
Unified Model for Synthesis and Optimization of
Discrete Event and Hybrid Systems ?

Bengt Lennartson ∗ Oskar Wigström ∗ Martin Fabian ∗
Francesco Basile ∗∗

∗ Department of Signals and Systems, Chalmers University of Technology,
SE-412 96 Göteborg, Sweden (e-mail: bengt.lennartson@chalmers.se).
∗∗ Dip. Ingegneria dell’Informazione, Ingegneria elettrica e Matematica

applicata (DIEM), Università di Salerno, Italy, (e-mail: fbasile@unisa.it).

Abstract: A recently proposed generic discrete event model is further developed and exemplified in
this paper. Since every transition is expressed as a predicate on the current and next values of a set of
variables, the model is called Predicate Transition Model (PTM). It is briefly illustrated how a number of
well known discrete-event models, including automata and Petri nets extended with shared variables, can
be formulated and synthesized in the PTM framework. More specifically modular Petri nets with shared
variables (PNSVs) are shown to be significantly more readable compared to ordinary Petri nets. PTMs
are also naturally extended to hybrid systems, and finally it is shown how easy and efficiently PNSVs can
be optimized concerning performance based on Constraint Programming. To summarize, the proposed
modeling framework unifies and simplifies both synthesis, optimization and implementation of discrete
event systems.

Keywords: discrete-event systems, automata, Petri net, supervisory control, synthesis, hybrid systems,
optimization

1. INTRODUCTION

The lack of a unified model representation for discrete signal
and discrete event systems (DESs) is well known, see Cassan-
dras and Lafortune (2008). For continuous systems differential
equations and transfer functions serve this purpose. In a recent
paper a unified model for DESs is proposed, called State-Vector
Transition model, Lennartson et al. (2014). Inspired by classical
continuous-time state space models, the state of a system is
represented by a number of state variables xj , where the domain
of definition of the individual variables can be symbolic states
as in automata, or integer values as in Petri nets. All variables
together constitute a state-vector x, and a transition from one
value of x to an updated next value x́ is enabled when a re-
lated predicate C(x, x́) is satisfied. To emphasize the predicate
formulation of the transition model, it is in this paper called
Predicate Transition Model (PTM).

This type of model was introduced by Manna and Pnueli
(1991) as a generic model for transition systems, and the
predicate C(x, x́) is a natural formulation in model checking ,
see Clarke et al. (2000). In the supervisory control community a
slightly different formulation has been used based on predicate
transformers, cf. Kumar et al. (1993). The transition predicate
C(x, x́) is shown to be very useful both from a modeling and a
computational point of view.

Communication between different discrete event models is of-
ten obtained by shared events and full synchronous composition
Hoare (1978), as in automata and Petri nets. For automata
? This work was carried out within the Wingquist Laboratory VINN Ex-
cellence Centre within the Area of Advance - Production at Chalmers, and
supported by VINNOVA and the Swedish Science Foundation. The support
is gratefully acknowledged.

extended with variables, one version called Extended Finite
Automata (EFAs), Sköldstam et al. (2007), communication and
synchronization can also be determined by shared variables
that are updated in more than one EFA. The same feature is
used for PTMs, where it is assumed that any variable in the
state-vector x can be assigned to new values in more than one
model.

In Lennartson et al. (2014) it is shown that the suggested
PTM includes automata, EFAs, Petri nets (PNs) and colored
Petri nets (CPNs) and their synchronous composition as special
cases. Since EFAs are automata extended with variables, PNs
are also extended with additional shared variables, including
guards and actions. This model, called Petri net with shared
variables (PNSV), is an interesting complement to the formal
PTM, that does not include any specific graphical model struc-
ture. In many situations a set of local PNSVs can give a clear
and understandable graphical model. For the suggested PTM a
synthesis procedure is also developed where supervisor guards
are generated. Based on a set of local plant and specification
models, synchronized in the PTM framework, it is shown how a
controllable, nonblocking and maximally permissive supervisor
can be computed.

The contribution of this paper is to briefly summarize the
PTM in Lennartson et al. (2014), and clarify some important
aspects related to controllability. The benefit of modular PNSV
is also further exemplified and motivated in this paper. Already
for a system with three straight sequences of token flows,
it is illustrated how an ordinary PN becomes hard to read,
while the PNSV model gives a clear view of the modeled
behavior. It is also shown how PTMs are naturally extended to
include continuous behavior, which results in modular Hybrid
Predicate Transition Models (HPTMs). Finally, it is illustrated

12th IFAC/IEEE Workshop on Discrete Event Systems
Cachan, France. May 14-16, 2014

978-3-902823-61-8/2014 © IFAC 86 10.3182/20140514-3-FR-4046.00140

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Publication Library

https://core.ac.uk/display/70610859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


how especially the PNSV model has a structure that makes it
extremely simple to convert to a Constraint Programming (CP)
model, which is used for minimization of the make span for the
PNSV model discussed above. Note that CP, see Baptiste et al.
(2001) is most often significantly more efficient for this type of
performance optimization compared to more classical Mixed
Integer Linear Programming (MILP) solvers, Manne (1960).
To summarize: the proposed PTM unifies the classical DES
model structures, also including discrete signals in a natural
way, it gives a modular framework both for discrete event and
hybrid systems, and the model is shown to be useful both for
supervisor synthesis and performance optimization.

