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1 Introduction

It is often useful in physics to describe a spectrum of states that appear at various integer

levels by means of an associated partition function, especially if the spectrum is infinite.

If the states at each level transform in a representation of a Lie algebra, the spectrum

of representations may also be obtained from an extended (possibly infinite-dimensional)

algebra by a level decomposition. In the present paper we will relate these two approaches

to each other, and also to a third important tool in physics: the BRST treatment of

reducible constraints.

Our main example is the spectrum of dynamical forms in D-dimensional maximal

supergravity, which transform in representations of the U-duality group1 En, where n =

11−D. Remarkably, these representations form a Lie superalgebra, which can be extended

to an infinite-dimensional Borcherds superalgebra [1–3]. Decomposing it with respect to the

En subalgebra gives back the spectrum of dynamical forms at the positive levels, and also

precisely the additional non-dynamical forms allowed by supersymmetry, first determined

for D = 10 in refs. [4–6]. The consistency with supersymmetry was shown in refs. [7–10]

using a superspace formulation, generalising bosonic forms to superforms with arbitrary

high degrees. However, already in the restriction to the bosonic sector, the wedge product

1Throughout the paper, we use the notation En for the split real form, and also for the corresponding

Lie algebra. All arguments are however equally valid for the complex Lie algebras.
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in the differential algebra, with even and odd forms, naturally gives rise to a superalgebra

structure. Up to an arbitrary level p the representations can be also obtained from a

level decomposition of the Kac-Moody algebra En+p [3, 10–12]. This generalises results for

E11, which as a special case contains the form spectrum up to p = D [13–15]. However,

E11 is not enough to accommodate forms with higher degrees, and a rendition of all the

representations coming from the Borcherds superalgebra would require a consideration of

the infinite-rank algebra E∞.

With a few exceptions, the level decomposition of the Borcherds superalgebra fur-

thermore agrees with the tensor hierarchy of form potentials, field strengths and gauge

parameters that arises in the embedding tensor approach to gauged supergravity [16–19].

The tensor hierarchy can be continued to infinity, but misses some of the representations

coming from the Borcherds superalgebra. Perfect agreement is instead given by a tensor

hierarchy algebra, where the embedding tensor is interpreted as an element at level minus

one [20]. Using this algebra all the Bianchi identities and gauge transformations for the

gauged theory can be derived in a simple way [10, 21]. This demonstrates the efficiency of

organising representations into a level decomposition of a Lie (super)algebra.

Yet another context where the same infinite sequence of representations appears, and

where it cannot be truncated, is exceptional geometry. The exceptional (generalised) dif-

feomorphisms have infinite reducibility, and the sequence arises as the tower of ghosts

for ghosts, describing this reducibility [22]. The connection to partition functions of con-

strained objects, of which pure spinors [23] is one example, was conjectured already in

ref. [22], and used there to correctly regularise the infinite sums arising when counting the

degrees of freedom. The same representations occur for tensor fields in exceptional geom-

etry [24], and in the tensor hierarchies considered in [25–28]. The somewhat heuristic ap-

proach of ref. [22] provided one of the motivations for the present investigation, which puts

the correspondence between the algebra and the constrained objects on a firmer footing.

For 3 ≤ D ≤ 8 the U-duality algebra En is extended to the infinite-dimensional

Borcherds superalgebra B by adding an odd null root β0 to the simple roots of En. This is

the special case that we focus on in this paper, with En generalised to any semisimple finite-

dimensional Lie algebra g. The inner products of β0 with the simple roots of g are assumed

to be such that the Serre relations of the Borcherds superalgebra are at most quadratic in

the odd Chevalley generators e0, f0 corresponding to β0. Denoting the representation at

level p by Rp, the Serre relations quadratic in e0 (say) thus belong to a representation of g

contained in the symmetric tensor product of R1 with itself, with R2 as its complement.2

It generates an ideal of the free Lie superalgebra generated by R1, and at each level p ≥ 2,

the representation Rp is the complement that is left when this ideal is factored out. A

recursive study of the ideal thus gives all information about the representations Rp at any

level p. In this paper, we will show that the representations Rp alternatively, and often

more directly, can be determined from the partition function for a bosonic object λ in R1,

subject to the constraint λ2|R2 = 0. As our main result, we will show that this partition

function is the inverse of the partition function for the universal enveloping algebra of B+,

the subalgebra of B at positive levels.

2With the complement of a representation R in another R′ we mean the quotient R′ −R.
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The paper is organised as follows. In section 2 we describe in more detail the Lie

superalgebras that we consider, and how they are constructed from the Chevalley generators

and the Serre relations. In section 3 we introduce the partition functions that we use

in section 4 to state our results and give them an interpretation in terms of a BRST

operator. The argument of section 4 corresponds roughly to the heuristic argument of

ref. [22]. We then prove the result in section 5 using the denominator formula for Borcherds

superalgebras. Section 6 addresses the question why the method is not applicable to Lie

algebras (extensions by an additional even real root). In section 7 we present and discuss

some examples.

2 The superalgebras

Let g be a semisimple finite-dimensional Lie algebra of rank r with simple roots αi (i =

1, . . . , r). We recall that they form a basis of a euclidean space, and from their mutual

inner products we get the Cartan matrix aij of g by

aij = (αj , αi
∨) = 2

(αj , αi)

(αi, αi)
, (2.1)

where αi
∨ = 2αi/(αi, αi) is the coroot of αi.

The construction of a Lie algebra from a basis of simple roots can be generalised to

inner product spaces which are not necessarily euclidean, and even from Lie algebras to

Lie superalgebras. Semisimple finite-dimensional Lie algebras are then generalised to Kac-

Moody (super)algebras, which in turn are generalised further to Borcherds (super)algebras.

Thus Borcherds superalgebras is a very general concept, but in this paper we only consider

the special cases described below, motivated by their simplicity and by their appearance in

the examples that we will study in section 7. We refer the reader to refs. [29–32] for more

general definitions and other details about Borcherds and Kac-Moody (super)algebras.

