) γ-flash, (II) resonance region and (III) far delayed non-resonant region below the lowest resonance at

6.671 eV.

Calibration of TOF curve yields the list of observed neutron resonances. Resonances important for class-II states:

173.18 eV and 721.58 eV are not observed due to long dead system time after γ-flash. Summed γ-ray spectrum from

all four detectors with the gate on 6.671 eV resonance compared to background spectrum is shown on Fig. 3.

4. Conclusions

The purpose of the presented feasibility study was to test functionality of the present setup and to provide us with

guidance on how to improve it. Several important conclusions can be drawn. First, it is necessary to install properly

designed shielding against different background components. The most deteriorating impact comes from the γ-flash

during neutron production. Due to the proximity of our measurement laboratory to the neutron target hall, the intensity

of the γ-flash is high. It extends the detector dead time, preventing us from reaching the interesting part of the TOF

spectrum in 238U. As a consequence of the long decay time of HPGe preamplifiers (≈ 50 μs), all other pulses sum

with γ-flash pulse, which leads to lower resolution, distorted peak shape and peak shifting. The energy distribution
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Table 2. Coincident spectrum between detectors 3 and 4.

No Energy(keV) FWHM(keV) Net count Identification

1 272.7 2.07 157 115In(n, γ)
2 324.9 1.08 192 70Ge(n, γ)+72Ge(n, γ)
3 416.8 2.13 508 115In(n, γ)
4 478.7 0.89 692 10B(n, α)7Li

5 492.9 1.87 145 73Ge(n, γ)
6 500.1 2.62 245 70Ge(n, γ)
7 511.2 3.87 2303 ANN

8 558.8 1.02 80 113Cd(n, γ)
9 595.9 2.37 2519 73Ge(n, γ)

10 608.5 1.99 416 73Ge(n, γ)
11 701.5 0.93 104 73Ge(n, γ)
12 708.3 1.08 134 70Ge(n, γ)
13 818.8 0.63 82 115In(n, γ)
14 867.9 3.07 852 73Ge(n, γ)
15 960.7 2.07 189 73Ge(n, γ)
16 1000.8 0.58 73 234mPa

17 1096.8 2.18 243 115In(n, γ) +70Ge(n, γ)+70Ge(n, γ)
18 1203.6 2.24 187 73Ge(n, γ)
19 1293.4 2.18 396 115In(n, γ)
20 2223.3 1.69 277 1H(n, γ)d

of γ-flash is rather broad, centered around 250 keV (Plompen et al., 2010). A good compromise for attenuation of as

much of γ-flash radiation as possible and non-attenuation of neutron flux would be 2 cm lead shield installed close to

the neutron production target well behind the wall.

Another source of background are neutrons, present even with closed shutter on the flight path. They amount to

about 15% of neutrons in the interesting energy range, but carry no timing information. Neutron induced radiation

in the accelerator wall results in many γ-lines in all parts of the spectrum. These background components could be

treated by graded shield consisting of a moderator (such as paraffin or polyethylene), a neutron absorber (made from

material with high capture cross section) and a γ-shielding (typically lead). If placed close to the detector, lead can

serve also as a shield against environmental radiation.

Usefulness of coincident spectrum would be significantly enhanced if additional shield from target-scattered neu-

trons is placed in front of the detectors. Low-Z, low density material with high neutron scattering cross-section is

ideal.

Transition from analog to digital data acquisition would further improve the setup. It would allow to employ pulse

shape analysis to further suppress the impact of the γ-flash.
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Fig. 2. Left part: TOF spectrum with marked regions: I - γ-flash region, II - resonant region and III - far delayed region and; Right part: zoom into

region II

Fig. 3. Right part: the identified γ-lines from neutron capture in 238U in the resonant region not visible in the non-resonant TOF region; Left part:

Identified γ-lines in 239U as indicated in the spectrum shown to the left.
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