2. PREDICATE TRANSITION MODEL

A formal definition of PTMs is given in this section, see further
details in Lennartson et al. (2014) where the model is called
state-vector transition model. Since PTMs include a number of
predicates, note that a subset W of a set X also can be defined
by the predicate mappingW : X → B asW(x) = 1 iff x ∈W
andW(x) = 0 iff x /∈W .

2.1 Definition of the Predicate Transition Model

Consider a universal ordered set (tuple) of discrete variables
(x1, . . . , xn), where the domain of definition for each variable
xj is Xj . A subset of these variables are included in a tuple x,
for which a transition model is now defined.
Definition 1. (Predicate Transition Model). A predicate tran-
sition model G is a 6-tuple

G = 〈Ωx, X,Σ, T,Xi,Xm〉 (1)
where:

(i) Ωx = {j1, . . . , jn} is the index set for the tuple x =
(xj1 , . . . , xjn).

(ii) X = Xj1 × · · · ×Xjn is the domain of definition for x.
(iii) Σ is a finite set of events.
(iv) T is a finite set of transitions. Each transition is a tuple

(σ, C), where σ ∈ Σ and C : X × X → B is a predicate
on the current value x and the next value x́.

(v) Xi : X → B is a predicate, defining possible initial values
of x.

(vi) Xm : X → B is a predicate, defining desired marked
values of x.

2

The reason to introduce the index set Ωx is that variables
will later be arbitrarily shared between different local models.
Generally, the domain of the variables may be infinite, as
for unbounded PNs, but for computational reasons a finite
domain is normally assumed. The predicates are generated by
boolean expressions, including conjunction ∧, disjunction ∨,
and negation ¬ , while relations between variable values involve
the operators =, 6=, <, >, ≤, and ≥.

A transition (σ, C) is enabled when the predicate C(x, x́) is true.
When the enabled transition is executed the event σ occurs.
For a model with tuple x = (x1, x2), a transition predicate
C ≡ x1 < 2 ∧ x2 = 0 ∧ x́1 = 2 means that the transition
is enabled when x1 < 2 ∧ x2 = 0, and the next value of
x1 is x1 = 2. Since there is no condition on the next value
for x2, a natural assumption is that it keeps its current value,
i.e. x́2 = x2 = 0, cf. Sköldstam et al. (2007); Lennartson et al.
(2014).

Also note the condition on the next value x́ ∈ X . When for
instance the domain X = {0, 1, 2}, the conditions x́ = x + 1
and x́ = x−1 implicitly include the additional guards x < 2
and x > 0, respectively. These conditions do not need to be
explicitly introduced, since they are achieved by the domain of
definition for x́.

2.2 State Transition Model

For analysis and synthesis purposes, the predicate transition
model in (1) is now formulated as an explicit state transition
model. This model defines the semantics of the PTM. To
formally define the fact that no condition on x́j in C(x, x́)
implies that xj keeps its current value, consider the index set

ΩC = {j | condition on x́j in C(x, x́)}
This means that any expression involving x́j , such as x́j = xj+
2 or x́j < 3, implies that j ∈ ΩC . No condition on x́j in C(x, x́)
yields j ∈ Ωx \ΩC , and the variable xj will be assumed to keep
its current value, i.e. x́j = xj . Introducing the keep-current-
value predicate

Ccv(x, x́) ≡
∧

j∈Ωx\ΩC

x́j=xj , (2)

the complete transition predicate for transition (σ, C) becomes

Φ(x, x́) ≡ C(x, x́) ∧ Ccv(x, x́) (3)

Consider e.g. the predicate C ≡ x1 = 1 ∧ x́2 = 3 and the index
set Ωx = {1, 2}. Then ΩC = {2}, and the complete transition
predicate Φ ≡ x1 = 1 ∧ x́2 = 3 ∧ x́1 = x1.

The defined complete transition predicate is the basis for the
definition of the explicit state transition model. Indeed, it can be
considered as an evaluated PTM, where Φ(x, x́) is determined
for all possible combinations of values of the variables.
Definition 2. (State Transition Model). A state transition mo-
del (STM) of a PTM G = 〈Ωx, X, Σ, T,Xi,Xm〉 is a 5-tuple

Ĝ = 〈X,Σ,→, Xi, Xm〉 (4)
where X and Σ are defined in Definition 1, and using the
complete transition predicate Φ(x, x́) in (3)

• → = {(x, σ, x́) ∈ X ×Σ×X | ∃(σ, C) ∈ T : Φ(x, x́)};
• Xi = {x ∈ X | Xi(x)};
• Xm = {x ∈ X | Xm(x)}.