The Borcherds superalgebras that we consider are infinite-dimensional superextensions

of semisimple finite-dimensional Lie algebras, obtained by adding an odd null root to the

simple roots. Let B be such an extension of g, with simple roots βI (I = 0, 1, . . . , r). Thus

β0 is odd and null, (β0, β0) = 0, whereas βi = αi are even and real, (βi, βi) > 0. The

Cartan matrix BIJ of B is obtained from aij by adding an extra column

Bi0 = (β0, βi
∨) = 2

(β0, βi)

(βi, βi)
(2.2)

and an extra row B0I = (βI , β0), including the diagonal entry B00 = (β0, β0) = 0. The

additional off-diagonal entries Bi0 are required to be non-positive integers, like Bij = aij
for i 6= j. We assume furthermore that BIJ is non-degenerate, and for each i = 1, . . . , r,

either B0i = 0 or B0i = −1.

Adding an extra column and row to the Cartan matrix of g corresponds to adding an

extra node to the Dynkin diagram of g, connected with |Bi0| lines to node i. Following

ref. [29] we indicate that β0 is both null and odd by painting the corresponding node “grey”
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(which means that it looks like ⊗), and let the other nodes, representing real even roots,

be white. For example, the Dynkin diagram

✐ ✐ ✐ ✐

✐

0 1 2 3

4

corresponds to the Cartan matrix

BIJ =















0 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 −1

0 0 −1 2 0

0 0 −1 0 2















. (2.3)

We will come back to this algebra, among other examples, in section 7.

To each simple root βI of B we associate Chevalley generators eI , fI and hI , and B is

then defined as the Lie superalgebra generated by these elements (of which e0 and f0 are

odd and the others even) modulo the Chevalley relations

[hI , eJ ] = BIJeJ , [hI , fJ ] = −BIJfJ , [eI , fJ} = δIJhJ , (2.4)

and the Serre relations

(ad eI)
1−BIJ (eJ) = (ad fI)

1−BIJ (fJ) = 0 (2.5)

for I 6= J . For I = 0 the Serre relations (2.5) can equivalently be replaced by

{e0, e0} = {f0, f0} = 0 , (2.6)

since, by the Jacobi identity,

1
2 [{e0, e0}, eJ ] = {e0, [e0, eJ ]},

1
2 [{f0, f0}, fJ ] = {f0, [f0, fJ ]} , (2.7)

which gives

[{e0, [e0, eJ ]}, fJ ] = {e0, e0}, [{f0, [f0, fJ ]}, eJ ] = {f0, f0} (2.8)

if BJ0 = −1. Thus in this case the ideal generated by (2.5) is contained in the ideal

generated by (2.6), and conversely. If BJ0 = 0, there is already a redundance in (2.5)

because of the antisymmetry of the bracket, so replacing (2.5) by (2.6) in this case simply

amounts to removing one of two equivalent relations in (2.5).

For any integer p, let Bp be the subspace of B spanned by all root vectors corre-

sponding to roots β = pβ0 + α, where α is a linear combination of the real simple roots

βi = αi, and, if p = 0, by the Cartan elements hI . Since B is the direct sum of all these

subspaces, and [Bp,Bq} ⊆ Bp+q, this decomposition is a Z-grading of B, leading to a
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level decomposition of its adjoint representation under the subalgebra g ⊂ B0, with Bp

consisting of a (maybe reducible) representation3 of g at level p. We will throughout the

paper denote this representation Rp.

Let B+ and B− be the subalgebras of B spanned by elements at positive and negative

levels, respectively, and let B̃± be the free Lie superalgebra generated by B±1. The Serre

relations (2.6) generate an ideal of B̃ which is the direct sum of two subalgebras D±, where

D± ⊂ B̃± (and is the maximal such ideal). The Borcherds superalgebra B is then obtained

by factoring out this ideal from B̃, and in particular B+ is obtained by factoring out D+

from B̃+, the free Lie superalgebra generated by B1. The ideal D+ of B̃ is generated by

the element {e0, e0} at level two, which is set to zero in one of the Serre relations (2.6).

However, considered as an ideal of B̃+ only, it is generated by all elements at level two

in D+, which are not only {e0, e0} but also those obtained from {e0, e0} by successively

acting with g. These elements form a representation R2
⊥, which is the complement of R2

in ∨2R1 (the symmetrised tensor product of R1 with itself) with a lowest weight vector

{e0, e0}. It then follows from the Chevalley relations that the Dynkin labels of the lowest

weight of R2
⊥ are given by λi = 2Bi0.

Using a basis EM of B1 (so that the index M corresponds to the representation R1),

we can summarize the above construction of B+ by saying that it is the Lie superalgebra

generated by the odd elements EM modulo the “covariant Serre relations”

{EM , EN}|R2
⊥ = 0 . (2.9)

Recursive use of these relations (and of course of the Jacobi identity) gives complete in-

formation about the representation Rp at arbitrarily high levels p. In section 4 we will

describe how this information can be efficiently encoded into partition functions, which

will be discussed next.

3 Partition functions

The purpose of this section is to introduce and define notation for the partition functions

we use to state our results.

The partition functions we will consider count the number of bosonic and fermionic

objects occurring with some Z-weight, or level, and some additional quantum numbers. In

an “unrefined” partition function, only counting the number of states per level, the presence

of some set of N linearly independent objects with weight p corresponds to a term σpNtp,

where σ = 1 for bosons and σ = −1 for fermions. This means we are really considering

partition functions twisted by fermion number, which of course has the advantage that the

partition function for a fermionic variable, or “creation operator”,

ZF (t) = 1− t , (3.1)

and that of a bosonic one,

ZB(t) = (1− t)−1 , (3.2)

are each other’s inverses.
3Following the physics terminology, we use the term “representation” also for the module of the repre-

sentation, i.e., the vector space it acts on.
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More refined partition functions may be defined if additional quantum numbers are

available. In a typical case, a variable or operator will transform in some representation R

of a Lie algebra g. A refined partition function encodes completely the representations of

all states, and is a formal power series in a variable t (corresponding to the grading) with

coefficients in the unit ring of g-representations (under tensor product).