2

The STM Ĝ is an automaton, where the state transition relation
is written x σ→ x́, which is recursively extended to strings in Σ∗

by letting x ε→ x for all x ∈ X , and x sσ→ z if x s→ y and y σ→ z

for some y ∈ X . A path from an initial state in Ĝ to a state x is
written Ĝ s→ x, while a path from a state x to a marked state in
Xm is denoted x s→ Xm. Furthermore, x s→ means that x s→ y
for some y ∈ X , and x 9s y implies that no string s ∈ Σ∗

exists such that x s→ y, while x 9s means that x 9s y for all
y ∈ X .

The PTM G in (1), and its corresponding STM Ĝ in (4),
naturally include nondeterministic behavior, but a deterministic
PTM has a single initial state, and the transitions x σ→ x́ and
x

σ→ x̀ always imply x́ = x̀. Many properties of a PTM
are naturally expressed by its STM representation (4). One

WODES 2014
Cachan, France. May 14-16, 2014

87



important exception is however the synchronous composition,
presented in the next subsection.

2.3 Synchronous Composition

The synchronous composition of PTMs is defined based on
Hoare’s full synchronous composition Hoare (1978), but ex-
tended to include shared variables.
Definition 3. (Synchronous Composition of PTMs). Let Gk =
〈Ωkx, Xk,Σk, T k,X ki ,X km〉, k = 1, 2, be two PTMs, including
their individual tuple of variables xk. The synchronous compo-
sition of G1 and G2 is then defined as
G1‖G2 = 〈Ω1

x ∪ Ω2
x, X,Σ

1 ∪ Σ2, T,X 1
i ∧ X 2

i ,X 1
m∧ X 2

m〉
where the domain of definition X and the corresponding tuple
of variables x are defined based on the index set Ω1

x ∪ Ω2
x,

according to Definition 1. The transition (σ, C) ∈ T is defined
for each combination of (σ, Ck) ∈ T k, k = 1, 2, such that

C(x, x́) ≡


C1(x1, x́1) ∧ C2(x2, x́2), σ ∈ Σ1 ∩ Σ2

C1(x1, x́1), σ ∈ Σ1\Σ2 .

C2(x2, x́2), σ ∈ Σ2\Σ1

(5)

2

When the next value conditions in G1 and G2 are in conflict
(due to update of one or more shared variables to different
values), no transition will occur. The index set ΩC that depends
on C(x, x́) can also be determined by the local index sets, where
ΩC = Ω1

C ∪ Ω2
C for σ ∈ Σ1 ∩ Σ2, ΩC = Ω1

C for σ ∈ Σ1\Σ2,
and ΩC = Ω2

C for σ ∈ Σ2\Σ1.

The reason why the keep-current-value predicate CΩx\ΩC , is
not involved in the synchronization in (5), only the predicate
condition C, is that shared variables can be updated in different
PTMs. The keep-current-value predicate is therefore a global
property that can be determined first after all local models have
been synchronized. Then the set ΩC for the global model and
the complete transition predicate Φ(x, x́) in (3) are determined.

3. RELATED DISCRETE EVENT MODELS

The relation between the proposed PTM and other well known
discrete event models is now discussed. Especially, the benefit
of PNs with shared variables (PNSVs) is illustrated.

3.1 Models Based on Automata

Finite automata An ordinary finite automaton (FA) can be
described by only one variable x, taking symbolic values from
a discrete setX = {q1, . . . , qn}. A transition from a state qi to a
state qj is modeled by the predicate CFA(x, x́) ≡ x=qi∧x́=qj .

Extended finite automata (Sköldstam et al. (2007)) An EFA is
an automaton extended with a tuple of variables v with domain
V , and a location variable `, with domain L = {`1, . . . , `n}.
Hence, the total tuple of variables is x = (`, v), andX = L×V .
The condition predicate C is specialized into a guard condition
g on the current value of v, and an action function that updates
v to a new value v́ := a(v). A transition from location `i
to location `j is represented by the following PTM predicate
CEFA(x, x́) ≡ `= `i ∧ ´̀= `j ∧ gij(v) ∧ v́= aij(v), including
corresponding guard and action function.

3.2 Models Based on Petri Nets

Petri nets A PN is a bipartite directed graph where a set P of
places is connected to a set T of transitions. Pre(pi, tj) = w
(Post(pi, tj) = w) means that there is an arc from place
pi (transition tj) to transition tj (place pi) with weight w. A
marking is a vector m that assigns to each place pi a non-
negative integer number of tokens denoted as mi. Furthermore,
a transition tj is enabled iff mi ≥ Pre(pi, tj) for each place
pi ∈ P . If tj is enabled it may fire, yielding an updated marking
ḿ for each place pi as ḿi = mi + Post(pi, tj)− Pre(pi, tj).

In a PTM, the marking vector m for a PN is the tuple of
variables, and the transition predicate for transition tj can be
formulated as

CPN (m, ḿ) ≡
n∧
i=1

(
mi ≥ Pre(pi, tj)

∧ ḿi = mi + Post(pi, tj)− Pre(pi, tj)
)
. (6)

Petri nets with shared variables In the same way as variables
can be added to ordinary automata, resulting in EFAs, shared
variables and related guards and actions can be added also to a
Petri net, resulting in a PNSV. Extra variables in a tuple v then
results in the total tuple of variables x = (m, v). Additional
guards and actions on the transitions in an ordinary PN are
then included in a predicate CV , which results in the following
transition predicate for a PNSV

CPNSV (x, x́) ≡ CPN (m, ḿ) ∧ CV (x, x́). (7)

The following example illustrates how a PN can be simplified
by introducing shared variables in modular PNSVs.
Example 1. Consider the PN in Fig. 1, where two common re-
sourcesR1 andR2 are shared between three straight sequences.
The places and arcs between these sequences model the mutual
exclusion conditions for the two resources, as well as the prece-
dence condition c1 before c3 for each individual token. In Fig. 2
three PNSVs are presented, where the two shared resource
places are replaced by the shared variables R1 and R2, and the
precedence condition is modeled by the shared variable P . The
domain of the variables R1 and R2 models their capacity, and
with the short cut notation

R1 R2

P

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

Fig. 1. Petri net including two shared resources R1 and R2 and
a precedence token place P .

WODES 2014
Cachan, France. May 14-16, 2014

88



a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

R−
1

R−
2

R+
1 ∧ P+

R+
2

R−
2

R−
1

R+
2

R+
1

R−
2

R+
2

P−

Fig. 2. Three PNSVs with shared variables R1, R2 and P ,
increased and decreased by the short-cut condition (8).

R± ≡ Ŕ = R± 1 (8)
for a variable R, the resources are booked (-) and unbooked
(+) in an equivalent way in the ordinary PN in Fig. 1 and the
PNSVs in Fig. 2. The precedence condition based on P has also
en equivalent behavior.

The PNSVs are easily expressed as three synchronized PTMs,
illustrated for a smaller example in Lennartson et al. (2014).
Here, we only observe that the transition conditions on the
shared variables are exactly those that are given on R1, R2 and
P in Fig. 2. 2

In this example the predicates on the shared variables belong to
CV . Generally, CV may include guards and actions on both the
number of tokens in m and the variables in v. An example of
an action on m is the reset of tokens.

A clear benefit of PNSVs is that graphical modeling can be
used where it has its strength, typically showing flows of items
between places in a PN. Complicated logical conditions related
to mutual exclusion, synchronization, precedence relations, and
supervisory control conditions are preferably expressed by log-
ical conditions. This is clear already in the simple PN models
in Fig. 1 and Fig. 2, but is much more obvious for larger sys-
tems. Logical conditions between places far away from each
other generate complex graphical models. These models may
be much harder to understand then modularized PNSVs with
added explicit transition predicates, where variable names can
be assigned to clearly express the meaning of for instance re-
source booking, as in Fig. 2.

Unified model for synthesis In the next section it will be
shown how synthesis of supervisors can be performed for
PTMs. Since all models described in this section are special
cases of the PTM, it also means that the same synthesis ap-
proach can be applied to all these model classes.

4. SUPERVISORY CONTROL

Supervisory control theory (SCT), see Ramadge and Won-
ham (1987), is a formal framework for synthesizing a su-
pervisor S for a given plant G, such that a specification K
is satisfied for the closed loop system G‖S. The plant G
is normally represented as a number of synchronized sub-
plants, i.e. G = G1‖ · · · ‖GNG . Local specifications Kj , j =

1, . . . , NK are also synchronized to a common specification
K = K1‖ · · · ‖KNK . The total specification G‖K is then also
a candidate of a supervisor to control the plant such that the
specification K is fulfilled. From now on, a finite number of
states is assumed, as well as all models being deterministic.

4.1 Controllable and Nonblocking System

In SCT, the events are divided into two disjoint subsets: con-
trollable events, denoted by Σc, that can be prevented to be
executed by the supervisor (i.e., disabled); and uncontrollable
events, denoted by Σu, which cannot be influenced by the
supervisor. Two important properties are considered in SCT
namely controllability and nonblocking.

Controllability Traditionally, controllability has been defined
as a language condition, while a similar state based definition
was denoted completeness, see Ramadge and Wonham (1987).
Later, different definitions of controllability in state space form
have also appeared, cf. Fabian (1995); Ouedraogo et al. (2011),
following the basic principle that the closed loop system must
be able to follow any uncontrollable event enabled in the plant
states that the closed loop system can reach. Since our synthesis
formulation is state based, the same type of controllability
definition is also chosen in this paper.