The basic examples are the refined partition functions for fermionic and bosonic cre-

ation operators in R:

Z
F
R (t) =

|R|
⊕

p=0

(−t)p∧pR ,

Z
B
R (t) =

∞
⊕

p=0

tp∨pR . (3.3)

Here, we use ∧ and ∨ for antisymmetric and and symmetric products, respectively, and

|R| denotes the dimension of a representation R. These two functions are also the inverses

of each other, when multiplication is taken as the tensor product with the trivial repre-

sentation as the identity. This can be seen explicitly at any order in t by observing that

the tensor product (∧pR)⊗ (∨qR) generically contains exactly the plethysms described by

the two different “hook” Young tableaux of sl(|R|) obtained by gluing together the column

and the row describing the two factors. One thus has

Z
F
R (t)⊗ Z

B
R (t) = 1 , (3.4)

It is then reasonable to use the formal notation

Z
F
R (t) = (1− t)R ,

Z
B
R (t) = (1− t)−R . (3.5)

A fermion in R can be seen as a boson in −R and vice versa. It is important to understand

the notation of eq. (3.5) as the shorthand it is, with eq. (3.3) being its defining expression.

All considerations of the refined partition functions may also be performed using char-

acters, since they provide a ring homomorphism. Writing the character of the representa-

tion R as χ(R) =
∑

µ∈ΛR
eµ, where ΛR is the set of weights for R, counting weights with

multiplicities m > 1 as m “distinct” weights, we have

χ(∧kR) =
∑

{µ1,...,µk}

eµ1+···+µk , (3.6)

where the sum is over sets of distinct (in the sense above) weights in ΛR. Thus,

χF
R(t) ≡ χ(Z F

R (t)) =

|R|
∑

k=1

(−t)k
∑

{µ1,...,µk}

eµ1+···+µk =
∏

µ∈ΛR

(1− teµ) , (3.7)

which of course is just the product of the characters for the individual fermions making up

the representation R. It then follows that

χB
R(t) ≡ χ(Z B

R (t)) = (χF
R(t))

−1 =
∏

µ∈ΛR

(1− teµ)−1 . (3.8)

The character picture will be used for a proof of our result in section 5.
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The examples above used for setting the notation are valid only for unconstrained

variables (creation operators). We will use such refined partition functions to encode the

spectrum of generators in the Borcherds superalgebras described in section 2.

Before going into the construction of partition functions for algebras and for con-

strained objects, we will consider two other situations, which will be of use later. The first

is when a fermionic or bosonic variable is “maximally constrained”, so that any bilinear

vanishes. Then the partition function just contains a linear term:

Z (t) = 1 + σRt (3.9)

(where again σ = ±1 for bosons and fermions, respectively). The second situation con-

cerns variables of “indefinite statistics”, meaning that both symmetric and antisymmetric

products of R occur (but with odd levels still labeled as bosonic or fermionic by a sign σ).

Then the partition function is

Z (t) =
∞
⊕

p=0

(σt)p⊗pR = (1− σRt)−1 . (3.10)

The observation that the partition functions (3.9) and (3.10) are each other’s inverses for

opposite choices of σ is one, somewhat trivial, example of our main result which will be

demonstrated in the following sections. In this case the algebra is freely generated by the

representation at level one.

4 BRST operator and coalgebra

Consider the subalgebra B+ of elements at positive levels of a Z-graded Borcherds superal-

gebra B, as defined in section 2. In the generic case, the algebra will be infinite-dimensional,

and contain elements at arbitrarily high levels. However, as we saw in section 2, all this

information is contained in the covariant Serre relations

{EM , EN}|R⊥

2
= 0 , (4.1)

where R2
⊥ is the complement to R2 in ∨2R1. At level two, we thus have generators

EMN = {EM , EN} in R2.

As announced in section 1, we will argue that all information about the representations

occurring at each level can be obtained in an alternative way, which often provides a more

direct answer, namely by considering a bosonic object λM in R1, subject to the constraint

λ2|R2 = 0 . (4.2)

Notice that the object λM has opposite statistics (bosonic) to EM (thinking of odd elements

in a superalgebra as fermionic), and that its constraint is in the symmetric representation

complementary to that of the Serre relations. The precise relation we will establish, and

which is the main result of this paper, is:

The partition function of the universal enveloping algebra U(B+) is the in-

verse of the partition function for the constrained object λ, i.e.,

ZU(B+)(t)⊗ Zλ(t) = 1 . (4.3)

– 7 –
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Since the partition functions used are completely refined, in the sense of section 3, this

provides complete information of the generators at each level of the Borcherds superalgebra

B. The refined partition function for λ, if λ is seen as a complex object, can be seen as

encoding holomorphic functions of λ.

The way we will argue for this equality in the present section is by identifying the

action of the BRST operator for the (conjugated) constraint with the operation “d” of the

coalgebra B∗
+. This will not constitute a full proof (which would require a consideration of

cohomology of B∗
+), but provides a clear picture of the correspondence. The proof, based

on the denominator formula for Borcherds superalgebras, is given in section 5.

Let us first consider the coalgebra, repeat some well known facts and set the notation.

For simplicity, we do this for the case of an ordinary Lie algebra; the generalisation to

graded brackets and Lie superalgebras is trivial. The coalgebra of a Lie algebra a is defined

on the vector space a∗ dual to a. It is equipped with a map d : a∗ → a∗ ∧ a∗, which is dual

to the Lie bracket [·, ·] in the sense that for any A,B ∈ a and X ∈ a∗,

〈 dX |A ∧B 〉 = 〈X | [A,B] 〉 , (4.4)

where 〈·|·〉 is the canonical scalar product, naturally extended to tensor products. If Ea

and E∗a are dual bases for a and a∗, and [Ea, Eb] = fab
cEc, eq. (4.4) reads

dE∗a = fbc
aE∗b ∧ E∗c . (4.5)

The action of d is naturally extended to tensor products of elements by defining it to act

as a derivation. The Jacobi identity is equivalent to the nilpotency, d2 = 0, of d. The

above can be generalised to a Lie superalgebra with the appropriate graded interpretation

of wedge products, brackets and derivations.