Before controllability is defined for PTMs, a simple state pro-
jection function is introduced. A state xk in a local modelGk is
related to the corresponding state x in a synchronized systemG
including Gk by the projection function xk = P k(x). Hence,
P k(x) only preserves those variables from G that are involved
in Gk.
Definition 4. (Controllability). Let Gk = 〈Ωkx, Xk,Σk, T k,

X ki ,X km〉, k = 1, 2, be two PTMs, where Σ2 ⊆ Σ1. Then, G2

is controllable with respect to G1 and a set of uncontrollable
events Σu ⊆ Σ1 if, for every string s ∈ Σ1∗ and every
uncontrollable event σu ∈ Σu ∩ Σ2 such that Ĝ1‖G2 s→ x

and P 1(x)
σu→ P 1(x́) in Ĝ1, it also holds that x

σu→ x́ in Ĝ1‖G2.
If x9

σu
, then x is an uncontrollable state. 2

This definition is general in the sense that a system with shared
variables can model many different scenarios. Assume for in-
stance that G1 is a plant model where some variables represent
internal states in the plant, and other variables are input signals
determined by a supervisor G2. The update of the internal plant
state variables are then naturally modeled as uncontrollable
transitions, while the input signals are updated at controllable
transitions. This means that input variables keep their current
values when any internal plant variable is updated at an uncon-
trollable transition. On the contrary, the plant variables keep
their current values when any input signal signal is updated at a
controllable transition. Hence, the internal plant state variables
can be considered as uncontrollable variables, while the input
signals to the plant are controllable variables. This interpreta-
tion gives a signal based formulation of a plant G1 controlled
by a supervisor G2.

Nonblocking Nonblocking is now defined for an arbitrary
PTM G, although the application is the closed loop system
G‖S.
Definition 5. (Nonblocking). Let G = 〈Ωx, X,Σ, T,Xi, Xm〉.
A state x ∈ X is reachable if Ĝ s→ x, and it is coreachable

WODES 2014
Cachan, France. May 14-16, 2014

89



if x s→ Xm where Xm = {x ∈ X | Xm(x)}. A PTM G is
nonblocking if every reachable state is also coreachable. 2

4.2 Supervisor State Set Generation

In the generation of a controllable and nonblocking supervisor
S, given a supervisor candidate G‖K, the first step is to
identify all uncontrollable states in G‖K with respect to G.
The identification of these forbidden states is determined in
the following proposition, where two restrictions are included.
For the uncontrollable transitions in the specification K it is
assumed that guards, but no actions, are included i.e. ΩCK = ∅,
and the variables included in the specification K are assumed
to be a subset of the plant variables in G, i.e. ΩKx ⊆ ΩGx .
Proposition 1. (Uncontrollable states). Let G = 〈ΩGx , XG,
ΣG, TG,XGi ,XGm〉 and K = 〈ΩKx , XK ,ΣK , TK ,XKi ,XKm 〉.
Assume that ΣK ⊆ ΣG and consider all transitions (σ, CT ) ∈
TK such that σ ∈ Σu. Furthemore, assume that then ΩCK = ∅,
and ΩKx ⊆ ΩGx . The set of uncontrollable states in G‖K with
respect to G is then given by the set

XG‖K
u = {x ∈ XG‖K | ∃(σ, CG ∧ CK) ∈ TG‖K ,
∃x́ ∈ XG‖K [ΦG(x, x́) ∧ ¬CK(PK(x), PK(x́))]}

Proof: According to Def. 4 for G1 = G and G2 = K,
the statement is proven by evaluating the transitions where
the event σ ∈ Σu ∩ ΣK and ¬ (ΦG → ΦG‖K) ≡ ΦG ∧
¬ΦG‖K ≡ CG ∧ CGcv ∧¬ (CG ∧ CK ∧ CG‖Kcv ). Since ΩCK = ∅,
and ΩKx ⊆ ΩGx , we find that ΩGx ∪ ΩKx = ΩGx and ΩCG ∪
ΩCK = ΩCG . Thus, CG‖Kcv = CGcv and the result follows. 2

Most often there is no additional specification predicate on tran-
sitions with uncontrollable events, which results in XG‖K

u =∅.
In Ouedraogo et al. (2011) that is even assumed. However, to
avoid unnecessary restrictions,XG‖K

u takes care of cases where
guards are also added on transitions with uncontrollable events.

Given the uncontrollable states XG‖K
u and any explicitly for-

bidden states XG‖K
f , a supervisor S can be synthesized by

removing these states and additional blocking and extended
uncontrollable states. This is done by removing states from
the EST model Ĝ‖K in a fixed point iteration, starting with
X0
f = X

G‖K
u ∪XG‖K

f and iterating until Xk+1
f = Xk

f = Xf .
To express this, the following forbidden state model is defined.

Definition 6. (Forbidden state model). Let Ĝ = 〈X,Σ,→,
Xi, Xm〉. A corresponding model excluding a set of forbidden
states Xf ⊆ X is then defined as Ĝ\Xf

= 〈X\Xf ,Σ,→\Xf
,

Xi\Xf , Xm\Xf 〉 where→\Xf
= {(x, σ, x́) |x, x́ /∈ Xf} 2

The supervisor states, the safe states, are XS = XG‖K \
Xf , where all reachable blocking and uncontrollable states are
included inXf . Moreover, assume that only those states that are
necessary to remove are includedXf . A maximally permissive,
controllable and nonblocking supervisor

ŜXf
= Ĝ‖K\Xf

(9)

is then achieved.