We now specialise on the Borcherds superalgebras at hand. The first two levels of the

coalgebra B∗
+ read

dE∗M = 0 ,

dE∗MN = E∗M ∨ E∗N |R̄2
. (4.6)

The Serre relations manifest themselves as the absence of generators in R̄2
⊥ at level two.

What is the procedure for the continued construction? Of course, knowledge of the algebra

directly provides the full information of the coalgebra. But it is also possible to use eq. (4.6)

as a starting point for recursively deriving the content at each level as well as the coproduct.

One must then allow for the most general representation for E∗(3) and the most general

form of dE∗(3) ∼ E∗(2) ∧E∗(1) consistent with d2 = 0. A general Ansatz consists of letting

E∗MNP belong to a representation R3 ⊂ R1 ⊗R2 and writing

dE∗MNP = E∗M ∧ E∗NP |R̄3
. (4.7)

The nilpotency of d then determines the allowed representation R3. For example, a totally

symmetric representation is always excluded from R3, since it will vanish due to the Jacobi

identity. This procedure can then be continued to all levels, where dE∗(p) will contain sums

of terms E∗(q) ∧ E∗(p−q) (wedge here denoting graded antisymmetrisation).

– 8 –
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The unique result of the procedure can be understood by the following argument, which

also provides a conceptual idea behind the result stated in eq. (4.3). Everything starts from,

and is generated from, the basic set of generators EM in the g-representation B1. Since

they are odd elements of a superalgebra, they are normally thought of as fermionic. It is

however useful to think of EM as not carrying a definite statistics. Indeed, considering the

Serre relations (4.1), the only constraint on a bilinear in EM (including both symmetric

and anti-symmetric parts) is that a certain representation R2
⊥ of the symmetric bilinear

vanishes. The identification of the symmetric part in the complement R2 with “new”

generators EMN is in this sense optional. Without this identification, and corresponding

identifications at higher levels, the universal algebra U(B+) can be constructed from the

tensor algebra of B1 by factoring out the ideal generated by EM ⊗EN |R2
⊥ . This provides

a way of constructing an arbitrary element, not in the algebra B+, but in its universal

enveloping algebra U(B+), in terms of powers of EM only. The partition function of the

universal enveloping algebra will be that of an object EM in R1 of indefinite statistics

(although the elements at odd levels are labelled as fermionic in the partition function,

see section 3), modulo the ideal generated by the Serre relations. Seen this way, our main

result can be phrased in the following way:

The partition function for a bosonic object (λ) in R1 subject to a bilinear

constraint in R2 is the inverse of the partition function for an object (the set

of level-one generators in B) with indefinite statistics, where odd powers are

labeled as fermionic, subject to a bilinear constraint in R2
⊥.

This statement provides an interpolating generalisation for partitions of constrained objects

of the ones made for unconstrained and maximally constrained ones in section 3. However,

unlike in those limiting cases, the statistics here may not be switched, which we will

comment on in section 6.

Now, consider an object λ̄ in R̄1, with the constraint λ̄2|R̄2
= 0. The constraint can

be treated using a BRST formalism. For convenience, we change our notation and use cM

instead of λ̄M . The first term in the BRST operator Q is Q(2) = bMNcMcN , where bMN

in R2 is the ghost for the constraint.4 However, if the constraint happens to be reducible,

there will be higher order ghosts compensating for the reducibility. Such reducibility will

be captured by the introduction of a new bc pair, and a term Q(3) = bMNP c
MNcP in

Q. The representation of bMNP is everything that is allowed by Q2 = 0. This should be

continued, as long as the reducibility continues, i.e., as long as further such terms can be

added. A generic term will be of the form b(p+q)c
(p)c(q), where the ghosts are alternatingly

fermionic and bosonic. From this trilinear form of the BRST operator it is immediately

clear that its action on the c ghosts defines the coalgebra of a Lie superalgebra. An infinite

reducibility5 corresponds to an infinite-dimensional algebra.

4It would maybe be more conventional to use a notation where c is the ghost multiplying the constraint,

and b its conjugate. Here, however, it turns out that all terms will be of the form bcc, which corresponds

to the standard form of “algebra” ghost terms in a BRST operator.
5The concept of reducibility is not absolute, but may depend on the degree of covariance. Here, we

always consider reducibility as expressed in terms of representations of the finite-dimensional Lie algebra g

(but should of course not be confused with the possible reducibility of the representations themselves).
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We now recognise the exact parallel between on one hand the construction of the coal-

gebra, given the Serre relations (and nothing more), and on the other hand the construction

of the BRST operator. The difference is only a matter of notation. The cogenerators E∗(p)

correspond to the ghosts c(p), and the graded wedge products are automatically implied

by the “wrong” statistics of the ghosts. The operator d is the adjoint action (graded

commutator) of Q, so that dE∗(p) ↔ [Q, c(p)}.

This means that if we calculate the partition function of λ as a constrained object,

which is obtained as the conjugate of the tensor product of the partition functions of all

the ghosts,

Zλ(t) =
∞
⊗

p=1

(1− tp)(−1)pRp , (4.8)

it will coincide with the inverse partition function of the universal enveloping algebra

U(B+), which by definition is

ZU(B+)(t) =
∞
⊗

p=1

(1− tp)(−1)p+1Rp , (4.9)

using the shorthand notation of (3.5). The inverse simply appears since the correspondence

E∗(p) ↔ c(p) changes statistics.

The above argument does not provide a strict proof of eq. (4.3). The missing step is

the proof that the BRST operator Q ∼ bcc correctly encodes the degrees of freedom of the

constrained object, or, equivalently, that no other unwanted cohomology arises. We refrain

from doing this, but we will present a different proof in section 5.

Neither of the two above methods of finding the spectrum of generators has an ad-

vantage over the other, since we just demonstrated that they contain exactly the same

calculational steps. However, knowing that the partition function is that of a constrained

object λ can often provide an alternative, more direct, and simpler way of obtaining the

answer. Provided that we know from the constraint which representation Sp appear at any

power λp, the partition function is directly constructed as

Zλ(t) =
∞
⊕

p=0

Spt
p . (4.10)

Expanding this partition function in a product form6 gives information about all the ghost

representations, and thus about the generators of the algebra. This calculation becomes

especially simple in cases where S1 = R1 is an irreducible representation of some Lie

algebra with highest weight λ, and S2 = R2
⊥ = ∨2R1 ⊖ R2 is the representation with

highest weight 2λ. Then Sp will have highest weight pλ. Indeed, the class of Borcherds

superalgebras we consider all have this property, as will be shown in section 5. We will

give some examples of such situations in section 7, among which are pure spinors and their

6This is the method used by Berkovits and Nekrasov in ref. [23] to obtain detailed information on the

partition functions of pure spinors.
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associated superalgebras. Although the representations Rp are complicated, they can be

calculated from the more readily available representations Sp by inserting eqs. (4.9)–(4.10)

into (4.3), which gives

∞
⊗

p=1

(1− tp)(−1)pRp =
∞
⊕

q=0

Sqt
q . (4.11)

The explicit solution of this relation for the spectrum of the Borcherds superalgebra, i.e.,

the representations Rp in terms of the known Sp, can be obtained by recursion, or by a

Möbius inversion. By comparing the left and right hand sides for the first few powers of t

we get

R1 = S1 ,

R2 = ∨2R1 ⊖ S2 ,

R3 = (R1 ⊗R2)⊖ ∨3R1 ⊕ S3 ,

R4 =
(

(R1 ⊗R3)⊕ ∧2R2

)

⊖ (∨2R1 ⊗R2)⊕ ∨4R1 ⊖ S4 . (4.12)

We will display some explicit examples of varying complexity in section 7.

5 A proof from denominator formulas

This section will provide a proof of our main result (4.3), using the denominator formula

for Borcherds superalgebras [31–34]. It is known for general Borcherds superalgebras but

here we only need a simplified version given below, valid for the special cases of Borcherds

superalgebras under consideration.

Let Φ be the root system of B, and for any integer p, let Φp be the subset of Φ

consisting of all roots β = pβ0+α, where α is a linear combination of the real simple roots

βi = αi. Thus Φ0 is the root system of the subalgebra g, and Bp is the direct sum of all

root spaces Bβ such that β ∈ Φp, and, if p = 0, the Cartan subalgebra.

We will show that the eq. (4.11), with the lowest weights of the representations Sq

given by the Dynkin labels

λi = q(β0, βi
∨) = q · 2

(β0, βi)

(βi, βi)
= qBi0 , (5.1)

is equivalent to the denominator formula for B [31–34], which reads

∏

β∈Φ+
(0)
(1− e−β)multβ

∏

β∈Φ+
(1)
(1 + e−β)multβ

=
∑

w∈W

∞
∑

q=0

(−1)|w|(−1)qew(ρ−qβ0)−ρ . (5.2)

Here Φ+
(0) and Φ+

(1) consist of all even and odd positive roots, respectively, ρ is the Weyl

vector of B, defined by

(ρ, βI) =
(βI , βI)

2
, (5.3)
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and the Weyl group W of B is generated by all fundamental Weyl reflections

ri : β 7→ β − (αi
∨, β) = β − 2

(αi, β)

(αi, αi)
. (5.4)

The length |w| of an element w inW is the minimal number of fundamental Weyl reflections

(not necessarily distinct), which, applied after each other, give w.

Note that the representations Sp are given by the Dynkin labels λi of their lowest

weights, since we consider positive levels of B. However, we are going to relate the de-

nominator formula (5.2) for B to the character formula for g, which is usually expressed

in terms of the highest weight of a representation. Therefore it is convenient to replace

eq. (4.11) by the equivalent equation obtained by conjugating all representations,

∞
⊗

p=1

(1− tp)(−1)pR̄p =
∞
⊕

q=0

S̄qt
q , (5.5)

where now the highest weight of S̄q is −λi = −qBi0. What we will actually show is that

this eq. (5.5) is equivalent to the denominator formula (5.2).7

Let Λ̃0 be the element in the weight space of B such that (Λ̃0, αi) = 0 for all i = 1, . . . , r,

and the componenent of Λ̃0 corresponding to β0 in the basis of simple roots is equal to

one (this element exists uniquely since both BIJ and Bij = aij are non-degenerate). Thus

Λ̃0−β0 is an element in the weight space of g (considered as a subspace of the weight space

of B). More generally, a root β ∈ Φp can be written β = pΛ̃0 + µ, where µ = β − pΛ̃0 is

an element in the weight space of g. We then get

∏

β∈Φp

(1− e−β)multβ =
∏

µ∈Rp

(1− e−pΛ̃0e−µ)multµ

=

|Rp|
∑

k=0

(−1)k
∑

e−(µ1+···+µk)(e−Λ̃0)kp , (5.6)

where the second sum goes over all sets of k distinct weights µ1, . . . , µk among the weights

of Rp, counting (as in section 3) a weight with multiplicity m as m “distinct” weights.

This sum can be obtained from the character for ∧kRp by inverting each term, which

corresponds to conjugating the representation Rp. Thus

∏

β∈Φp

(1− e−β)multβ =

|R̄p|
∑

k=0

(−1)kχ(∧kR̄p)s
kp (5.7)

where we have set s = e−Λ̃0 . In the same way,

∏

β∈Φp

(1 + e−β)multβ =

|R̄p|
∑

k=0

χ(∧kR̄p)s
kp (5.8)

7Instead of considering positive levels in B and conjugating the representations we could of course also

have considered negative levels and only highest weights from the beginning.
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and we know that the inverse of this is

∏

β∈Φp

(1 + e−β)−multβ =
∞
∑

k=0

(−1)kχ(∨kR̄p)s
kp . (5.9)

Here the character of ∨kR̄p is given by the sum of all terms e−(µ1+···+µk), where µ1, . . . , µk

are weights of Rp, this time not necessarily distinct. Following the notation in section 3,

we write this as

∏

β∈Φp

(1± e−β)∓multβ = χ
(

(1± sp)∓R̄p
)

, (5.10)

and the left hand side of eq. (5.2) becomes

∏

β∈Φ+
(0)
(1− e−β)multβ

∏

β∈Φ+
(1)
(1 + e−β)multβ

=
∏

α∈Φ+
0

(1− e−α)multα
∞
∏

p=1

χ
(

(

1− (−1)psp
)(−1)pR̄p

)

, (5.11)

where Φ+
0 consists of the positive roots of g.