4.3 Supervisor Guards

Supervisor guards will now be added to the original PTM
G‖K, such that the closed loop system will stay within the

safe state setXS . First, two additional state sets are introduced,
cf. Miremadi et al. (2011) , the set of statesXS

σ where the event
σ must be allowed by ŜXf

, and the set of states XS
¬σ where the

event σ must be forbidden. For all other states it does not matter
if the supervisor allows or forbids σ. Together with the fact that
a supervisor can only restrict controllable events, this implies
that for every event σ ∈ Σc ⊆ ΣG a supervisor guard CSσ (x) is
generated such that:

CSσ (x) ≡


>, x ∈ XS

σ

⊥, x ∈ XS
¬σ .

don’t care, x ∈ X\(XS
σ ∪XS

¬σ)

(10)

These supervisor guards are preferably implemented by adding
them to the plant PTMs Gk, k = 1 . . . , NG. The transition
relation sets T k are then replaced by

T kC = {(σ, Ck ∧ CSσ ) | (σ, Ck) ∈ T k}
resulting in modified plant models GkC . This is possible since
σ ∈ Σc ⊆ ΣG. For a shared event σ, due to the synchronous
composition, it is only necessary to add the guard to one of the
plant models that include this event. This results in a distributed
PTM supervisor

S = G1
C‖ · · · ‖G

NG

C ‖K
1‖ · · · ‖KNK

where the synchronous composition may be implemented on-
line. With a reasonable size of the supervisor guards, it is easy
to implement this supervisor in an industrial control system,
and with smaller guards it is even possible for a user to identify
how the supervisor restricts the behavior of the plant.
Example 2. Consider the PNSVs in Fig. 2. Since the resources
R1 and R2 are booked in opposite order, a deadlock may occur.
A maximally permissive and nonblocking supervisor can in this
case be formulated, independently of the capacity of R1 and
R2, by the supervisor guards

CSa1 ≡R1 > 1 ∨ (R2 +m3
2) > 0,

CSa2 ≡R1 > 0 ∨ (R2 +m3
2) > 1,

where m3
2 is the number of tokens in the second place after

event a3 in the right PNSV in Fig. 2. This unsymmetric contri-
bution comes from the fact that a token in this place without
any restriction follows by an action R+

2 at the event b3. These
supervisor guards guarantee that the deadlock state R1 +R2 +
m3

2 = 0 never occurs. 2

General techniques to reduce the size of supervisor guards
CSσ (x) (10) are proposed in Miremadi et al. (2011). The same
technique can also be used to generate compact supervisor
guards for PTMs. Furthermore, the computation of the safe
states in the supervisor, which is based on reachability search,
can be made symbolically to save memory and execution time.
More specifically, the set of all transition relations → can be
formulated logically as a transition predicate T . To restrict
x and x́ to their domain of definition X , the state predicate
X (x) ≡ x ∈ X is introduced. Then the following event
transition predicate defines the set of transitions with label σ,

Tσ(x, x́) ≡
∨

(σ,C)∈T

C(x, x́) ∧ Ccv(x, x́) ∧ X (x) ∧ X (x́).

The total transition predicate, including all transitions in→, is
finally expressed as T (x, x́) ≡

∨
σ∈Σ Tσ(x, x́) This predicate

formulation of the transition set → can be directly translated

WODES 2014
Cachan, France. May 14-16, 2014

90



to BDDs, which means that efficient reachability search can be
performed.

One critical problem in the BDD formulation is, however, that
the number of BDD nodes becomes very large during the con-
struction, while the size of the final BDD is more manageable.
A well known recommendation is then to partition the total
transition, in our case by formulating individual BDDs for each
Tσ , which gives a disjunctive partitioning of T . This partition-
ing approach is a key factor to reduce the memory size (number
of nodes in the BDDs), but also the computation time. A typical
experience for larger systems is memory overflow when no
partitioning is involved. Further details on this partitioning can
be found in Fei et al. (2014).

5. HYBRID SYSTEMS

Hybrid systems including a combination of discrete and con-
tinuous dynamics are naturally modeled by extending the PTM
with continuous variables, and a predicate on the differential
equations for these variables. Such a model is called a hybrid
predicate transition model (HPTM) model
Definition 7. (Hybrid Predicate Transition Model). A hybrid
predicate transition model G is an 8-tuple

G = 〈Ωx, X,Σ, T,Xc,Xi,Xm,Xinv〉 (11)
where Ωx, X , Σ, T , Xi, and Xm are defined in Definition 1 and

(i) Xc : X×X → B is a predicate on the current value x and
the time derivative ẋ.

(ii) Xinv : X → B is a predicate, defining desired invariants
of x that must always be satisfied.