We now turn to the right hand side of the denominator formula,

∑

w∈W

∞
∑

q=0

(−1)|w|(−1)qew(ρ−qβ0)−ρ. (5.12)

Here W is the Weyl group of B, but since it is generated by the fundamental Weyl re-

flections corresponding to the real roots only, it coincides with the Weyl group of g. In

order to use the character formula for g we also need to replace the Weyl vector of B with

the one of g, but this requires some more consideration. The Weyl vector ρ = ρB of B is

defined as the element in the weight space of B satisfying

(ρB, βI) =
(βI , βI)

2
, (5.13)

whereas the Weyl vector ρg of g only has to satisfy

(ρg, αi) =
(αi, αi)

2
, (5.14)

but on the other hand it must have a zero component corresponding to β0 in the basis of

simple roots. Thus the Weyl vectors of B and g are different (in general), but since their

difference ρB − ρg is orthogonal to the real roots, (ρB − ρg, αi) = 0, it is invariant under

the Weyl group, w(ρB − ρg) = ρB − ρg. We then get

w(ρB − qβ0)− ρB = w
(

ρg + (ρB − ρg)− qβ0
)

− ρg − (ρB − ρg)

= w(ρg − qβ0)− ρg + w(ρB − ρg)− (ρB − ρg)

= w(ρg − qβ0)− ρg (5.15)
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and we can indeed replace ρ = ρB by ρg in eq. (5.12). To simplify the notation, we will

henceforth write ρ = ρg. Furthermore, since also Λ̃0 is orthogonal to the real roots, we have

w(ρ− qβ0)− ρ = w
(

ρ− qΛ̃0 + q(Λ̃0 − β0)
)

− ρ

= w
(

ρ+ q(Λ̃0 − β0)
)

− ρ− qΛ̃0 (5.16)

and then

∑

w∈W

∞
∑

q=0

(−1)|w|(−1)qew(ρ−qβ0)−ρ =
∑

w∈W

∞
∑

q=0

(−1)|w|(−1)qew(ρ+q(Λ̃0−β0))−ρ−qΛ̃0

=
∑

w∈W

∞
∑

q=0

(−1)|w|(−1)qew(ρ+q(Λ̃0−β0))−ρsq . (5.17)

Equating eqs. (5.11) and (5.17) we get

∞
∏

p=1

χ
(

(

1− (−1)psp
)(−1)pR̄p

)

=
∞
∑

q=0

∑

w∈W (−1)|w|ew(ρ+q(Λ̃0−β0))−ρ

∏

β∈Φ+
0
(1− e−β)multβ

(−1)qsq , (5.18)

where we recognise

∑

w∈W (−1)|w|ew(ρ+q(Λ̃0−β0))−ρ

∏

β∈Φ+
0
(1− e−β)multβ

(5.19)

as the character of the representation of g with highest weight q(Λ̃0 − β0) given by the

Dynkin labels

(

q(Λ̃0 − β0), βi
∨
)

= −q(β0, βi
∨) = −q · 2

(β0, βi)

(βi, βi)
= −qBi0 = −λi , (5.20)

and thus
∞
∏

p=1

χ
(

(

1− (−1)psp
)(−1)pR̄p

)

=
∞
∑

q=0

χ(S̄q)(−1)qsq. (5.21)

Finally, substituting s by −t we arrive at the equation

∞
∏

p=1

χ
(

(1− tp)(−1)pR̄p
)

=
∞
∑

q=0

χ(S̄q)t
q , (5.22)

which is the character version of (and thus equivalent to) eq. (5.5).

6 Why is the method not applicable to Lie algebras?

Let us replace β0 with an even simple root α0, which is real, (α0, α0) > 0, but otherwise

satisfies the same inner product relations as β0, thus (α0, αi) = (β0, αi). The Chevalley-

Serre relations (2.4)–(2.5), with all superbrackets being ordinary antisymmetric brackets,

and with the Cartan matrix BIJ replaced by

AIJ = (αJ , αI
∨) = 2

(αJ , αI)

(αI , αI)
, (6.1)
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defines a Kac-Moody algebra A . This corresponds to adding an ordinary (white) node

to the Dynkin diagram of g instead of a grey one, and in analogy with B the adjoint

representation of A dcomposes into g-representations Rp. The representation R1 is the

same as in the case of B, but R2 is now a subrepresentation of ∧2R1, the anti-symmetric

tensor product of R1 with itself. Its complement is the direct sum of representations with

lowest weights given by the Dynkin labels λi = Aij + 2Ai0 for all j such that A0j 6= 0.

One might imagine that the statement (4.3) would apply both for the Lie superalgebra

B and the ordinary Lie algebra A . This would potentially have made it possible to extract

precise information about the generators to all levels for classes of infinite-dimensional

(e.g. hyperbolic) Kac-Moody algebras. It turns out, however, that statistics can not just

be changed. This is because the constrained object λ then would be fermionic. Having

bilinear (bosonic) constraints on fermionic variables is generically a strange situation, and

leads to complicated structures, as we will explain.

Consider a fermionic λ in a representation R1 of g with a bilinear constraint in R2 of

A , thus complementary to some Serre relations in the anti-symmetric product ∧2R1. An

algebraic “solution” to the constraints (in the sense that one considers a power series in

λ modulo the constraint) will result in a polynomial partition function, where the highest

term is of order lower than or equal to |R1|. Its factorisation in ghost contributions is

however infinite. This is because the ghosts, like the original variables, are fermionic, and

so are the ghosts for reducibility. Instead of removing fermionic degrees of freedom, the

ghosts add more fermions, corresponding to the removal of bosonic degrees of freedom (the

constraint).