2

Of course, the time derivative of a state has a meaning only
if the state has a continuous domain of definition. Assume for
simplicity that those states are collected in the vector xc. Then,
even a differential inclusion such as ẋc ≥ f1(xc)∧ ẋc ≤ f2(xc)
may determine the continuous part of the trajectory. In the same
way as keep current value, is the normal assumption for those
variables that are not updated in a discrete transition, the default
time derivate of a variables xj is ẋj = 0 for those variables that
are not assigned any specific time derivative in Xc.
Example 3. Consider a tank process with an area A, an input
flow qin, an output flow qout, and a height level h(t). The input
flow is controlled by a discrete valve u, where u ∈ {0, 1}. The
opening and closing actions of this valve have a time delay Td
that is modeled by a clock c(t). The continuous-time model is
then given by the predicate

Xc(x, ẋ) ≡ Aḣ(t) = qinu− qout ∧ ċ = v,

and the following predicates

C1 ≡ h ≥ hmax ∧ u = 1 ∧ v́ = 1

C2 ≡ c = Td ∧ u = 1 ∧ ć = 0 ∧ v́ = 0 ∧ ú = 0

C3 ≡ h ≤ hmin ∧ u = 0 ∧ v́ = 1

C4 ≡ c = Td ∧ u = 0 ∧ ć = 0 ∧ v́ = 0 ∧ ú = 1

define the discrete updates of both the continuous variable,
the clock c, and the discrete variables u and v. The desired
maximum and minimum tank levels are hmax and hmin, re-
spectively. The invariant predicate Xinv , traditionally included
in hybrid automata Alur et al. (1993), can be used to determine
necessary transitions from a state, while transition conditions
in principle can express the same conditions but then at one or

more transitions. To conclude, the invariant predicate add some
more flexibility in the modeling of transitions from one state to
another, either in terms of a continuous or a discrete state jump.

Compared to the well established hybrid automaton, see Alur
et al. (1993), this HPTM is more general and flexible. The log-
ical behavior can be expressed not only by transitions between
specific locations, but also by combining locations with discrete
variables in the same way as discrete variables can be added to
ordinary automata and Petri nets.

A synchronization of local HPTMs is also naturally achieved,
applying the same rules for G1‖G2 as in Definition 3, adding
the rules

Xc(x, ẋ) =X 1
c (x1, ẋ1) ∧ X 2

c (x2, ẋ2)

Xinv(x) =X 1
inv(x

1) ∧ X 2
inv(x

2)

This formulation makes it easy to formulate modular represen-
tations of hybrid systems.

6. OPTIMIZATION

Optimization of discrete event systems is a challenging area. In
this session we will focus on performance optimization. This is
of special interest for PNs with a token flow as illustrated by
the modular PNSVs. Assuming that every token has a minimal
execution time in each place, a typical goal is to optimize how
fast all tokens can pass from their first to their last place. This
time, called the make span will now be minimized for the PNSV
model in Fig. 2. It is illustrated how well this model is suited for
optimization based on Constraint Programming (CP) Baptiste
et al. (2001).

The PNSV model in Fig. 2 is directly translated to a CP model.
The solution, although just an example, demonstrates the prin-
ciples how this can be done for an arbitrary number of local
PNSVs, communicating by discrete shared variables.

Introduce the following bounded set of integers In = {1, . . . , n}
and Zn = {0} ∪ In. For each token j ∈ Imk

0 in task k ∈ I3

and place i ∈ IN
k

the execution time is T k(i). Execution is
assumed to occur in all places except the first and the last one.
Hence, the first execution place (i = 1) is the second place in
each straight sequence in Fig. 2.

Given the continuous transition times tk(i, j) for each token
j ∈ Imk

0 , the precedence constraints are

tk(i, j) + T k(i) ≤ tk(i+ 1, j), ∀i ∈ IN
k−1

where we note that the total duration time in each place may be
larger than the execution time. The continuous criterion

Tf = max
k∈I3,j∈Im

k
0

tk(Nk, j),

the make span, is minimized. The shared variables R1 ∈ Z3,
R2 ∈ Z3 and P ∈ Z4 generate restrictions by the following
cumulative constraints

cum(R1) =R0
1 −

m1
0∑

j=1

step(t1(1, j), 1) +

m1
0∑

j=1

step(t1(3, j), 1)

−
m2

0∑
j=1

step(t2(2, j), 1) +

m2
0∑

j=1

step(t2(4, j), 1)

WODES 2014
Cachan, France. May 14-16, 2014

91



cum(R2) =R0
2 −

m1
0∑

j=1

step(t1(2, j), 1) +

m1
0∑

j=1

step(t1(4, j), 1)

−
m2

0∑
j=1

step(t2(1, j), 1) +

m2
0∑

j=1

step(t2(3, j), 1)

−
m3

0∑
j=1

step(t3(1, j), 1) +

m3
0∑

j=1

step(t3(2, j), 1)

cum(P ) = P 0 +

m1
0∑

j=1

step(t1(3, j), 1)−
m3

0∑
j=1

step(t3(3, j), 1)

with initial values R0
1 = 3, R0

2 = 3 and P 0 = 0. The function
step(t, `) denotes a step function of magnitude ` at time t and
cum(R) specifies that the expression must be within the domain
of defininition for variable R at all time instances. The step
function can also be regarded as a resource booking interval of
infinite length, see Aggoun and Beldiceanu (1993) for details
on the cumulative constraint.