This somewhat pathological behaviour is in itself not an obstruction for the existence

of a relation like eq. (4.3) — one might well imagine that a properly regularised sum with

strictly positive terms yields a negative value (although it is a valid argument against an

analogous construction when the Lie algebra is finite-dimensional). What makes things go

wrong is the fact that a bilinear constraint on fermions inherently has some reducibility

coming from the fermionic property of the variables. Whatever the bosonic constraint is,

it is e.g. obvious that raising it to a sufficient power will give zero due to saturation of

fermions. This has no counterpart in the bosonic situation, and will introduce ghosts in

a BRST treatment which do not enter Q in the “bcc” form. Therefore, a correct BRST

treatment can not be given an interpretation in terms of a Lie algebra. We have observed in

a number of examples that a naive treatment of the Serre relations as complementary to a

constraint gives agreement in the spectrum to a number of low levels, before the “saturation

of fermions” becomes relevant. Whether there is a systematic way of consistently defining

partitions for fermions that circumvents this and correctly encodes the Serre relations

(and thereby the spectrum of the Lie algebra) is an open question. In any case it seems

reasonable that the occurrence, in the superalgebra case, of the highest weights which are

simply multiples of the defining one, has particularly simple structure without counterpart

in the Lie algebra situation.

Turning to the actual proof of the main result for the Lie superalgebra B in section 5,

it is easy to identify the step where the argument fails for Lie algebras. The Weyl group

of the extended algebra A is not identical to that of g, and the proof in its present form

fails, although the denominator formula is known.
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7 Examples

We will give a number of examples that illustrate the connection between the constrained

bosonic variable and the spectrum of generators in the superalgebra.

We use the notation B+ for the subalgebra of generators at positive levels, although

in some examples (the freely generated algebras) it is not a subalgebra of a Borcherds

superalgebra of the precise type described in section 2.

7.1 The extreme cases

Consider first a freely generated superalgebra. Then the Serre relations are empty, and

elements of the universal enveloping algebra U(B+) are given by arbitrary tensor products

of R1. Thus ZU(B+) is given by eq. (3.10) with σ = −1, which is the inverse of the formal

partition for a “maximally constrained” boson in R1. This is one extreme case of the

correspondence (in which the statistics can be interchanged). It appears if the additional

simple root is not a null root, but has negative length squared.

The other extremal case is when the Serre relations fill the whole symmetric product

∨2R1, so that {EM , EN} = 0. The superalgebra is then finite-dimensional with EM forming

a basis for B+ = B1. The partition function ZU(B+) is the partition function of fermions

in R1, which is the inverse of the partition function for an unconstrained boson. Also in

this other special case the statistics can be interchanged.

Intermediary cases only work as a correspondence of the form (4.3) between superal-

gebras and constrained bosons, and these provide less trivial illustrations of our result.

7.2 D = 8 pure spinors and null vectors

Pure spinors provide well known and extensively studied examples of constrained bosons.

They lead to minimal spinor orbits under Spin groups, due to the fact that only a single

irreducible representation appears in a spinor bilinear (the one whose highest weight is

twice the one of a spinor), and by induction there is only one representation for each

positive power of the spinor. We will give two examples of pure spinors, in this subsection

and the next.

Let us first consider a pure spinor in D = 8, where the constraint is particularly

simple, λαλα = 0. This is via triality equivalent to a null vector. The Dynkin diagram of

the corresponding superalgebra is given below.

✐ ✐ ✐ ✐

✐

The analysis can equally well be performed for null vectors in general dimension D. The

refined partition function for λ reads

Zλ(t) =
∞
⊕

p=0

(p0 . . . 0)tp , (7.1)
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where Dynkin labels of highest weights have been used for the representations, and (10 . . . 0)

denotes the vector representation. The representation (p0 . . . 0) consists of symmetric and

traceless multi-vectors. Its dimension is readily calculated to be
(

p+D − 1

p

)

−

(

p+D − 3

p− 2

)

=
(2p+D − 2)(p+D − 3)!

(D − 2)!p!
, (7.2)

so the unrefined partition function (just counting dimensions) is

Zλ(t) =
∞
∑

p=0

(2p+D − 2)(p+D − 3)!

(D − 2)!p!
tp =

1 + t

(1− t)D−1
=

1− t2

(1− t)D
. (7.3)

The same result is obtained by constructing the partition function from the ghosts. An

(unconstrained) variable λ contributes to Z with (1 − t)−(10...0), and the fermionic ghost

for the constraint with (1− t2)(00...0). The constraint is irreducible, so there are no higher

ghosts. The correspondence (4.3) tells us that the spectrum of the universal enveloping

algebra U(B+) is given by

ZU(B+)(t) = (Zλ(t))
−1 = (1− t)(10...0) ⊗ (1− t2)−(00...0) , (7.4)

corresponding to a fermionic generator in (10 . . . 0) at level one and a bosonic one in

(00 . . . 0) at level two. The superalgebra B, which here comes with a 5-grading, is finite-

dimensional, B ≈ osp(D|2). A finite-dimensional superalgebra is obtained when the re-

ducibility of the constraint on λ is finite.

7.3 D = 10 pure spinors and supergravity forms

Let us turn to the more interesting cases of infinite-dimensional superalgebras, which are

related to the spectrum of forms in supergravity, and thereby also to the tensor hierarchies

in gauged supergravity (see the discussion in section 1).

Pure spinors in D = 10 are relevant for the off-shell superfield formulation of D = 10

super-Yang-Mills theory (see e.g. refs. [35–38]). The partition function is described in some

detail in ref. [23], and is given by

Zλ(t) =
∞
⊕

p=0

(0000k)tp

=
[

(00000)⊖ (10000)t2 ⊕ (00001)t3

⊖ (00010)t5 ⊕ (10000)t6 ⊖ (00000)t8
]

⊗ (1− t)−(00001) , (7.5)

or, just counting dimensions,

Zλ(t) =
1− 10t2 + 16t3 − 16t5 + 10t6 − t8

(1− t)16
=

(1 + t)(1 + 4t+ t2)

(1− t)11
. (7.6)

The power 11 of the pole at t = 1 signals 11 degrees of freedom in a pure spinor. The

Dynkin diagram of the corresponding superalgebra is given below.