It is clear from this example that it is very easy and natural to
express a PNSV as a CP model, where the precedence relations
between the tokens in each local PNSV are determined by their
transition and execution times. What is more interesting is the
easy way the integer variablesR1,R2 and P are updated, repre-
senting the logical constraints of the token flow. All incremental
updates of a variable say R, by expressions R+ and R−, are in
the CP model determined by the corresponding step function.
This function specifies at which time the corresponding discrete
variable will be updated. Then the optimization algorithm dis-
tributes the transition times such that the desired criterion is
minimized satisfying the necessary constraints.

This example shows how discrete shared variables easily can
be introduced in the optimization model. Shared events are
also simply handled by introducing the same transition time
for those transitions that have the same shared event. If there
are more than one shared event with the same label in two
local models, all combinations must be included, introducing
alternative choices to involve all the alternative scenarios. This
formulation is easy to apply, and our experience also shows that
the optimization is very efficient. In most cases the CP solver
gives an answer significantly faster than for instance a more
traditional Mixed Integer Linear Programming (MILP) solver,
see Wigström and Lennartson (2012). For the example in this
session, the CP solver gave an optimal solution more than ten
times faster than a corresponding MILP approach.

7. CONCLUSIONS

A generic predicate transition model has been presented, from
which it is shown how a nonblocking, controllable and max-
imally permissive supervisor can be implemented in terms of
control guards added to the original model. Furthermore, since
PTMs include automata, EFAs and Petri nets as special cases,
the presented framework is a unified, flexible and attractive
approach for supervisor synthesis. The suggested PTM has also
a graphical correspondence, including shared variables to Petri
nets. This flexible model structure is shown to be both more
readable than ordinary Petri nets, and a natural formulation
for efficient performance optimization based on constraint pro-
gramming.

REFERENCES

Aggoun, A. and Beldiceanu, N. (1993). Extending chip in
order to solve complex scheduling and placement problems.
Mathematical and Computer Modelling, 17(7), 57–73.

Alur, R., Courcoubetis, C., Henzinger, T., and Ho, P. (1993).
Hybrid automata: An algorithmic approach to the specifica-
tion and verification of hybrid systems. In Lecture Notes in
Computer Science, volume 736, 209–229. Springer Berlin /
Heidelberg.

Baptiste, P., Pape, C.L., and Nuijten, W. (2001). Constraint-
based scheduling: applying constraint programming to
scheduling problems, volume 39. Springer.

Cassandras, C.G. and Lafortune, S. (2008). Introduction to
Discrete Event Systems. Chapter 3, pp. 133-221, Springer,
2nd edition.

Clarke, E.M., Grumberg, O., and Peled, D.A. (2000). Model
Checking. MIT Press.

Fabian, M. (1995). On Object Oriented Nondeterministic
Supervisory Control. Ph.D. thesis, Control Engineering
Laboratory,Chalmers University of Technology, Göteborg,
Sweden.

Fei, Z., Miremadi, S., Åkesson, K., and Lennartson, B. (2014).
Efficient Symbolic Supervisor Synthesis for Extended Finite
Automata. IEEE Transactions on Control Systems Technol-
ogy, 11.

Hoare, C.A.R. (1978). Communicating sequential processes,
volume 21 of Series in Computer Science. ACM. doi:
10.1145/359576.359585.

Kumar, R., Garg, V., and Marcus, S. (1993). Predicates and
predicate transformers for supervisory control of discrete
event dynamical systems. IEEE Transactions on Automatic
Control, 38(2), 232–247.

Lennartson, B., Basile, F., Miremadi, S., Fei, Z., Hosseini,
M.N., Fabian, M., and Åkesson, K. (2014). Supervisory
Control for State-Vector Transition Models - A Unified Ap-
proach. IEEE Transaction on Automation Science and Engi-
neering, 11(1), 33–47.

Manna, Z. and Pnueli, A. (1991). The temporal logic of reactive
and concurrent systems. Springer-Verlag New York, Inc.,
New York, NY, USA.

Manne, A.S. (1960). On the job-shop scheduling problem.
Operations Research, 8(2), 219–223.

Miremadi, S., Åkesson, K., and Lennartson, B. (2011). Sym-
bolic Computation of Reduced Guards in Supervisory Con-
trol. IEEE Transactions on Automation Science and Engi-
neering, 8(4), 754–765. doi:10.1109/TASE.2011.2146249.

Ouedraogo, L., Kumar, R., Malik, R., and Åkesson, K. (2011).
Nonblocking and Safe Control of Discrete-Event Systems
Modeled as Extended Finite Automata. IEEE Transactions
on Automation Science and Engineering, 8(3), 560–569.

Ramadge, P. and Wonham, W. (1987). Supervisory control of
a class of discrete event processes. SIAM Journal of Control
and Optimization, 25(1), 635–650.

Sköldstam, M., Åkesson, K., and Fabian, M. (2007). Modeling
of discrete event systems using finite automata with vari-
ables. In 46th IEEE Conference on Decision and Control,
3387–3392.

Wigström, O. and Lennartson, B. (2012). Scheduling model
for systems with complex alternative behaviour. In Proc. 8th
IEEE Conference on Automation Science and Engineering
(CASE 2012), 587–593. Seoul.

WODES 2014
Cachan, France. May 14-16, 2014

92