✐ ✐ ✐ ✐ ✐

✐
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This algebra is infinite-dimensional. Still, we know that the spectrum is determined by

ZU(B+) = Zλ
−1. The generators at each level in B+ are obtained by rewriting the partition

function (7.5) on product form, which reflects the ghost structure corresponding to the

infinite reducibility:

(Zλ(t))
−1 =

∞
⊗

p=1

(1− tp)(−1)p+1Rp . (7.7)

This can be done recursively as in eq. (4.12), with the following result for the first few

representations:

R1 = (00001) = 16, R2 = (10000) = 10, R3 = (00010) = 16,

R4 = (01000) = 45, R5 = (10010) = 144,

R6 = (11000)⊕ (00020)⊕ (10000) = 320⊕ 126⊕ 10, . . . (7.8)

For the dimensionalities |Rp|, an explicit Möbius inversion formula can be found [23].

The case of D = 10 pure spinors is relevant to exceptional field theory with U-duality

group E5 ≈ Spin(5, 5). Generally, the infinite ghost tower in exceptional field theory

with U-duality group En (n ≤ 8) is identical to the infinite spectrum of superforms in

D-dimensional maximal supergravity (D = 11−n), as was shown for low levels in ref. [22].

Our results here, combined with those in refs. [8–10], establish this correspondence for all

levels. Here we have shown that the ghosts for a constrained object give rise to a Borcherds

superalgebra by the action of the BRST operator, and in refs. [8–10] it was shown that the

forms in the supergravity theory similarly give rise to a Borcherds superalgebra by their

Bianchi identities. In the extended field theory the constraint is directly associated with

the section condition, and leads to the same Borcherds superalgebras as the supersymmetry

constraint on the supergravity side. Since the Borcherds superalgebras are the same, the

sequences of representations are the same as well.

The (unrefined) partition functions corresponding to the constraint in the exceptional

field theories were give in ref. [22]. As an example, the E6 case gives a Borcherds su-

peralgebra defined by a λ belonging to a cône over the Cayley plane [39]. The partition

function is

Zλ(t) =
∞
⊕

k=0

(k00000)tk

=
[

(000000)⊖ (000001)t2 ⊕ (010000)t3 ⊖ (001000)t5

⊕ (100001)t6 ⊖ (000002)t7 ⊖ (200000)t8 ⊕ (100001)t9

⊖ (000010)t10 ⊕ (010000)t12 ⊖ (100000)t13 ⊕ (000000)t15
]

⊗ (1− t)−(100000) , (7.9)

and the spectrum of the Borcherds algebra is obtained recursively by rewriting Zλ on

product form.

With the same interpretation as gauge transformations and reducibility for gener-

alised diffeomorphisms, our earlier example with null vectors, corresponding to a finite-

dimensional superalgebra, is relevant for double field theory with T-duality group O(d, d).
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7.4 Superalgebras and Lie algebras

A curious observation, somewhat besides the main focus of this paper, is that the last

Dynkin diagram of the previous subsection has the same form as the one for E6, had the

extra node been white instead of grey. Similarly, had the extra node in the superalgebra of

subsection 7.2 been white, we would have had the Lie algebra for SO(10), or in the general

case SO(D + 2).

Polynomials of a pure spinor, the constrained object encoding the spectrum of the

Borcherds algebra in question, indeed form an infinite-dimensional “singleton” representa-

tion of E6, which can be constructed as follows. Consider generators of E6 ⊃ so(10)⊕u(1).

The adjoint splits as 78 → 16−1 ⊕ (45 ⊕ 1)0 ⊕ 161. Call the spinorial generators λα and

µα. With the conventions

[Jab, λ
α] =

1

4
(γabλ)

α , [Q, λα] = λα , (7.10)

the only non-manifestly covariant non-vanishing commutator is

[µα, λ
β ] = (γab)α

βJab +
3

2
δβαQ . (7.11)

The relative coefficient is fixed by demanding the Jacobi identity on the form

[[µα, λ
[β ], λγ]] = 0 . (7.12)

Now, we start from an so(10)-scalar “ground state” |0〉 annihilated by µα, and use λα

as “creation operators”, giving a Verma module of polynomials in λ. Let the ground state

have charge q, Q|0〉 = q|0〉. We want to adjust the value of q so that (λγaλ) generates an

E6-invariant ideal. This happens if µα(λγ
aλ)|0〉 = 0. A short calculation leads to

µα(λγ
aλ)|0〉 =

3

2
(2q + 1)(γaλ)α|0〉+

1

4
(γijγaγijλ)α|0〉

=

(

3

2
(2q + 1)−

27

2

)

(γaλ)α|0〉 . (7.13)

If q = 4, this vanishes, and the ideal may be factored out without breaking E6. This shows

how the space of (holomorphic) polynomials in a pure spinor forms an infinite-dimensional

lowest-weight representation of E6. It may be called a singleton representation, since it

only consists of a “leading trajectory” of Spin(10) representations with highest weights

(0000k) at each U(1) charge 4 + k. The lowering operator µα can be identified with the

gauge invariant (in the sense that it respects the ideal) derivative with respect to a pure

spinor constructed in ref. [40].

In the same way a singleton representation of SO(D + 2) [41] is obtained by starting

from a ground state of a certain charge. We use the conventions

[Jab, λc] = 2λ[aηb]c , [Q, λa] = λa ,

[µa, λb] = Jab − ηabQ . (7.14)

– 19 –
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The ideal generated by λ2 can be factored out for vacuum charge q = D−2
2 , leading to a

singleton representation.

At least in these particular cases, the constrained object, i.e., the pure spinor or null

vector, has a direct relation both to a Borcherds superalgebra and to a (finite-dimensional)

Lie algebra. Both algebras are obtained by adding a node, grey and white, respectively, in

the same position to the Dynkin diagram of a semi-simple Lie algebra, but the rôle of the

pure spinor is quite different in the two cases. The phenomenon is certainly more general,

but is in its present form limited to situations where the λ’s commute, and thus are the

only generators at positive level in the Lie algebra. It holds e.g. for the constrained objects

λ occurring in relation to tensor hierarchies of En × R
+ with n ≤ 6, and the Borcherds

superalgebras obtained by extending En by an odd null root. The corresponding Lie

algebra, having polynomials of λ as a singleton representation is En+1 ⊃ En × R
+, which

is a 3-grading.
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